
Maximising the Size of Non-Redundant Protein
Datasets Using Graph Theory

Bull, Simon C. and Muldoon, Mark R. and Doig,
Andrew J.

2012

MIMS EPrint: 2012.68

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/

Maximising Non-Redundant Protein Sets with Graph Theory Bull, Muldoon & Doig 1

Maximising the Size of Non-Redundant Protein Datasets Using Graph

Theory
Simon C. Bull1, Mark R. Muldoon2, Andrew J. Doig1*

1Manchester Institute of Biotechnology, Faculty of Life Sciences, The University of Manchester, 131 Princess Street, Man-

chester M1 7DN, UK, 2School of Mathematics, Alan Turing Building, University of Manchester, Manchester M13 9PL, UK

Abstract
Analysis of protein data sets often requires prior removal of redundancy, so that data is not biased by hav-

ing multiple copies of similar proteins. This is usually achieved by pairwise comparison of sequences, followed

by purging so that no two pairs have similarities above a chosen threshold. From a starting set, such as the PDB or

a genome, one should remove as few sequences as possible, to give the largest possible non-redundant set for sub-

sequent analysis. Protein redundancy can be represented as a graph, with proteins as nodes connected by undi-

rected edges, if they have a pairwise similarity above the chosen threshold. The problem is then equivalent to

finding the maximum independent set (MIS), where as few nodes are removed as possible to remove all edges.

We tested seven MIS algorithms, three of which are new. We applied the methods to the PDB, subsets of the

PDB, various genomes and the BHOLSIB benchmark datasets. For PDB subsets of up to 1000 proteins, we could

compare to the exact MIS, found by the Cliquer algorithm.

The best algorithm was the new method, Leaf. This works by adding clique members that have no edges

to nodes outside the clique to the MIS, starting with the smallest cliques. For PDB subsets of up to 1000 members,

it usually finds the MIS and is fast enough to apply to data sets of tens of thousands of proteins. It gives sets that

are around 10% larger than the commonly used PISCES algorithm, that are of identical quality. We therefore sug-

gest that Leaf should be the method of choice for generating non-redundant protein data sets, though it is ineffec-

tive on dense graphs, such as the BHOLSIB benchmarks. The Leaf algorithm and sets from genomes and the PDB

are available at: http://www.bioinf.manchester.ac.uk/leaf/.

* Email : andrew.doig@manchester.ac.uk

Supplementary Information

SI Document 1 Detailed Explanations of New Algorithms

SI Document 2 Examples of New Algorithms in Action

SI Document 3 Comparisons of Leaf and GLP algorithms to PISCES

SI Document 4 Algorithm Performances on Model Organisms

SI Document 5 Results from Culling PDB Data Sets

Maximising Non-Redundant Protein Sets with Graph Theory Bull, Muldoon & Doig 2

2

Introduction
Redundancy in datasets of proteins can be defined as multiple copies of similar proteins. Redundancy is a

barrier to the effective use of the dataset for multiple reasons, most simply size. Redundant sequences in a dataset

can prove detrimental to the discovery of novel relations between the proteins, as multiple copies of similar pro-

teins can bias any conclusions drawn from using that set. Machine learning classifiers trained on redundant train-

ing sets will tend to over-fit and be of less value when applied to novel data. A pre-processing step is therefore

often used to generate a non-redundant dataset consisting solely of representative proteins from the original re-

dundant set.

Similarity between proteins is most usefully determined by comparing sequences, since structures are un-

available for most proteins and evolutionary relationships are difficult to quantify. Alignment based approaches to

calculating sequence identity are either global or local methods, with local more useful when the two sequences

may only share isolated regions of similarity, or when scanning a protein database with little to no a priori

knowledge about the similarity between the database sequences and the query sequence (Barton 1996). The pre-

dominant heuristics for finding local alignments in proteins are BLAST (Altschul et al. 1990) or PSI-BLAST,

which is more sensitive to weak sequence similarities in many cases (Altschul et al. 1997). BLAST is used by the

protein redundancy removal application BlastCuller (Liu et al. 2009), while PISCES (Wang and Dunbrack 2003)

makes use of PSI-BLAST to calculate the pairwise sequence identities.

Our intention here is to maximise the size of the non-redundant dataset. We test both novel and previously

published methods that use graph theory. We show that it is possible to use novel graph theoretic methods to in-

crease the size of non-redundant sets, while maintaining identical quality criteria for inclusion of proteins within

the set. We find that our novel method, Leaf, generates the largest sets. We apply Leaf to generate non-redundant

sets from the PDB, using various sequence similarity and structure quality parameters, and several genomes. Our

webpage gives these sets, as well as a facility for users to generate their own non-redundant sets using Leaf.

Methods

Solving the Problem of Redundancy through Graph Theory

Sequence similarity relationships between proteins can be shown as a graph: A protein similarity graph

G(V, E) denotes an undirected graph with vertices V={1, 2, … n} and edges { }{ }VjijiE ∈= ,:, . Each protein in

the redundant dataset is represented by a vertex. There is an edge between vertices i and j if the sequence identity

of the proteins that i and j represent is greater than the similarity threshold, here taken to be an upper limit for ac-

ceptable mean percentage sequence identity. If the vertex which represents a protein has no edges incident to it,

the pairwise sequence identity between that protein and every other protein in the dataset is below the similarity

Maximising Non-Redundant Protein Sets with Graph Theory Bull, Muldoon & Doig 3

3

threshold. By representing the dataset and sequence similarities as a graph, it is possible to utilise graph theory to

help optimise the generation of the non-redundant dataset.

A non-redundant dataset can be represented by a protein similarity graph that contains no edges. A non-

redundant dataset can therefore be generated by removing vertices, and all edges incident to them, from the pro-

tein similarity graph until there are no edges remaining. The proteins that correspond to the vertices remaining in

the graph will be the non-redundant dataset.

Our goal is to remove nodes, and incident edges, in such a way that the remaining vertices constitute the

largest possible set of vertices that have no edges between them. The problem of finding this optimal set is known

as the maximum independent set (MIS) problem, or equivalently the stable set problem. In graph theory, an inde-

pendent set of a graph G(V,E) is a set of vertices VI ⊆ such that { } EjiIji ∉∈∀ ,:, . An independent set I can

be considered to be a maximal independent set if the addition of any vertex Vv∈ that is not in I means that I no

longer maintains the properties of an independent set. An MIS is a maximal independent set that contains the

largest possible number of vertices. Finding the MIS is known to be an NP-complete problem, one where there is

no known computationally efficient method for discovering the solution. Approximation based algorithms to find

the MIS are thus often used instead.

Graph Definitions

In order to fully describe the properties of the developed algorithms, definitions of properties of the

graphs is necessary: The neighbourhood of a vertex v, the vertices that share an edge with v, in an undirected

graph G(V,E), which contains no loops, can be defined as }},{:{)(Eviivoodneighbourh ∈= . In a protein simi-

larity graph, the neighbourhood of v represents all the proteins that have a sequence which is too similar to the

protein that v represents. The neighbourhood can also be defined for a set of vertices. If s is a set of vertices from

G, then }},{,:{)(Evisvisoodneighbourh ∈∈= . The degree of a vertex v in G can be defined as

)(#)(deg voodneighbourhvree = . The support of a vertex v in G can be defined as ∑∈)(
)(deg

voodneighbourhi
iree .

A clique VQ ⊆ is a subset of the vertices of G such that EjiQji ∈∈∀ },{:, . A maximum clique of G

is a largest possible subset of the vertices in G for which the clique property is satisfied. A vertex cover VC ⊆ of

G is a subset of vertices such that every edge in G is incident to at least one vertex in C. A minimum vertex cover

of a graph G is a vertex cover C with the smallest possible number of vertices in it. Graph components are sub-

graphs that are not connected to each other. Finally, the complement of a graph G(V,E) is a second graph H(V,E’)

with the same vertex set, but a complementary edge set. That is, two vertices i and j are adjacent in H if and only

if they are not adjacent in G. A maximum independent set in G is thus a maximum clique in G’s complement H.

Maximising Non-Redundant Protein Sets with Graph Theory Bull, Muldoon & Doig 4

4

PISCES

The benchmark for all the algorithms developed and tested here is PISCES, as it is very widely used

(Wang and Dunbrack 2003). PISCES works by listing proteins in order of length. Redundancy is removed by:

finding the protein highest up the list that is not marked as kept or removed, and marking it as being kept. For all

proteins that have been determined to be too similar to this protein, mark them as being removed. Once the bot-

tom of the list is reached all proteins that have been marked as being kept will be the non-redundant dataset. By

only considering proteins higher up the list for inclusion, i.e. proteins with longer sequences, it is possible to miss

the opportunity to increase the size of the non-redundant dataset. The returned set will also be biased to include

long sequences. Here we evaluate algorithms that use graph theory to maximise the size of the non-redundant da-

taset while maintaining identical criteria for inclusion (e.g. no two proteins with more than 20% pairwise se-

quence identity).

