
The border collision normal form with stochastic
switching surface

Glendinning, Paul

2012

MIMS EPrint: 2012.76

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/


The border collision normal form with

stochastic switching surface

Paul Glendinning

Centre for Interdisciplinary Computational and Dynamical Analysis (CICADA) and
School of Mathematics, University of Manchester, Manchester, M13 9PL, U.K.

Email: p.a.glendinning@manchester.ac.uk

Abstract

The deterministic border collision normal form describes the bifurcations of
a discrete time dynamical system as a fixed point moves across the switching
surface with changing parameter. If the position of the switching surface
varies randomly, but within some bounded region, we give conditions which
imply that the attractor close to the bifurcation point is the attractor of
an Iterated Function System. The proof uses an equivalent metric to the
Euclidean metric because the functions involved are never contractions in
the Euclidean metric. If the conditions do not hold then a range of possi-
bilities may be realized, including local instability, and some examples are
investigated numerically.

PACS: 05.40.-a, 05.45.-a

Keywords: non-smooth bifurcation, attractor, border collision, stochastic
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1. Introduction

Many problems involve systems in which discrete and continuous com-
ponents interact. In switched systems the dynamical systems describing the
evolution changes whenever some threshold (the switching surface) is crossed.
Switched systems are common in control and digital applications, but exam-
ples are also found in more standard electronic circuits [1], biological mod-
elling [3] and mechanical problems [7]. There is a growing body of results
describing the bifurcations of deterministic models [4]. In some situations,
more realistic modelling would need to take account of different sources of
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uncertainty: the dynamical systems describing the evolution of variables may
have a stochastic element, and the switching surface itself may be subject
to fluctuations. Initial results from a dynamical systems perspective on the
former case have been obtained recently by Simpson et al [13, 14]. Whilst
there are studies of more general stochastic hybrid systems in the computer
science literature (e.g. [5, 6]), this tends to restrict attention to describing
properties of the class of solutions obtained rather than giving a detailed
description of dynamics.

In this paper we consider the effect of random fluctuations in the switching
surface, whilst retaining a deterministic description of the dynamics in the
different regions defined by the switching surface. Such fluctuations may
have mechanical origins (e.g. panel flutter or poorly fitted boards), or be
caused by measurement techniques (e.g. if the signal is sampled digitally
and the transition occurs if the measurement is within some tolerance of the
theoretical switching surface), or arise as a result of intrinsic variation (e.g.
thermal effects).

To keep the analysis as simple as possible we restrict attention to a mod-
ification of the discrete time model derived by Nusse and Yorke [12] to de-
scribe the bifurcations that occur when a fixed point of a map intersects the
switching surface at some value of the parameter. This model, the border
collision normal form, has been used to help understand a variety of phe-
nomena in switched systems [1], and the fact that it has a discrete time
variable means that complications inherent in the description and definition
of a continuously varying switching surface in continuous time systems, such
as multiple intersections with the trajectory in a short space of time, are
avoided. In keeping with the mechanical and measurement sources of noise
described above we assume that the switching surface varies randomly but
within specified bounds. Without the boundedness assumption (see equation
(6) of section 2) the system is of a more standard type, where the probability
of applying either one of the maps defining the deterministic border collision
normal form is always non-zero. Thus if the assumption of bounded fluctua-
tions is not imposed, the system is a standard Iterated Function System if the
maps are contractions with respect to some metric, and a more general ran-
dom map otherwise. One of the main aims of this paper is to investigate how
the assumption of bounded fluctuations allows for both deterministic features
and random features as the bifurcation parameter is varied. The advantage
of the simple model presented here is that concrete results are possible, and
in section 4 we show that the stochastically switched border collision system
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Figure 1: Parameters TR = −0.3; DR = 1.1; TL = 0.1; DL = −0.8 (as defined in section 2).
(a) Bifurcation diagram (100 values of the x variable of a trajectory for different values of
µ) for the deterministic border collision normal form showing an abrupt transition from
a stable fixed point to a chaotic state. (b) Bifurcation diagram for the border collision
normal form with stochastic switching surface taking values between −0.05 and 0.05 (100
values for each chosen value of µ after 1000 iterations to get convergence). The inset shows
detail of the structure near µ = 0; note the appearance of the complex attractor before the
bifurcation value of the deterministic normal form. The variation of the switching surface,
ϵ of (6), is 0.05.

of section 2 can have regions of parameters where the dynamics is described
by an Iterated Function System.

