
Efficient sparse matrix multiple-vector
multiplication using a bitmapped format

Kannan, Ramaseshan

2012

MIMS EPrint: 2012.84

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/


A

Efficient sparse matrix multiple-vector multiplication using a
bitmapped format

Ramaseshan Kannan, School of Mathematics, The University of Manchester, UK

The problem of obtaining high computational throughput from sparse matrix multiple–vector multiplication
routines is considered. Current sparse matrix formats and algorithms have high bandwidth requirements

and poor reuse of cache and register loaded entries, which restrict their performance. We propose the

mapped blocked row format: a bitmapped sparse matrix format that stores entries as blocks without a
fill overhead, thereby offering blocking without additional storage and bandwidth overheads. An efficient

algorithm decodes bitmaps using de Bruijn sequences and minimizes the number of conditionals evaluated.
Performance is compared with that of popular formats, including vendor implementations of sparse BLAS.

Our sparse matrix multiple-vector multiplication algorithm achieves high throughput on all platforms and

is implemented using platform neutral optimizations.

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Sparse matrix vector mutiplication, de Bruijn sequence, communication
reduction, blocked sparse formats

1. INTRODUCTION
The sparse matrix × vector (SpMV) and sparse matrix ×multiple-vector (SMMV) mul-
tiplication routines are key kernels in many sparse matrix computations used in nu-
merical linear algebra, including iterative linear solvers and sparse eigenvalue solvers.
For example, in the subspace iteration method used for solving for a few eigenval-
ues of a large sparse matrix A, one forms the Rayleigh quotient (projection) matrix
M = STAS, where A ∈ Rn×n and S ∈ Rn×p is a dense matrix with p � n. The
computational bottleneck in such algorithms is the formation of the SMMV products.
SpMV/SMMV routines typically utilize only a fraction of the processor’s peak perfor-
mance. The reasons for the low utilisation are a) indexing overheads associated with
storing and accessing elements of sparse matrices and b) irregular memory accesses
leading to low reuse of entries loaded in caches and registers.

Obtaining higher performance from these kernels is an area of active research owing
to challenges posed by hardware trends over the last two decades and significant at-
tention has been paid to techniques that address the challenges. This hardware trend
is outlined by McKee in the famous note ‘The Memory Wall’ [Wulf and McKee 1995;
McKee 2004] and can be summed as follows: the amount of computational power avail-
able (both the CPU cycle time and the total number of available cores) is increasing
with a rate that is much higher than the rate of increase of memory bandwidth. It
will therefore lead to a scenario where performance bottlenecks arise not because of
processors’ speeds but from the rate of transfer of data to them. The implication of this
trend is that there is an increasing need for devising algorithms, methods and stor-
age formats that obtain higher processor utilization by reducing communication. Such
techniques and approaches will hold the key for achieving good scalability in serial
and parallel execution, both on existing and emerging architectures.

In this paper we introduce a blocked sparse format with an accompanying SMMV
algorithm that is motivated by the above discussion of reducing communication cost.
The format improves on an existing blocked sparse format by retaining its advan-
tages whilst avoiding the drawbacks. An algorithm that computes SMMV products
efficiently for an MBR matrix is developed and its performance is compared with the
existing blocked and unblocked formats. The algorithm achieves superior performance
over these formats on both Intel and AMD based x86-platforms and holds promise for
use in a variety of sparse matrix applications.
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2. OVERVIEW AND COMPARISON OF COMPRESSED SPARSE ROW AND BLOCK
COMPRESSED SPARSE ROW FORMATS

The Compressed Sparse Row (CSR) format [Barrett et al. 1994] (or its variant, the
Compressed Sparse Column format) can be regarded as the de-facto standard format
for storing and manipulating sparse matrices. The CSR format stores the nonzero en-
tries in an array val of the relevant datatype (single precision, double precision or
integers). The column indices of the entries are stored in col idx and the row indices
are inferred from the markers into col idx, stored as row start. For example, with
array indices starting with 0:

A =

a00 a01 a02 a03
a10 a11 0 0
0 0 a22 a23
0 0 a32 0



val = (a00, a01, a02, a03, a10, a11, a22, a23, a32)

col idx = (0, 1, 2, 3, 0, 1, 2, 3, 2)

row start = (0, 4, 6, 8, 9)

If the number of nonzeros in A is z and if A is stored in double precision, the storage
cost for A in the CSR format is 2z+ z+n = 3z+n words. (We assume a word size of 32
bits for the entire discussion.) An unoptimized SpMV algorithm is shown in snippet 1.

