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Abstract

In this note we develop a new way of formulating the notions of minimal basis and minimal
indices, based on the concept of a filtration of a vector space. The goal is to provide useful
new tools for working with these important concepts, as well as to gain deeper insight into their
fundamental nature. This approach also readily reveals a strong minimality property of minimal
indices, from which follows a characterization of the vector polynomial bases in rational vector
spaces. The effectiveness of this new formulation is further illustrated by proving two fundamental
properties: the invariance of the minimal indices of a matrix polynomial under field extension,
and the direct sum property of minimal indices.
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1 Introduction

Minimal indices and bases are quantities commonly associated with singular matrix polynomials, and
thus play a significant role in a number of applications, especially in systems and control theory [5,
11, 14, 15], but they also are important in algebraic coding theory [4, 12, 13, 15]. Although they
have been defined in the literature in several different ways [5, 6], these definitions have been shown
to lead to the same quantities [2]. The purpose of this note is to introduce a new formulation of the
notions of minimal basis and minimal indices, with the goals of:

• developing new tools for effectively working with these important concepts, and

• simplifying the conceptual foundation, so as to smoothly unify the classical approaches to
minimal indices, and to make the well-definedness of minimal indices as transparent as possible.

This new formulation takes the algorithmic approach described in [6] by Gantmacher (and attributed
to Kronecker) as a starting point, but is motivated by the following simple idea. Rather than deal
with the special polynomial bases produced by Kronecker’s algorithm, which are far from canonical
due to the many arbitrary choices made in generating them, focus instead on the underlying subspaces
from which these choices are made. These subspaces are uniquely defined, canonical objects which
more clearly and directly reveal the intrinsic nature of minimal indices, and form the building blocks
of the filtration at the heart of the new formulation.

Although the motivating idea is simple, some preliminary work is required to set up the appropri-
ate definitions, terminology and notation needed to effectively implement this idea. Section 2 begins
this background work by reviewing the notion of filtration and giving some examples, then Section 3
continues by recalling the two “classical” ways of defining minimal bases and indices. Section 3 then
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goes on to introduce the new characterization of minimal bases and indices by means of a special
filtration called the “degree filtration”, and from this develops two new tools for proving results
about minimal indices. Section 4 shows how the filtration point of view reveals a “strong” minimal-
ity property of minimal indices, which is then used to unify and simplify the connection between the
two classical approaches to minimal indices. Finally, the effectiveness of these new tools is illustrated
in Sections 5 and 6 by proving the invariance of the minimal indices of a matrix polynomial under
field extension, and deriving the behavior of minimal indices under direct sums.

2 Filtrations

Let us begin with a quote from Hilton & Wylie’s classic text on algebraic topology [8, p. 395]:

“We now introduce the notion of a filtration. It has a rather wide application; a construct
may be said to be filtered if an increasing sequence of sub-constructs is selected which
exhaust the whole construct.”

Clearly all kinds of mathematical objects can be filtered: topological spaces, groups, algebras, mod-
ules, chain complexes, ... . However, in this paper we only need to consider filtrations of vector
spaces, which we now formally define.

Definition 2.1 (Filtration of a Vector Space).
A filtration F of a vector space V is an infinite nested sequence of subspaces of V ,

F : W0 ⊆ W1 ⊆ W2 ⊆ W3 ⊆ · · · , (2.1)

such that
∪∞

i=0 Wi = V . A vector space V equipped with a filtration F as in (2.1) is said to be a
filtered vector space.

For our purposes it will be convenient to allow Wi = Wj for i ̸= j in (2.1), although in some
contexts authors require the subspaces in a filtration to be distinct. In fact the filtrations of most
interest to us will usually not have distinct subspaces. The inclusion relations in (2.1) of course
imply that

dimW0 ≤ dimW1 ≤ dimW2 ≤ · · · . (2.2)

Definition 2.2. The infinite sequence of numbers (dimW0 , dimW1 , dimW2 , . . . ) in (2.2) will be
referred to as the dimension sequence of the filtration F , and denoted dimF .

Example 2.3.

(a) For V = Fn, the standard basis
{
e1, e2, . . . , en

}
induces the “standard” filtration

span{e1} ⊆ span{e1, e2} ⊆ · · · ⊆ span{e1, e2, . . . , en−1} ⊆ V ⊆ V ⊆ · · · . (2.3)

(b) Indeed any ordered list of vectors
{
v1, v2, . . . , vm

}
induces an associated filtration of the vector

space V = span{v1, v2, . . . , vm} as follows:

span{v1} ⊆ span{v1, v2} ⊆ · · · ⊆ span{v1, v2, . . . , vm−1} ⊆ V ⊆ V ⊆ · · · .

In particular, for any matrix A ∈ Fm×n, the ordered columns
{
a1, a2, . . . , an

}
induce a filtration

F(A) of the column space V = Col(A):

span{a1} ⊆ span{a1, a2} ⊆ · · · ⊆ span{a1, a2, . . . , an−1} ⊆ V ⊆ V ⊆ · · · .

