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Abstract

We show that the deviation from power laws of the scaling of chaotic mea-
sures such as Lyapunov exponents and topological entropy is periodic in the
logarithm of the distance from the accumulation of period doubling. More-
over, this periodic function is asymptotically universal for each measure (for
functions in the appropriate universality class). This is related to the con-
cept of lacunarity known to exist for scaling functions describing the mass
distribution of self-similar fractal sets.
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1. Lacunarity

In self-similar sets, lacunarity describes the way in which voids or lacu-
nae are distributed at all scales. The presence of these voids is reflected in
scaling functions which characterize the spatial distribution of points. In self-
similar sets, the regular appearance of voids results in a periodic component
of the scaling functions; such oscillations, however, are often found in scaling
quantities, an observation going back at least to DeBruin ([6], see [17] for a
historical review). Guckenheimer [12] suggests that the oscillations in scal-
ing functions seriously hamper numerical attempts to approximate scaling
exponents, such as the capacity of fractal sets. These arguments are sup-
ported by observations [1, 19, 23, 20]. For a more recent discussion see [24]
and references therein. In these studies the effect of lacunarity is confined
to problems involving spatial structures; here we show how the same ideas
are useful in describing scaling behaviour in families of dynamical systems,
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where the (self-similar) fractal structure occurs in parameter space rather
than in state space. In particular, we show that universal functions describe
the asymptotic structure of quantities such as the topological entropy of a
map just after the accumulation of period-doubling .

The source of the lacunarity described here is the existence of self-similar
scaling relations of the form af(z) = f(bx) for the quantities we describe.
This equation has general solution

f(z) = ¥(log m)x%,
where 1 (log x) is periodic with period logb, and the lacunarity of the set is
reflected in the oscillation due to .

As an introduction to lacunarity we shall consider a simple example in
which all the functions involved can be calculated explicitly (see [18] for
additional discussion). The “middle thirds” Cantor set, A, is perhaps the
most easy fractal set to work with, and the periodic oscillation of the scaling
function can be calculated explicitly. The set

A={z€]0,1 xr = — a; €{0,2 1
frel0a] [ =23 5 a0 (1)
is a Cantor set since it is uncountable, closed, contains no intervals, and
every point is an accumulation point of the set. The standard construction
of A is inductive: take the interval [0, 1] and remove the middle third, (%, %),
leaving two intervals [0, 5] and [%,1]. Now remove the middle third of each
of these intervals and repeat the construction, removing the middle third of
each remaining interval at each stage. In the limit, this process defines the
Cantor set, A. Let N(¢) be the smallest number of e-balls needed to cover
A. The dimension or capacity of A, C(A), is then defined as
log N
C(A) = lim — 08 V(0 (2)
e—0 log €
At the n'"* stage of its construction there are 2" intervals, each of length 37",
and A is contained in these intervals. Hence
1

N(e)=2" if 3—n§€< =

: (3)

L After completing this work we learned that Robert MacKay had noted the universal
nature of the modulation function for period-doubling in his Ph.D. thesis, though he did
not compute the functions [15].



Furthermore

N(e) = 2N (3¢) (4)
This functional equation has solutions

log 2

N(e) = ¢(loge)e e ()

where
d(loge) = ¢(log e + log 3) (6)
which gives C'(A) = }Zgg Since N(e) is known explicitly from (3), we can

calculate ¢ to obtain the saw-tooth function (for € < 1, i.e. loge < 0)

log 2
o8 log e + log 2 0>loge > —log3 (7)

log ¢(loge) = 1

and ¢(loge — log3) = ¢(loge). This function reflects two aspects of the
Cantor set. First, the self-similarity of the set is expressed in the periodicity
of ¢, and second, the non-uniformity or bunched aspect of the set is expressed
by deviations of ¢ from a constant (hence the term lacunarity, referring to
the holes or non-uniformity of the set). Numerically computed estimates of
log N(¢€) against — log € show periodic variations from a straight line of slope
iig and any attempt to measure the capacity of a set must take this into
account. Plots of the lacunarity oscillations of related scaling functions for a
number of different Cantor sets are given in [19]. Note that the modulation
function, ¢, of (7) is not what we would find in the standard numerical
computations of ¢. N(e) is the smallest number of e-balls needed to cover
A, whilst numerical computations do not, in general, compute this minimal
cover (see [11], and references thereof).

