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Abstract 
Analysis of protein data sets often requires prior removal of redundancy, so that data is not biased by hav-

ing multiple copies of similar proteins. This is usually achieved by pairwise comparison of sequences, followed 

by purging so that no two pairs have similarities above a chosen threshold. From a starting set, such as the PDB or 

a genome, one should remove as few sequences as possible, to give the largest possible non-redundant set for sub-

sequent analysis. Protein redundancy can be represented as a graph, with proteins as nodes connected by undi-

rected edges, if they have a pairwise similarity above the chosen threshold. The problem is then equivalent to 

finding the maximum independent set (MIS), where as few nodes are removed as possible to remove all edges. 

We tested seven MIS algorithms, three of which are new. We applied the methods to the PDB, subsets of the 

PDB, various genomes and the BHOLSIB benchmark datasets. For PDB subsets of up to 1000 proteins, we could 

compare to the exact MIS, found by the Cliquer algorithm. 

The best algorithm was the new method, Leaf. This works by adding clique members that have no edges 

to nodes outside the clique to the MIS, starting with the smallest cliques. For PDB subsets of up to 1000 members, 

it usually finds the MIS and is fast enough to apply to data sets of tens of thousands of proteins. It gives sets that 

are around 10% larger than the commonly used PISCES algorithm, that are of identical quality. We therefore sug-

gest that Leaf should be the method of choice for generating non-redundant protein data sets, though it is ineffec-

tive on dense graphs, such as the BHOLSIB benchmarks. The Leaf algorithm and sets from genomes and the PDB 

are available at: http://www.bioinf.manchester.ac.uk/leaf/. 

 

* Email : andrew.doig@manchester.ac.uk 

Supplementary Information 

SI Document 1 Detailed Explanations of New Algorithms 

SI Document 2 Examples of New Algorithms in Action 

SI Document 3 Comparisons of Leaf and GLP algorithms to PISCES 

SI Document 4 Algorithm Performances on Model Organisms 

SI Document 5 Results from Culling PDB Data Sets 
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Introduction 
Redundancy in datasets of proteins can be defined as multiple copies of similar proteins. Redundancy is a 

barrier to the effective use of the dataset for multiple reasons, most simply size. Redundant sequences in a dataset 

can prove detrimental to the discovery of novel relations between the proteins, as multiple copies of similar pro-

teins can bias any conclusions drawn from using that set. Machine learning classifiers trained on redundant train-

ing sets will tend to over-fit and be of less value when applied to novel data. A pre-processing step is therefore 

often used to generate a non-redundant dataset consisting solely of representative proteins from the original re-

dundant set. 

Similarity between proteins is most usefully determined by comparing sequences, since structures are un-

available for most proteins and evolutionary relationships are difficult to quantify. Alignment based approaches to 

calculating sequence identity are either global or local methods, with local more useful when the two sequences 

may only share isolated regions of similarity, or when scanning a protein database with little to no a priori 

knowledge about the similarity between the database sequences and the query sequence (Barton 1996). The pre-

dominant heuristics for finding local alignments in proteins are BLAST (Altschul et al. 1990) or PSI-BLAST, 

which is more sensitive to weak sequence similarities in many cases (Altschul et al. 1997). BLAST is used by the 

protein redundancy removal application BlastCuller (Liu et al. 2009), while PISCES (Wang and Dunbrack 2003) 

makes use of PSI-BLAST to calculate the pairwise sequence identities. 

Our intention here is to maximise the size of the non-redundant dataset. We test both novel and previously 

published methods that use graph theory. We show that it is possible to use novel graph theoretic methods to in-

crease the size of non-redundant sets, while maintaining identical quality criteria for inclusion of proteins within 

the set. We find that our novel method, Leaf, generates the largest sets. We apply Leaf to generate non-redundant 

sets from the PDB, using various sequence similarity and structure quality parameters, and several genomes. Our 

webpage gives these sets, as well as a facility for users to generate their own non-redundant sets using Leaf. 