Algorithm 1 Compute y = y+Ax for a matrix A stored in CSR format and confirming
vectors x and y stored as arrays.

1 for i = 0 to n− 1
2 yi = y[i]
3 for j = row start[i] to row start[i+ 1]
4 yi += val[j] * x[col idx[j]]
5 y[i] = yi

The SpMV implementation in Algorithm 1 suffers from the problem of irregular
memory use, which results in reduced data locality and poor reuse of entries loaded
in registers. It performs a single floating point addition and multiplication for every
entry val and x loaded, thus has a low ‘computational intensity’, i.e., it performs too
few flops for every word of data loaded. This aspect of CSR SpMV has been well studied
in the past, see [Toledo 1997] or [Pinar and Heath 1999] for example.

The Block Compressed Sparse Row (BCSR) format [Pinar and Heath 1999] is in-
tended to improve the register reuse of the CSR. The BCSR format stores nonzero
entries as dense blocks in a contiguous array val. These blocks are of size r × c where
r and c are respectively the number of rows and columns in the dense blocks. For in-
dexing it stores the column position of the blocks in an array (col idx) and row-start
positions in col idx in row start.

A =

 a00 a01 a02 a03
a10 a11 0 0
0 0 a22 a23
0 0 a32 0


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r = 2, c = 2

val = (a00, a01, a10, a11, a02 , a03, 0, 0 , a22, a23, a32, 0)

col idx = (0, 1, 1)

row start = (0, 2, 3)

A sparse matrix stored in the BCSR format takes up u 2brc + b + n
r words to store,

where b is the number of nonzero blocks (for a given r and c) stored when the matrix is
held in BCSR.

Algorithm 2 Compute y = y + Ax for a matrix A in BCSR with r, c = 2 and bm block-
rows and vectors x, y stored as arrays.

1 for i = 1 to bm
2 ir = i× r
3 y0 = y[ir]
4 y1 = y[ir + 1]
5 for j = row start[i] to row start[i+ 1]
6 jc = j × c
7 y0 += val[0] * x[col idx[jc]]
8 y1 += val[2] * x[col idx[jc]]
9 y0 += val[1] * x[col idx[jc+ 1]]

10 y1 += val[3] * x[col idx[jc+ 1]]
11 increment pointer val by 4
12 y[ir] = y0
13 y[ir + 1] = y1

The SpMV routine for BCSR with r, c = 2 is presented in Algorithm 2. Since the val
array is stored as a sequence of blocks, the algorithm loads all entries in a block into
registers and multiplies them with corresponding entries in x. The increase in spatial
locality results in the reuse of register–loaded entries of x, reducing the total number
of cache accesses. The inner loop that forms the product of the block with the corre-
sponding part of the vector is fully unrolled, reducing branch penalties and allowing
the processor to prefetch data. There is, however, a tradeoff involved in selecting the
right block size for BCSR. The reuse of loaded registers increases in number with an
increase in r and c but having larger block sizes may increase the fill, leading to higher
bandwidth costs and extra computations involving zeros, which decrease performance.
The amount of fill for a given block size depends on the distribution of the nonzeros
in the matrix. The efficiency gains from increasing the block size will depend on the
size of the registers and the cache hierarchy of the machine the code is running on.
There is, therefore, an optimal block size for a given matrix (or set of matrices with the
same nonzero structure) and a given architecture. This suggests using a tuning based
approach to picking the optimum block size and such approaches have been studied
extensively in [Im and Yelick 2001], [Vuduc et al. 2002] and [Lee et al. 2003]. The de-
pendence of the performance of the SpMV routine on the structure of the matrix make
it a complex and tedious process to extract enough performance gains to offset the
overheads of maintaining and manipulating the matrix in a different format, such as
implementing kernels for other common matrix operations for a given block size. Addi-
tionally, the prospect of storing zeros increases the storage costs, making it dependent
on the matrix structure, which is information that is available only at runtime. The
arguments above motivate a blocked format that offers the benefits of BCSR’s perfor-
mance without the associated storage and bandwidth penalties.



