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Abstract

In this paper we consider the estimation of the parameters of the spatio-temporal covariances
of spatio-temporal stationary random processes. We define Finite Fourier Transforms of the
processes at each location and based on joint distribution of these complex valued random
variables we define an approximate likelihood function and consider the maximization. Ideas are
similar to Whittle likelihood function considered in time series. The sampling properties of the
estimators are investigated. The method is applied to simulated data and also to pacific wind
speed data considered earlier by Cressie and Huang [6].

1 Introduction and Notation

Spatio-temporal data arise in many areas such as epidemiology, environmental sciences (in particular
weather sciences), marine biology, agriculture, geology and finance to name a few. It is therefore
necessary to develop suitable statistical methods for analysis of such data. There is a vast literature
devoted to the analysis of spatial data(i.e data which is a function of spatial coordinates only). Once
an extra dimension, like time, is introduced the available methodology is no longer applicable and
any method developed should not only take into account spatial and temporal dependencies but
also their interaction. The literature on spatio-temporal processes is is a bit sparse compared to the
literature on spatial processes. Recent books by Cressie and Wikle [8] and Sherman[19] should help
to fill in this gap. In the following we briefly introduce the notation and summarise the contents of
the paper.

Let the spatio-temporal process be denoted by Z(s, t) where {(s, t) ∈ Rd × Z}. Assume that
the process is observed at m different spatial locations and n equally spaced time points. So, we
have a total of m.n = M1 observations of the process {Z(si, tj) : i = 1, 2, ...,m; j = 1, 2, ..., n}. Let
S denote the set of ordered pairs S = {(i, j) : i = 1, 2, ...,m; j = 1, 2, ..., n}. For convenience of
notation let us define a one-one mapping from S → N enumerating the elements of the set S from
(1, 1), (1, 2), ..., (m,n) as 1, 2, ...,M1. To ensure that the random process has finite second order
moments we assume that V ar[Z(s, t)] <∞. We define the mean and covariance functions based on
the above defined mapping as

E[Z(s, t)] = µ(s, t)

Cov[Z(si; ti), Z(sj ; tj)] = C(si, sj ; ti, tj) {i, j = 1, 2, ...,M1}
(1)
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We assume that the random process is second order spatially and temporally stationary. That is,

E [Z(s, t)] = µ

Cov[Z(si; ti), Z(sj ; tj)] = C(si − sj ; ti − tj)
(2)

We note that C(si − sj ; 0) and C(0; ti − tj) correspond to the purely spatial and purely temporal
covariances of the process, respectively. A further stronger assumption that helps the construction
of parametric covariance functions is isotropy. The random process Z(si; tj) is said to be spatially
isotropic if

Cov[Z(si; ti), Z(sj ; tj)] = C(‖si − sj‖; |ti − tj |) (3)

As in the case of spatial process one can also define the variogram for the above spatio-temporal
process as

2γ(h;u|θθθ) = Var {Z(s + h; t+ u)− Z(s; t)} (4)

In the case of second order stationarity the variogram reduces to,

2γ(h;u|θθθ) = 2{C(0; 0|θθθ)− C(h;u|θθθ)}, h ∈ Rd, u ∈ Z (5)

The knowledge of the covariance function C(h;u|θθθ) (vis-a-vis variogram) is essential in the prediction
of an unknown observation at a known location which is an integral part of the spatial analysis and
we briefly outline the approach. Given the above set up, one is often interested in predicting
the process at a specified location and time point, say Z(s0, t0), based on the observation vector
Z = (Z(s1; t1), ..., Z(sM1 ; tM1))

′
. The minimum mean square (optimal) linear predictor is well known

to be
Z(s0, t0) = µ(s0, t0) + c(s0, t0)

′
Σ−1(Z− µ), (6)

where c(s0; t0) = Cov[Z(s0; t0),Z],Σ = {Cov[Z(si; ti), Z(sj ; tj)]} and µµµ = E(Z). When the mean µµµ
and the dispersion matrix Σ are known, the above predictor is called the simple kriging predictor
(see e.g [7, Ch. 3]). The mean square prediction error(MSPE) is given by c(s0, t0)

′
Σ−1c(s0, t0).

To evaluate (6), we need the inversion of Σ and as the number of spatial locations and length of
time series increase, the inversion becomes complicated. In many practical situations, we need to
estimate Σ and c(s0, t0). Though in theory, Σ can be estimated, the estimation of the elements of
c(s0, t0) is not possible, as we do not have observations at the location s0. In order to circumvent
this, it is often assumed that a parametric covariance function can be specified. The covariance
function will be a function of some unknown parameters which may need to be estimated from
the data. Any covariance function defined and used must be positive definite (see Cressie and
Wikle [8]). Once a covariance function is decided an important problem is the estimation of the
parameters of this function using the data. Though there is substantial literature in the case of
spatial data for the estimation of parameters using the variogram ,not much literature exists in the
case of spatio-temporal data.

In this paper our objective is to consider the estimation of the parameters of non-separable
spatio-temporal covariance functions using the frequency domain approach. Cressie and Huang [6],
Gneiting [10] and Ma[14] among others have constructed non-separable spatio-temporal covariance
functions and have considered the estimation of the parameters using similar methods as were used
for spatial data. There are several limitations of their approaches and it is our object here to provide
a more useful and satisfactory approach.

We propose a frequency domain method for the estimation of a given spatio-temporal covariance
function (or equivalently its spectral density function).