 

Methods 

Solving the Problem of Redundancy through Graph Theory 

Sequence similarity relationships between proteins can be shown as a graph:  A protein similarity graph 

G(V, E) denotes an undirected graph with vertices V={1, 2, … n} and edges { }{ }VjijiE ∈= ,:, . Each protein in 

the redundant dataset is represented by a vertex. There is an edge between vertices i and j if the sequence identity 

of the proteins that i and j represent is greater than the similarity threshold, here taken to be an upper limit for ac-

ceptable mean percentage sequence identity. If the vertex which represents a protein has no edges incident to it, 

the pairwise sequence identity between that protein and every other protein in the dataset is below the similarity 
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threshold. By representing the dataset and sequence similarities as a graph, it is possible to utilise graph theory to 

help optimise the generation of the non-redundant dataset. 

A non-redundant dataset can be represented by a protein similarity graph that contains no edges. A non-

redundant dataset can therefore be generated by removing vertices, and all edges incident to them, from the pro-

tein similarity graph until there are no edges remaining. The proteins that correspond to the vertices remaining in 

the graph will be the non-redundant dataset. 

Our goal is to remove nodes, and incident edges, in such a way that the remaining vertices constitute the 

largest possible set of vertices that have no edges between them. The problem of finding this optimal set is known 

as the maximum independent set (MIS) problem, or equivalently the stable set problem. In graph theory, an inde-

pendent set of a graph G(V,E) is a set of vertices VI ⊆  such that { } EjiIji ∉∈∀ ,:, . An independent set I can 

be considered to be a maximal independent set if the addition of any vertex Vv∈  that is not in I means that I no 

longer maintains the properties of an independent set. An MIS is a maximal independent set that contains the 

largest possible number of vertices. Finding the MIS is known to be an NP-complete problem, one where there is 

no known computationally efficient method for discovering the solution. Approximation based algorithms to find 

the MIS are thus often used instead. 

 

Graph Definitions 

In order to fully describe the properties of the developed algorithms, definitions of properties of the 

graphs is necessary: The neighbourhood of a vertex v, the vertices that share an edge with v, in an undirected 

graph G(V,E), which contains no loops, can be defined as }},{:{)( Eviivoodneighbourh ∈= . In a protein simi-

larity graph, the neighbourhood of v represents all the proteins that have a sequence which is too similar to the 

protein that v represents. The neighbourhood can also be defined for a set of vertices. If s is a set of vertices from 

G, then }},{,:{)( Evisvisoodneighbourh ∈∈= . The degree of a vertex v in G can be defined as 

)(#)(deg voodneighbourhvree = . The support of a vertex v in G can be defined as ∑∈ )(
)(deg

voodneighbourhi
iree . 

A clique VQ ⊆  is a subset of the vertices of G such that EjiQji ∈∈∀ },{:,  . A maximum clique of G 

is a largest possible subset of the vertices in G for which the clique property is satisfied. A vertex cover VC ⊆  of 

G is a subset of vertices such that every edge in G is incident to at least one vertex in C. A minimum vertex cover 

of a graph G is a vertex cover C with the smallest possible number of vertices in it. Graph components are sub-

graphs that are not connected to each other. Finally, the complement of a graph G(V,E) is a second graph H(V,E’) 

with the same vertex set, but a complementary edge set. That is, two vertices i and j are adjacent in H if and only 

if they are not adjacent in G. A maximum independent set in G is thus a maximum clique in G’s complement H. 
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PISCES 

The benchmark for all the algorithms developed and tested here is PISCES, as it is very widely used 

(Wang and Dunbrack 2003). PISCES works by listing proteins in order of length. Redundancy is removed by: 

finding the protein highest up the list that is not marked as kept or removed, and marking it as being kept. For all 

proteins that have been determined to be too similar to this protein, mark them as being removed. Once the bot-

tom of the list is reached all proteins that have been marked as being kept will be the non-redundant dataset. By 

only considering proteins higher up the list for inclusion, i.e. proteins with longer sequences, it is possible to miss 

the opportunity to increase the size of the non-redundant dataset. The returned set will also be biased to include 

long sequences. Here we evaluate algorithms that use graph theory to maximise the size of the non-redundant da-

taset while maintaining identical criteria for inclusion (e.g. no two proteins with more than 20% pairwise se-

quence identity). 