New Algorithms

Two possible graph representations were used for the new algorithms. The first is an adjacency matrix. In

this representation, an nn× matrix M is constructed, where n is the number of vertices in the graph. If there is an

edge in between two vertices i and j in the graph, then 1,, == ijji MM . If no edge is present between the two

vertices, then 0,, == ijji MM . In the adjacency list representation, there is one entry in the adjacency list for

each vertex in the graph. The list records for each vertex i in the graph the vertices in)(ioodneighbourh . Space

is saved over the adjacency matrix representation when the graph is sparse as information is only stored about the

presence of edges.

The density of the protein similarity graph of the entire human proteome was calculated for sequence

identity thresholds of 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80% and 90%. The highest density was found for

the 10% sequence identity threshold, but this was still only 0.01 on a scale where 0 indicates no edges in the graph

and 1 indicates that the graph is complete (i.e. all members of G form a single clique). For the remaining percent-

age thresholds, the density was always below 0.005. Protein similarity graphs are therefore sparse, since the prob-

ability that any two proteins have a high pairwise sequence identity is <1%. An adjacency list representation is

therefore utilised.

The protein similarity graph is processed before the algorithms are run, by removing all isolated nodes

from the graph and adding them to the independent set, as they must all be members of the MIS.

First, we outline three novel algorithms to find an MIS. More detailed explanations, together with pseu-

docode, are given in SI Document 1.

Leaf

Maximising Non-Redundant Protein Sets with Graph Theory Bull, Muldoon & Doig 5

5

The Leaf algorithm works by identifying cliques in the graph that satisfy the criterion of having at least

one vertex which is not connected to any vertex outside of the clique. One of the (potentially many) vertices in the

clique with no connections outside of the clique is arbitrarily chosen to be kept in the independent set being

formed. The algorithm starts by searching for cliques of two vertices which satisfy the criterion. If a clique is

found, then one of the nodes in the clique is kept, and the other removed. If no clique is found that satisfies the

criterion, then a clique of three vertices is searched for. This process of increasing the number of vertices in the

clique being searched for is continued until either a clique is found, or there can be no possible clique in the graph

that satisfies the criterion. After a clique has been found and one of its vertices has been incorporated into the

growing independent set, the process of searching for a clique begins again with searching for a clique of two ver-

tices. There is no clique in the graph that satisfies the criterion if the size of the clique being searched for is over a

certain threshold size. This threshold size is determined dynamically, and is equivalent to the number of neigh-

bours of the highest degree vertex in the graph. Although this upper bound could be tightened through more care-

ful analysis of the graph, searching for a tight upper bound involves finding the size of the maximum clique in the

graph. If no clique satisfying the criterion can be found, then the NeighbourCull algorithm is used to determine

which vertex to remove. As this method removes the most connected vertex, the upper bound of the size of the

clique being searched for will decrease.

NeighbourCull

The NeighbourCull algorithm is based on the goal of removing a vertex which has the highest connectivi-

ty (i.e. the most neighbours), but is minimally connected to the vertices not in its neighbourhood. The algorithm

works by identifying the vertices with the most neighbours. If there is only one vertex with the most neighbours,

then this vertex is removed. When multiple vertices have the most neighbours, the tie is broken by examining the

neighbours of the neighbours of the original vertex (i.e. all vertices reachable by traversing two edges). The set of

vertices reachable by traversing two edges is determined, and the vertex with the smallest set of vertices reachable

in this manner is removed. If there are still multiple vertices which cannot be decided between, then the vertex to

remove is chosen arbitrarily from amongst the remaining possibilities.

FIS

The third new algorithm works by first initialising a maximal independent set, and then permuting it in an

attempt to increase its size. The algorithm’s first step is to determine the initial vertex from which the maximal

independent set will be generated. This is the vertex with the fewest neighbours, with ties broken arbitrarily. From

this initial vertex, the set is permuted using the addnodes sub-function. This takes as its arguments the current in-

dependent set, and the set of all the vertices in the graph. This function works by first determining if there are any

Maximising Non-Redundant Protein Sets with Graph Theory Bull, Muldoon & Doig 6

6

vertices that are not adjacent to the current independent set. If there are no non-adjacent vertices, then the current

independent set is returned. If there are vertices which are not adjacent to the current independent set, then the

independent set can be extended by adding a new vertex. This is done by finding the non-adjacent vertex which,

when added to the independent set, causes the fewest vertices that are currently not adjacent to the independent set

to become adjacent. The function swapnodes is used to see if the size of the independent set can be increased by

making small alterations to the vertices in the set. The vertices that are not in the independent set are tested one at

a time to see how many vertices from the independent set they are adjacent to. If a vertex i that is not in the inde-

pendent set is adjacent to only one vertex j that is, then i and j can be swapped without invalidating the properties

of a maximal independent set. The new independent set resulting from this swap is passed to addnodes to see if it

can be extended by the addition of any non-adjacent vertices.

SI Document 2 shows illustrative examples of Leaf, NeighbourCull and FIS in action.

Existing Algorithms

Three algorithms from the literature were chosen to be tested alongside the three new algorithms:

GLP is a state of the art heuristic for approximating the maximum clique that works by finding an initial

clique starting from a random initial vertex in the graph, and then improving this initial clique using local search

operations (Grosso et al. 2008). Algorithm 1 from this paper, along with restart rule 2, is used here. An implemen-

tation of the algorithm was written in Python. As the GLP algorithm makes use of rules for restarting, it is possi-

ble that the algorithm will execute for a substantial length of time on larger graphs. For this reason, a parameter is

used with the GLP algorithm that limits the number of vertices that can be added to and removed from the clique

being generated. There are two problems with using the algorithm as it stands for the generation of non-redundant

datasets. The first is that the size of the maximum clique of the graphs being used was known in the tests done in

the GLP paper (Grosso et al. 2008). This meant that the algorithm could be stopped if the clique being generated

ever reached this size. Unfortunately, the protein similarity graphs being used here have unknown MISs, and

therefore the algorithm cannot be stopped early in the same way. Secondly, the value of the parameter cannot

easily be set to prevent the algorithm running for excessive lengths of time. In order to prevent this, GLP was

adapted to allow a time limit to be placed on the running of the algorithm and the largest maximal independent set

found up to that point is returned.

The final two algorithms work based on the neighbourhood of the individual vertices in the graph. The

VSA algorithm of Balaji et al. (Balaji et al. 2010) finds an approximation to the MIS by calculating an approxi-

mation to the minimum vertex cover. The algorithm works by beginning with an empty vertex cover, and progres-

sively increasing the number of vertices in the vertex cover by adding the vertex with the highest support. If two

vertices have the largest value for the support, then the vertex with the higher number of neighbours is added.

This is repeated until there are no vertices that are not either in the vertex cover or adjacent to a vertex in the ver-

Maximising Non-Redundant Protein Sets with Graph Theory Bull, Muldoon & Doig 7

7

tex cover. This algorithm was re-implemented in Python and extended to incorporate a limit on the length of exe-

cution.

The final algorithm used was BlastCuller (Liu et al. 2009). Unlike GLP and VSA, this algorithm is de-

signed to produce non-redundant protein datasets. BlastCuller generates a non-redundant dataset by approximat-

ing the MIS of the protein similarity graph. The algorithm works by initialising the result as an empty set, and

then adding to it all the isolated vertices. Following this, the vertex with the most neighbours is deleted, and any

newly isolated vertices are added to the result set. This process is repeated until all vertices have been either re-

moved, or added to the result set. BlastCuller was re-implemented in Python for the tests here, in order to enable a

time limit on the exaction to be incorporated.

Cliquer

Although there are no known efficient algorithms to compute the MIS of an arbitrary graph, it is nonethe-

less possible to find the size of the MIS exactly using so-called branch-and-bound algorithms, which have worst-

case running times that are exponential in the number of vertices. These algorithms typically combine a brute-

force search (list all possible subsets of the vertex set and ask whether each is an independent set, keeping track of

the largest set seen so far) with a clever upper bound that allows one to prove statements such as “any independent

set that includes vertices 1, 25, 1548 and 21973 contains at most 53 other vertices” and so eliminate whole fami-

lies of subsets without having to enumerate and check each member.

To obtain exact answers against which to check our algorithms we used the Cliquer library (Östergård

2002; Niskanen and Östergård 2003) to find a maximum clique in the complement of the protein similarity graph.