(c) A sequence of Krylov subspaces span{x} ⊆ span{x, Ax} ⊆ span{x, Ax, A2x} ⊆ · · · is certainly
nested, but does not necessarily define a filtration for V = Fn, since the condition

∪∞
i=0 Wi = Fn

may not be satisfied.
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In a filtration F , if for some index m we have Wm = V (and hence Wn = V for all n ≥ m), then
F is said to be a finite filtration and is sometimes written in the truncated fashion

W0 ⊆ W1 ⊆ W2 ⊆ · · · ⊆ Wm = V ,

although we will not do so here. Note that any filtration of a finite-dimensional space V is necessarily
a finite filtration, because the condition

∪∞
i=0 Wi = V forces Wm = V to hold for some index m.

A filtration such that dimWj = j for all 0 ≤ j ≤ dimV is called a complete filtration; a complete
filtration of Fn is sometimes called a flag.

Remark 2.4. Various types of flags, such as “Hessenberg flags”, and “eigenflags” associated to a
matrix, have been used as tools in a geometric approach to understanding the convergence behavior
of the QR-algorithm. See, for example, [1], [9, App. L7], [10], [16].

Definition 2.5 (Compatible Basis for a Filtration).
Let V be a finite-dimensional filtered vector space, with a given filtration F as in (2.1). Then an
ordered basis B = {v1, v2, . . . , vn} for V is said to be compatible with (or adapted to) the filtration F
if for each subspace Wℓ in F there is an initial segment {v1, v2, . . . , vj} of B (with j ≤ n) that forms
a basis for Wℓ.

Example 2.6.

(a) Suppose A ∈ Fn×n is nonsingular. Then the (ordered) columns of A form a basis compatible
with the “standard” filtration (2.3) if and only if A is upper triangular.

(b) Here is a well-known result expressed in the language of filtrations:
Suppose A is nonsingular with QR-decomposition A = QR. Then the ordered columns of
Q form a basis compatible with the filtration F(A) induced by the ordered columns of A.
Equivalently, one could express this result simply by saying that F(A) = F(Q).

3 Minimal Bases and Minimal Indices

3.1 Two classical approaches

Minimal bases and indices were originally introduced by Kronecker as a means to help prove the
uniqueness of what we now refer to as the Kronecker canonical form (KCF) for matrix pencils
L(λ) = λX + Y , where X,Y ∈ Cm×n. We begin by recalling the main points of this theory,
summarizing the development in Gantmacher [6].

First some notation. Throughout the paper F will denote an arbitrary field, F[λ] the ring of
polynomials in the variable λ with coefficients from F, and F(λ) the field of rational functions over
F. Then the column vectors F(λ)n form an n-dimensional vector space over the field F(λ), and
the elements v(λ) ∈ F[λ]n ⊂ F(λ)n are the vector polynomials in F(λ)n. The degree of a vector
polynomial is the maximum of the degrees of its component scalar polynomials.

For a matrix pencil L(λ) = λX+Y ∈ F[λ]m×n, viewed as a linear transformation F(λ)n → F(λ)m,
consider the right nullspace of L(λ), i.e., consider

Nr(L) :=
{
w(λ) ∈ F(λ)n : L(λ)w(λ) ≡ 0

}
.

Our goal is to find a basis for the subspace Nr(L) consisting solely of vector polynomials, but with the
minimum possible degrees. In the Kronecker/Gantmacher development, this minimality is defined
by the following “greedy” algorithm for constructing a vector polynomial basis.
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Algorithm 3.1 (Kronecker-Gantmacher Construction).

• First choose any nonzero vector polynomial v1(λ) ∈ Nr(L) of minimal degree.

• Next choose any vector polynomial v2(λ) in the complement Nr(L) \ span{v1(λ)} of minimal
degree, and extend to

{
v1(λ), v2(λ)

}
.

• Continue in this fashion until a basis for Nr(L) is attained, always extending
{
v1(λ), . . . , vk−1(λ)

}
to

{
v1(λ), . . . , vk(λ)

}
by choosing a vector polynomial vk(λ) of minimal degree in the remaining

complement Nr(L) \ span{v1(λ), . . . , vk−1(λ)}.

Definition 3.2 (K-minimal Basis).
Any vector polynomial basis produced by Algorithm 3.1 is said to be a minimal basis for Nr(L) in
the sense of Kronecker/Gantmacher, or a K-minimal basis for short. Such a basis is also commonly
referred to as a right minimal basis for the pencil L(λ).

It can be shown (see [6] for details) that the ordered list of degrees ε1 ≤ ε2 ≤ · · · ≤ εp, where
εj = deg vj(λ), is the same for every K-minimal basis of Nr(L), and thus displays an intrinsic feature
of Nr(L).

Definition 3.3 (K-minimal Indices).
The numbers ε1 ≤ ε2 ≤ · · · ≤ εp are the K-minimal indices of Nr(L), often referred to as the right
minimal indices of the pencil L(λ).

Clearly one can proceed analogously with the left nullspace of L(λ), i.e.,

Nℓ(L) :=
{
y(λ) ∈ F(λ)m : y(λ)T L(λ) ≡ 0

}
,

and thus obtain left minimal bases for L(λ), and thence the left minimal indices of L(λ). It can be
shown (again, see [6] for details) that these left and right minimal indices encode the sizes of the
“singular blocks” in the KCF of L(λ), thus proving that the “singular part” of the KCF is uniquely
determined.