 

New Algorithms 

Two possible graph representations were used for the new algorithms. The first is an adjacency matrix. In 

this representation, an nn×  matrix M is constructed, where n is the number of vertices in the graph. If there is an 

edge in between two vertices i and j in the graph, then 1,, == ijji MM  . If no edge is present between the two 

vertices, then 0,, == ijji MM . In the adjacency list representation, there is one entry in the adjacency list for 

each vertex in the graph. The list records for each vertex i in the graph the vertices in )(ioodneighbourh . Space 

is saved over the adjacency matrix representation when the graph is sparse as information is only stored about the 

presence of edges. 

The density of the protein similarity graph of the entire human proteome was calculated for sequence 

identity thresholds of 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80% and 90%. The highest density was found for 

the 10% sequence identity threshold, but this was still only 0.01 on a scale where 0 indicates no edges in the graph 

and 1 indicates that the graph is complete (i.e. all members of G form a single clique). For the remaining percent-

age thresholds, the density was always below 0.005. Protein similarity graphs are therefore sparse, since the prob-

ability that any two proteins have a high pairwise sequence identity is <1%. An adjacency list representation is 

therefore utilised. 

The protein similarity graph is processed before the algorithms are run, by removing all isolated nodes 

from the graph and adding them to the independent set, as they must all be members of the MIS. 

First, we outline three novel algorithms to find an MIS. More detailed explanations, together with pseu-

docode, are given in SI Document 1. 

 

Leaf 
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The Leaf algorithm works by identifying cliques in the graph that satisfy the criterion of having at least 

one vertex which is not connected to any vertex outside of the clique. One of the (potentially many) vertices in the 

clique with no connections outside of the clique is arbitrarily chosen to be kept in the independent set being 

formed. The algorithm starts by searching for cliques of two vertices which satisfy the criterion. If a clique is 

found, then one of the nodes in the clique is kept, and the other removed. If no clique is found that satisfies the 

criterion, then a clique of three vertices is searched for. This process of increasing the number of vertices in the 

clique being searched for is continued until either a clique is found, or there can be no possible clique in the graph 

that satisfies the criterion. After a clique has been found and one of its vertices has been incorporated into the 

growing independent set, the process of searching for a clique begins again with searching for a clique of two ver-

tices. There is no clique in the graph that satisfies the criterion if the size of the clique being searched for is over a 

certain threshold size. This threshold size is determined dynamically, and is equivalent to the number of neigh-

bours of the highest degree vertex in the graph. Although this upper bound could be tightened through more care-

ful analysis of the graph, searching for a tight upper bound involves finding the size of the maximum clique in the 

graph. If no clique satisfying the criterion can be found, then the NeighbourCull algorithm is used to determine 

which vertex to remove. As this method removes the most connected vertex, the upper bound of the size of the 

clique being searched for will decrease. 

 

NeighbourCull 

The NeighbourCull algorithm is based on the goal of removing a vertex which has the highest connectivi-

ty (i.e. the most neighbours), but is minimally connected to the vertices not in its neighbourhood. The algorithm 

works by identifying the vertices with the most neighbours. If there is only one vertex with the most neighbours, 

then this vertex is removed. When multiple vertices have the most neighbours, the tie is broken by examining the 

neighbours of the neighbours of the original vertex (i.e. all vertices reachable by traversing two edges). The set of 

vertices reachable by traversing two edges is determined, and the vertex with the smallest set of vertices reachable 

in this manner is removed. If there are still multiple vertices which cannot be decided between, then the vertex to 

remove is chosen arbitrarily from amongst the remaining possibilities. 

 

FIS 

The third new algorithm works by first initialising a maximal independent set, and then permuting it in an 

attempt to increase its size. The algorithm’s first step is to determine the initial vertex from which the maximal 

independent set will be generated. This is the vertex with the fewest neighbours, with ties broken arbitrarily. From 

this initial vertex, the set is permuted using the addnodes sub-function. This takes as its arguments the current in-

dependent set, and the set of all the vertices in the graph. This function works by first determining if there are any 
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vertices that are not adjacent to the current independent set. If there are no non-adjacent vertices, then the current 

independent set is returned. If there are vertices which are not adjacent to the current independent set, then the 

independent set can be extended by adding a new vertex. This is done by finding the non-adjacent vertex which, 

when added to the independent set, causes the fewest vertices that are currently not adjacent to the independent set 

to become adjacent. The function swapnodes is used to see if the size of the independent set can be increased by 

making small alterations to the vertices in the set. The vertices that are not in the independent set are tested one at 

a time to see how many vertices from the independent set they are adjacent to. If a vertex i that is not in the inde-

pendent set is adjacent to only one vertex j that is, then i and j can be swapped without invalidating the properties 

of a maximal independent set. The new independent set resulting from this swap is passed to addnodes to see if it 

can be extended by the addition of any non-adjacent vertices. 