Cliquer works by successively computing the size ci of the maximum clique in the subgraph that contains only the

vertices in the set },,,{ 21 ii vvvS …= and any edges running between them. It’s clear that either ii cc =+1 or

11 +=+ ii cc , with the latter holding only when there is a maximum clique in 1+iS that includes the vertex 1+iv :

this is the key observation behind the upper bound that speeds Cliquer’s search. The algorithm’s running time

depends on the order in which the vertices are listed and we used Cliquer’s default ordering strategy, which pro-

ceeds in two stages. Initially the vertices are arranged in order of decreasing degree; one then uses the greedy col-

ouring algorithm recursively to choose large sets of non-adjacent vertices. The final vertex ordering lists the verti-

ces in order of increasing color-index (as assigned by the greedy colouring stage) and, within each colour-group,

in order of decreasing degree.

Experimental Design

The algorithms were compared in terms of the number of proteins removed from the original redundant

dataset of the human proteome (downloaded from http://www.uniprot.org/downloads on December 10th, 2010),

Maximising Non-Redundant Protein Sets with Graph Theory Bull, Muldoon & Doig 8

8

and the time taken to finish. Pairwise sequence identities between all possible pairs of the 20251 human proteins

were calculated using PSI-BLAST version 2.2.25. PISCES was used to perform the BLASTing, and to process the

resulting alignment information. From this alignment file, it was possible to determine which proteins had a per-

centage pairwise sequence identity over any specified threshold.

Random datasets of 100, 250, 500, 1000, 2000 and 5000 proteins were generated by sampling from the

20251 human proteins downloaded from UniProt. 50 datasets were generated randomly of each size. Taking the

2000 protein datasets as an example, the process for generating datasets was as follows:

1. Select 2000 different proteins from the 20,251 possible proteins.

2. Extract any alignments from the alignment file where the 2000 proteins were either the query or the hit in the

PSI-BLAST output.

3. Form an alignment file from the subset of entries selected in step 2, and a FASTA format file of the proteins

selected in step 1.

4. Repeat steps 1-3 until 50 datasets have been generated.

This method of generating datasets ensures that the same protein is not present multiple times in any one

dataset, but may be present in more than one dataset of any given size.

Individual datasets were tested as follows:

1. Generate an adjacency list for each percentage threshold (10%, 20%, 30%, 40%, 50%, 60%, 70%, 80% and

90%).

2. Run PISCES on the dataset using each of the nine percentage thresholds.

3. Run each of the algorithms being tested on each of the nine adjacency lists.

The time limit for each algorithm was set to be the longer of either ten times the running time of the Leaf

algorithm, or the time that PISCES took, whichever is the longer. The model organism data used for the compari-

son of the algorithms, was downloaded from UniProt on November 3rd 2011. For each proteome, only reviewed

proteins in the complete proteome were downloaded. The taxonomy ID for the proteomes was: 9606 for

h.sapiens, 10090 for mus musculus, 83333 for E. coli, 559292 for S. cerevisiae and 3702 for Arabidopsis thaliana.

The algorithms were also tested using a MIS benchmark suite of graphs, BHOSLIB

(http://www.nlsde.buaa.edu.cn/~kexu/benchmarks/graph-benchmarks.htm). This benchmarking serves to test the

ability of the algorithms to find a MIS in general, rather than simply in protein similarity graphs. Additionally,

due to the difficulty of the problems in the BHOSLIB benchmarks suite, this should give an idea of how the algo-

Maximising Non-Redundant Protein Sets with Graph Theory Bull, Muldoon & Doig 9

9

rithms designed for the simpler protein similarity graphs fare on more complex graphs in comparison to state of

the art heuristics.

Results
Subsets of the human proteome

The quality of each algorithm tested is measured as the number of proteins removed from the starting set,

where the smaller the number removed, the better (Table 1).

GLP

When the execution time of the GLP algorithm was limited to ten times that of the Leaf algorithm, GLP

performed more poorly than Leaf and often worse than PISCES (SI Document 3). This is mainly due to GLP ter-

minating before it has had a chance to build up a maximal independent set in the protein similarity graph.

In order to determine whether running GLP for a longer length of time will increase the size of the non-

redundant dataset generated, we extended the time limit for the execution of GLP to 500 times the Leaf execution

time and studied a subset of the 5000 protein datasets (Figure 1). The improvement over PISCES was lower for

GLP than for Leaf at all sequence identity thresholds. At all but 10%, 40% and 50% sequence identity, the results

for GLP were worse than those of PISCES.

Comparison of Leaf and GLP to PISCES for 5000 protein data sets, when GLP is terminated after

executing for 500 times as long as Leaf.

Leaf, FIS, NeighbourCull, VSA and BlastCuller

Maximising Non-Redundant Protein Sets with Graph Theory Bull, Muldoon & Doig 10

10

At sequence identities greater than 50%, there is little improvement over PISCES for any of the algo-

rithms (Table 1). Gains are small at the higher sequence identities because the protein similarity graphs them-

selves contain only a few proteins. For example, using a 90% sequence identity threshold with datasets of 1000

proteins generates protein similarity graphs with a mean of 9.68 proteins, and the mean number of nodes in each

component is 2.68. The small size of the components leaves very little room for an improvement in the size of the

non-redundant dataset.

For sequence identity thresholds below 60%, the improvement over PISCES achieved by all five algo-

rithms is more substantial, (Table 1). The pattern of improvement changes depending on the sequence identity

threshold used. One trend that is noticeable across all sequence identity thresholds is the increasing difference be-

tween the five algorithms as the datasets increase in size. This is likely to be due to the increased size and com-

plexity of the protein similarity graphs of larger datasets.

The order of success of the algorithms is the same for almost every combination of dataset size and se-

quence identity threshold, with Leaf showing the most improvement followed by FIS, NeighbourCull, BlastCuller

and finally VSA. The three algorithms that work solely by identifying the vertex that is most connected by some

measure show the smallest improvement over PISCES.

Comparisons to the Maximum Independent Set

 The Cliquer algorithm computes the exact size of a maximum independent set, which is the perfect solu-

tion to our problem of finding the largest possible non-redundant protein data set. Unfortunately, it is so slow that

it is only possible to find the MIS for starting sets of 1000 proteins or fewer with this method. We ran starting sets

of 5000 proteins and none reached a solution after 6 months of processing on a Condor(Thain et al. 2005) distrib-

uted computing pool. Jobs submitted to this pool run mainly on inactive, recent-model desktop machines in stu-

dent computing clusters and, during the academic term, get around 8-10 hours of uninterrupted processor time per

day. Nevertheless, we can compare the approximate methods used here to the exact solution for sets of 100, 250,

500 and 1000 proteins. Table 2 shows these comparisons. We see that the perfect solution is often achieved. For

example, Leaf finds the MIS every time for the 250 protein subsets. Even for the 1000 proteins subsets, Leaf

misses the MIS in only a few cases, shown, for example, by the mean error for the 20% cut off being only 0.1 pro-

teins. This gives reassurance that we have found highly accurate algorithms that can reach, or get close to, the

MIS in a short time. For example, with the 1000 protein sets at a 20% cut off, the Cliquer algorithm takes on av-

erage 4130 seconds to find the MIS for each set, while the Leaf method needs only 42ms and nearly always finds

the MIS.

Maximising Non-Redundant Protein Sets with Graph Theory Bull, Muldoon & Doig 11

11

Human Proteome

The results of running the algorithms on the entire human proteome (20251 proteins) are in Table 3. Leaf

again outperformed the other algorithms in most cases.

GLP was originally used in the test on this datasets, but the size of the representation of the protein simi-

larity graph proved to be problematic. For example, the largest connected component of the protein similarity

graph at 10% sequence identity contains 16,966 vertices, and has a mean degree of 215. The complement of this

graph will therefore have the same number of vertices, but a mean degree of 16,751. In order to record all the

connections between vertices in the graph, approximately 284 million connections need to be recorded. The size

of the graph representation will cause the algorithm to be substantially slower, making the time required to gener-

ate a non-redundant dataset prohibitive. Similar issues may explain the poor results of GLP on the random subsets

of the human proteome.

Model Organisms

 We applied MIS algorithms to the mus musculus, E. coli, Arabidopsis thalania and s. cerevisiae proteo-

mes, in order to evaluate its performance on diverse proteomes and to generate potentially useful data sets for

groups studying these organisms. SI Document 4 summarises their performances and shows that again Leaf con-

sistently gives the largest culled sets.

PDB

Non-redundant sets of protein crystal structures are often used to study protein structure. PDB files can be

culled not just on the maximum pairwise sequence identity, but also structure quality, as measured by minimum

resolution and R-factor. We used the Leaf algorithm to compare with PISCES, using a range of these parameters

(SI Document 5). For sets with low sequence identities (20% – 25%), Leaf returns data sets that are around 10%

larger than from PISCES.