The approach proposed is akin to Whittle likelihood approach often used in time series modelling
and our approach takes into account spatial correlation, temporal correlation and interaction as well.

2



In section 2 we briefly outline the earlier time domain approaches for the estimation of parameters
and their limitations. In sections 3 and 4 we describe the frequency domain approach and study the
asymptotic sampling properties of the estimators thus obtained. Simulation results are discussed
in section 5. We consider the Pacific wind speed data earlier considered by Cressie and Huang [6]
and estimate the parameters of three covariance functions using the method proposed.

2 Non-separable class of covariances and the estimation

In this section we briefly describe the class of covariance functions proposed and the method of
estimation suggested by Cressie and Huang ([6]) and Gneiting ([10]). As pointed out by several
authors it is non-trivial to construct non-separable class of covariances which are positive semi-
definite. One class of spatially isotropic covariances proposed by Gneiting ([10]) and Gneiting et al.
[11] based on generalizing the ideas of Cressie and Huang [6] has the following form

C(h;u) =
σ2

ψ(|u|2)d/2
φ

(
‖ h ‖2

ψ(|u|2)

)
, (h;u) ∈ Rd × R (7)

where it is assumed that

• φ(z) is a completely monotone function of z ∈ (0,∞) with lim
z→0

and lim
z→∞

φ(z) = 0.

• ψ(w) is a positive function of w ∈ (0,∞) with completely monotone derivative.

• σ2 > 0 and δ ≥ d/2 are scalar parameters.

For details we refer to Gneiting [10] and to a recent paper by Kent et al. [12]. Kent et al. [12] point
out in their paper that the class of covariances defined by Gneiting [10], in certain circumstances,
possess a counter intuitive dimple and in some circumstances the magnitude of the dimple can be non
trivial. Since we assumed spatial and spatio-temporal stationarity, we expect that the covariances
tend to zero monotonically as the spatial and temporal lags increase. So one should be careful in
the choice of covariance functions. However, for our present estimation purposes we are primarily
interested in the estimation of parameters of a given class of covariance functions (or equivalently
its spectral density function) and not about the choice of these functions.

Given a sample from the stationary spatio-temporal process, Cressie and Huang [6] and others
defined its estimator in terms of its corresponding variogram as

2γ̂(h(l);u) =
1

|N(h(l);u)|
∑∑

(i,j,t,t′ )∈N(h(l);u)

(
Z(si, t)− Z(sj , t

′
)
)2

(8)

where,

N(h(l);u) ≡
{

(i, j, t, t
′
) : si − sj ∈ h(l); |t− t′| = u, i, j = 1, 2, ...,m

}
|N(h(l);u)| is the number of distinct elements in the set N(h(l);u); l = 1, 2, ..., L;u = 0, 1, ...U .
This follows from the spatial case where the above estimator, due to Matheron [15], is termed as
the classical variogram estimator. The study of sampling properties of the above estimator (such
as its variance, sampling distribution etc.) gets more difficult even with additional assumption
of the Gaussianity of the process, for the simple reason that we have to take into account not
only spatial dependence but also its temporal dependence. Even if we assume that the process is

Gaussian which implies that the spatial and temporal squared differences
(
Z(si, t)− Z(sj , t

′
)
)2

is
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proportional to a chi-square, the sum in (8), is no longer the sum of independent chi-squares and
as such the assumption on which the above estimator is based, is unrealistic. However Cressie and
Huang [6] have used these assumptions extending from Cressie [5] in case of spatial processes. More
formally, for a chosen spatial distance h(l), l = 1, 2, ..., L they approximate

V ar[2γ̂(h(l);u)] ' 2(2γ(h(l);u|θθθ))2

|N(h(l);u)|
(9)

and hence propose that the parameter vector θθθ be estimated by minimizing the following criterion

W (θθθ) =
L∑
l=1

U∑
u=0

|N(h(l);u)|
{
γ̂(h(l);u)

γ(h(l);u|θθθ)
− 1

}2

(10)

As far as we are aware, no sampling properties of the estimators are known. In the following
sections we propose a frequency domain method which upto an extent circumvents those dependency
problems outlined. Further we can also study the asymptotic properties of the estimators thus
obtained using some classical results available in time series.

3 Frequency Method of Estimation of Covariance Parameters

Consider the stationary spatio-temporal random process {Z(si, tj), i = 1, 2, ...,m, j = 1, 2, ..., n}
and we further assume that the process is isotropic and without loss of generality we assume that
the mean is zero, and the variance and covariances are given by

E[Z(si, t)] = 0, for all i and t

Var[Z(si, t)] = C(0, 0) = σ2 <∞
E[Z(si + h, t+ u)Z(si, t)] = C(‖h‖, u) for all i.