Similar effects arise in the fractal sets which arise in deterministic dynam-
ical systems [23]. For example, the scaling behaviour of strange attractors
near hyperbolic periodic points can be studied in this way (examples from
the Hénon map [14] are given [18] and [22]. In this case the stable eigen-
value of the periodic point determines the period of oscillation in the (local)
lacunarity.

2. Universality and Period-doubling

The work mentioned above concentrates on the spatial structure of com-
plex sets. It is equally possible to find systems with complex dependence



upon parameters and it is this side of the problem that we wish to comment
upon. To do this we shall concentrate on scaling behaviour associated with
cascades of period-doubling bifurcations, although at the end of this note we
suggest some further situations where the idea of parametric lacunarity may
be useful.

Parametric Lacunarity
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Figure 1: The Lyapunov exponent for the logistic map: (a) base 2 logarithm of the Lyapunov

exponent against logarithm r — ro,. The line reflects the power law (r — Too)“)g;(f‘). (b)
modulation function ¢ (log,(r — 7)) obtained by factoring out the power law.

Period-doubling cascades in unimodal (or one-hump) maps such as the
logistic map, f,(x) = pz(1l — x), have been studied extensively, both from
a topological and a functional point of view [2, 3, 7]. It has been observed
(and understood theoretically) that the envelope of the Lyapunov exponents
above the point of accumulation of period-doubling in a family of unimodal

maps, {f,}, scales like
log 2

|1 = poo |55 (8)

as shown in Figure la, where pi., is the accumulation value and ¢ is a constant
(the Feigenbaum constant [8], depending only upon the university class of
{f.}). In Figure 1b, the underlying power law behaviour of the Lyapunov
exponents has been factored out of the signal. The resulting curve certainly
looks periodic, and it is this feature of the problem that will be explained
below.



The parameter dependence of Lyapunov exponents is not continuous,
so we will concentrate on the scaling of another measure of complexity, the
topological entropy, since this varies continuously for C* families of unimodal
maps (see e.g. [7] chapter I1.9, for technical details — the topological entropy
for unimodal maps is essentially the asymptotic growth rate (limsup) of the
number of periodic points of period p as p — o0). A similar argument
to that presented below should hold (with certain extra assumptions) for
the Lyapunov exponents except that the modulating functions cannot be
continuous.

Figure 2: The function f and f2 showing the geometry of renormalization and the map 7 f.

To understand this scaling, and to take it a little further, we need to
recall some basic facts about period-doubling cascades. In what follows we
assume that the family {f,} has a quadratic maximum for each ; and that
there exists a parameter value jio, for which f, _ is at the accumulation of
period-doubling. It is also convenient to choose a normalization condition:
we assume that the maximum is at z = 0 and that f,(0) =1 for all p. Fur-
thermore, we assume that the maps are even (f,(—x) = f,(z)), so the maps
are defined on the interval [—1, 1] as shown in Figure 2. The analysis of the
period-doubling cascades of unimodal maps uses the idea of renormalization
5,8, 3, 7]: if f.,(1) = —a~! < 0 then define an induced map on the interval
[—a~!, a™!] by taking the second iterate of f in that interval. This new map



is again a unimodal map, and maps the interval [—a~!, a™!] into itself pro-

vided the map is sufficiently close to the accumulation of period-doubling.
This new map can be rescaled to give a unimodal map of [—1, 1], T f, defined
by

Tf(x)=—afo f(-z/a). (9)

The operator 7 can now be thought of as a map on a suitably defined function
space (see [7], for full details). In the universality class we are considering,
T has a fixed point f.(z),

Tf* = f*7

with a one-dimensional unstable manifold, .S, with associated eigenvalue ¢ >
1 and a codimension one stable manifold ¥ as shown in Figure 3. The fixed
point, f, also fixes a value of a: —a;! = f.(1). For unimodal maps with
quadratic maxima ¢ ~ 4.6692 and a, ~ 0.3995.

Figure 3: The structure of function space near the fixed point f, of T, after [4].

The standard argument for the universality of period-doubling in quadratic
families assumes that there exists a codimension one manifold, 3,,, beneath
Y} and intersecting S transversely, such that if f € X, then f has a non-
hyperbolic periodic orbit of period 27~! which satisfies the conditions for a
period-doubling bifurcation. Hence, just below 3, maps have a stable pe-
riodic orbit of period 2"7!, and just above Y, this orbit has lost stability



and there is a stable periodic orbit of period 2. Now consider maps in the
manifold 77!%, = 3,1, which lies between 3, and ¥ (distances having
been contracted by a factor =1 in the direction of S and expanded in the
other directions). If T f period-doubles from period 2"~! to 2" then f period-
doubles from period 2" to 2"*1, so 3,,41 consists of maps with non-hyperbolic
periodic orbits of period 2", about to period-double. Repeated application
of 7! produces a sequence of manifolds accumulating on Y at the rate 6.
By a similar argument, there is a sequence of surfaces ¥,, accumulating on
S from above at the same rate, such that if f € ¥, then f2" restricted to
a suitable interval is a unimodal map which maps the interval onto itself
twice (as is the case for z — 4x(1 —x)), and hence f has topological entropy
27" log 2 [3].