Maximising Non-Redundant Protein Sets with Graph Theory Bull, Muldoon & Doig 12

12

Algorithm comparison for the BHOSLIB Benchmarks

BHOSLIB Benchmark

The results of running Leaf, FIS, GLP, VSA and BlastCuller on the BHOLSIB benchmark datasets can be

seen in Figure 2, where the mean difference between the number of vertices returned by the algorithms and the

true MIS is shown..

GLP consistently outperforms the other algorithms on the benchmark datasets, unlike the protein datasets.

For the other algorithms, the structure of the graphs is not suitable for the simple methods used to generate the

independent sets. For example, the Leaf method is unlikely to be able to use the fact that a clique has a vertex

which is not connected to any vertices not in the clique, as these vertices are uncommon in this test graphs. This

will cause Leaf to behave very similarly to NeighbourCull, as it falls back on the removal of the vertex with the

most neighbours. Hence, the results for Leaf and NeighbourCull are very similar.

Leaf Protein Culling Server

We have implemented the Leaf method to provide datasets (http://www.bioinf.manchester.ac.uk/leaf/).

The website uses Leaf to cull subsets of the PDB or submitted user sequences. Pre-computed sets of nonredundant

PDB chains can also be downloaded, along with the source code and data files needed to run the culling on a local

machine. Preculled PDB datasets are available with various sequence identity cut offs, resolutions and R-value

Maximising Non-Redundant Protein Sets with Graph Theory Bull, Muldoon & Doig 13

13

limits. Culled proteomes are available for h. sapiens, E. coli, Arabidopsis thaliana, S. cerevisiae and mus muscu-

lus.

Discussion
When comparing algorithms, the one that clearly underperforms is GLP. This algorithm substantially un-

derperforms when compared to Leaf, and occasionally when compared to PISCES. Even when the time was in-

creased to 500 times that of Leaf, the datasets returned by GLP were still smaller than those returned by Leaf.

GLP has to work on very large graphs as it uses the complement of the protein similarity graph. While this prob-

lem can be overcome by using large amounts of memory, the time needed to produce a suitable result on larger

graphs is far too large. For these reasons it is undesirable to use GLP, at present, for starting sets of this nature.

The Leaf algorithm consistently outperformed the other algorithms on both the datasets of random pro-

teins, and the datasets of biological importance. It is not a general solution to the MIS problem, however, as its

relatively poor performance on the BHOSLIB Benchmark data sets, suggest that it is only appears suitable for

sparse graphs. In conclusion, the Leaf algorithm is the most suitable for finding non-redundant protein datasets of

maximal size.

FUNDING

Simon Bull thanks the BBSRC (UK) for a PhD studentship.

ACKNOWLEDGEMENTS

We thank Penny Doig and Mark Kambites, who helped with developing NeighbourCull. Our Cliquer

computations ran on the High Throughput Computing facility of the Faculty of Engineering and Physical Sciences

at The University of Manchester.

AUTHOR CONTRIBUTIONS

SB, MM and AD designed the project, analysed results and wrote the paper. MM implemented the

Cliquer algorithm. SB performed the remaining work.

Conflict of Interest: none declared.

Maximising Non-Redundant Protein Sets with Graph Theory Bull, Muldoon & Doig 14

14

REFERENCES

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:

403-410.

Altschul SF, Madden TL, Scha ̈ffer AA, Zhang J, Zhang Z et al. (1997) Gapped BLAST and PSI-BLAST: A new

generation of protein database search programs. Nuc Acids Res 25: 3389-3402.

Balaji S, Swaminathan V, Kannan K (2010) A simple algorithm to optimize maximum independent set. Adv

Modeling Optimization 12: 107-118.

Barton GJ (1996) Protein sequence alignment and database scanning. In: Sternberg MJE, editor. Protein Structure

Prediction. Oxford: Oxford University Press. pp. 31-64.

Grosso A, Locatelli M, Pullan W (2008) Simple ingredients leading to very efficient heuristics for the maximum

clique problem. J Heuristics 14: 587-612.

Li W, Jaroszewski L, Godzik A (2001) Clustering of highly homologous sequences to reduce the size of large

protein databases. Bioinformatics 17: 282-283.

Liu P, Zeng Z, Qian Z, Feng K, Cai Y. A graph theoretic algorithm for removing redundant protein sequences;

2009; Beijing. IEEE. pp. 1-3.

Niskanen S, Östergård PRJ (2003) Cliquer User's Guide, Version 1.0. Communications Laboratory, Helsinki Uni-

versity of Technology.

Östergård PRJ (2002) A fast algorithm for the maximum clique problem. Discrete Applied Mathematics 120(1-3):

197-207.

Thain D, Tannenbaum T, Livny M (2005) Distributed computing in practice: the Condor experience. Concurrency

- Practice and Experience 17(2-4): 323-356.

Wang GL, Dunbrack RL (2003) PISCES: a protein sequence culling server. Bioinformatics 19: 1589-1591.

Maximising Non-Redundant Protein Sets with Graph Theory Bull, Muldoon & Doig 15

15

TABLES

Table 1. Mean Number Kept from Datasets of 100, 250, 500, 1000, 2000 and 5000 Proteins