Figure 1 shows the bifurcation diagram of an example that does not sat-
isfy the tidy contraction conditions of section 4. In Figure 1a a deterministic
border collision bifurcation creates a chaotic attractor, whose size goes to zero
at the bifurcation from a stable fixed point. In the stochastically switched
version of Figure 1b there is a clear intermediate region before the emer-
gence of the chaotic border collision attractor (see the inset of Figure 1b),
and we will look at the structure of this bifurcation and some other exam-
ples in section 5. One of the features of these examples is that it is easy to
produce unbounded motion close to the bifurcation point. This seems to be
a stochastic analogue of the ‘dangerous bifurcations’ of [10], where, even in
the deterministic case it is possible to find unbounded orbits at the bifurca-
tion value itself, though there are local attractors at neighbouring parameter
values.

The stochastic model is defined in the next section. In section 3 we give
the background on contractions and Iterated Function Systems needed to
prove the main result. In particular, a choice of an equivalent metric to the
Euclidean metric is described. In this metric the maps defining the border
collision normal form are contractions for some parameter values (they are
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never contractions in the Euclidean metric). The main result, showing the
appearance of IFS attractors, is proved in section 4 and in section 5 some
comments are made together with numerical simulations to indicate how the
behaviour is changed if the conditions of the main result do not hold.

2. The stochastically switched model

The deterministic border collision normal form is a continuous, piecewise
affine map and we will consider here only the two-dimensional case, although
very similar remarks hold in higher dimensions. Let

R0 = {(x, y)T | x ≤ 0}, R1 = {(x, y)T | x ≥ 0}, (1)

and if (xn, yn)
T ∈ Rk define a discrete time evolution by(

xn+1

yn+1

)
=

(
Tk 1

−Dk 0

)(
xn

yn

)
+

(
µ
0

)
(2)

where Tk and Dk are constants, k = 0, 1, and µ is a real parameter. This is
a deterministic dynamical system with switching surface x = 0. It can be
derived as the linear approximation for the dynamics of a switched system
which is continuous across the switching surface and which has a fixed point
on the switching surface if µ = 0 [12]. Much is known about the attractors of
such maps both because of their application in nonsmooth bifurcation theory
[12? ], but also because they are very natural simple maps of the plane to
investigate [11]. Note that in this formulation the dynamics depends only
on the sign of µ if the other parameters are fixed, since by a simple scaling
µ can be restricted to {−1, 0, 1}. This scale invariance will disappear in the
stochastic model below.

It will be convenient to rewrite (1), (2) in terms of two affine maps Fk :
R2 × R → R2 where for z ∈ R2

Fk(z;µ) = Akz +m, k = 0, 1 (3)

with

m = (µ, 0)t and Ak =

(
Tk 1

−Dk 0

)
,

k = 0, 1, where the superscript t denotes the transpose of a matrix or vector
(lower case to avoid confusion with the coefficients Tk of the matrix Ak). In
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terms of F0 and F1 the border collision normal form is

zn+1 =

{
F0(zn;µ) if xn ∈ R0

F1(zn;µ) if xn ∈ R1 .
(4)

A simple stochastic model which includes the effects of fluctuations in
the switching surface is obtained by replacing the switching surface x = 0
by a random set of (independent) surfaces. To simplify matters further we
assume that these surfaces lie in a bounded strip near x = 0 and that they
are graphs over y, so

x = gn(y), (5)

and there exists ϵ > 0 such that for all n and y

|gn(y)| < ϵ. (6)

Now define, as in (1),

Rn,0 = {(x, y)T | x < gn(y)}, Rn,1 = {(x, y)T | x ≥ gn(y)}, (7)

and consider the dynamical system generated by (2) with k = 0 if (xn, yn)
T ∈

Rn,0 and k = 1 if (xn, yn)
T ∈ Rn,1, i.e.

zn+1 =

{
F0(zn;µ) if xn < gn(yn)
F1(zn;µ) if xn ≥ gn(yn) .