A:4 R Kannan

3. THE MAPPED BLOCKED ROW FORMAT
We now introduce the mapped blocked row sparse (MBR) format for storing sparse
matrices. For a matrix

A =

 a00 a01 a02 a03
a10 a11 0 0
0 0 a22 a23
0 0 a32 0

 ,

we represent the 2× 2 block on top right as a combination of the nonzero elements and
a boolean matrix representing the nonzero structure:

a02 a03
0 0

⇒ a02 a03 +
1 1
0 0

.

The bit sequence 0011 can then be encoded into the decimal representation 3 and this
representation is stored in a separate array. Thus, for our example, the MBR represen-
tation can be written as follows:

r = 2, c = 2

val = (a00, a01, a10, a11, a02, a03, a22, a23, a32)

col idx = (0, 1, 1)

b map = (15, 3, 7)

row start = (0, 2, 3)

The bit structures of the blocks are stored in b map, the array of their corresponding
decimal representations. The bitmaps are encoded in left-to-right and top-to-bottom
order, with first position in the block (i.e. the bit on top left) being stored as the lowest
bit and the bottom right position being the highest.

The datatype maptype of the b map array can chosen to fit the size of the blocks; hence
if the block size is 8×5, 40 bits are required and a int64 [Microsoft Corporation 2011]
will be used but if the block size is 4 × 4, a maptype of short will suffice for the 16
bits needed. For block sizes where the number of bits are less than the corresponding
variable that stores the bitmap, the excess bits are left unused. With built-in C++
datatypes, up to 8 × 8 blocks can be supported. Larger blocks can be constructed by
combining two or more adjacent instances in an array of built-in types or by using a
dynamic bitset class like boost::dynamic bitset 1.

The storage cost of an n× n matrix in the MBR format is bounded by

2z︸︷︷︸
val

+ b︸︷︷︸
col idx

+

b map︷︸︸︷
b

δ
+
n

r
words

where z is the number of nonzeros, b the number of blocks and r the size of the blocks.
δ is the ratio sizeof(int)

sizeof(maptype)
to convert the size of maptype into words. b lies in a range

that is given by the following lemma.

LEMMA 3.1. For an n × n sparse matrix with z nonzeros (z > n) and at least one
nonzero per row and per column, the minimum number b of r × r blocks required to
pack the entries is z/r2 and the maximum is min(z, n2/r2).

PROOF. Since z > n, z entries can be arranged such that there is at least one
nonzero per row and column. This can be done in z/r2 blocks but no less, hence z/r2 is
the minimum number of blocks. The n × n matrix contains n2

r2 blocks. If z > n2

r2 , then
b = n2

r2 , otherwise each nonzero can occupy a block of its own, so we have b = z blocks,
hence the maximum.

1http://www.boost.org/doc/libs/1 36 0/libs/dynamic bitset/dynamic bitset.html
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Although these bounds would be seldom attained in practice, they can provide an intu-
itive feel for when a particular format can become advantageous or disadvantageous.
The storage costs of CSR, BCSR and MBR are compared in Table I. For the lower bound

Table I. Comparison of storage bounds for CSR, BCSR and MBR.

CSR BCSR MBR
3z + n 2br2 + b + n

r
2z + b

(
1 + 1

δ

)
+ n

r
Lower bound 3z + n 2z + z

r2
+ n

r
2z + z

r2

(
1 + 1

δ

)
+ n

r

Upper bound 3z + n 2n2 + n2

r2
+ n

r
2z + n2

r2

(
1 + 1

δ

)
+ n

r

of b, the MBR format takes up storage comparable with the CSR format but more than
BCSR. For b close to the upper bound, MBR requires significantly less storage than
BCSR term but more than CSR. However, for all our test matrices, the number of
blocks arising from the conversion to blocked formats resulted in MBR requiring less
storage than both BCSR and CSR. Table II lists the storage costs (in words) and their
ratios arising for 8 × 8 blocking of the test matrices (the matrices are introduced in
Table III).

Table II. Ratio of storage for MBR to BCSR and MBR to CSR
formats for 8 × 8 blocks.