(11)

We now define a new spatio-temporal random process Yij(t),

Yij(t) = Z(si, t)− Z(sj , t), for each t = 1, 2, ..., n (12)

and for locations si, sj , where si and sj are defined in the set {N(hl) = {si, sj ; ‖si − sj‖ =
‖hl}‖, l = 1, 2, ..., L}. Note that if there is any common trend in both series {Z(si, t)} and {Z(sj , t)}
the differenced series will be free from trend. Now we define the Finite Fourier Transform of
{Yij(t), i is not equal to j} at the frequencies ωk = 2πk/n, k = 0, 1, ..., [n/2] as

Jsisj (ωk) =
1√
2πn

n∑
t=1

Yij(t)e
−itωk (13)

and the second order periodogram of {Yij(t)} as

Isi,sj (ωk) = |Jsisj (ωk)|2

=
1

2π

n−1∑
u=−(n−1)

ĉy,ij(u)e−iuωk
(14)

where ĉy,ij(u) is the sample autocovariance function of time lag u of the stationary series {Yij(t), i is not equal toj}.
For the sampling properties of Finite Fourier Transforms and periodograms, we refer to Brillinger

[3], Priestley [17] and a recent paper of Dwivedi and Subba Rao [9]
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From (12) and (13), we obtain

Jsisj (ωk) = Jsi(ωk)− Jsj (ωk) and hence (15)

Isi,sj (ωk) = Isi(ωk) + Isj (ωk)− 2Re[Isisj (ωk)] (16)

where Jsi(ωk) and Jsj (ωk) are Finite Fourier Transforms of the individual series {Z(si, t)} and
{Z(sj , t)}, Isi(ωk) and Isj (ωk) are their corresponding periodograms and Isisj (ωk) is the cross peri-
odogram. Note that in the above equation we have denoted the cross periodogram of {Z(si, t)} and
{Z(sj , t)} by Isisj (ωk) (without any comma between si and sj) while the real valued periodogram
of the single series Yij(t) is denoted by Isi,sj (ωk)

Let gsisj (ω,θθθ) denote the second order spectral density function of the series {Yij(t), i is not equal to j}
which we assume is function of the parameter vector θθθ. Then from (15) we obtain

E[Isi,sj (ωk)] = E[Isi(ωk)] + E[Isj (ωk)]− 2ReE[Jsi(ωk)J
∗
sj (ωk)] (17)

and for large n, the above can be approximated by

gsisj (ωk)(θθθ) = 2f(ωk, θθθ1)− 2f‖h‖(ωk, θθθ2) (18)

where f(ωk, θθθ1) is the second order spectral density function of the stationary spatial process
{Z(si, t); i = 1, 2, ...,m} and f‖h‖(ωk, θθθ2) is the cross spectral density function of the process {Z(si, t)
and {Z(si, t) given by

fh(ωk, θθθ2) =
1

2π

∞∑
u=−∞

c(si − sj , u)e−iuω

In view of isotropy the above cross spectral density function reduces to

fh(ωk, θθθ2) =
1

2π

∞∑
u=−∞

c(‖si − sj‖, u)e−iuω = f‖h‖(ωk, θθθ2) (19)

The cross spectral density function fh(ωk, θθθ2) is usually a complex valued function, but in view of
the assumption of stationarity and isotropy, c(si − sj , u) = c(‖si − sj‖, u) and c(‖si − sj‖, u) =
c(‖si − sj‖,−u) which implies that f‖h‖(ωk, θθθ2) is a real valued function. Using the analogy of the
analysis of spatial process, we can define gsi,sj (ωk, θθθ) where θθθ = (θθθ1, θθθ2) as frequency domain version
of the variogram. Now consider gsi,sj (ωk, θθθ) defined in (18), the frequency domain version of the
classical semi-variogram namely,

1

2
g‖h‖(ωk) = f(ωk, θθθ1)− fh(ωk, θθθ2)

= f(ωk, θθθ1) [1− fh(ωk, θθθ2)/f(ωk, θθθ1)]

Let us denote fh(ωk, θθθ2)/f(ωk, θθθ1) by Wh(ωk, θθθ), which lies between [0, 1] for all k and all ‖h‖. This
measure is similar to coherency measure used in signal processing and multivariate time series to
study the linear dependence between two series. If they are strongly linearly dependent, of course,
the spatial coherency will be close to one. If ‖h‖ = 0 obviously it is equal to one.

By plotting this measure, individually for each frequency we can have an idea in which frequency
bands the two spatial series are strongly correlated or if we take an average over all the frequencies
(suitably normalised) and plot these values against Eucledean distance ‖h‖, we can get an idea
of the spatial distance over which the processes are correlated and thus help us in modelling the
processes. This measure, in a way, can be used to give an idea about the range parameter similar
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to that of variogram in the spatial situations. These ideas need to be further investigated. Of
course, the measure of spatial coherency proposed here need to be studied further. As we pointed
out earlier, our object in this paper is the estimation of the parameters only.

It is well known (see for example the books by Priestley [17], Brillinger [3], Brockwell and Davis
[4] etc. and a recent paper by Dwivedi and Subba Rao [9]) that discrete Finite Fourier transforms of
a stationary process are asymptotically uncorrelated over distinct canonical frequencies, and have
complex normal distribution (see Brillinger [3, Theorem 4.4.1]) (thus independent) and further the
Fourier transforms at distinct frequencies of two spatial processes are also asymptotically indepen-
dent and each have complex normal distribution if the random process is Gaussian. In view of
this asymptotic property, we can consider the vector J

′

‖h‖ = [J‖h‖(ω1), J‖h‖(ω2), ..., J‖h‖(ωM )]
′
,

where J‖h‖(ωk) = Jsisj (ωk) as defined by (13) and M = [n/2], is distributed as asymptoti-
cally multivariate complex normal with mean zero and variance covariance matrix with diagonal
[g‖h‖(ω1), g‖h‖(ω2), ..., g‖h‖(ωM )]

′
. We note that because of the asymptotic independence, the off

diagonal elements are zero. In view of this asymptotic distribution, the log likelihood can be shown
to be proportional to

Qn,ij(θθθ) =
M∑
k=1

[
ln(gsisj (ωk, θθθ)) +

Isisj (ωk)

gsisj (ωk, θθθ)

]
(20)

Since the above likelihood function is evaluated for only one Euclidean distance ‖hl‖, l = 1, 2, ..., L
we can use for the minimisation purposes the pooled (and scaled) sum calculated over all L distances
and consider Qn(θθθ).