An examination of Algorithm 3.1 shows that L(λ) being a matrix pencil plays no role in the
discussion; it might just as well be any matrix polynomial P (λ) ∈ F[λ]m×n. Thus the same devel-
opment applied to the right and left nullspaces Nr(P ) ⊆ F(λ)n and Nℓ(P ) ⊆ F(λ)m yields right and
left minimal bases for P , as well as right and left minimal indices for P . Indeed we can go one step
further, and observe that even the matrix polynomial P isn’t essential. One can apply the “greedy”
algorithm to any rational subspace V ⊆ F(λ)n, and thus obtain K-minimal bases and K-minimal
indices for any such V . Note that K-minimal indices are sometimes referred to in the literature as
Kronecker indices [7, 17].

The recognition that the notions of minimal bases and indices apply to any subspace V ⊆ F(λ)n

is made explicit by Forney in [5], where he uses a somewhat different minimality principle to define
minimal bases and minimal indices. Instead of building up vector polynomial bases one step at a
time and invoking a “local” minimality condition at each step of the construction, Forney works
more “globally” by assigning a single number to each vector polynomial basis; the order of a vector
polynomial basis B =

{
v1(λ), . . . , vp(λ)

}
for a subspace V ⊆ F(λ)n is

ord(B) :=
p∑

i=1

deg vi(λ) . (3.1)

Thus we have the following definition.

Definition 3.4 (F-minimal Basis).
A minimal basis for a subspace V ⊆ F(λ)n in the sense of Forney, or an F-minimal basis, is any
vector polynomial basis for V with minimum order among all vector polynomial bases for V .
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Forney then shows in [5] that the ordered degree sequence 0 ≤ f1 ≤ f2 ≤ · · · ≤ fp, where fi =
deg vi(λ), is the same for any F-minimal basis for V , thus uniquely defining the F-minimal indices
for V .

Remark 3.5. Note that Forney does not use the phrase F-minimal indices in [5] for the ordered
degree sequence f1 ≤ f2 ≤ · · · ≤ fp; instead he calls them the “invariant dynamical indices” of
the subspace V ⊆ F(λ)n. Several later authors have referred to these as the Forney indices of V
[12, 13, 15].

It is natural to wonder whether there is any simple relationship between K-minimality and F-
minimality, for either bases or indices. This question was addressed in [2].

Theorem 3.6 ([2], Lemma 2.4). Consider any subspace V ⊆ F(λ)n. Then a vector polynomial
basis B for V is K-minimal if and only if it is F-minimal. Thus the K-minimal indices are identical
to the F-minimal indices for V .

As a consequence we see that the minimality principles used by Kronecker/Gantmacher and Forney
are equivalent, and can be used interchangeably, depending on convenience.

3.2 Minimal bases from filtrations

We aim to reformulate the Kronecker/Gantmacher approach to minimal bases in such a way that
it becomes completely transparent why all the arbitrary choices made in building a K-minimal basis
always result in the same list of degrees, thereby producing a well-defined list of K-minimal indices.
For an arbitrary subspace V ⊆ F(λ)n, we will see that there is an intrinsic, uniquely defined filtration
induced by the notion of the degree of vector polynomials in V . This will be referred to as the
(canonical) degree filtration of V , and denoted by Fdeg(V ). It is from this particular filtration that
we can immediately recover the K-minimal bases and K-minimal indices of V .

Here is how to define Fdeg(V ). First consider various subsets of V consisting only of vector
polynomials of bounded degree. For each integer d ≥ 0, define

Pd(V ) :=
{
v(λ) ∈ V : v(λ) is a vector polynomial with deg v(λ) ≤ d

}
. (3.2)

Clearly Pd(V ) is an F-subspace of V , but not an F(λ)-subspace. Observe also that the inclusions

P0(V ) ⊆ P1(V ) ⊆ P2(V ) ⊆ · · ·

clearly hold. Now to get F(λ)-subspaces of V , and thence a filtration of V , we simply take the
F(λ)-spans of these vector polynomial subsets,

Sd(V ) := span
F(λ)

Pd(V ) . (3.3)

Note that if Pd(V ) is non-trivial, then Sd(V ) contains vector polynomials of unbounded degree, not
just of degree at most d. This is because for any v(λ) ∈ Pd(V ), multiplying by the scalars λm ∈ F(λ)
gives vector polynomials λmv(λ) that are in Sd(V ) for every m ∈ N. However, since Pd(V ) is by
definition a spanning set for Sd(V ), we know there is always a basis of Sd(V ) consisting solely of
elements chosen from Pd(V ); let us call any such basis a “Pd(V )-basis” for Sd(V ). Furthermore, any
Pd(V )-basis for Sd(V ) can be extended to a Pd+1(V )-basis for Sd+1(V ). Note also that

dim
F(λ)

Sd(V ) ≤ dim
F

Pd(V ) ,

i.e., the dimension of Sd(V ) as an F(λ)-vector space is never greater than the dimension of Pd(V )
as an F-vector space, and is often very much less. This is because any F-basis for Pd(V ) is also an
F(λ)-spanning set for Sd(V ).
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It is not hard to see that the condition
∪∞

d=0 Sd(V ) = V is satisfied. Suppose that v(λ) is an
arbitrary element of V . Then there is some (scalar) polynomial q(λ) such that w(λ) = q(λ)v(λ) is
a vector polynomial in V (just clear all the denominators of the entries of v(λ)), with some degree
d = deg w(λ). Then w(λ) ∈ Pd(V ), and so v(λ) =

(
1

q(λ)

)
· w(λ) is in Sd(V ). Thus every element

of V is contained in some Sd(V ), and so the equality
∪∞

d=0 Sd(V ) = V follows. Consequently the
subspaces Sd(V ) define a filtration of V .