(8)

This is the system whose dynamics is described below. (Note that we have
made an arbitrary decision to include the switching surface in Rn,1, though
many other conventions could have been used. The central results below are
not changed by the choices made.) By scaling, the threshold ϵ can be chosen
to take any fixed positive value, but to emphasize that we are envisaging small
fluctuations here, the value ϵ = 0.05 is used in all the numerical simulations
reported here.

The independence of these graphs implies that given any sequence

y0, y1, y2, . . .

then the values
g0(y0), g1(y1), g2(y2), . . .

are also independent. This means that to compute a single (random) tra-
jectory it is enough to generate an independent set of real random variables
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(ξn) with |ξn| < ϵ and apply the border collision normal form with k = 0 if
xn < ξn and k = 1 if xn ≥ ξn. Of course, if realizations of different initial
conditions from the same random run are sought for, the situation becomes
considerably more complicated and a more precise definition of the class of
random functions being considered is necessary. Since we will not be looking
at this aspect of the problem, all realizations of trajectories can be computed
using a sequence of real, independent random variable, which we will also
take to be identically distributed.

One further point is worth noting. Unlike the original border collision
normal form, the maps (for a given gn) are not continuous across the switch-
ing surface. This could be addressed by a stochastic modification of the
functions F0 and F1 (a shift in the x-variable), but we will not follow this
line of argument here.

3. Contractions, Iterated Function Systems and Equivalent Met-
rics

In this section we recall some basic facts about Iterated Function Systems
and contractions. If R ⊆ R2, then a function f : R2 → R2 is a contraction
on R in the metric d(., .) if there exists a constant c ∈ (0, 1) such that for all
z, z′ ∈ R

d(f(z), f(z′)) ≤ cd(z, z′).

An IFS (or Iterated Function System) [2] on a compact subset R ⊆ R2 with
metric d(., .) is a finite set of continuous contractions {f1, . . . , fm} on R.
Define a dynamics on subsets, S, of R by

F (S) = ∪m
r=1fr(S)

and F p(S) = F (F p−1(S)), p ≥ 2. One of the central results of the theory of
IFSs is that there exists a unique F -invariant set Λ ⊂ R2 such that F (Λ) = Λ,
and

Λ = ∪m
r=1fr(Λ). (9)

Iteration of a single point x0 ∈ R2 under randomly chosen sequences of fr
tend to Λ, so Λ can be seen as the attractor of the random dynamical system
obtained by iterating a point with the functions fr where at each iteration
the next function to apply is chosen randomly.

An affine function F (z) = Az+ b for some constant real invertible matrix
A is contracting iff all the eigenvalues of the symmetric matrix ATA lie inside
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the unit circle (note that this is not the same as saying that the stationary
point of the matrix is stable). If the eigenvalue of ATA with largest modulus
has modulus s2 < 1 say, (s > 0) then this implies that

∥Au∥2 = uTATAu ≤ s2(uTu) = s2∥u∥2, for all u ∈ R2

where∥.∥ denotes the standard Euclidean norm in R2, from which it is easy
to deduce that if v = Au+b and v′ = Au′+b for some constant vector b then

∥v − v′∥ ≤ s∥u− u′∥

or that the vector function Au+b is a contraction with contraction coefficient
s. It may come as a little surprise that affine functions with a matrix of the
form used in (2) is never a contraction in the standard Euclidean metric, and
this means that it is necessary to work with alternative metrics. Since this
adds an extra level of technical difficulty to this paper the point is worth
making formally.