Matrix n b MBR MBR
BCSR CSR

sp hub 143,460 249,267 0.171 0.759
rajat29 643,994 991,244 0.1 0.839

nlpkkt80 1,062,400 2,451,872 0.205 0.744
hamrle3 1,447,360 906,839 0.119 0.774
ecology1 1,000,000 622,750 0.149 0.75

dielFilterV3 1,102,824 11,352,283 0.145 0.791
dielFilterV2 1,157,456 8,106,718 0.116 0.828

asic 680k 682,862 728,334 0.106 0.814

3.1. Similarity with other formats
Buluç et al. propose a format called the ‘bitmasked CSB’ [Buluc et al. 2011], based
around the idea of storing blocks that are compressed using a bit structure represen-
tation. The format partitions the matrix into “compressed sparse” blocks of bit-mapped
register blocks, resulting in two levels of blocking. The nonzero entries in each register
block are stored contiguously and their positions within the block are marked using
a bitwise representation. There is no storage of zeros (i.e. the fill), which improves on
BCSR in the same way that MBR does, but the CSB SpMV algorithm does perform
multiply-add operations on zeros so as to avoid conditionals. The storage cost for MBR
is slightly less than that of bitmasked CSB because of higher bookkeeping arising from
two levels of blocking and there are subtle differences in the encoding of bit structure
of the blocks. In order to perform the multiplication of a block with the relevant chunk
of a vector, bitmasked CSB uses SIMD instructions to load matrix entries, which we
explicitly avoid (as noted in the next section). Instead, in MBR SpMV, we minimize the
conditionals evaluated using de Bruijn sequences. Overall, whilst bitmasked CSB is
geared towards optimizing parallel execution, the aim of this work is to obtain a high
throughput for multiple vectors in the sequential case.

4. SPMV AND SMMV WITH MBR
As noted in the first section, the SMMV kernels are employed in sparse eigensolvers,
and our interest is in their eventual use in the commercial desktop software for struc-
tural analysis Oasys GSA [Oasys Software 2011]. This software is required to run on
a variety of x86 architectures both old and new. The aim with implementing SpMV
and SMMV for the MBR format, therefore, was to obtain a clean but efficient routine
subject to the following considerations.
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— Not employing optimizations that are specific to a platform or hardware. Examples
of this include prefetching and the use of SIMD instructions. We note that though
SIMD vectorization presents a compelling performance benefit [Agulleiro et al. 2010],
[Cunha et al. 2008], [Dickson et al. 2011], [Djeu et al. 2009] and [Gepner et al. 2011],
in a commercial software development environment the ‘return on investment’ from
vectorization remains an open question. Programming for SIMD architectures comes
at the expense of significant software development effort, producing code that has
performance characteristics specific to an architecture and is difficult to maintain
[Dickson et al. 2011] and requires re-programming when newer architectures [Rein-
ders 2012] are released.

— Obtaining kernels with parameters such as the type of scalar (single, double, higher
precision), block sizes, number of dense vectors and maptype datatypes bound at com-
pile time. C++ templates offer metaprogramming techniques that allow such kernels
to be generated at the time of compilation from a single source base. This approach
is advantageous compared with the use of external code generators for generating
kernels in a parameter space since the programmer can write code for generating
kernels in the same environment as generated code, thus making it easier to main-
tain and update.

— Focussing on sequential execution; this will inform the approach for a parallel ver-
sion, which will be tackled as future work.

The programming language used was C++, using templates for kernel generation
and to provide abstractions for optimizations like loop unrolling. The compilers used
were Microsoft Visual C++ and Intel C++.

A naı̈ve algorithm for SpMV for MBR shown in Algorithm 3. The notation *val in-
dicates dereferencing the C pointer val to obtain the value of the nonzero entry it
currently points to. Let zb be the number of nonzeros in a given block, represented as

Algorithm 3 SpMV for a matrix stored in MBR with block dimensions (r, c) and con-
firming vectors x, y stored as arrays.

1 for each block row bi
2 for each block column bj in block row bi
3 map = b mapbj
4 for each bit mapp in map
5 if mapp = 1
6 i: = p%r + bi× r, j: = p%c+ bj × c
7 y(i)+ = *val× x(j)
8 increment val
9 end

10 end
11 end
12 end

set bits in map. It is easy to show that the minimum number of register loads required
to multiply a block by a corresponding chunk of vector x and add the result to y will
be 3zb in the worst case. Algorithm 3 attains this minimum and also minimizes flops
since it enters the block–vector product loop (steps 6–8) exactly zb times.