100 Proteins

Cut Off PISCES Leaf FIS NeighbourCull VSA BlastCuller

10% 79.3% 81.3% 81.3% 81.3% 80.9% 81.2%

20% 89.6% 90.2% 90.2% 90.2% 90.1% 90.1%

30% 95.8% 95.9% 95.9% 95.9% 95.9% 95.9%

40% 98.2% 98.2% 98.2% 98.2% 98.2% 98.2%

50% 99.3% 99.3% 99.3% 99.3% 99.3% 99.3%

60% 99.7% 99.7% 99.7% 99.7% 99.7% 99.7%

70% 99.8% 99.8% 99.8% 99.8% 99.8% 99.8%

80% 99.9% 99.9% 99.9% 99.9% 99.9% 99.9%

90% 99.9% 99.9% 99.9% 99.9% 99.9% 99.9%

250 Proteins

Cut Off PISCES Leaf FIS NeighbourCull VSA BlastCuller

10% 174.5% 183.4% 183.4% 183.2% 182.0% 183.0%

20% 204.9% 208.8% 208.7% 208.7% 207.9% 208.5%

30% 231.7% 232.4% 232.4% 232.4% 232.3% 232.4%

40% 241.2% 241.9% 241.9% 241.9% 241.8% 241.9%

50% 246.9% 246.9% 246.9% 246.9% 246.9% 246.9%

60% 248.3% 248.4% 248.4% 248.4% 248.4% 248.4%

70% 248.9% 249.0% 249.0% 249.0% 249.0% 249.0%

80% 249.2% 249.2% 249.2% 249.2% 249.2% 249.2%

90% 249.6% 249.6% 249.6% 249.6% 249.6% 249.6%

Maximising Non-Redundant Protein Sets with Graph Theory Bull, Muldoon & Doig 16

16

500 Proteins

Cut Off PISCES Leaf FIS NeighbourCull VSA BlastCuller

10% 311.2% 329.8% 329.5% 329.1% 326.3% 328.6%

20% 371.9% 384.3% 384.1% 384.0% 380.4% 383.4%

30% 442.2% 445.1% 445.0% 445.0% 444.5% 444.8%

40% 472.3% 474.5% 474.5% 474.5% 474.1% 474.4%

50% 488.5% 489.0% 489.0% 489.0% 488.9% 489.0%

60% 493.4% 493.4% 493.4% 493.4% 493.4% 493.4%

70% 496.0% 496.0% 496.0% 496.0% 496.0% 496.0%

80% 497.2% 497.2% 497.2% 497.2% 497.2% 497.2%

90% 498.4% 498.4% 498.4% 498.4% 498.4% 498.4%

1000 Proteins

Cut Off PISCES Leaf FIS NeighbourCull VSA BlastCuller

10% 554.4% 591.1% 589.6% 589.1% 582.7% 587.9%

20% 668.0% 699.6% 698.7% 698.0% 688.2% 695.8%

30% 840.2% 849.2% 849.0% 849.0% 846.9% 848.6%

40% 917.4% 922.0% 921.9% 921.9% 920.6% 921.6%

50% 958.4% 960.3% 960.3% 960.3% 960.2% 960.3%

60% 976.6% 977.0% 977.0% 977.0% 977.0% 977.0%

70% 985.5% 985.6% 985.6% 985.6% 985.6% 985.6%

80% 990.4% 990.6% 990.6% 990.6% 990.6% 990.6%

90% 994.8% 994.9% 994.9% 994.9% 994.9% 994.9%

Maximising Non-Redundant Protein Sets with Graph Theory Bull, Muldoon & Doig 17

17

2000 Proteins

Cut Off PISCES Leaf FIS NeighbourCull VSA BlastCuller

10% 969.1% 1040.0% 1036.9% 1036.1% 1022.9% 1033.4%

20% 1158.2% 1240.1% 1236.2% 1234.9% 1210.1% 1229.9%

30% 1544.7% 1575.5% 1574.8% 1574.6% 1566.2% 1573.0%

40% 1754.6% 1768.7% 1768.2% 1768.4% 1765.6% 1767.9%

50% 1864.1% 1870.1% 1870.1% 1870.1% 1869.3% 1870.1%

60% 1920.1% 1922.1% 1922.1% 1922.1% 1922.0% 1922.1%

70% 1947.9% 1948.9% 1948.9% 1948.9% 1948.8% 1948.9%

80% 1980.6% 1980.9% 1980.9% 1980.9% 1980.9% 1980.9%

90% 1980.6% 1981.0% 1981.0% 1981.0% 1981.0% 1981.0%

5000 Proteins

Cut Off PISCES Leaf FIS NeighbourCull VSA BlastCuller

10% 1940.6% 2107.7% 2098.1% 2096.6% 2063.9% 2090.5%

20% 2284.0% 2520.0% 2504.7% 2503.3% 2439.7% 2491.8%

30% 3293.0% 3423.1% 3419.2% 3417.7% 3380.8% 3410.7%

40% 3997.3% 4052.1% 4050.5% 4050.6% 4040.9% 4048.5%

50% 4385.4% 4417.8% 4417.8% 4417.5% 4413.0% 4416.9%

60% 4622.7% 4634.1% 4634.0% 4634.0% 4632.7% 4633.7%

70% 4756.5% 4762.5% 4762.5% 4762.5% 4762.2% 4762.4%

80% 4905.6% 4908.5% 4908.5% 4908.5% 4908.4% 4908.5%

90% 4905.8% 4908.7% 4908.7% 4908.6% 4908.6% 4908.7%

Maximising Non-Redundant Protein Sets with Graph Theory Bull, Muldoon & Doig 18

18

Table 2. Comparisons to exact algorithm

100 Protein Subsets

Cut Off

Exact

Kept

NeighbourCull

Error

FIS

Error

Leaf Er-

ror

VSA

Error

BlastCuller

Error

GLP

Error

PISCES

Error

20% 90.2 0 0 0 0.1 0.1 0 0.5

30% 95.7 0 0 0 0 0 0 0.1

40% 98.1 0 0 0 0 0 0 0

50% 99.2 0 0 0 0 0 0 0

60% 99.6 0 0 0 0 0 0 0

70% 99.7 0 0 0 0 0 0 0

80% 99.8 0 0 0 0 0 0 0

90% 99.9 0 0 0 0 0 0 0

250 Protein Subsets

Cut Off

Exact

Kept

NeighbourCull

Error

FIS Error Leaf

Error

VSA Error BlastCuller

Error

GLP

Error

PISCES

Error

20% 209.71 0.04 0.04 0 0.86 0.14 0.04 3.75

30% 232.64 0 0 0 0.11 0 0 0.79

40% 242.21 0 0.04 0 0.07 0.04 0 0.57

50% 247.00 0 0 0 0.04 0 0 0.07

60% 248.25 0 0 0 0 0 0 0.04

70% 248.82 0 0 0 0 0 0 0.04

80% 249.04 0 0 0 0 0 0 0.04

90 249.50 0 0 0 0 0 0 0.04

Maximising Non-Redundant Protein Sets with Graph Theory Bull, Muldoon & Doig 19

19

500 Protein Subsets

Cut Off Exact

Kept

NeighbourCull

Error

FIS Error Leaf

Error

VSA

Error

BlastCuller

Error

GLP

Error

PISCES

Error

20% 385.34 0.3 0.3 0.07 4.0 1.00 4.7 11.5

30% 445.9 0.2 0.1 0 0.6 0.4 0.2 2.7

40% 476.1 0 0 0 0.4 0.07 0.7 2.3

50% 489.9 0 0 0 0.07 0 0.3 0.3

60% 494.0 0 0 0 0 0 0 0.03

70% 496.2 0 0 0 0 0 0 0

80% 497.3 0 0 0 0 0 0 0

90% 498.4 0 0 0 0 0 0 0

1000 Protein Subsets

Cut Off Exact

Kept

NeighbourCull

Error

FIS Error Leaf

Error

VSA Error BlastCuller

Error

GLP

Error

PISCES

Error

20% 699.7 1.7 1.0 0.1 11.5 3.9 40.3 31.7

30% 849.2 0.2 0.2 0 2.3 0.6 174 9.0

40% 922.0 0.2 0.2 0.06 1.4 0.4 2.4 4.6

50% 960.3 0.02 0 0 0.2 0.02 1.2 1.9

60% 977.0 0 0 0 0 0 0 0.4

70% 985.6 0 0 0 0 0 0 0.2

80% 990.6 0 0 0 0 0 0 0.1

90% 994.9 0 0 0 0 0 0 0.1

Maximising Non-Redundant Protein Sets with Graph Theory Bull, Muldoon & Doig 20

20

Table 3. Number of Proteins Kept from Human Proteome

Cut Off PISCES Leaf FIS NeighbourCull VSA BlastCuller

10% 5073 5636 5585 5600 5487 5578

20% 5700 6643 6572 6580 6365 6541

30% 9007 9856 9796 9800 9594 9762

40% 12422 12843 12832 12829 12746 12811

50% 14927 15169 15167 15164 15129 15154

60% 16771 16887 16884 16886 16874 16884

70% 17969 18036 18036 18036 18030 18033

80% 18763 18801 18801 18801 18798 18801

90% 19366 19389 19388 19389 19388 19388

Supplementary,Information,1,–,Detailed,Explanations,of,New,Algorithms,

Maximising,the,Size,of,Non?Redundant,Protein,Data,Sets,Using,Graph,Theory,

Simon&C.&Bull,&Mark&R.&Muldoon&and&Andrew&J.&Doig&

NeighbourCull,
! The!NeighbourCull!algorithm!involves!repeatedly!removing!a!vertex!which!has!the!
highest!connectivity!(i.e.!the!most!neighbours),!but!is!minimally!connected!to!the!vertices!not!in!
its!neighbourhood.!An!outline!of!the!procedure!is!sketched!in!Algorithm!1.!First!the!set!of!
vertices!that!are!not!in!the!maximal!independent!set!is!initialised!(line!1).!Following!this,!the!
loop!(lines!2D14)!that!determines!which!vertices!to!exclude!from!the!maximal!independent!set!is!
entered.!The!first!step!is!to!find!those!vertices!that!are!remain!in!the!graph!and!still!have!
neighbours!(line!3).!If!there!are!no!vertices!with!neighbours,!and!hence!no!edges!in!the!protein!
similarity!graph,!a!maximal!independent!set!has!been!found!and!the!algorithm!can!exit!(lines!4!
and!5).!If!some!edges!remain,!then!we!find!those!vertices!that!have!the!most!neighbours!(line!
7).!If!there!is!only!a!single!vertex!that!has!the!maximum!number!of!neighbours,!it!is!marked!as!
not!being!in!the!maximal!independent!set!(lines!8D10).!However,!if!there!are!multiple!vertices!
with!the!maximum!number!of!neighbours!then!we!do!further!analysis!to!decide!which!one!to!
remove!(lines!12D14).!

! In!cases!where!more!than!one!vertex!has!maximal!degree,!the!one!to!remove!is!

determined!by!two!applications!of!the! !function.!We!compute!the!size!of!the!
extended&neighbourhood!!

!

and!remove!a!vertex!whose!extended!neighbourhood!is!smallest,!resolving!any!remaining!ties!
by!an!arbitrary!choice.!

1. !
2. While! !
3. !!!! !
4. !!!!If! !
5. !!!!!!!!Return! !
6. !!!!Else!
7. !!!!!!!! !!
8. !!!!!!!!If! !
9. !!!!!!!!!!!! !
10. !!!!!!!!!!!!<Update!the!adjacency!list!to!reflect!the!removal!of! >!
11. !!!!!!!!Else!
12. !!!!!!!!!!!!<Select! !such!that! !has!the!smallest!extended!neigbourhood>!
13. !!!!!!!!!!!! !

14. !!!!!!!!!!!!<Update!the!adjacency!list!to!reflect!the!removal!of! >!

Algorithm*1:*Pseudocode*for*the*NeighbourCull*algorithm*

!