SI Document 2 shows illustrative examples of Leaf, NeighbourCull and FIS in action. 

 

Existing Algorithms 

Three algorithms from the literature were chosen to be tested alongside the three new algorithms: 

GLP is a state of the art heuristic for approximating the maximum clique that works by finding an initial 

clique starting from a random initial vertex in the graph, and then improving this initial clique using local search 

operations (Grosso et al. 2008). Algorithm 1 from this paper, along with restart rule 2, is used here. An implemen-

tation of the algorithm was written in Python. As the GLP algorithm makes use of rules for restarting, it is possi-

ble that the algorithm will execute for a substantial length of time on larger graphs. For this reason, a parameter is 

used with the GLP algorithm that limits the number of vertices that can be added to and removed from the clique 

being generated. There are two problems with using the algorithm as it stands for the generation of non-redundant 

datasets. The first is that the size of the maximum clique of the graphs being used was known in the tests done in 

the GLP paper (Grosso et al. 2008). This meant that the algorithm could be stopped if the clique being generated 

ever reached this size. Unfortunately, the protein similarity graphs being used here have unknown MISs, and 

therefore the algorithm cannot be stopped early in the same way. Secondly, the value of the parameter cannot 

easily be set to prevent the algorithm running for excessive lengths of time. In order to prevent this, GLP was 

adapted to allow a time limit to be placed on the running of the algorithm and the largest maximal independent set 

found up to that point is returned. 

The final two algorithms work based on the neighbourhood of the individual vertices in the graph. The 

VSA algorithm of Balaji et al. (Balaji et al. 2010) finds an approximation to the MIS by calculating an approxi-

mation to the minimum vertex cover. The algorithm works by beginning with an empty vertex cover, and progres-

sively increasing the number of vertices in the vertex cover by adding the vertex with the highest support. If two 

vertices have the largest value for the support, then the vertex with the higher number of neighbours is added. 

This is repeated until there are no vertices that are not either in the vertex cover or adjacent to a vertex in the ver-
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tex cover. This algorithm was re-implemented in Python and extended to incorporate a limit on the length of exe-

cution. 

The final algorithm used was BlastCuller (Liu et al. 2009). Unlike GLP and VSA, this algorithm is de-

signed to produce non-redundant protein datasets. BlastCuller generates a non-redundant dataset by approximat-

ing the MIS of the protein similarity graph. The algorithm works by initialising the result as an empty set, and 

then adding to it all the isolated vertices. Following this, the vertex with the most neighbours is deleted, and any 

newly isolated vertices are added to the result set. This process is repeated until all vertices have been either re-

moved, or added to the result set. BlastCuller was re-implemented in Python for the tests here, in order to enable a 

time limit on the exaction to be incorporated. 

 

Cliquer 

Although there are no known efficient algorithms to compute the MIS of an arbitrary graph, it is nonethe-

less possible to find the size of the MIS exactly using so-called branch-and-bound algorithms, which have worst-

case running times that are exponential in the number of vertices. These algorithms typically combine a brute-

force search (list all possible subsets of the vertex set and ask whether each is an independent set, keeping track of 

the largest set seen so far) with a clever upper bound that allows one to prove statements such as “any independent 

set that includes vertices 1, 25, 1548 and 21973 contains at most 53 other vertices” and so eliminate whole fami-

lies of subsets without having to enumerate and check each member.  

To obtain exact answers against which to check our algorithms we used the Cliquer library (Östergård 

2002; Niskanen and Östergård 2003) to find a maximum clique in the complement of the protein similarity graph. 