Definition 3.7 (The Degree Filtration). The nested sequence

S0(V ) ⊆ S1(V ) ⊆ S2(V ) ⊆ · · · ⊆ Sd(V ) ⊆ · · · (3.4)

is the degree filtration of V , denoted Fdeg(V ).

In the context of a subspace V ⊆ F(λ)n filtered by the degree filtration, the natural bases to
consider are those vector polynomial bases for V that are compatible with the filtration Fdeg(V ),
and at the same time provide Pd(V )-bases for each Sd(V ), as in the following definition.

Definition 3.8 (Minimal Basis of Fdeg(V )). An ordered vector polynomial basis B for a subspace
V ⊆ F(λ)n is said to be a minimal basis for the degree filtration Fdeg(V ) if

(a) B is compatible with the filtration Fdeg(V ), and

(b) for each d ≥ 0, the initial segment of B that forms a basis for Sd(V ) is a Pd(V )-basis.

Now observe that the Kronecker/Gantmacher construction (Algorithm 3.1) for generating a K-
minimal basis can be simply described as follows: first find a P0(V )-basis for S0(V ), then extend to
a P1(V )-basis for S1(V ), then extend to a P2(V )-basis for S2(V ), . . . , and so on inductively through
the degree filtration of V , until a vector polynomial basis for all of V is attained. But this is exactly
how to generate a minimal basis for the filtration Fdeg(V ); indeed any minimal basis for Fdeg(V )
can be viewed as being generated in this way. Thus we have the following theorem.

Theorem 3.9 (Equivalence of Minimal Basis Concepts).
An ordered vector polynomial basis B for a subspace V ⊆ F(λ)n is a K-minimal basis for V if and
only if B is a minimal basis for the degree filtration Fdeg(V ).

3.3 Minimal indices from the degree filtration

In order to conveniently work with arbitrary lists of vector polynomials, we introduce one final bit
of terminology.

Definition 3.10 (Degree Sequence). Suppose L =
{
v1(λ), v2(λ), . . . , vk(λ)

}
with di = deg vi(λ)

for i = 1, . . . , k is any finite set of vector polynomials from a subspace V ⊆ F(λ)n, and let L be
ordered so that di ≤ di+1 for i = 1, . . . , k − 1. Then the list of numbers d1 ≤ d2 ≤ · · · ≤ dk is the
degree sequence of L.

An important feature of the characterization in Theorem 3.9 is that it transparently reveals why
every K-minimal basis for V has exactly the same list of degrees, and hence why the notion of
K-minimal indices of V is well-defined and meaningful. Since K-minimality and minimality with
respect to the degree filtration are now seen to be equivalent notions, from now on we will just use
the phrase “minimal indices”, as in the following definition.

Definition 3.11 (Minimal Indices). The minimal indices of a subspace V ⊆ F(λ)n are the numbers
ε1 ≤ ε2 ≤ · · · ≤ εp in the degree sequence of any K-minimal basis for V , or equivalently, in the degree
sequence of any minimal basis for the degree filtration Fdeg(V ).
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From this definition it is clear that the number of minimal indices ε = 0 is just dimF(λ)
S0(V ), the

number of minimal indices with ε ≤ 1 is dimF(λ)
S1(V ), and in general for any d ∈ N the number of

minimal indices with ε ≤ d is dimF(λ)
Sd(V ). Thus we have a simple and intrinsic way to characterize

minimal indices, which gives us the following useful tool for determining and working with them.

Theorem 3.12 (Minimal Indices from the Degree Filtration).
Let V be an arbitrary subspace of F(λ)n. Then the minimal indices of V are uniquely determined by
the dimension sequence of the degree filtration Fdeg(V ), and vice versa. In particular, the number of
zero minimal indices ε = 0 is dim

F(λ)
S0(V ), while for j ≥ 1 the number of minimal indices ε = j is

dim
F(λ)

Sj(V ) − dim
F(λ)

Sj−1(V ) . (3.5)

Conversely, the dimensions of the subspaces Sd(V ) are uniquely determined from the minimal indices
of V by

dim
F(λ)

Sd(V ) = total number of minimal indices with ε ≤ d. (3.6)

As an immediate corollary we have the following criterion for deciding if two subspaces have the
same minimal indices.

Corollary 3.13 (Equality of Minimal Indices).
Let F and K be any two fields, and let n and q be any two positive integers. Then a pair of subspaces
V ⊆ F(λ)n and W ⊆ K(λ)q have the same minimal indices if and only if

dim
F(λ)

Fdeg(V ) = dim
K(λ)

Fdeg(W ) ,

i.e., if and only if the degree filtrations of V and W have identical dimension sequences.