Qn(θθθ) =
1

N

∑
i

∑
j

Qn,ij(θθθ), here N = M

L∑
l=1

|N(hl)| (21)

We minimize Qn(θθθ) with respect to parameters of θθθ
Note: In defining the above we have assumed that Qn,ij(θθθ) and Qn,i′j′(θθθ) are independent.

Though this assumption seems to be a bit unrealistic at the moment, we see from the simulations
that the estimates of θθθ are very close to the true values and are consistent.

In the next section we discuss strong consistency properties of the estimates of the unknown
parameters obtained from the above minimization.

4 Asymptotic Convergence of Parameter Estimates

Using a well known lemma based on the Arzela-Ascoli theorem (see for example [1, p. 221])
here we show that the parameter estimator θ̂θθn obtained by minimizing (21) with respect to the
unknown parameter vector θθθ converges in probability to the original parameter vector θθθ0 as n→∞.
Throughout our discussion we assume that θθθ ∈ Θ ⊂ Rd where Θ is a compact set and Qn(θθθ) has a
unique minimum. We now state the stochastic Ascoli lemma for any sequence of random functions
Q∗n(θθθ), which is an extension of the Arzela-Ascoli convergence theorem of sequence of functions on
the probability space of sequences of random functions.

Theorem 1. Let θ̂θθn = arg minθθθQ
∗
n(θθθ) and θθθ0 = arg minθθθQ

∗(θθθ), where Q∗(θθθ) = E [Q∗n(θθθ)]. Suppose
that Q∗(θθθ) has a unique minimum and

1. for every θθθ ∈ Θ we have Q∗n(θθθ)
a.s→ Q∗(θθθ), (pointwise convergence)

2. the parameter space Θ is compact,

6



3. Q∗n(θθθ) is stochastic equicontinuous.

Then θ̂θθn
a.s→ θθθ0 as n → ∞. The same result holds if we replace almost sure convergence by

convergence in probability.

We skip the proof here but the interested reader may refer Billingsley [1].We later use the above
theorem (see Lemma 3) to show consistency of the estimators. We now introduce some assumptions
which are needed for obtaining asymptotic properties of the parameter estimator θ̂θθn.

Assumption 1. (i) For any n ∈ Z+. and s1, s2, ..., sn ∈ R2 we have the following α− mixing
assumption:

sup
{A∈σ[Z(s,0),Z(s,−1),...]}
{B∈σ[Z(s,t),Z(s,t+1),...]}

|P (A ∩B)− P (A)P (B)| ≤ C|t|−α

for some α > 0 - which will need to be determined later.

(ii) We assume that all fourth order moments of {Z(s, t)} exist.

(iii) The covariance and fourth order cumulants satisfy

sup
s1,s2

∑
r

|r||Cov{Z(s1, 0), Z(s2, r)}| <∞,

sup
s1,s2,s3,s4

∑
t1,t2,t3

|ti||Cum{Z(s1, 0), Z(s2, t1), Z(s3, t2), Z(s4, t3)}| <∞

Lemma 1. Suppose Assumption 1 holds. Then for the difference series Yij(t) = Z(si, t)− Z(sj , t)
the above assumptions also hold.

Let us define the set S = {u = (s1, s2) : ‖s1 − s2‖ = h}. Let (u1,u2,u3,u4) belong to S and
let {Yu1(t)}, {Yu2(t)}, {Yu3(t)} and {Yu4(t)} be the corresponding differenced time series. Let us
denote the cross covariance between {Yu1(t)} and {Yu2(t)} by cu1,u1(s) = Cov{Yu1(t), Yu2(t + s)}
and the fourth order cumulant of the series {Ysi(t); i = 1, 2, 3, 4} by Cum(Yu1(t), Yu2(t+s1), Yu3(t+
s2), Yu4(t + s3)) = Cu1,u2,u3,u4(s1, s2, s3). Let fu,u(ω) and fu1,u2(ω) and fu1,u2u1,u4(ω1, ω2, ω3)
denote the corresponding second order spectra, cross spectra and cumulant spectra (see Brillinger[3])
respectively, of the process {Ysi(t); i = 1, 2, 3, 4}.

Lemma 2. Suppose Assumption 1 holds. Then define

Wn =
∑
u∈S

bn/2c∑
k=1

hu(ωk)Iu(ωk), (22)

where hu(.)is a bounded continuous function and Iu(.) is the periodogram of Ys1,s2(t). Then we have

(i)

E

{
1

n
Wn

}
→
∑
u∈S

1

2π

∫ π

0
hu(ω)fu,u(ω)dω
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(ii)

Var{ 1√
n
Wn}

p→ 2
∑

u1,u2∈S

1

2π

∫ π

0
hu1(ω)hu2(ω)|fu,u(ω)|2dω

+
∑

u1,u2∈S

(
1

2π

)2 ∫ π

0

∫ π

0
hu1(ω1)hu2(ω2)fu1,u1,u2,u2(ω1,−ω1, ω2)dω1dω2

Proof.