Cliquer works by successively computing the size ci of the maximum clique in the subgraph that contains only the 

vertices in the set },,,{ 21 ii vvvS …= and any edges running between them. It’s clear that either ii cc =+1  or 

11 +=+ ii cc , with the latter holding only when there is a maximum clique in 1+iS  that includes the vertex 1+iv : 

this is the key observation behind the upper bound that speeds Cliquer’s search.  The algorithm’s running time 

depends on the order in which the vertices are listed and we used Cliquer’s default ordering strategy, which pro-

ceeds in two stages. Initially the vertices are arranged in order of decreasing degree; one then uses the greedy col-

ouring algorithm recursively to choose large sets of non-adjacent vertices. The final vertex ordering lists the verti-

ces in order of increasing color-index (as assigned by the greedy colouring stage) and, within each colour-group, 

in order of decreasing degree. 

 

Experimental Design 

The algorithms were compared in terms of the number of proteins removed from the original redundant 

dataset of the human proteome (downloaded from http://www.uniprot.org/downloads on December 10th, 2010), 
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and the time taken to finish. Pairwise sequence identities between all possible pairs of the 20251 human proteins 

were calculated using PSI-BLAST version 2.2.25. PISCES was used to perform the BLASTing, and to process the 

resulting alignment information. From this alignment file, it was possible to determine which proteins had a per-

centage pairwise sequence identity over any specified threshold.  

Random datasets of 100, 250, 500, 1000, 2000 and 5000 proteins were generated by sampling from the 

20251 human proteins downloaded from UniProt. 50 datasets were generated randomly of each size. Taking the 

2000 protein datasets as an example, the process for generating datasets was as follows: 

 

1. Select 2000 different proteins from the 20,251 possible proteins. 

2. Extract any alignments from the alignment file where the 2000 proteins were either the query or the hit in the 

PSI-BLAST output. 

3. Form an alignment file from the subset of entries selected in step 2, and a FASTA format file of the proteins 

selected in step 1. 

4. Repeat steps 1-3 until 50 datasets have been generated. 

 

This method of generating datasets ensures that the same protein is not present multiple times in any one 

dataset, but may be present in more than one dataset of any given size.  

Individual datasets were tested as follows: 

 

1. Generate an adjacency list for each percentage threshold (10%, 20%, 30%, 40%, 50%, 60%, 70%, 80% and 

90%). 

2. Run PISCES on the dataset using each of the nine percentage thresholds. 

3. Run each of the algorithms being tested on each of the nine adjacency lists. 

 

The time limit for each algorithm was set to be the longer of either ten times the running time of the Leaf 

algorithm, or the time that PISCES took, whichever is the longer. The model organism data used for the compari-

son of the algorithms, was downloaded from UniProt on November 3rd 2011. For each proteome, only reviewed 

proteins in the complete proteome were downloaded. The taxonomy ID for the proteomes was: 9606 for 

h.sapiens, 10090 for mus musculus, 83333 for E. coli, 559292 for S. cerevisiae and 3702 for Arabidopsis thaliana. 

The algorithms were also tested using a MIS benchmark suite of graphs, BHOSLIB 

(http://www.nlsde.buaa.edu.cn/~kexu/benchmarks/graph-benchmarks.htm). This benchmarking serves to test the 

ability of the algorithms to find a MIS in general, rather than simply in protein similarity graphs. Additionally, 

due to the difficulty of the problems in the BHOSLIB benchmarks suite, this should give an idea of how the algo-
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rithms designed for the simpler protein similarity graphs fare on more complex graphs in comparison to state of 

the art heuristics. 

 

Results 
Subsets of the human proteome 

The quality of each algorithm tested is measured as the number of proteins removed from the starting set, 

where the smaller the number removed, the better (Table 1). 

 

GLP 

When the execution time of the GLP algorithm was limited to ten times that of the Leaf algorithm, GLP 

performed more poorly than Leaf and often worse than PISCES (SI Document 3). This is mainly due to GLP ter-

minating before it has had a chance to build up a maximal independent set in the protein similarity graph. 

In order to determine whether running GLP for a longer length of time will increase the size of the non-

redundant dataset generated, we extended the time limit for the execution of GLP to 500 times the Leaf execution 

time and studied a subset of the 5000 protein datasets (Figure 1). The improvement over PISCES was lower for 

GLP than for Leaf at all sequence identity thresholds. At all but 10%, 40% and 50% sequence identity, the results 

for GLP were worse than those of PISCES. 