In Sections 5 and 6 we will illustrate the efficacy of the tools provided by Theorem 3.12 and
Corollary 3.13 by establishing two fundamental properties of minimal indices:

(i) for nullspaces of matrix polynomials, minimal indices are unchanged by passage to any field
extension,

(ii) minimal indices behave nicely under direct sums; i.e., the minimal indices of V ⊕ W , where
V ⊆ F(λ)n and W ⊆ F(λ)m, are just the concatenation of the minimal indices of V and W .

But first we will see how the degree filtration notion of minimal indices connects up with Forney’s
approach in [5]. This connection will be made via a property of minimal indices brought to light by
the filtration view, a “strong” minimality property that leads eventually to a characterization of the
vector polynomial bases in any rational subspace of F(λ)n.

4 A Strong Minimality Property of Minimal Indices

The filtration view of minimal indices provides insight that is not so readily obtained from either the
Kronecker or Forney point of view, as illustrated by the following simple example.

Example 4.1. Suppose a two-dimensional rational subspace V ⊆ F(λ)n has minimal indices ε1 = 1
and ε2 = 4. Is it possible for there to exist a vector polynomial basis B =

{
v1(λ), v2(λ)

}
for V with

degree sequence (3, 3)? From the Kronecker/Gantmacher point of view this seems to be perfectly
plausible; once you choose v1(λ) with non-minimal degree (deg v1 = 3) to be the first basis vector
in B, then you are no longer following the greedy algorithm, so all bets are off as to what might be
available for a second basis vector. The Forney view also does not seem to offer any objection to the
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existence of such a basis B, since ord(B) = 6 is certainly compatible with the minimal order being
ε1 + ε2 = 5.

In fact, though, it is impossible for V to have such a basis B, and this can be seen rather easily
from the filtration point of view. The minimal indices ε1 = 1 and ε2 = 4 immediately imply that
the dimension sequence of the degree filtration of V must be (0, 1, 1, 1, 2, 2, 2, 2, . . . ); in particular,
we would have dimS3(V ) = 1. But the existence of a vector polynomial basis B with degree
sequence (3, 3) would mean that S3(V ) would have to have dimension 2. This contradiction shows
the impossibility of such a basis B for V . This example also hints at the presence of subtle constraints
on the possible vector polynomial bases in a general rational vector space V ⊆ F(λ)n, or at least at
constraints that are not so obvious from either the Forney or Kronecker/Gantmacher definitions.

The idea used to resolve Example 4.1 can be extended and refined to establish the following
strong minimality property, which now fully justifies the name “minimal indices”. Note that the
proof given here is a modified version of an argument used in [2, Lemma 2.4].

Theorem 4.2 (Strong Minimality Property of Minimal Indices).
Suppose that V ⊆ F(λ)n is a p-dimensional subspace with minimal indices ε1 ≤ ε2 ≤ · · · ≤ εp, and
B =

{
v1(λ), . . . , vp(λ)

}
is an arbitrary vector polynomial basis for V . If δ1 ≤ δ2 ≤ · · · ≤ δp is the

degree sequence of B, then
εj ≤ δj for each j = 1, . . . , p . (4.1)

Proof. The proof proceeds by induction on j to show that εj ≤ δj holds for every 1 ≤ j ≤ p. First
observe that ε1 is by definition the minimum degree of all vector polynomials in V , so clearly we
must have ε1 ≤ δ1 . Now suppose that εj ≤ δj holds for every 1 ≤ j ≤ m, where 1 ≤ m < p. Let us
see why we must also have εm+1 ≤ δm+1 . Suppose not, i.e., suppose that εm+1 > δm+1 . Then we
would have εm ≤ δm ≤ δm+1 < εm+1. Letting d = εm+1 − 1, so that

εm ≤ δm ≤ δm+1 ≤ d < εm+1 ,

we see from (3.6) that dim
F(λ)

Sd(V ) = m. But at the same time
{
v1(λ), v2(λ), . . . , vm+1(λ)

}
would

constitute an F(λ)-linearly independent set of m+1 vector polynomials in Sd(V ). This contradiction
shows that εm+1 > δm+1 is impossible, so εm+1 ≤ δm+1 and the induction is complete.

As an easy consequence of this strong minimality property, we can now immediately (and si-
multaneously) establish two of the fundamental properties of the F-minimal indices introduced by
Forney in [5]: that they are well-defined, and that they are identical to the K-minimal indices. Note
that this argument is completely independent of the results in [5], and substantially simplifies and
unifies our understanding of the relationships between these various notions of minimal indices.

Corollary 4.3 (F-minimal and K-minimal indices are Identical).
A vector polynomial basis B for a subspace V ⊆ F(λ)n is F-minimal (i.e., has minimal order) if and
only if its degree sequence is identical to the minimal indices of the degree filtration Fdeg(V ).

Proof. By (4.1) in Theorem 4.2 it is clear that for every vector polynomial basis B for V , the order of
B is bounded below by the sum µ =

∑
j εj of all the minimal indices of the degree filtration Fdeg(V ).