Now consider a family of maps, {f,}, which intersects ¥ transversely at
1 = 0, with period-doubling cascades occurring as p tends to zero from below.
This family is represented by a curve in function space as shown in Figure 3,
and in terms of the description of the previous paragraph, the sequence of
period-doubling bifurcations occurs at the parameter values p,, < 0 on which
fu, intersects X, and p, — 0 as n — oo. Similarly there is a sequence
of parameters ji,, > 0, with i, — 0 as n — oo such that f; intersects
,. Assuming that p is a reasonable measure of distance between maps in
function space, this immediately gives the famous result

— i HBnet T e s (10)

n—oo ,un — /’LTL+1 n—o0 Mn — /’Ln+1

8, 5]. If u € (pn, fin) then f, can be renormalized n times, i.e. T"f, is
well defined, and the curve of maps 7" f,, has been contracted towards S and
stretched in the direction of S. For sufficiently large n the curve representing
T fus tn <t < [lp, is thus arbitrarily close to S. Thus, again assuming that
 is a reasonable measure of distance in function space and |u| is sufficiently
small,

T fu~ fou (11)
But if h(f) is the topological entropy of f then (e.g. [2])

WTf) = h(f?) = 2h(f),
so, using (11) and writing h(u) for A(f,),
h(Sp) ~ 2h(p). (12)
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Solving this equation gives

log 2

h(p) ~ ¢ (log p)puioss. (13)

where the function v (log i) is periodic with period logd. We have already
noted that the curve in function space given by {7"f, | 1 € (0, fi,,) } converges
to the part of S (the unstable manifold of f,) above X. Hence as p | 0 we
can expect the modulation ¢ in (13) to tend to the modulation on S. In
this sense, then, the function v in (13) is asymptotically universal within the
universality class of the renormalization operator (so a map with a different
order maximum would have a different asymptotic modulation and, of course,

a different 0).

Figure 4a Glendinning and Smith
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Figure 4b Glendinning and Smith
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Figure 4: The topological entropy for the logistic map: (a) logarithm of the topological
entropy against logarithm of the parameter showing power law behaviour; (b) modulation
function obtained by factoring out the power law.

The asymptotically universal function describes the fine structure of the
entropy between fi,,; and fi,; since we know that there are intervals of u

values in this range on which the entropy is constant, 1(log 1) is not constant
log 2
and reflects the variation of h(u) from the simple power law uloié.

As mentioned earlier, the entropy, h(f), is a continuous function of pa-
rameters whereas the Lyapunov exponent is not. However, the Lyapunov
exponent is easier to calculate directly from iterates of the map numerically.
To find the topological entropy of a map (and hence to compute ) we have




used a result due to Milnor and Thurston [16]. If the critical point of the
map is at © = ¢, then we define ao(z) = 1 if z < ¢ and ap(z) = —1 if
x > c¢. Now define a;(z) inductively by the relation a;(x) = a;_1(z)ao(f*(2)),
i > 0. The kneading sequence (or itinerary) of a point is the sequence

I(x) = ag(x)ai(x)az(x) ... and the kneading invariant of a map, f, is the
sequence

k(f) = li%nl(x). (14)
Now, if k(f) = kokiks ..., then we can form the formal power series

K(t) = i it (15)

Milnor and Thurston [16] prove that if A(f) > 0 and s is the smallest positive
zero of K(t),i.e. K(s)=0and K(t) >0 for all 0 <t < s, then

h(f) = log(s™). (16)

The first symbols of the kneading invariant of a map are easy to calculate
numerically, and we then solved the polynomial approximation of the power
series K (t) to find an approximate value of the topological entropy of f. The
results are shown in Figure 4. Figure 4a shows a graph of the entropy of
f.. against p for the logistic map, and Figure 4b shows the (asymptotically
universal) function ¢ (log 1) over three periods. Figure 1b shows the corre-
sponding function for the Lyapunov exponents of the map over four periods
(that is, the horizontal extent of the graph corresponds to 4log,(d)). We
consider this figure to be strong evidence that a similar argument holds for
the Lyapunov exponents, or at least that it holds to a good approximation
(for the argument to work for the Lyapunov exponents, (11) must hold with
differentiable conjugacy; we do not know whether this is the case).