Leaf*

The!Leaf!algorithm!works!by!identifying!cliques!in!the!graph!that!satisfy!the!criterion!of!

having!at!least!one!vertex!which!is!not!connected!to!any!vertex!outside!of!the!clique.!An!outline!

of!the!algorithm!can!be!seen!in!Algorithm!2.!First!the!set!of!vertices!that!are!not!in!the!maximal!

independent!set!is!initialised!(line!1).!Next!a!loop!is!entered!(lines!2D18),!which!is!only!exited!

once!there!are!no!edges!remaining!in!the!graph!(lines!4!and!5).!If!there!are!edges!remaining,!

then!the!next!step!is!to!select!a!vertex!to!add!to!the!independent!set,!or!one!to!remove!from!

graph.!First!the!variable! !is!initialised!(line!6).!This!is!the!size!of!the!neighbourhood!that!

all!vertices!in!the!clique!being!searched!for!must!possess.!A!loop!is!entered!to!search!for!

sequentially!larger!cliques!(lines!7D14).!If!a!clique!is!found!where!there!is!at!least!one!vertex! !in!

the!clique!that!does!not!share!any!edges!with!a!vertex!not!in!the!clique,!then! !is!to!be!added!

to!the!independent!set!being!formed!(lines!8D12).!If!no!clique!of!a!given!size!is!found,!then!the!

size!of!clique!being!searched!for!is!incremented!(lines!13!and!14).!If!the!loop!in!lines!7D14!

terminates!without!finding!a!clique,!then!the!NeighbourCull!method!is!used!to!determine!a!

vertex!to!delete!(lines!15D18).!

1. !
2. While! !

3. !!!! !
4. !!!!If! !

5. !!!!!!!!Return! !

6. !!!! !
7. !!!!While!!

8. !!!!!!!!If!there!is!a!clique! !of! !vertices!that!satisfies!the!criterion!for!Leaf!

9. !!!!!!!!!!!! !where! !

10. !!!!!!!!!!!! !
11. !!!!!!!!!!!!<Update!the!adjacency!list!to!reflect!the!removal!of!vertices!in! !that!are!not! >!
12. !!!!!!!!!!!!Exit!the!inner!while!loop!
13. !!!!!!!!Else!
14. !!!!!!!!!!!! !
15. !!!!If!!
16. !!!!!!!!Use!NeighbourCull!to!determine!the!vertex! !to!remove!

17. !!!!!!!! !
18. !!!!!!!!<Update!the!adjacency!list!to!reflect!the!removal!of! >!

Algorithm*2:*Pseudocode*for*the*Leaf*algorithm,*

FIS,
! The!third!new!algorithm!works!by!first!initialising!a!maximal!independent!set!in!a!greedy!
manner,!and!then!attempting!to!permute!this!maximal!independent!set!in!an!attempt!to!

increase!its!size.!An!outline!of!the!algorithm,!including!its!two!subDfunctions! !and!

,!can!be!seen!in!Algorithm!3.!The!algorithm’s!first!step!is!to!determine!the!initial!
vertex!from!which!the!maximal!independent!set!will!be!generated.!This!is!done!in!line!1,!and!is!
chosen!to!be!the!vertex!with!the!fewest!neighbours,!with!ties!broken!arbitrarily.!From!this!initial!
vertex!a!maximal!independent!set!is!generated!(line!3),!and!following!this!the!set!is!permuted!in!
an!attempt!to!increase!its!size!(line!4).!Once!the!set!has!been!permuted,!either!the!permuted!
independent!set!(line!6)!or!the!nonDpermuted!set!(line!8)!is!returned!based!on!which!contains!a!
greater!number!of!vertices.!

! The!majority!of!the!work!in!the!algorithm!is!done!in!the! !subDfunction.!This!
takes!as!its!arguments!the!current!independent!set,!and!the!set!of!all!the!vertices!in!the!graph.!
This!function!works!by!first!determining!if!there!are!any!vertices!that!are!not!adjacent!to!the!
current!independent!set!(line!11).!If!there!are!no!nonDadjacent!vertices,!then!the!current!
independent!set!is!returned!(line!12!and!13).!If!there!are!vertices!which!are!not!adjacent!to!the!
independent!set!being!formed,!then!the!independent!set!can!be!extended!by!adding!a!new!
vertex!(lines!15D17).!This!is!done!by!finding!the!nonDadjacent!vertex!which,!when!added!to!the!
independent!set,!causes!the!fewest!vertices!that!are!currently!not!adjacent!to!the!independent!
set!to!become!adjacent.!The!number!of!currently!nonDadjacent!vertices!that!will!become!

adjacent!if!a!vertex! !is!added!to!the!independent!set! !is!determined!to!be!

.!Therefore!the!vertex! !that!is!added!to!! !is!chosen!such!that!

,!where! !is!the!set!of!all!vertices!that!are!not!

adjacent!to! .!

1. <Select!the!node! !such!that! !is!minimal>!
2. !
3. !
4. !
5. If! !
6. !!!!Return! !
7. Else!
8. !!!!Return! !

:!

9. !
10. While! !
11. !!!! !
12. !!!!If! !
13. !!!!!!!!Return! !

14. !!!!For! !in! !
15. !!!!!!!!If!< !is!the!smallest!number!found!so!far>!
16. !!!!!!!!!!!! !
17. !!!! !

:!

18. ,! ,! !
19. While! !
20. !!!! !
21. !!!!For! !in! !
22. !!!!!!!! !
23. !!!!!!!!If! !
24. !!!!!!!!!!!! !:=! !
25. !!!!!!!!!!!! !
26. !!!!!!!!!!!!If! !
27. !!!!!!!!!!!!!!!! !
28. !!!!!!!!!!!!!!!! !
29. !!!!!!!!!!!!!!!! !
30. Return! !

Algorithm*3:*Pseudocode*for*the*FIS*algorithm*

The!function! !is!used!at!the!end!of!the!algorithm!to!see!if!the!size!of!the!
independent!set!generated!by!line!3!can!be!increased!by!making!small!alterations!to!the!vertices!
in!the!set.!The!vertices!that!are!not!in!the!independent!set!are!tested!one!at!a!time!to!see!how!

many!vertices!from!the!independent!set!they!are!adjacent!to!(lines!21D29).!If!a!vertex! that!is!

not!in!the!independent!set!is!adjacent!to!only!one!vertex! !that!is,!then! !and! !can!safely!be!
swapped!without!invalidating!the!properties!of!a!maximal!independent!set!(line!24).!The!new!

independent!set!resulting!from!this!swap!is!passed!to! !to!see!if!it!can!be!extended!by!

the!addition!of!any!nonDadjacent!vertices!(line!25).!If!the!set!returned!by! !contains!
more!vertices!than!the!largest!maximal!independent!set!previously!found!it!is!recorded!as!the!
current!best!maximal!independent!set!(lines!26D29).!

!

!

Supplementary,Information,2, Examples,of,New,Algorithms,in,Action,

Maximising,the,Size,of,Non=Redundant,Protein,Data,Sets,Using,Graph,Theory,

Simon&C.&Bull,&Mark&R.&Muldoon&and&Andrew&J.&Doig&

,

Example,
! The!simplest!method!of!fully!understanding!the!new!algorithms!is!through!an!example!which!
demonstrates!the!differences!between!them.!The!graph!in!Figure!1!is!one!such!graph,!and!will!be!
used!to!illustrate!the!execution!of!the!Leaf,!NeighbourCull!and!FIS!algorithms.!For!all!three!
algorithms!the!alphabetic!names!of!the!vertices!will!be!used!to!arbitrarily!break!any!ties.!

!

Figure'1:'An'example'graph'to'demonstrate'the'differences'between'Leaf,'NeighbourCull'and'FIS.'

The!execution!of!the!Leaf!algorithm!on!the!graph!in!Figure!1!is!as!follows:!

1. Select!vertex!!!to!keep.!This!is!because!vertices!!!and!!!comprise!the!only!maximal!clique!of!
two!vertices.!Vertex!!!is!not!kept!because!it!is!connected!to!vertices!that!are!not!in!the!
clique!(Figure!2).!

2. There!are!no!more!maximal!cliques!of!two!vertices,!so!cliques!of!three!vertices!are!
examined.!

3. Select!vertex!!!to!keep.!There!are!three!maximal!cliques!of!three!vertices!({!,!,!},!
{!,!,!}!and!{!,!, !}),!all!of!which!contain!at!least!one!vertex!that!has!no!connection!to!a!
vertex!not!in!the!clique.!Clique!{!,!,!}!is!arbitrarily!chosen!as!the!one!to!keep!a!vertex!
from.!Vertex!!!is!chosen!arbitrarily!from!this!clique.!(Figure!2).!