Lemma 1. If

A =

(
T 1
−D 0

)
(10)

then A is not a contraction in the Euclidean metric.

Proof: By direct calculation

ATA =

(
T 2 +D2 T

T 1

)
and since this is symmetric the eigenvalues are real. In this case an el-
ementary calculation shows that if the eigenvalues are less than one then
Tr(ATA) < 2 and 1 − Tr(ATA) + det(ATA) > 0. But the second of these
equations implies that T 2 < 0, so A cannot be a contraction.

�
A metric d is equivalent to the Euclidean metric iff an open set in the

topology defined by one metric is also open in the topology defined by the
other. It is fairly straightforward to show that if |.| denotes the standard
real (one-dimensional) Euclidean metric and α > 0 then the function dα :
R2 × R2 → R defined by

dα((x1, y1), (x2, y2)) = α|x2 − x1|+ |y2 − y1| (11)
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is a metric, and it is equivalent to the Euclidean metric in the plane. The
advantage of this metric is that matrices of the form (10) can be contractions
in this metric. An open ball about a point is (geometrically) a rhombus.

Lemma 2. If A is a matrix of the form (10) and |T | + |D| < 1 then there
exists α > 0 such that A is a contraction in the metric dα.

Proof: Given zk = (xk, yk), k = 1, 2, Azk = (Txk + yk,−Dxk) and so

dα(Az1, Az2) = α|Tx2 − Tx1 + y2 − y1|+ |D||x2 − x1|
≤ (α|T |+ |D|)|x2 − x1|+ α|y2 − y1|
≤ α ((|T |+ α−1|D|)|x2 − x1|+ |y2 − y1|) .

(12)

Thus
dα(Az1, Az2) ≤ α (α|x2 − x1|+ |y2 − y1|) = αdα(z1, z2) (13)

provided
α > |T |+ α−1|D|, i.e. α2 − |T |α− |D| > 0,

and A is a contraction for dα if such a value can be chosen with α ∈ (0, 1).
The larger real root of α2 − |T |α− |D| = 0 is strictly less than one provided
1−|T |−|D| > 0, so if this inequality is satisfied then such an α can be found
and hence A is a contraction in the metric dα.

�
Note that the condition |T | + |D| < 1 specifies a square in the (T,D)-

plane with corners (−1, 0), (0, 1), (1, 0) and (0,−1). This square contains
all those parameters for which the fixed point of the affine map is stable if
D < 0, but only a subset of those for which the fixed point is stable if D > 0.

In the equations defined in (2) the dynamics is determined by the two
maps F0 and F1 of (3). The comments above make it possible to show that
F0 and F1 are contractions under some conditions and so the pair is an IFS.
A bound for the size of the invariant set of (9) can also be found.

Lemma 3. Suppose Dk ̸= 0, |Tk| + |Dk| < 1 and let αk be the larger root
of the quadratic equation s2 − |Tk|s − |Dk| = 0, k = 0, 1. Then the pair
{F0, F1} of (3) is an IFS in the metric dc, for c in the non-empty interval
(max(α0, α1), 1). Moreover given any u∗ ∈ R2, the attractor of the IFS lies
in the region defined by

dc(u∗, p) < K

(
1 + c

1− c

)
8



where K is the maximum of the distances between u∗ and the fixed points of
the two maps.

Proof: That the pair {F0, F1} forms an IFS follows immediately from the
definition of the affine functions Fk, Lemma 2) and the proof below that there
is a compact absorbing region. This part of the proof can be found in [8, 9]
for example, but since less detail is needed than given in these references the
argument will be given from first principles.