E{ 1

n
Wn}

=
∑
u∈S

1

n

bn/2c∑
k=1

hu(ωk) E{Iu(ωk)}

u
∑
u∈S

 1

n

bn/2c∑
k=1

hu(ωk)fu,u(ωk)


u
∑
u∈S

1

2π

∫ π

0
hu(ω)fu1,u2(ω)dωsee [2, Ch 2] (23)

To obtain an expression for the asymptotic variance, we first note the well known results (see
Brillinger [3, Ch 2 and 3])

(i) Cov
[
|Ju1(ωk1)|2, |Ju2(ωk2)|2

]
=
[
Cov(Ju1(ωk1), Ju2(ωk2)) Cov(Ju1(ωk1), Ju2(ωk2))

]
+
[
Cov(Ju1(ωk1), Ju2(ωk2)) Cov(Ju1(ωk1), Ju2(ωk2))

]
+
[
Cum(Ju1(ωk1), Ju1(ωk1), Ju2(ωk2), Ju2(ωk2))

]
(ii)Ju(ωk) = Ju(ωn−k)

(iii) Cov(Ju1(ωk1), Ju2(ωk2)) =

fu1,u2(ωk1)
1

n

bn/2c∑
k=1

e−i(k1−k2)wk +O

(
1

n

)
(iv) Cum(Ju1(ωk1), Ju1(ωk1), Ju2(ωk2), Ju2(ωk2)) =

(2π)2

n
fu1,u1,u2,u2(ωk1 ,−ωk1 , ωk2) +O

(
1

n2

)
(24)

Now expanding Var{ 1√
n
Wn} and using the above equations; additionally using the Fourier-Stieltjes

integral approximation of limit of discrete Fourier transforms (as in the above proof of Expectation)
we have the desired expression.

We now study the asymptotic properties of the parameter estimator θ̂̂θ̂θn.

Assumption 2. (iv) The parameter space Θ is compact and is such that for all θ ∈ Θ, fu1,u2(ω; θ)
is a well defined spectral density and fu1,u1,u2,u2(ω1, ω2, ω3;θθθθθθθθθ) a well defined tri-spectrum.

(v) And the original parameter vector θ0θ0θ0 lies in the interior of Θ.

(vi) gu(ωk, θθθ) is bounded away from zero and infinity
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Define the criterion

Qn(θ) =
∑
u∈S

bn/2c∑
k=1

{
log gu(ωk;θθθ) +

Iu(ωk)

gu(ωk;θθθ)

}
(25)

Let θ̂θθ̂θθθ̂θθθn = argmin
θθθ∈Θ

1

n
Qn(θθθ) = argmin

θθθ∈Θ
Q∗n(θθθ)

Lemma 3. Suppose Assumptions 1 and 2 hold, let θθθ0 = arg minθθθQ
∗(θθθ), where Q∗(θθθ) = E [Q∗n(θθθ)]

then

1. for every θθθ ∈ Θ we have Q∗n(θθθ)
p→ Q∗(θθθ), (pointwise convergence)

2. Q∗n(θθθ) is stochastic equicontinuous.

Then θ̂̂θ̂θn
p→ θθθ0 as n→∞. .

Proof. Due to boundedness of g(ω;θθθ) (Assumption 2) for all θθθ and ω we have point wise convergence
of Qn(θθθ) (by Lemma 2), that is

1

n
Qn(θθθ)→

∑
u∈S

∫ [
log gu(ω;θθθ) +

gu(ω;θθθ0)

gu(ω;θθθ)

]
dω

We have earlier assumed that the parameter space Θ is compact. Proving conditions (1) and (2) is
equivalent to proving equicontinuity in probability. To prove that, we note that from mean value
theorem, we have ∣∣∣∣ 1nQn(θθθ1)− 1

n
Qn(θθθ2)

∣∣∣∣ =

∣∣∣∣ 1n∇Qn(θ̌̌θ̌θ)(θθθ1 − θθθ2)

∣∣∣∣ (26)

where θ̌̌θ̌θ lies in the interval (θθθ1, θθθ2). We observe that

1

n

∂Qn(θθθ)

∂θi
=
∑
u

1

n

bn/2c∑
k=1

[
1

gu(ωk;θθθ)

∂gu(ωk;θθθ)

∂θi
− Iu(ωk)

(gu(ωk;θθθ))
2

∂gu(ωk;θθθ)

∂θi

]
(27)

Now under the assumption that gu(.) is bounded, from the above, we get

1

n

∂Qn(θθθ)

∂θi
≤
∑
u

C +
C

n

bn/2c∑
k=1

Iu(ωk)

 = Mn, for some C > 0 (28)

From lemma 2 it follows that the expectation of Mn tends to

E [Mn]→ C
∑
u

[
1 +

1

2π

∫
fu,u(ω)dω

]
and that

Var(Mn)→ 0. In fact it can be shown to be Var(Mn) = O( 1
n)

This implies that ∣∣∣∣ 1nQn(θθθ1)− 1

n
Qn(θθθ2)

∣∣∣∣ ≤ [E(Mn) + op(1)] |θθθ1 − θθθ2| (29)

and hence equicontinuity in probability. Thus by Theorem 1 we have convergence in probability.
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Now we can prove asymptotic normality of θ̂̂θ̂θn. For the proof we also need that the second
derivative of ∇2Qn(.) converges uniformly. We skip the proof here which is very similar to the

above proof under the additional assumption that the derivative of 1
n

[n/2]∑
k=0

gsisj (ωk, θθθ), w.r.t to θθθ,

denoted by g
′
1n(θθθ) exists for all n and converges uniformly to function g(θθθ).