However, the algorithm is inefficient when implemented, because steps 4–11 con-
tain conditionals that are evaluated r2 times, which the compiler cannot optimize. The
presence of conditionals also implies a high number of branch mis-predictions at run-
time since the blocks can be highly sparse. Mispredicted branches necessitate removal
of partially-completed instructions from the CPU’s pipeline, resulting in wasted cycles.
Furthermore, step 6 is an expensive operation because of modulo (remainder) calcu-
lation (denoted using the binary operator %) and the loop does not do enough work to
amortize it.
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We introduce a set of optimizations to overcome these inefficiencies.

4.1. Optimal iteration over blocks
The for loop in step 4 and the if statement in line 5 contain conditionals (in case of
the for loop, the conditional is the end-of-loop check) that present challenges to branch
predictors. The true/false pattern of the second conditional is the same as bit-pattern
of the block, the repeatability of which decreases with increasing size of the block.

One workaround is to use code replication for each bit pattern for a given block size,
such that all possible bit structures are covered exhaustively. It would then be possible
to write unrolled code for each configuration, thus completely avoiding conditionals.
However this quickly becomes impractical since there are 2r arrangements for a block
of size r×r and generating explicit code can become unmanageable. Additionally, since
it is desirable to not restrict the kernel to square blocks, the number of configurations
to be covered increases even further. The solution therefore is to minimize the number
of conditionals evaluated and fuse the end-of-loop check with the check for the set bit.
In other words, instead of looping r2 times over each block (and evaluating r2 condi-
tionals), we loop over them zb times, thus evaluating only zb conditionals. Algorithm 4
shows the modification to the relevant section from Algorithm 3.

Algorithm 4 A modification to steps 4–8 Algorithm 3.

1
...

2 for each set bit p in map
3 i: = p%r + bi× r, j: = p%c+ bj × c
4 y(i)+ = *val× x(j)
5 increment val

The key detail is iterating over set bits in ‘for each’. This is achieved by determining
the positions of trailing set bits using constant time operations. Once the position is
determined, the bit is unset and the process is repeated till all bits are zero. To de-
termine the positions of trailing bits, we first isolate the trailing bit and then use de
Bruijn sequences to find its position in the word, based on a technique proposed by
Leiserson et al in [Leiserson et al. 1998].

A de Bruijn sequence of n bits, where n is a power of 2, is a constant where all
contiguous substrings of length log2 n are unique. For n = 8, such a constant could be
C := 00011101, which has all substrings of length 3 (000, 001, 011,. . ., 101, 010, 100)
unique. A lone bit in an 8-bit word, say x, can occupy any position from 0 to 7, which
can be expressed in 3 bits. Therefore, by operating x on C, a 3-bit distinct word can be
generated. This word is hashed to the corresponding position of 1 in x and such a hash
table is stored for all positions, at compile time. At run time, the procedure is repeated
for an x with a bit at an unknown position to yield a 3-bit word, which can then be
looked up in the hash table.

Algorithm 5 lists the realization of ‘for each’ and the decoding of map. Step 3 isolates
the trailing bit into y using the two’s complement of map, steps 4−6 calculate the index
of the bit and step 9 clears the trailing bit. The operators used in the algorithm are
standard C/C++ bitwise operation symbols: & for bitwise AND, << and >> for left shift
and right shift by the number denoted by the second operand, ∼ for bit complement.
Steps 3–6 can be carried out in constant time and bitwise operations execute in a single
clock cycle [Fog 2012]. The constant time decoding, combined with a reduction in the
number of conditionals evaluated gives huge performance gains.

4.2. Unrolled loops for multiple vectors
At every iteration of the inner loop, Algorithm 4 calculates the position of the nonzero
entry in the block and multiply-adds with the source and destination vector. The cost
of index-calculation and looping can be amortized by increasing the amount of work
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Algorithm 5 Looping over set bits for a bitmap x of length 8 bits.
1 Pick an 8 bit de Bruijn sequence C and generate its hashtable h
2 while map 6= 0
3 y = map & (−map)
4 z = C << log2 y
5 z = z >> (8− log2 8)
6 p = h(z)
7 compute i and j from p and multiply (Algorithm 3 steps 6–8)

8
...