Pick c as in the statement of the lemma. Since Dk ̸= 0, there exist unique
fixed points of the two maps, z∗k, k = 0, 1, which lie a ‘distance’ d∗ = dc(z

∗
0 , z

∗
1)

apart. Suppose that the attractor of the IFS is Λ. Then Λ = F0(Λ) ∪ F1(Λ)
(cf. (9)). So suppose that Λ is contained within a ball B (i.e. rhombus) of
radius R about the reference point u∗, and let

ℓk = dc(u
∗, z∗k), k = 0, 1.

Then all points in B are within a distance ℓk+R of z∗k. Hence for any u ∈ B,

dc(Fk(u), z
∗
k) = dc(Fk(u), Fk(z

∗
k)) ≤ cdc(u, zk) ≤ c(ℓk +R)

and so

dc(Fk(u), u
∗) ≤ dc(Fk(u), z

∗
k) + dc(z

∗
k, u

∗) ≤ c(ℓk +R) + ℓk. (14)

The ball B is invariant if dc(Fk(u), u
∗) ≤ R for all u ∈ B and this is assured

if the right hand side of (14) is less than R, i.e. if

c(ℓk +R) + ℓk ≤ R, k = 0, 1.

Rearranging this shows that B is an absorbing set (and hence contains the
unique attractor Λ) provided

R ≥ max(ℓ0, ℓ1)

(
1 + c

1− c

)
. (15)

�
Obviously, the bound on R defined above could be improved in all sorts

of ways. By choosing u∗ = 1
2
(z∗0 + z∗1) the distances ℓ0 and ℓ1 are equal and

we may dispense with the maximum in (15).
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4. Stochastic switching surface with contracting normal forms

The deterministic maps (3) of the border collision normal form have fixed
points (x∗

k, y
∗
k), k = 0, 1, where

x∗
k =

µ

1− Tk +Dk

, y∗k = −Dkx
∗
k. (16)

If |Tk|+|Dk| < 1, k = 0, 1, (the conditions for the maps to be contractions for
an appropriate equivalent metric as shown in the previous section, Lemma 2),
then the denominator 1− Tk +Dk is positive and so x∗

0 is in x < 0 if µ < 0
and x∗

1 is in x > 0 if µ > 0. In other words, the two fixed points cannot both
exist as fixed points of the border collision normal form (4) for any given
parameter, and the transition described by the border colliion normal form
is from a stable fixed point in x < 0 if µ < 0, to a stable fixed point in x > 0
if µ > 0, i.e. there is effectively no bifurcation. It is known [1] that there
are parameters of the deterministic normal form such that this change (or no
change!) occurs together with the creation of other stable sets, for example
more complicated periodic orbits can coexist with at least one of the stable
fixed points. However, for the choice of parameters made here, this added
complication cannot happen. We are not aware of this result being stated in
the literature, so the proof will be included here.

Lemma 4. If |Tk| + |Dk| < 1 and Dk ̸= 0, k = 0, 1, then the deterministic
border collision normal form has a stable fixed point in x < 0 if µ < 0 and
a stable fixed point in x > 0 if µ > 0. These are the unique attractors of the
system.

Proof: As before, let Fk, k = 0, 1 denote the affine maps (3) of the border
collision normal form. We will show that the deterministic border collision
normal form is a continuous contraction (for an appropriate equivalent met-
ric) in a compact region, from which the existence and uniqueness of the
attracting fixed points follows using standard results. Let αk be the larger
root of α2−|Tk|α−|Dk| = 0, and note that αk ∈ (0, 1); let s∗ = max(α0, α1).