Theorem 2. Let Assumptions 1 and 2 be true so that Lemma 2 and 3 hold. Then

√
n(θ̂θθn − θθθ0)

D→ N(0,∇2Q−1
n (θθθ0)V∇2Qn(θθθ0)), where

V = lim
n→∞

Var

(
1√
n
∇Qn(θθθ0)

) (30)

Proof. Since ∇Qn(θθθ) is a vector we can only make a Taylor expansion point wise on ∇Qn(θθθ). Thus
point wise we have by the mean value theorem

1

n
∇Qn(θ̂̂θ̂θ) |i=

1

n
∇Qn(θθθ0) |i +(θ̂̂θ̂θn − θθθ0)

1

n
∇2Qn(θ̌̌θ̌θn) |i (31)

where θ̌̌θ̌θn lies in (θ̂̂θ̂θn, θθθ0). Note that the above expression is a scalar. Now using the uniform
convergence of ∇2Qn(θθθ) we have

sup
θθθ∈Θ
| 1

n
∇2Qn(θ̂̂θ̂θ)−∇2Q(θθθ) |→ 0, where

∇2Q(θθθ) = lim
n→∞

E

(
1

n
∇2Qn(θ̂̂θ̂θ)

) (32)

It is easy to calculate this limit using Lemma 2. This implies that 1
n∇

2Qn(θ̌̌θ̌θn)→ ∇2Q(θθθ0) Hence

1

n
∇Qn(θ̂̂θ̂θ) |i =

1

n
∇Qn(θθθ0) |i +(θ̂̂θ̂θn − θθθ0)∇2Q(θθθ0) |i +op(θ̂̂θ̂θn − θθθ0) |i

and this implies

1

n
∇Qn(θ̂̂θ̂θ) =

1

n
∇Qn(θθθ0) +∇2Q(θθθ0)

′
(θ̂̂θ̂θn − θθθ0) + op(θ̂̂θ̂θn − θθθ0) (33)

We note that the left hand side is zero for the optimum value θ̂̂θ̂θ. Also note that ∇2Q(θθθ0) is a
deterministic quantity. So for proving asymptotic normality of θ̂̂θ̂θn we need to show asymptotic
normality of 1√

n
∇Qn(θθθ0). Recall from equation (28) that

1√
n
∇Qn(θθθ0)

=
∑
u

1√
n

bn/2c∑
k=1

[
1

gu(ωk;θθθ0)
∇gu(ωk;θθθ0)− Iu(ωk)

gu(ωk;θθθ0)2∇gu(ωk;θθθ0)

]

=
∑
u

1√
n

bn/2c∑
k=1

[E [Iu(ωk)]− Iu(ωk)]
∇gu(ωk;θθθ0)

gu(ωk;θθθ0)2

−
∑
u

1√
n

bn/2c∑
k=1

[E [Iu(ωk)]− gu(ωk;θθθ0)]
∇gu(ωk;θθθ0)

gu(ωk;θθθ0)2

= I + II (34)

10



The term II is the deterministic which is the bias. It is known that |Iu(ωk) − gu(ωk;θθθ0)| ≤ K
n .

Thus Iu(ωk) and is O(1/
√
n). Thus the above equation reduces to

1√
n
∇Qn(θθθ0) =

∑
u

1√
n

bn/2c∑
k=1

{E [Iu(ωk)]− Iu(ωk)}
∇gu(ωk;θθθ0)

gu(ωk;θθθ0)2 +O(
1√
n

) (35)

Hence we only need to show the asymptotic normality of I.

I =
∑
u

1√
n

bn/2c∑
k=1

[E [Iu(ωk)]− Iu(ωk)]Hu(ωk;θθθ0)

where,

Hu(ωk;θθθ0) =
∇gu(ωk;θθθ0)

gu(ωk;θθθ0)2 (36)

We assume Hu(ωk;θθθ0) is smooth and twice differentiable with respect to ω

I =
∑
u

1√
n

∑
t

∑
τ

[Yu(t)Yu(τ)− E(Yu(t)Yu(τ))]
1

n

n∑
k=1

Hu(ωk;θθθ0)eiωk(t−τ)

=
∑
u

1√
n

∑
t

∑
τ

[Yu(t)Yu(τ)− E(Yu(t)Yu(τ))]hu(t− τ) + op(
1√
n

) (37)

Where hu(τ) =
∞∫
−∞

Hu(ω;θθθ0)eiω(τ)dω. In view of the assumption that Hu(ωk;θθθ0) is differentiable

twice with respect to ω, it follows that the impulse response sequences {hu(τ)} must decay to zero at
the rate 1

|τ |2 (see Briggs and Henson [2, Ch 6]). Note that {Yu(t)} are α-mixing at the rate specified

in Assumption 1. Then by Theorem 2.2 of Lee and Subba Rao [13] we can show the asymptotic
normality of 1√

n
∇Qn(θθθ0). That is

1√
n
∇Qn(θθθ0)

D→ N(0, V )

V = lim
n→∞

Var

(
1√
n
∇Qn(θθθ0)

) (38)