4. There!are!no!maximal!cliques!of!two!vertices,!so!cliques!of!three!vertices!are!examined.!
5. Select!vertex!!!to!keep.!Clique!{!,!,!}!is!arbitrarily!chosen!as!the!maximal!3Lclique!to!keep!

a!vertex!from.!Vertex!!!is!the!only!vertex!in!the!clique!that!has!no!connections!to!vertices!
not!in!the!clique.!Therefore!vertex!!!is!kept.!(Figure!2).!

6. Keep!vertex!!!as!it!has!no!neighbours!(Figure!2).!
7. The!final!independent!set!is!{!,!,!, !}.!

!

Figure'2:'The'progress'of'execution'of'the'Leaf'algorithm'on'the'graph'seen'in'Figure'1.'Black'vertices'are'in'the'
independent'set'being'generated,'white'vertices'have'been'removed'and'grey'vertices'are'those'that'are'still'to'be'
decided'upon.'Dashed'edges'indicate'edges'that'have'been'removed'from'the'graph'due'to'a'vertex'being'removed.'

Each'graph'corresponds'to'the'results'of'one'the'execution'steps'of'the'Leaf'algorithm.'(a)'corresponds'to'step'1,'(b)'to'
step'3,'(c)'to'step'5,'(d)'to'step'6.'

The!execution!of!the!NeighbourCull!algorithm!on!the!graph!in!Figure!1!is!as!follows:!

1. Vertices!!,!,!,!!and!!!all!have!three!neighbours,!and!no!other!vertex!has!more,!so!we!
need!to!look!at!the!sizes!of!their!extended!neighbourhoods!to!choose!a!vertex!for!deletion.!
The!relevant!data!are!summarised!in!the!table!below!where,!in!the!column!headings,!!(!)!is!
an!abbreviation!for!!"#$ℎ!"#$ℎ!!" ! !and!# !(!) ∪ !(! !) !is!the!size!of!the!extended!
neighbourhood.!

Vertex!!! !(!)! !(! !)! #!(!)! # !(!) ∪ !(! !) !
!! !,!,! ! !,!,!,!,! ! 3! 8!
!! !,!,! ! !,!,!,!,!, ! ! 3! 7!
!! !,!,! ! !,!,!,!,! ! 3! 6!
!! !,!, ! ! !,!,!,!, ! ! 3! 5!
!! !,!, ! ! !,!,!,!, ! ! 3! 5!

!
Vertices!!!and!!!have!the!smallest!extended!neighbourhoods,!and!so!vertex!!!is!arbitrarily!
chosen!to!be!removed!instead!of!!!(Figure!3).!

2. Vertices!!!and!!!now!have!the!most!neighbours!of!the!remaining!vertices,!3,!while!their!
extended!neighbourhoods!contain!7!and!6!vertices,!respectively.!!Thus!we!remove!vertex!!.!

3. Now!vertices!!,!!and!!!all!have!two!neighbours!apiece,!while!their!extended!
neighbourhoods!contain!either!4!(for!!!and!!)!or!5!(for!!)!vertices.!We!choose,!arbitrarily,!
to!remove!vertex!!.!

4. Vertex!!!will!be!removed!as!it!has!the!most!neighbours!(Figure!3).!
5. Vertices!!!and!!!both!have!the!most!neighbours.!Remove!vertex!!!arbitraily!(Figure!3).!
6. The!final!independent!set!is!{!,!,!, !}!(Figure!3).!

!

Figure'3:'The'progress'of'execution'of'the'NeighbourCull'algorithm'on'the'graph'seen'in'Figure'1.'Black'vertices'are'in'
the'independent'set'being'generated,'white'vertices'have'been'removed'and'grey'vertices'are'those'that'are'still'to'be'
decided'upon.'Dashed'edges'indicate'edges'that'have'been'removed'from'the'graph'due'to'a'vertex'being'removed.'

Each'graph'corresponds'to'the'results'of'one'the'execution'steps'of'the'NeighbourCull'algorithm.'(a)'corresponds'to'step'
2,'(b)'to'step'4,'(c)'to'step'6,'(d)'to'step'7,'(e)'to'step'8'and'(f)'to'step'9.'

The!execution!of!the!FIS!algorithm!on!the!graph!in!Figure!1!is!as!follows:!

1. The!initial!vertex!is!set!to!!!as!it!has!the!fewest!neighbours!(Figure!4).!
2. !"# = {!}!
3. Vertices!!,!,!,!!and!!!would!all!cause!the!fewest!new!vertices!to!become!adjacent!to!!"#.!

Vertex!!!is!added!arbitrarily!(Figure!4).!
4. Vertices!!!and!!!would!both!cause!the!fewest!new!vertices!to!become!adjacent!to!!"#.!

Vertex!!!is!added!arbitrarily!(Figure!4).!
5. Vertex!!!is!added!to!!"#!as!it!is!the!only!vertex!available!to!add!(Figure!4).!
6. !"#!is!{!,!,!, !}!after!the!function!!""#$"%&!completes.!
7. The!first!vertex!that!is!not!in!!"#,!and!is!only!adjacent!to!one!vertex!in!!"#,!is!!.!!!is!

swapped!with!!,!and!!""#$"%&!is!called!with!!"# = {!,!,!, !}!(Figure!4).!
8. No!additional!vertices!can!be!added.!
9. The!size!of!!"#!has!not!increased!so!!"#!"#!is!still! !,!,!, ! .!
10. The!next!vertex!that!is!not!in!!"#,!and!is!only!adjacent!to!one!vertex!in!!"#,!is!E.!!!is!

swapped!with!!,!and!!""#$"%&!is!called!with!!"# = {!,!,!, !}!(Figure!4).!
11. No!additional!vertices!can!be!added.!
12. The!size!of!!"#!has!not!increased!so!!"#$%&!is!still! !,!,!, ! .!

13. No!more!vertices!can!be!swapped!so!the!final!independent!set!is!{!,!,!, !}.!

!

Figure'4:'The'progress'of'execution'of'the'FIS'algorithm'on'the'graph'seen'in'Figure'1.'Black'vertices'are'in'the'
independent'set'being'generated,'white'vertices'are'the'vertices'adjacent'to'the'independent'set'and'grey'vertices'are'
those'that'are'still'to'be'decided'upon.'Each'graph'corresponds'to'the'results'of'one'the'execution'steps'of'the'FIS'

algorithm.'(a)'corresponds'to'step'1,'(b)'to'step'3,'(c)'to'step'4,'(d)'to'step'5,'(e)'to'step'7'and'(f)'to'step'10.'

!

!

Supplementary,Information,3, Comparisons,of,Leaf,and,GLP,algorithms,to,PISCES,

Maximising,the,Size,of,Non?Redundant,Protein,Data,Sets,Using,Graph,Theory,

Simon&C.&Bull,&Mark&R.&Muldoon&and&Andrew&J.&Doig&
!

!

!

The!percentage!improvement!over!PISCES!shown!by!the!Leaf!and!GLP!algorithms.!Graph!(a)!is!for!the!
datasets!of!100!proteins,!(b)!for!the!datasets!of!250!proteins,!(c)!for!the!datasets!of!500!proteins,!(d)!
for!the!datasets!of!1000!proteins,!(e)!for!the!datasets!of!2000!proteins!and!(f)!for!the!datasets!of!
5000!proteins.!

!

F1!
F0.5!

0!
0.5!
1!

1.5!
2!

2.5!
3!

0! 20! 40! 60! 80! 100!

Pe
rc
en

ta
ge
)Im

pr
ov
em

en
t)

Percentage)Sequence)Iden3ty)
F1!

0!

1!

2!

3!

4!

5!

6!

0! 20! 40! 60! 80! 100!Pe
rc
en

ta
ge
)Im

pr
ov
em

en
t)

Percentage)Sequence)Iden3ty)

F20!

F15!

F10!

F5!

0!

5!

10!

0! 20! 40! 60! 80! 100!

Pe
rc
en

ta
ge
)Im

pr
ov
em

en
t)

Percentage)Sequence)Iden3ty)
F25!

F20!

F15!

F10!

F5!

0!

5!

10!

0! 20! 40! 60! 80! 100!

Pe
rc
en

ta
ge
)Im

pr
ov
em

en
t)

Percentage)Sequence)Iden3ty)

F30!
F25!
F20!
F15!
F10!
F5!
0!
5!

10!

0! 20! 40! 60! 80! 100!

Pe
rc
en

ta
ge
)Im

pr
ov
em

en
t)

Percentage)Sequence)Iden3ty)
F40!

F30!

F20!

F10!

0!

10!

20!