But since this lower bound µ is actually attained by any K-minimal basis, this must be the order of
any F-minimal basis for V . It is also clear from (4.1) that the only way for a vector polynomial basis
B to attain the minimum order µ is for its degree sequence to be identical to the minimal indices of
the degree filtration Fdeg(V ).

The strong minimality property of minimal indices can be furthered strengthened. The converse
of Theorem 4.2 can also be shown to hold, thus making it possible to characterize the degree sequences
of all vector polynomial bases in any rational subspace V ⊆ F(λ)n in terms of the minimal indices
of V .
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Theorem 4.4 (Characterization of Vector Polynomial Basis Degree Sequences).
Suppose that V ⊆ F(λ)n is a p-dimensional subspace with minimal indices ε1 ≤ ε2 ≤ · · · ≤ εp. Then
there exists a vector polynomial basis for V with degree sequence δ1 ≤ δ2 ≤ · · · ≤ δp if and only if

εj ≤ δj for each j = 1, . . . , p . (4.2)

Proof. The necessity of the conditions in (4.2) is exactly the content of Theorem 4.2. To establish
the sufficiency, consider any minimal basis

{
v1(λ), v2(λ), . . . , vp(λ)

}
for V . Then

B :=
{
λδ1−ε1v1(λ), λδ2−ε2v2(λ), . . . , λδp−εpvp(λ)

}
is clearly a vector polynomial basis for V , with the desired degree sequence δ1 ≤ δ2 ≤ · · · ≤ δp .

Remark 4.5. The strong minimality property of minimal indices proved in Theorem 4.2 does not
seem to be widely known. However, it does appear in the coding theory literature, as least as early
as [13].

5 Minimal Indices and Field Extensions

Historically, the original reason to introduce the notions of minimal bases and indices was as a tool
to help clarify the properties of the Kronecker canonical form, a classical result for matrix pencils
over algebraically closed fields (see [6]). In a recent investigation of a new equivalence relation on
matrix polynomials [3], matrix pencils L(λ) over an arbitrary field F were under consideration, and
we wanted to make use of the Kronecker canonical form of L(λ), viewed as a pencil over the algebraic
closure F. In this context, a key question is whether the minimal indices of L can be affected by the
change of field from F to F. The goal of this section is to resolve this issue, by proving the following
invariance result for the minimal indices of a matrix polynomial over an arbitrary field.

Theorem 5.1 (Invariance of Minimal Indices under Field Extension).
Suppose P (λ) is an m × n matrix polynomial over a field F, and F̃ ⊇ F is an extension field. Let

V :=
{
v(λ) ∈ F(λ)n : P (λ)v(λ) ≡ 0

}
⊆ F(λ)n

be the right nullspace of P (λ) viewed as a matrix polynomial over F, and

W :=
{
w(λ) ∈ F̃(λ)n : P (λ)w(λ) ≡ 0

}
⊆ F̃(λ)n

be the right nullspace of P (λ) viewed as a matrix polynomial over F̃. Then the minimal indices of
V and W are identical.

The strategy of the proof is to show that the dimension sequences dimFdeg(V ) over the field
F(λ), and dimFdeg(W ) over the field F̃(λ), are identical; Corollary 3.13 then implies the desired
conclusion. Before we get to the proof of the theorem we need some preliminary results.

Lemma 5.2. Suppose K is a field, K̃ ⊇ K is a field extension, and v1, v2, . . . , vℓ ∈ Kn ⊆ K̃n are
column vectors in Kn (hence also in K̃n). Then

v1, v2, . . . , vℓ are linearly independent in Kn ⇐⇒ v1, v2, . . . , vℓ are lin. indep. in K̃n .

Proof. Line up the ℓ column vectors v1, v2, . . . , vℓ side-by-side to form an n × ℓ matrix

A =
[
v1 v2 . . . vℓ

]
∈ Kn×ℓ ⊂ K̃n×ℓ.

Then v1, v2, . . . , vℓ are linearly independent in Kn ⇔ A has an ℓ × ℓ submatrix Â such that
det Â ̸= 0 ⇔ v1, v2, . . . , vℓ are linearly independent in K̃n.
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Lemma 5.3. Let P (λ), V , and W be as in Theorem 5.1. Then for each d ∈ N, we have

dim
F

Pd(V ) = dim
eF

Pd(W ) .

Proof. Let P (λ) = A0 + λA1 + λ2A2 + · · · + λkAk be an m × n matrix polynomial over a field F.
Extending a technique used by Gantmacher [6] to analyze singular pencils, consider the following
(possibly rectangular) block-Toeplitz matrices built from the coefficient matrices of P (λ):

M0 :=


A0

A1...
Ak

 , M1 :=


A0 0
A1 A0... A1

Ak

...
0 Ak

 , . . . , Md :=



A0

A1 A0... A1
. . .

Ak

...
. . . A0

Ak A1
. . .