An expression for V can be deduced from Lemma 2. The above result together with equation (33)
gives √

n(θ̂θθn − θθθ0)
D→ N(0,∇2Q−1

n (θθθ0)V∇2Qn(θθθ0)) (39)

In the next section we apply the method described so far to estimation of unknown parameters
of a parametric spatio-temporal covariance function of a simulated spatio temporal random process.
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5 Numerical Example - Simulated Data

In the following we consider the analysis of the data generated from a specific model with the
main interest of illustrating the methodology proposed earlier. We use the lattice Z2 as the spatial
domain for sampling locations. We consider a rectangular lattice of size 17× 17 and at each of the
289 locations we generate a time series of length 480. The spatio-temporal stochastic process we
consider is

Z(si; t) = X(si).Yt; (i = 1, 2, ..., 289; t = 1, 2, ..., 480)

Where the spatial process {X(si)} and temporal process {Yt} are assumed to be independent, each
with mean zero. We note that the above is a separable spatio-temporal process with

Cov{Z(s + h; t+ u), Z(s; t)} = Cov{X(s + h), X(s)}.Cov{Yt+u, Yt} (40)

we assume, for generation of the process, the spatial covariance is of the form

Cov{X(s + h), X(s)} = σ2 exp (−‖h‖/α), α > 0 (41)

and the times series Yt satisfies and AR(1) model

Yt = φYt−1 + εt, |φ| < 1 (42)

and {εt} is a Gaussian White noise with zero mean and variance ν2. It is easy to show that

Var(Yt) = ν2

1−φ2 , Cov{Yt+u, Yt} = φ|u| ν2

1−φ2 and the first order correlation coefficient as φ which can
be estimated from a single realization of the time series data. For simulation of the data, we have
chosen σ = 7, α = 5.38, φ = .5, ν2 = 1.

We note that for the above separable spatio-temporal process, the second order spectral density
function is given by

fz(ω, λ) = fx(ω)fy(λ)

where fx(ω) =
σ2α

π(1 + ω2α2)

and fy(λ) =
ν2

2π|1− φe−iλ|2
, |λ| ≤ π.

(43)

The parameters we are interested in estimating are (σ, α, φ, ν), and we minimize the objective
function Q(θθθ) defined in (21). The minimization is done using the nlm package of the software R
developed by Jose Pinheiro et al. [16]. In order to assess the sampling properties, 1000 realizations
have been generated using the above model, of which the minimization did not converge for 13
realizations. The parameters are estimated using 987 realizations. The parameter estimates and
the mean square errors are calculated as follows

θ̂̂θ̂θ =
1

987

987∑
i=1

θ̂̂θ̂θi

MSE(θ̂̂θ̂θ) = digonal of

{
1

986

987∑
i=1

{θ̂̂θ̂θi − θ̂̂θ̂θ}{θ̂̂θ̂θi − θ̂̂θ̂θ}
′

} (44)

In Table 1 the estimates and their mean square errors are given From the above table, we observe
that the estimates obtained are very close to the true values. In Fig 1, we have plotted the histograms
and Q-Q plots of the estimates are given in Fig 2.
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Table 1: Simulation Results of Parameter Estimates

Parameters Original Values Mean Estimates MSE Bias

σ 2.645 2.6376 0.0004 0.0074
α 5.38 5.3805 .00002 -0.0005
φ 0.5 0.4951 0.0015 0.0049
ν 1 0.9991 0.0026 0.001
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Figure 1: Histogram Plots of Estimates for spatio-temporal parameters σ, α, φ and ν obtained by
minimizing Qn(θθθ).
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Figure 2: Q-Q Plots of Estimates for spatio-temporal parameters σ, α, φ and ν obtained by mini-
mizing Qn(θθθ).

From these two figures, we see that the marginal distributions of the estimators are very close
to Gaussian distribution.

6 Application to Wind Speed Data

The data provides the record of east-west wind speed on a 17×17 rectangular lattice at grid spacings
of 210 km, every six hours from November 1992 to February 1993. So the process is observed at
289 locations and 480 time points.

Before parameter estimation we check if the data is weakly stationary. Figure 3 depicts the
spatial and temporal ’mean against standard deviation’ plots for the wind speed data to check
for evidence of heteroscedasticity. The figures do not indicate any particular pattern and thus an
assumption of homoscedasticity is justified as noted in [6]. Next we observe the plots of spatial
and temporal means to look for the presence of any deterministic trend. Note that the spatial and
temporal sample averages are defined as follows-

Z̄(si; .) =
1

n

n∑
t=1

Z(si, t) for i = 1, 2, ...,m

Z̄(.; t) =
1

m

m∑
i=1

Z(si, t) for t = 1, 2, ..., n

(45)
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Figure 3: Mean against standard deviation plots. The left panel plots the temporal standard
deviation against mean . The right panel plots the spatial standard deviation against mean.

In Figure 4 we observe that the spatial averages (over all locations) displayed against time points
and the corresponding temporal sample auto correlation (ACF) plot for the series. Here we define
the sample ACF at lag u by ρ̂t(u) as

ρ̂t(u) =
1

n

n∑
t=1

Z̄(.; t+ u)Z̄(.; t)/
√
Vt+uVt

where, Vt+u =
1

n− 1

n∑
t=1

{
Z̄(.; t+ u)− 1

n

n∑
t=1

Z̄(.; t+ u)

}2 (46)
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Figure 4: The spatial averages of the original wind speed data, Z̄(.; t), against time and plot of
sample ACF ρ̂t(u).
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The temporal averages (at each spatial location) are displayed on the lattice grid in the 3D
image of Figure 5.