9 map = map & (∼y)
10 end

done per nonzero decoded. This can be achieved by multiplying multiple vectors per
iteration of the loop.

Algorithm 6 Multiplying multiple vectors in inner loops.
1 Given . . . and x1 · · ·x` , y1 · · · y` ∈ Rn

2 for each block row bi
3 for each block column bj in row bi
4 map = b mapbj
5 for each set bit p in map
6 i: = p%r + bi× r, j: = p%c+ bj × c
7 y1(i)+ = *val× x1(j)

8
...

9 y`(i)+ = *val× x`(j)
10 increment val

For the kernel to work with any value of ell, either the mutiply-add operations would
need to be in a loop, which would be inefficient at runtime or we would need to write
` versions of the kernel, which can be tedious and expensive to maintain. This can be
overcome by using templates that generate code for many kernels at compile time, each
varying in the number of vectors and each unrolling the innermost loop ` times. There
is a close relationship between the performance of the kernel, the size of blocks (r, c)
and the number of vectors multiplied `. For a given block size, performance increases
with increase in the number of vectors in the inner loop, since it increases the reuse of
the nonzero values loaded in the registers and lower levels of cache, till such a point
where loading more vector entries displaces the vectors previously loaded, thereby de-
stroying the benefit blocking brings in the first place. This suggests a need for tuning
based either on comparative performance of the kernels or on heuristics gathered from
the architecture (or indeed, on both). We use the former approach, leaving the investi-
gation of the latter to future work.

5. NUMERICAL EXPERIMENTS
The experimental setup consists of x86-based machines based on Intel and AMD plat-
forms intended to be representative of the target architectures the kernal will even-
tually run on. The code is compiled using the Intel C++ compiler v12.1 Update 1 on
Windows with full optimization turned on but auto-vectorization turned off. We note
however, that this does not apply to the pre-compiled Intel MKL code (used for bench-
marking) that takes advantage of vectorization using SIMD instructions available on
all our test platforms. The test platforms consist of machines based on AMD Opteron,
Intel Xeon and Intel Sandy Bridge processors. The AMD Opteron 6220, belonging to
the Bulldozer architecture, is an 8-core processor with a clock speed of 3.0 GHz and
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Table III. Test matrices used for benchmarking SpMM algorithms.

Matrix Source Dimension Nonzeros Application
1 ASIC 680k U.Florida 682,862 3,871,773 Circuit simulation
2 atmosmodm U.Florida 1,489,752 10,319,760 Atmospheric modeling
3 circuit5M U.Florida 5,558,326 59,524,291 Circuit simulation
4 dielfilterV2real U.Florida 1,157,456 48,538,952 Electromagnetics
5 dielfilterV3real U.Florida 1,102,824 89,306,020 Electromagnetics
6 ecology1 U.Florida 1,000,000 4,996,000 Landscape ecology
7 G3 circuit U.Florida 1,585,478 7,660,826 Circuit simulation
8 hamrle3 U.Florida 1,447,360 5,514,242 Circuit simulation
9 nlpkkt80 U.Florida 1,062,400 28,704,672 Optimization
10 rajat29 U.Florida 643,994 4,866,270 Circuit simulation
11 sp hub Arup 143,460 2,365,036 Structural engineering
12 watercube Arup 68,598 1,439,940 Structural engineering

16 MB of shared L3. Each core also has access to 48 KB of L1 cache and 1000 KB of
L2 cache. The Intel Harpertown-based Xeon E5450 on the other hand has access to
12 MB of L2 cache, shared between 4 cores on a single processor, each operating at 3
GHz. Each core has 256 KB of L1 cache. Both the Opteron and Xeon support the 128-
bit SSE4 instruction set that allows operating on 2 double floating point number in a
single instruction. The third test platform is the Intel Core i7 2600 processor, based
on the recent Sandy Bridge architecture, which is the second generation in the Intel
Core line of CPUs. This processor has 4 cores sharing 8 MB of shared L3 cache with
two levels private caches of 32 KB and 256 KB for each core. The cores operate at a
peak clock speed of 3.8 GHz, with Turbo Boost turned off. The Core i7 processor uses
the AVX instruction set, supporting 256-bit wide registers that enable operating on 4
double precision variables in a single instruction.

The test matrices consist of a set of matrices from the University of Florida Sparse
Matrix collection [Davis and Hu 2011] as well as from problems solved in Oasys GSA.
These are listed in Table III.