...
Ak


, . . . (5.1)

where Md has d + 1 block columns. Now suppose v(λ) = v0 + λv1 + λ2v2 + · · · + λdvd is a vector
polynomial of degree at most d with vi ∈ Fn for i = 0, . . . , d, and ṽ := [ vT

0 vT
1 . . . vT

d ]T is the vector
in F(d+1)n formed by vertically stacking up all the coefficient vectors vi. Then it is not hard to see
that v(λ) ∈ Pd(V ) if and only if

A0v0 = 0 , A1v0 + A0v1 = 0 , A2v0 + A1v1 + A0v2 = 0 , . . . , Akvd = 0

if and only if Md ṽ = 0. From this it follows that the map

Pd(V ) −→ kerMd

v(λ) 7−→ ṽ

is a linear isomorphism of F-vector spaces, and so dimF Pd(V ) = dimF kerMd.
The same argument, viewing Md and the coefficients of P (λ) as matrices with entries in any

extension field F̃, shows that dim
eF
Pd(W ) = dim

eF
kerMd. Now the rank/nullity theorem implies

that dimkerMd = (d + 1)n − rankMd. But the rank of a matrix is the size of the largest square
submatrix with nonzero determinant, so rank is insensitive to field extensions. Thus we have

dim
F

Pd(V ) = dim
F

kerMd = (d + 1)n − rankMd = dim
eF

kerMd = dim
eF

Pd(W ) ,

and the proof is complete.

With these two lemmas in hand, we now return to the proof of Theorem 5.1.

Proof. (of Theorem 5.1)
The strategy of the proof is to show that for each d ∈ N, the F(λ)-dimension of Sd(V ) is the same
as the F̃(λ)-dimension of Sd(W ), and hence that

dim
F(λ)

Fdeg(V ) = dim
eF(λ)

Fdeg(W ) ,

i.e., the degree filtrations Fdeg(V ) and Fdeg(W ) have identical dimension sequences. It then follows
from Corollary 3.13 that the minimal indices of V and W are identical, as desired.

To get a handle on the spaces Sd(V ) and Sd(W ), we begin by considering the vector polynomial
spaces Pd(V ) and Pd(W ). Let B be any F-basis for the F-vector space Pd(V ). Then clearly B ⊆
Pd(W ), and by Lemma 5.2 (with K = F and K̃ = F̃) it follows that B is an F̃-linearly independent
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subset of Pd(W ). The equality of the dimensions dimF Pd(V ) and dim
eF
Pd(W ) from Lemma 5.3 now

implies that B is also an F̃-basis for the F̃-vector space Pd(W ).
Since Pd(V ) is F-generated by B, and Sd(V ) is F(λ)-generated by Pd(V ), the fact that F ⊆ F(λ)

implies that B is an F(λ)-spanning set for Sd(V ). The same kind of argument shows that B is also
an F̃(λ)-spanning set for Sd(W ).

Inside of the spanning set B we can now find a subset B̂ ⊆ B that forms an F(λ)-basis for Sd(V ),
and hence is a maximal F(λ)-linearly independent subset of Sd(V ). Using Lemma 5.2 again, this
time with K = F(λ) and K̃ = F̃(λ), we see that B̂ is not only an F̃(λ)-linearly independent subset of
Sd(W ), it is actually a maximal F̃(λ)-linearly independent subset of Sd(W ). (If not, then there would
be a strictly larger F̃(λ)-linearly independent subset B′ of B, i.e., B̂ ⊂ B′ ⊆ B, which by Lemma 5.2
would contradict the maximality of B̂ as an F(λ)-linearly independent subset of Sd(V ).) Thus we see
that B̂ is simultaneously an F(λ)-basis for Sd(V ) as well as an F̃(λ)-basis for Sd(W ), showing that
dimF(λ)

Sd(V ) = dim
eF(λ)

Sd(W ), and the proof is complete.

Remark 5.4. Note that Theorem 5.1, despite the simple nature of its statement, has not to our
knowledge appeared before in the literature. Indeed, the search for a clear proof of this result was
the primary motivation for developing the filtration formulation of minimal indices in the first place.

Remark 5.5. Clearly the invariance of minimal indices under field extension also holds for the left
nullspace of any matrix polynomial P (λ), since the left nullspace of P (λ) is the same as the right
nullspace of P T (λ).

6 Minimal Indices and Direct Sums

In the course of developing the Kronecker canonical form in [6], Gantmacher remarks without proof
that:

The complete system of indices for the columns (rows) of a quasi-diagonal matrix is
obtained as the union of the corresponding systems of minimal indices of the individual
diagonal blocks. [6, Vol. II, p.39]

In my view this assertion is not obvious, and requires some proof, especially since it is an essential
component of the overall argument for the KCF. In this section we close this “gap” by showing
that minimal indices behave nicely under direct sums more generally; in particular, we show that
the minimal indices of V ⊕ W are just the concatenation of the minimal indices of V and W . The
filtration view of minimal indices allows for a completely straightforward proof of this result, although
some preliminary discussion of how filtrations interact with direct sums is needed. Thus we begin
with the simple notion of the direct sum of filtrations, applicable to any pair of filtered vector spaces.

Definition 6.1 (Direct Sum of Filtrations).
Suppose V and W are filtered vector spaces over the same field K, with given filtrations

F(V ) : V0 ⊆ V1 ⊆ V2 ⊆ · · · and F(W ) : W0 ⊆ W1 ⊆ W2 ⊆ · · · ,

respectively. Then the direct sum filtration F(V ) ⊕ F(W ) of the K-vector space V ⊕ W is defined
to be

V0 ⊕ W0 ⊆ V1 ⊕ W1 ⊆ V2 ⊕ W2 ⊆ · · · .