Plot of Temporal Means on Lattice− Original Data

X Coord

Y Coord

z
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−2

−1

0

1

2

3

Figure 5: 3D image of the temporal averages of the original wind speed data at the corresponding
locations on the lattice grid points.

In [6] Cressie and Huang have assumed spatial and temporal second order stationarity. But
from the mean and ACF plots of Figure 4 it is clear that there is a long term temporal deterministic
trend in the wind speed data. The 3D spatial plot of Figure 5 has a cascading shape with the height
decreasing from the west to east direction of the observation domain, which indicates the presence
of a spatial deterministic trend as well. The plots indicate that data is not second order stationary.

To address these we subtract the temporal averages of each location from the respective time
series. We denote the adjusted data by Z∗(si, t) obtained as

Z∗(si, t) = Z(si, t)− Z̄(si; .); for i = 1, 2, ...,m (47)

The respective adjusted means are denoted by Z̄∗(si, .) and Z̄∗(., t). The adjusted mean plots are
given in Figures 6 and 7.
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Figure 6: The spatial averages of the adjusted wind speed data, Z̄∗(., t)., at each time point are
plotted against time.

Plot of Temporal Means on Lattice− Original Data
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Figure 7: 3D image of the temporal averages of the adjusted wind speed data, Z̄∗(si, .), at the
corresponding locations on the lattice grid points.

From Figure 6 we observe that the deterministic temporal trend has been removed from the
adjusted observations Z∗(si, t). The 3D plot of temporal averages in Figure 7 shows that the
cascading effect has been removed. For the rest of our analyses we treat the adjusted data Z∗(si, t)
as the second order stationary spatio-temporal process and denote it by Z(s; t).

We now fit three covariance models, given below, to the spatio-temporal procecss Z(s; t). The
first two models are non-separable spatio-temporal isotropic second order stationary covariance
functions chosen from [6] while the third model is a generalized version of the first model obtained
by Gneiting ([10]). All the three covariance functions are convex functions, chosen based on the
spatio-temporal sample variogram (see [6]). In all these models a is the temporal scale parameter, b2
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is the spatial range parameter. Parameter g in the third model is the non-separability parameter.
Cressie and Huang have discussed the discontinuity of the data at origin. To incorporate this
”nugget” (see[7, Ch 2]) effect we have also included a nugget parameter τ . Following [6] a purely
spatial covariance is also incorporated to address the fact that the empirical spatial variogram
doesn’t change shape at larger temporal lags. But contrary to Cressie and Huang we opt for the
second order stationary exponential variogram. We don’t see any advantage to choose an intrinsic
stationary power variogram when the spatio-temporal process Z(s; t) is assumed to be second order
stationary.

Model-1: C(‖h‖; |u|) = τ + σ2 1

a|u|+ 1
e
− b2‖h‖2

a|u|+1 + e−a1‖h‖ (48)

Model-2: C(‖h‖; |u|) = τ + σ2 a|u|+ 1

{(a|u|+ 1)2 + b2‖h‖2}3/2
+ e−a1‖h‖ (49)

Model-3: C(‖h‖; |u|) = τ + σ2 1

a|u|+ 1
e
− b2‖h‖2g

(a|u|+1)b1g + e−a1‖h‖ (50)

Recall that the pacific wind speed data was observed on a 17×17 rectangular lattice. We obtain
estimates of the above parameters for each of the first thirteen vertical spatial lags, ‖h‖, of the
lattice of locations (for more details see [6]) and report the average of the observations below. Note
that the above covariance functions have finite spectral density function but do not have closed
form expressions. In such situations we can use their Finite Fourier transforms. We have used the
fft(.) routine in R (see [18]).

Table 2: Whittle Likelihood Parameter estimates
Covariances σ a b τ a1 b1 g Function Value

Model-1 2.406 0.388 7.623 0.100 0.012 0.000 0.000 78539.704

Model-2 2.404 0.383 5.149 0.100 0.006 0.000 0.000 110423.484

Model-3 2.405 0.390 5.954 0.100 0.010 0.998 1.005 78665.974

Based on the minimum values of Q, we recommend the use of the covariance Model 1 for the
transformed data amongst the three models; though there is not much significant difference between
1 and 3. A further analysis, such as Cross Validation may be further necessary to differentiate
between these two. Since we used transformed data, comparing our estimates or minimum values
with that obtained by Cressie and Huang [6] is not appropriate.

7 Conclusion

The method of estimation proposed here are based on Discrete Fourier Transforms of the station-
ary processes. We exploited the interesting properties of these transforms evaluated at canonical
frequencies in order to obtain a likelihood function for the maximisation as is often done in time
series. As we noticed, the advantage of these transforms are that they are approximately uncorre-
lated (in the case of Gaussian processes, they are independent) even though the original processes
are stationary ,but highly correlated. In doing so, our methodology depends on spatial parameter
only (though implicit function of time). As we have seen the asymptotic properties of the estimates
can be obtained under fairly general assumptions and this was not possible (at least not easy) if
we use the spatio-temporal domain approaches suggested earlier. The practical estimation method
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depend on obtaining the Transforms and the minimization can be easily performed using routines
readily available in standard software (say using R) as is recommended in the time series literature
(may need minor changes). In our illustrations, we found fast convergence of the estimates.
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