Of course, this same universal function should exist near the accumula-
tion of period-doubling in other types of dynamical systems, in differential
equations for example. To illustrate this we have calculated the largest Lya-
punov exponent for the Lorenz equations near a window of stable periodic
orbits identified by Sparrow [21]. The Lorenz equations are

t=o0(y—2x), y=rx—y—uzz, z=-bz+uy (17)

where we take the standard parameter values o = 10 and b = % and treat r
as the bifurcation parameter. The system shows a series of period-doubling

9



bifurcations as r decreases through r., ~ 99.5247. Figure 5 shows the results
for the Lorenz equations which parallel those of the logistic map shown in
Figure 1. Although the estimated? Lyapunov exponents for the Lorenz equa-
tions are more uncertain than those of the logistic map, one can still discern
the similarity of the oscillation in Figures 1(b) and 5(b).

Lorenz Lyapunov Lacunarity )
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Figure 5: The leading Lyapunov exponent, Ay, for the Lorenz equations near 1o, ~ 99.5247 :
(a) logarithm of the Lyapunov exponent against logarithm of |, —r|; (b) modulation function

71 . .
obtained by removing the power law (1o, —7)792® . There are no free parameters in extracting
this oscillation. Note the similarity to the result of Figure 1(a).

3. The period-doubling Cantor set

We began this note by discussing lacunarity in the context of spatial
structure and have ended with an approximate function associated with in-
termittency. At the accumulation of period-doubling, a unimodal map has
an invariant Cantor set on which the motion is not chaotic. Once again,
there is an approximately self-similar structure here.

The invariant Cantor set at the accumulation of period-doubling is not
self-similar. As Figure 2 suggests, the Cantor set can be constructed by

2These numerical estimates where obtained from using the e-returns algorithm. The
relative uncertainty in the estimate increases (visibly) for smaller 7o, — r, as the value of
A(r) — 0.
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successively dividing an interval into two smaller intervals of different length.
One of these is a factor of a times the parent interval, whilst the other (the
right hand invariant interval in Figure 2) can be calculated approximately
using a quadratic approximation to f, to be roughly a factor of o? times
smaller than the parent interval. So each interval at the n'® generation splits
into two intervals whose lengths are respectively o and a? times the length
of the parent interval. From this observation it is easy to see that the at the

" ) are of length afa?"=2F

n'™ generation there are 2" intervals of which ( I

Thus we have
N(a") = N(a"™") + N(a"™?), (18)

(cf. F, = F,_1 + F,,_5, which generates the Fibonacci numbers), and so we
obtain the approximation

N(aZe) = N(aye) + Ne), (19)

where a has been replaced by the asymptotic value ., defined above.
It is now easy to check that if

log (—‘/5;1) log (—*/52_1>
dy=———%+ and dj=—7—7—=
log o, log v,

and ¢;(logz), i = 1,2, are arbitrary periodic functions with period 2log .
then

(2m + 1)mloge
log a,

2mmloge

¢1(log €)e™ cos and ¢y (log €)e? cos

20
log a, (20)

are solutions, for each m € Z. Noting that d; < 0 and dy > 0 (as a. < 1),
and that the cosines are also periodic with period 2log a, we find that

N(e) ~ x(loge)e® (21)

as € tends to zero, where y(loge) = x(loge + 2loga.). This is only an
approximate result: the invariant Cantor set is not strictly self-similar in the
way described and the recursion relation for N(e) is also an approximation.
For a fuller, and more precise treatment, see [9, 10].
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4. Conclusion

We have given four examples of lacunarity: two for sets in state space and
two for sets in parameter space. For the middle third Cantor set the analysis
is exact and the modulation function can be derived explicitly. In the second
example, for the scaling of topological entropy, the modulation function was
computed numerically, and in this case the theory is asymptotically exact,
in the sense that the modulation function is universal sufficiently close to
the accumulation of period-doubling. The third example, for the Lyapunov
exponents above the accumulation of period-doubling, mirrors the analysis
of the topological entropy except the function is much less regular (it is not
continuous). The analysis of the final example is approximate. Here we
defined a scaling for the Cantor set at the accumulation of period-doubling
which is asymptotically exact at small length scales, but we have used a rough
approximation of this scaling law to obtain approximate scaling functions.