0! 20! 40! 60! 80! 100!

Pe
rc
en

ta
ge
)Im

pr
ov
em

en
t)

Percentage)Sequence)Iden3ty)

Leaf! GLP! !

(a)! (b)!

!
(c)!

!
!!(d)!

!!!(e)! !!!(f)!

Sequence'Identity
M
ean'DegreeNum

ber'of'N
odes
N
um

ber'of'Com
ponents

Largest'Com
ponent
M
ean'Com

ponent
M
ean'Degree'of'Largest'Com

ponent
PISCES

Leaf
FIS

N
eighbourCull

VSA
BlastCuller

Tim
e

Rem
oved

Tim
e

Rem
oved

Tim
e

Rem
oved

Tim
e

Rem
oved

Tim
e

Rem
oved

Tim
e

Rem
oved

10
200.24191

18395
492

16972
37.388211

216.82218
55.878217

15178
2472.3061

14615
4950.7864

14666
577.32156

14651
1110.1182

14764
180.52198

14673
20

76.557668
18251

593
16383

30.777403
84.908136

46.546527
14551

1486.1758
13608

946.36902
13679

233.79955
13671

521.21604
13886

153.17603
13710

30
34.387357

15851
1436

11190
11.038301

46.860947
44.014081

11244
387.23044

10395
411.48527

10455
88.315359

10451
179.92516

10657
75.732308

10489
40

16.335196
11993

2538
3106

4.7253743
48.515132

43.083674
7829

21.287985
7408

26.618835
7419

6.0416175
7422

12.850922
7505

4.3409924
7440

50
6.0211939

8493
2403

680
3.5343321

23.973529
42.619561

5324
0.2455121

5082
0.6624101

5084
1.0683879

5087
0.5708436

5122
0.2349874

5097
60

4.5996076
5607

1753
232

3.1985168
11.887931

42.549825
3480

0.0702698
3364

0.0914535
3367

0.8343557
3365

0.1296872
3377

0.0653191
3367

70
4.5456516

3691
1192

74
3.0964765

73
42.7326

2282
0.0378185

2215
0.0271365

2215
0.7951804

2215
0.0708645

2221
0.0363025

2218
80

4.9652865
2391

800
73

2.98875
66.90411

42.756811
1488

0.0251
1450

0.016365
1450

0.1557584
1450

0.0483793
1453

0.0237436
1450

90
3.9198876

1423
476

54
2.9894958

12.62963
42.809867

885
0.028548

862
0.0101676

863
0.0412472

862
0.0216718

863
0.0128449

863

Sequence'Identity
M
ean'DegreeNum

ber'of'N
odes
N
um

ber'of'Com
ponents

Largest'Com
ponent
M
ean'Com

ponent
M
ean'Degree'of'Largest'Com

ponent
PISCES

Leaf
FIS

N
eighbourCull

VSA
BlastCuller

Tim
e

Kept
Tim

e
Kept

Tim
e

Kept
Tim

e
Kept

Tim
e

Kept
Tim

e
Kept

10
200.24191

18395
492

16972
37.388211

216.82218
55.878217

5073
2472.3061

5636
4950.7864

5585
577.32156

5600
1110.1182

5487
180.52198

5578
20

76.557668
18251

593
16383

30.777403
84.908136

46.546527
5700

1486.1758
6643

946.36902
6572

233.79955
6580

521.21604
6365

153.17603
6541

30
34.387357

15851
1436

11190
11.038301

46.860947
44.014081

9007
387.23044

9856
411.48527

9796
88.315359

9800
179.92516

9594
75.732308

9762
40

16.335196
11993

2538
3106

4.7253743
48.515132

43.083674
12422

21.287985
12843

26.618835
12832

6.0416175
12829

12.850922
12746

4.3409924
12811

50
6.0211939

8493
2403

680
3.5343321

23.973529
42.619561

14927
0.2455121

15169
0.6624101

15167
1.0683879

15164
0.5708436

15129
0.2349874

15154
60

4.5996076
5607

1753
232

3.1985168
11.887931

42.549825
16771

0.0702698
16887

0.0914535
16884

0.8343557
16886

0.1296872
16874

0.0653191
16884

70
4.5456516

3691
1192

74
3.0964765

73
42.7326

17969
0.0378185

18036
0.0271365

18036
0.7951804

18036
0.0708645

18030
0.0363025

18033
80

4.9652865
2391

800
73

2.98875
66.90411

42.756811
18763

0.0251
18801

0.016365
18801

0.1557584
18801

0.0483793
18798

0.0237436
18801

90
3.9198876

1423
476

54
2.9894958

12.62963
42.809867

19366
0.028548

19389
0.0101676

19388
0.0412472

19389
0.0216718

19388
0.0128449

19388

#'Proteins
20251

Supplementary,Information,5, Results,from,Culling,PDB,Data,Sets,

Maximising,the,Size,of,Non>Redundant,Protein,Data,Sets,Using,Graph,Theory,

Simon&C.&Bull,&Mark&R.&Muldoon&and&Andrew&J.&Doig&
!

%!Maximum!
Sequence!
Identity!

Minimum!
Resolution!

Maximum!R6
Factor!

#Proteins!
from!PISCES!

#Proteins!
from!Leaf!

%!Improvement!

20! 1.6! 0.25! 1886! 2021! 7.2!
20! 1.8! 0.25! 2954! 3214! 8.8!
20! 2.0! 0.25! 4030! 4459! 10.6!
20! 2.2! 1.0! 4640! 5179! 11.6!
20! 2.5! 1.0! 5346! 5962! 11.5!
20! 3.0! 1.0! 5922! 6577! 11.1!
25! 1.6! 0.25! 2276! 2415! 6.1!
25! 1.8! 0.25! 3677! 3967! 7.9!
25! 2.0! 0.25! 5089! 5570! 9.5!
25! 2.2! 1.0! 5910! 6518! 10.3!
25! 2.5! 1.0! 6822! 7569! 10.9!
25! 3.0! 1.0! 7525! 8367! 11.2!
30! 1.6! 0.25! 2676! 2772! 3.6!
30! 1.8! 0.25! 4469! 4699! 5.1!
30! 2.0! 0.25! 6360! 6765! 6.4!
30! 2.2! 1.0! 7492! 7986! 6.6!
30! 2.5! 1.0! 8713! 9337! 7.2!
30! 3.0! 1.0! 9615! 10337! 7.5!
40! 1.6! 0.25! 3182! 3259! 2.4!
40! 1.8! 0.25! 5604! 5778! 3.1!
40! 2.0! 0.25! 8337! 8612! 3.3!
40! 2.2! 1.0! 10029! 10392! 3.6!
40! 2.5! 1.0! 11872! 12338! 3.9!
40! 3.0! 1.0! 13219! 13762! 4.1!
50! 1.6! 0.25! 3524! 3567! 1.2!
50! 1.8! 0.25! 6308! 6414! 1.7!
50! 2.0! 0.25! 9571! 9744! 1.8!
50! 2.2! 1.0! 11657! 11885! 2.0!
50! 2.5! 1.0! 13897! 14210! 2.3!
50! 3.0! 1.0! 15584! 15937! 2.3!
60! 1.6! 0.25! 3704! 3743! 1.1!
60! 1.8! 0.25! 6737! 6830! 1.4!
60! 2.0! 0.256! 10336! 10491! 1.5!
60! 2.2! 1.0! 12679! 12865! 1.5!
60! 2.5! 1.0! 15249! 15502! 1.7!
60! 3.0! 1.0! 17221! 17523! 1.8!
70! 1.6! 0.25! 3845! 3874! 0.8!
70! 1.8! 0.25! 7069! 7136! 0.9!
70! 2.0! 0.257! 10927! 11046! 1.1!

70! 2.2! 1.0! 13469! 13625! 1.2!
70! 2.5! 1.0! 16282! 16502! 1.4!
70! 3.0! 1.0! 18463! 18727! 1.4!
80! 1.6! 0.25! 3979! 4000! 0.5!
80! 1.8! 0.25! 7341! 7401! 0.8!
80! 2.0! 0.256! 11416! 11535! 1.0!
80! 2.2! 1.0! 14128! 14288! 1.1!
80! 2.5! 1.0! 17154! 17382! 1.3!
80! 3.0! 1.0! 19535! 19828! 1.5!
90! 1.6! 0.25! 4112! 4132! 0.5!
90! 1.8! 0.25! 7650! 7716! 0.9!
90! 2.0! 0.25! 12009! 12156! 1.2!
90! 2.2! 1.0! 14950! 15133! 1.2!
90! 2.5! 1.0! 18250! 18501! 1.4!
90! 3.0! 1.0! 20916! 21213! 1.4!

!

!

!