The existence of an absorbing region for the deterministic border colli-
sion normal form is a corollary of the equivalent result (Lemma 3) for the
corresponding IFS. Restricting to this absorbing region, if z and z′ are both
in either x < 0 or x > 0 then F0 and F1 are both contracting with respect
to the metric dc with s∗ < c < 1 by Lemma 2. Now suppose that z = (x, y)
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with x < 0 and z′ = (x′, y′) with x′ > 0 and let v = (0, v∗) be the point
on the switching surface x = 0 on the straight line between z and z′. Then,
dropping the argument µ in Fk for the moment,

dc(F0(z), F1(z
′)) ≤ dc(F0(z), F0(v)) + dc(F1(z), F1(v))

≤ cdc(z, v) + cdc(z
′, v) = c(dc(z, v) + dc(v, z

′)) = cdc(z, z
′)

where we have used the triangle inequality together with the continuity of
the border collision normal form across x = 0 (so F0(v) = F1(v) if the x-
coordinate of v is zero) and the fact that if points are collinear then the
distance (measured by the metric dc) between the endpoints equals the sum
of the distance between those points and the intermediate point (an equality
that is easily verified by direct calculation). Thus for this choice of parameters
the deterministic border collision normal form is a continuous contraction and
hence has a unique fixed point which attracts all iterates.

�
We now turn our attention to the noisy switched system of section 2. The

main result is that if |µ| is sufficiently small then the border collision normal
form with noisy switching has an IFS attractor.

Theorem 5. Consider the border collision normal form with noisy switching
(8) as described in section 2. Fix ϵ > 0 in (6) and assume that |Tk|+|Dk| < 1
and Dk ̸= 0, k = 0, 1. If |µ| is sufficiently large then there is a stable fixed
point outside the region [−ϵ, ϵ] of fluctuations. If |µ| is sufficiently small then
the attractor is the attractor of the IFS defined by the two maps making up
the border collision normal form.

Proof: The first statement is trivial: the fixed point of (16) lies in x < −ϵ
if µ < −(1− T0 +D0)ϵ and in x > 0 if µ > (1− T1 +D1)ϵ.

Let s∗ = max(α0, α1) be as in the proof of Lemma 4 and fix c ∈ (s∗, 1).
Choose u∗ = 1

2
(z∗0 + z∗1) in the proof of Lemma 3 so that u∗ has x-coordinate

x∗µ where

x∗ =
1

2

(
1

1− T0 +D0

+
1

1− T1 +D1

)
. (17)

Thus
ℓ0 = ℓ1 = dc(z

∗
0 , u

∗) = |µ|Q

where Q is a positive constant (a function of the Tk and Dk but not µ) which
is easy enough to write down explicitly but whose precise form adds nothing
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to the argument. By Lemma 3 the absorbing region for the IFS generated
by F0 and F1 is p ∈ R2 such that

dc(u
∗, p) ≤ |µ|Q

(
1 + c

1− c

)
. (18)

Our choice of u∗ makes it easy to calculate the range of x-coordinates of such
points: they lie in the range

x∗µ− |µ|Q
c

(
1 + c

1− c

)
≤ x ≤ x∗µ+ |µ|Q

c

(
1 + c

1− c

)
where x∗ is given by (17). Thus if

|µ| <
(
x∗ +

c

Q

(
1− c

1 + c

))−1

ϵ

the entire absorbing region lies in the region in which the boundary fluctuates
and so asymptotically there is, at each iteration, a positive probability of
applying either F0 or F1 and so the attractor in the absorbing region is the
attractor of the corresponding IFS.

�
Given more information about the random fluctuation of the switching

surface more can be said about the distribution from which the maps F0 and
F1 are chosen. Suppose, as argued in section 2, that given any sequence of
y values (yn) the random variables (gn(yn) = ξn) are independent and iden-
tically distributed. Then a realization of the stochastically switched system
takes the form, with zn = (xn, yn),

zn+1 =

{
F0(zn;µ) if xn < ξn
F1(zn;µ) if xn ≥ ξn .