In Section 3 we introduced some special vector spaces V having a canonical filtration, namely
subspaces V ⊆ F(λ)n equipped with the degree filtration Fdeg(V ). An obvious question is whether
the degree filtration of the direct sum V ⊕ W has any nice relationship to the degree filtrations of
the individual spaces V and W . The next result gives the simple answer.
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Lemma 6.2 (Degree Filtration of Direct Sum).
Let V ⊆ F(λ)n and W ⊆ F(λ)k be arbitrary subspaces, so that V ⊕W is a subspace of F(λ)n+k. Then

Fdeg(V ⊕ W ) = Fdeg(V ) ⊕Fdeg(W ) . (6.1)

Proof. To determine the degree filtration of V ⊕W , we must first understand the vector polynomial

subsets Pd(V ⊕ W ). Any element of V ⊕ W has the form z =
[

v
w

]
, where v ∈ V and w ∈ W .

Thus any vector polynomial z ∈ Pd(V ⊕W ) must be built from some v ∈ Pd(V ) together with some
w ∈ Pd(W ). Consequently we see that Pd(V ⊕ W ) = Pd(V ) ⊕ Pd(W ).

Next we consider the F(λ)-span of Pd(V ⊕ W ), or equivalently of Pd(V ) ⊕ Pd(W ), in order to
obtain the F(λ)-subspace Sd(V ⊕W ) that is part of the degree filtration Fdeg(V ⊕W ). It is easy to see
that any linear combination of elements zi from the direct sum Pd(V )⊕Pd(W ) can be expressed as
the direct sum of a linear combination from Pd(V ) together with a linear combination from Pd(W ):∑

i

cizi =
∑

i

ci

[
vi
wi

]
=

[ ∑
civi∑
ciwi

]
=

∑
i

civi ⊕
∑

i

ciwi .

Conversely, any direct sum of a linear combination from Pd(V ) and a linear combination from Pd(W )
can be written as a linear combination of elements from Pd(V ) ⊕ Pd(W ):∑

i

bivi ⊕
∑

j

cjwj =
[ ∑

bivi

0

]
⊕

[
0∑
cjwj

]
=

∑
i

bi

[
vi

0

]
+

∑
j

cj

[
0
wj

]
.

Together these observations imply that

span
F(λ)

[
Pd(V ) ⊕Pd(W )

]
= span

F(λ)

[
Pd(V )

]
⊕ span

F(λ)

[
Pd(W )

]
=: Sd(V ) ⊕ Sd(W ) .

Thus we have

Sd(V ⊕ W ) := span
F(λ)

[
Pd(V ⊕ W )

]
= span

F(λ)

[
Pd(V ) ⊕ Pd(W )

]
= Sd(V ) ⊕ Sd(W ) .

Assembling these together for all d ∈ N shows that (6.1) holds.

Now that we know how degree filtrations behave with respect to direct sums, it is just one easy
further step to see how the minimal indices of a direct sum are related to the minimal indices of the
summands.

Theorem 6.3 (Minimal Indices of Direct Sum).
Suppose V ⊆ F(λ)n and W ⊆ F(λ)k are arbitrary subspaces, so V ⊕ W is a subspace of F(λ)n+k.
Then the minimal indices of V ⊕W are just the concatenation of the minimal indices of V with those
of W .

Proof. From (6.1) it follows that the dimension sequence of Fdeg(V ⊕ W ) is just the (entry-wise)
sum of the dimension sequences of Fdeg(V ) and Fdeg(W ), i.e., that

dim Fdeg(V ⊕ W ) = dim Fdeg(V ) + dim Fdeg(W ) . (6.2)

The desired result now follows from (6.2) and the minimal index formula (3.5) in Theorem 3.12:

# (min. indices ε = d for V ⊕ W ) = dim Sd(V ⊕ W ) − dim Sd−1(V ⊕ W )

=

{ [
dimSd(V ) + dim Sd(W )

]
−

[
dim Sd−1(V ) + dim Sd−1(W )

]}

=

{ [
dimSd(V ) − dim Sd−1(V )

]
+

[
dim Sd(W ) − dim Sd−1(W )

]}

=

{
#(min. indices ε = d for V )

+ # (min. indices ε = d for W )

}
,
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and the theorem is proved.

7 Conclusions

We have shown how the Kronecker/Gantmacher approach to the minimal bases and indices of any
subspace V ⊆ F(λ)n can be reformulated in a more intrinsic fashion using the degree filtration of V .
This reformulation unifies and simplifies our understanding of the classical approaches to minimal
bases and indices, clarifies the relationship between these approaches, and provides new tools with
which to prove basic properties of minimal indices. These new tools have been utilised to show
that the minimal indices of any singular matrix polynomial are unchanged by field extension, and
to prove the direct sum property of minimal indices. The filtration point of view has also provided
deeper insight into minimal indices, bringing an under-recognized strong minimality property clearly
into the light, thereby leading to a characterization of the vector polynomial bases in rational vector
spaces.

Acknowledgements: Thanks to Froilán Dopico, Vasilije Perović, and Niloufer Mackey for helpful
comments on earlier versions of this paper.
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