The final algorithm for MBR SMMV was a combination of all optimizations described
in the previous section. The C++ implementation of this was run on the matrices via
a test harness for different values of block sizes upto a maximum of 8 × 8 and multi-
ple vectors. The performance of the implementation was compared with that of CSR
SMMV and BCSR SMMV. For all our tests, a near-exclusive access is simulated by en-
suring that the test harness is the only data-intensive, user-driven program running
on the system during the course of benchmarking.

In the case of CSR, a standard SpMV implementation and the functions avail-
able from the Intel MKL library [Intel Corporation 2012] are used for compari-
son. The sparse BLAS Level 2 and Level 3 routines available within the MKL li-
brary are regarded as highly optimized implementations and achieve performance
higher than corresponding reference implementations, especially on Intel platforms.
The library offers the functions mkl cspblas dcsrgemv and mkl dcsrmm that perform
SpMV and SpMM operations. Since our objective is to obtain benchmarks for SpMM,
mkl dcsrmm would appear to be the right candidate. However, in almost all our exper-
iments, mkl cspblas dcsrgemv outperformed mkl dcsrmm, hence mkl cspblas dcsrgemv
was used as the benchmark. Since the MKL library is closed-source software, it is not
possible to determine why mkl dcsrmm is not optimized to take advantage of multiple
vectors.

For BCSR SMMV, an implementation that is optimized for multiple vectors is used.
This uses unrolled loops and multiplies each block with multiple vectors. The right
number of vectors to be multiplied with in each loop depends on the architecture and
has been studied in [Lee et al. 2003]. Similar to the MBR algorithm, the optimal num-
ber of vectors depends on the architecture and needs to be selected via tuning. For the
purpose of this comparison, we run kernels with a fixed block size of 4×4 with increas-
ing number of multiple vectors, going from 1 till 20 and select the best performance as
being the representative performance of the format.
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5.1. Performance against number of vectors
The performance of the MBR format depends on amortizing the cost from decoding the
blocks, and this is achieved by multiplying multiple vectors. Therefore it is important
to know the behaviour of the algorithm with respect to varying `, the number of vec-
tors. Figures 1 and 2 present how the performance varies on the Core i7 and Opteron
respectively. In both cases, there is a sharp increase in performance initially, followed
by a plateau and then a drop as the implementations go from single-vector kernels
to ones handling 20 vectors. The reason for this behaviour is that when the number
of vectors is increased, more vector entries stay loaded in the cache, reducing misses
when the algorithm tries to load them again. The performance peaks and starts de-
creasing when the number of vectors reaches a point where loading more entries into
the cache displaces previously loaded entries, leading to increased misses. The per-
formance peaks for a different number of vectors, depending on the size of the cache
hierarchy and to a lesser extent, matrix sizes and sparsity patterns.

On the Opteron, most matrices exhibit peak performance around the range of 12 to
16 vectors whilst on i7, the range is around 5 to 6. Both processors have a comparable
L1 cache size but the Opteron has almost four times L2 cache as Core i7. This allows
for more reuse of loaded entries and hence the performance tops at a higher value of `.

A small number of matrices in graph 1 show an increase in performance after hit-
ting a trough in the post-peak part of their curves. These matrices are watercube,
sp hub, dielfilterV2real and dielfilterV3real, from structural engineering and circuit
simulation applications. They have the highest nonzero density amongst all matrices
but are within the lower half when arranged by increasing order of matrix sizes. This
combination of smaller sizes and low sparsity could result in higher performance—the
size ensures that a larger number of vector chunks or entire vectors are resident in
L3 caches, whereas the higher density results in higher flops per loaded vector entry.
Indeed, the best performance is attained for watercube on both processors, which is
the smallest matrix but has the highest nonzero density.

Fig. 1. Performance variation of SMMV across multiple vectors for test matrices on Intel Core i7 2600
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Fig. 2. Performance variation of SMMV across multiple vectors for test matrices on AMD Opteron 6220

5.2. Performance comparison with other kernels
The performance of the kernels is compared with that of other SMMV routines and
the results for different platforms are presented in Figures 3, 4 and 5 for Xeon, Core
i7 and Opteron respectively.