There are other situations in which it is possible to obtain approximate
self-similarity over some set in parameter space or state space. In these cases
it is possible to repeat the argument used above, but the periodic modulation
functions will only be approximately valid. The most obvious example of ap-
proximate self-similarity in parameter space is intermittency. The standard
analysis (e.g. [13]) uses an approximate renormalization scheme to describe
the length of time spent close to the location of a saddlenode bifurcation, and
this can be used to derive scaling and approzimate modulation functions. We
have not considered this case in detail, but it would be interesting to know
how much relevant information these approximations hold.

Acknowledgements: The work on the logistic map was done at D.A.M.T.P.,
University of Cambridge, in 1991 supported by a research grant from SERC
(now renamed as EPSRC). We are grateful to P. McSharry for computing
the Lyapunov exponents for the Lorenz system in finite time.

References

[1] Badii, R. and A. Politi (1984) Hausdorff Dimension and Uniformity
Factor of Strange Attractors, Phys. Rev. Lett. 52 1661-1664.

[2] Block, L.S. and W.A. Coppel (1991) Dynamics in One Dimension, LNM
1513, Springer, Berlin.

12



3]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Collet, P. and J.P. Eckmann (1980) Iterated maps on the interval as
dynamical systems, Birkhauser, Boston.

Collet, P.; J.P. Eckmann and O.E. Lanford (1980), Universal properties
of maps on an interval, Comm. Math. Phys. 76 211-254.

Coullet, P. and C. Tresser (1978) Iterations d’endomorphismes et groupe
de renormalisation, J. de Physique C5, 9 C5.25-C5.27.

De Bruijn, N.G. (1948). On Mahler’s partition problem, Proc. Kon. Ned.
Akad. van Wettenschappen, 51, 659-669.

de Melo, W. and S. van Strien (1993) One-dimensional dynamics,
Springer, Berlin.

Feigenbaum, M.J. (1978) Quantitative universality for a class of nonlin-
ear transformations, J. Stat. Phys. 19 25-52.

Feigenbaum, M.J. (1987) Some characterizations of strange sets, J. Stat.
Phys. 46 919-924.

Feigenbaum, M.J. (1988) Presentation functions, fixed-points, and a the-
ory of scaling function dynamics, J. Stat. Phys. 52 527-5609.

Grassberger, P. and I. Procaccia, (1983) Characterization of Strange
Attractors, Phys. Rev. Lett. 50 346-349.

Guckenheimer, J. (1984) Dimension estimates for attractors, in Con-
temp. Math. 28, Fluids and Plasmas: Geometry and Dynamics, ed.
J.E. Marsden, 357-367.

Guckenheimer, J. and P. Holmes (1983) Nonlinear Oscillations, Dynam-
ical Systems, and Bifurcations of Vector Fields, Springer, New York.

Hénon, M., (1976) A Two-Dimensional Mapping with a Strange Attrac-
tor, Commun. Math. Phys. 50 69-77.

MacKay, R.S. (1982) Renormalization in area-preserving maps, Ph.D.
thesis, Princeton.

Milnor, J. and W. Thurston (1988) On iterated maps of the interval, in
Dynamical Systems ed. J.C. Alexander, Springer LNM 1342.

13



[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

Mullhaupt, A. P. (1987) Delay Equations, DeBruijn Oscillations, and
Intermittency, Phys. Lett. A, 124 151-158.

Smith, Leonard A. (1987) Lacunarity and Chaos in Nature, PhD Thesis,
Columbia University, New York.

Smith, L. A., J.-D. Fournier and E. A Spiegel (1986) Lacunarity and
intermittency in fluid turbulence. Phys. Lett. A 114 465—468.

Smith, Leonard A. (1997) The Maintenance of Uncertainty, In Proceed-
ings of the International School of Physics “Enrico Fermi”, Course
CXXXIII, pages 177246, Italian Physical Society, Bologna.

Sparrow, C.T. (1982) The Lorenz equations: bifurcations, chaos and
strange attractors, Applied Math. Sci. 41, Springer, New York.

Theiler, J. (1987) Quantifying chaos, PhD thesis, California Institute of
Technology, Pasadena, USA.

Theiler, J. (1989) Lacunarity in a best estimator of fractal dimension,
Phys. Lett. A 133 195-200.

Zhou, W.-X. and D. Sornette (2009) Numerical Investigations of discrete
scale invariance in fractals and multifractal measures, Physica A, 388
2623-2639.

14