(19)

If the ξn are uniformly distributed on [−ϵ, ϵ] and |µ| is small enough so that
the IFS determines the attractor (i.e. |xn| < ϵ for all sufficiently large n)
then for sufficiently large n

Prob (xn < ξn) =
xn + ϵ

2ϵ
(20)

and so F0 is applied with probability xn+ϵ
2ϵ

and F1 is applied with probability
xn−ϵ
2ϵ

. As |µ| tends to zero then |xn| lies in a smaller and smaller band around
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Figure 2: TR = −0.3; DR = 0.6; TL = 0.2; DL = 0.5. Bifurcation diagram (100 values
of the x variable of a trajectory for different values of µ) for the border collision normal
form with stochastic switching surface taking values between −0.05 and 0.05.

x = 0 and so the IFS tends to a fair (equal probability) IFS. Note that if
µ = 0 then zn → 0 for all initial z0 (the composition of two contractions with
the same fixed point). A similar analysis is possible for different choices of
the distribution of the ξn.

Figure 2 shows a bifurcation diagram for the border collision normal form
with noisy switching, showing the transition from a fixed point to a region
dominated by the IFS and back again. Note that we have not been able to
say much about the transition between the two (a question of how solutions
are distributed on the attractor of the IFS when not all realizations of com-
binations of the maps F0 and F1 are possible). Figure 3 shows a couple of
examples of the sort of attractors that can be observed in the IFS region.

5. Other stochastic transitions

Even if {F0, F1} is not an IFS for a metric dc because at least one of
them is not a contraction, random applications of the pair may still generate
a bounded attractor. This attractor can also be the attractor of the border
collision normal form with appropriate noisy switching. However, numerical
simulations suggest that there are many cases for which no such bounded
attractors exist and the local dynamics diverges for small ∥µ| even if the
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Figure 3: Attractors calculated using the equal probability IFS. (a) TR = −0.3; DR = 0.6;
TL = 0.2; DL = 0.5 (the same constants as in Figure 2) with 5000 iterates on the attractor
shown. (b) As (a) but with TR = 0.3; DR = 0.5; TL = 0.8; DL = 0.1.

deterministic border collision normal form has attractors. Such divergence
can also be seen in the deterministic case, where the behaviour at µ = 0
can be divergent even if there are attractors if |µ| ̸= 0. This phenomenon
has been described as a dangerous bifurcation [10], so in the noisy case the
instability appears to occur over a range of values of µ and not just at µ = 0.
In applications this means that the solutions leave the small neighbourhood
of the fixed point on which the border collision normal form is a good (lin-
earized) model, and that nonlinear terms are needed in order to understand
the asymptotic dynamics of solutions.

Figure 4 shows details of the attractor of the noisy border collision normal
form with the same constants as that of Figure 1. For sufficiently small |µ|
there is relatively little structure, but as µ increases the attractor develops a
hole and becomes more like the annular attractor of the deterministic border
collision normal form. For more negative µ the attractor is just a fixed point,
so this is not shown. Some examples of other attractors that can be observed
are shown in Figure 5.

6. Conclusion

To interpret the dynamics of deterministic hybrid models in applications,
the extent to which dynamic features are robust to noise needs to be under-
stood. In this paper we have examined one aspect of this problem, where the
stochasticity is in the position of a switching surface, illustrating this with
the border collision normal form in two dimensions. By using a suitably cho-
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sen equivalent metric we have shown that for a range of parameters, the noise
generates an attractor which is equivalent to the attractor of an IFS when the
bifurcation parameter is sufficiently close to its bifurcation value. Numeri-
cal investigations at parameters that do not satisfy the contraction condition
suggest that whilst these conclusions continue to hold in some cases, it is also
possible that motion can become unbounded close to the bifurcation point,
and so the approximations leading to the border collision normal form break
down.

Many variants of the model proposed here are possible; the assumption
that the switching surface always lies in a given strip could be relaxed, and
different distributions for the switching surface could be investigated. The
combination of noisy switching and noisy dynamics would also be worth
exploring. Moreover, it would be instructive to have a better understanding
of the transition between the essentially deterministic behaviour at large |µ|
and the IFS behaviour at small |µ|.

Despite these caveats, the features described here are likely to remain
important in systems where the dominant noise is in the switching mechanism
and the deterministic dynamics is described by the border collision normal
form.
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