On the Xeon, MBR is faster than MKL by factors of 1.3 to 1.9. It is also more efficient
than BCSR for all matrices except watercube. The Xeon has the largest L2 cache of all
test platforms. The large L2 cache and the small size of the matrix ensures that BCSR
is faster, since it has fully unrolled loops with no conditionals, thus ensuring very
regular data access patterns that aid prefetching. Furthermore, watercube also has
the highest nonzero density and highest number of entries-per-block (z/b from Table
II) so the ratio of redundant flops (i.e. operations involving 0 entries) to useful flops is
low, which helps the BCSR routine.

The performance trends for Core i7 are somewhat similar to those of Xeon, but a
key difference is that it is the only architecture where MKL outperforms MBR for
some matrices. The MKL to MBR performance ratios vary from 0.72 to 1.71. MKL
is faster than MBR on four matrices: dielfilterV2real, dielfilterv3real, ASIC 680k and
nlpkkt80, which come from different applications. There are no specific properties of
these matrices or their sparsity patterns that gives us a suitable explanation for why
MBR is slower. For two of the four matrices–dielfilterV2real and dielfilterV3real–the
MBR SMMV performance vs. number of vectors graph (Figure 1) indicates that higher
performance could be gained by using more than 20 vectors, although such a kernel
may not always be relevant, especially in applications with small number of right hand
sides. Evidently, MKL’s use of AVX instructions on Sandy Bridge allows for good effi-
ciency gains that lead to a higher throughput. It will need a closer evaluation using
experimental data from hardware counters combined with performance modelling to
explain the reasons for this discrepancy, which will be looked at in future work.

Finally, on the AMD processor, MBR outperforms MKL by factors of 1.5 to 3.2
and BCSR by factors of 1.3 to 3.9. This demonstrates that while the MKL routines
use architecture–specific and platform–specific optimization to gain efficiency, MBR
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SMMV is capable of attaining high efficiency through platform–neutral optimizations
that deliver a good performance on all platforms.

Fig. 3. Performance comparison of MBR SMMV on Intel Xeon E5450

Fig. 4. Performance comparison of MBR SMMV on Intel Core i7 2600
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Fig. 5. Performance comparison of MBR SMMV on AMD Opteron 6220

6. CONCLUSIONS AND FUTURE WORK
This work introduces mapped blocked row as a practical blocked sparse format that
can be used with sparse matrix programs. The storage requirements of the format
have been studied and they are significantly less than the two popular formats we
have compared with. The MBR format offers the distinct advantage of being a blocked
format that does not incur the computational and storage overheads of other formats.
This holds promise for applications that involve very large problem sizes where holding
the matrix in memory is an issue, for example iterative solvers for linear systems. A
C++ implementation of the algorithm offers compile–time parameters like the block
size, number of vectors and the datatypes of the scalars and of the bitmap, making it
generic in scope for a wide range of applications.

A fast algorithm has been developed for multiplying sparse matrices in the MBR
format, with several optimizations for minimizing loop traversals and evaluations of
conditionals, for increasing cache reuse and to amortize the decoding costs. By virtue
of operating on a blocked format, the algorithm obtains high computational intensity.
A C++ implementation of the algorithm offers compile–time parameters like the block
size, number of vectors and the datatypes of the scalars and of the bitmap, making it
generic in scope for a wide range of applications. The templates also makes it possible
to produce code that has fully unrolled loops and kernels that bind to parameters at
compile-time, unifying the code generator with the generated code for greater trans-
parency and maintainability.

The performance results presented in the previous section prove that these perfor-
mance optimizations can achieve good efficiency gains on all platforms by increasing
register and cache reuse. The reference implementation attains performance over 3×
that of the Intel MKL libraries and better performance on most test platforms over
existing optimized BCSR and CSR implementations. There is ample scope to tune per-
formance by modifying parameters such as the block size and effects of such tuning will
be the topic of future work. A key motivation for communication reducing algorithms
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is the desire for improved parallel scalability. This article has focussed on establishing
the performance of the MBR format and the algorithm for sequential execution, paving
the way for its parallelization, which will be explored in future work. Also of interest
is the question “to what extent is a blocked sparse format of relevance for sparse di-
rect solutions?” and whether it can offer advantages for storing and manipulating the
factors from a Cholesky or symmetric indefinite factorization. These will be examined
in due course.
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