 

 
Comparison of Leaf and GLP to PISCES for 5000 protein data sets, when GLP is terminated after 

executing for 500 times as long as Leaf. 

Leaf, FIS, NeighbourCull, VSA and BlastCuller 
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At sequence identities greater than 50%, there is little improvement over PISCES for any of the algo-

rithms (Table 1). Gains are small at the higher sequence identities because the protein similarity graphs them-

selves contain only a few proteins. For example, using a 90% sequence identity threshold with datasets of 1000 

proteins generates protein similarity graphs with a mean of 9.68 proteins, and the mean number of nodes in each 

component is 2.68. The small size of the components leaves very little room for an improvement in the size of the 

non-redundant dataset. 

For sequence identity thresholds below 60%, the improvement over PISCES achieved by all five algo-

rithms is more substantial, (Table 1). The pattern of improvement changes depending on the sequence identity 

threshold used. One trend that is noticeable across all sequence identity thresholds is the increasing difference be-

tween the five algorithms as the datasets increase in size. This is likely to be due to the increased size and com-

plexity of the protein similarity graphs of larger datasets. 

The order of success of the algorithms is the same for almost every combination of dataset size and se-

quence identity threshold, with Leaf showing the most improvement followed by FIS, NeighbourCull, BlastCuller 

and finally VSA. The three algorithms that work solely by identifying the vertex that is most connected by some 

measure show the smallest improvement over PISCES. 

 

Comparisons to the Maximum Independent Set 

 The Cliquer algorithm computes the exact size of a maximum independent set, which is the perfect solu-

tion to our problem of finding the largest possible non-redundant protein data set. Unfortunately, it is so slow that 

it is only possible to find the MIS for starting sets of 1000 proteins or fewer with this method. We ran starting sets 

of 5000 proteins and none reached a solution after 6 months of processing on a Condor(Thain et al. 2005) distrib-

uted computing pool. Jobs submitted to this pool run mainly on inactive, recent-model desktop machines in stu-

dent computing clusters and, during the academic term, get around 8-10 hours of uninterrupted processor time per 

day. Nevertheless, we can compare the approximate methods used here to the exact solution for sets of 100, 250, 

500 and 1000 proteins. Table 2 shows these comparisons. We see that the perfect solution is often achieved. For 

example, Leaf finds the MIS every time for the 250 protein subsets. Even for the 1000 proteins subsets, Leaf 

misses the MIS in only a few cases, shown, for example, by the mean error for the 20% cut off being only 0.1 pro-

teins. This gives reassurance that we have found highly accurate algorithms that can reach, or get close to, the 

MIS in a short time. For example, with the 1000 protein sets at a 20% cut off, the Cliquer algorithm takes on av-

erage 4130 seconds to find the MIS for each set, while the Leaf method needs only 42ms and nearly always finds 

the MIS. 
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Human Proteome 

The results of running the algorithms on the entire human proteome (20251 proteins) are in Table 3. Leaf 

again outperformed the other algorithms in most cases.  

GLP was originally used in the test on this datasets, but the size of the representation of the protein simi-

larity graph proved to be problematic.  For example, the largest connected component of the protein similarity 

graph at 10% sequence identity contains 16,966 vertices, and has a mean degree of 215. The complement of this 

graph will therefore have the same number of vertices, but a mean degree of 16,751. In order to record all the 

connections between vertices in the graph, approximately 284 million connections need to be recorded. The size 

of the graph representation will cause the algorithm to be substantially slower, making the time required to gener-

ate a non-redundant dataset prohibitive. Similar issues may explain the poor results of GLP on the random subsets 

of the human proteome. 

 

Model Organisms 

 We applied MIS algorithms to the mus musculus, E. coli, Arabidopsis thalania and s. cerevisiae proteo-

mes, in order to evaluate its performance on diverse proteomes and to generate potentially useful data sets for 

groups studying these organisms. SI Document 4 summarises their performances and shows that again Leaf con-

sistently gives the largest culled sets. 

 

PDB 

Non-redundant sets of protein crystal structures are often used to study protein structure. PDB files can be 

culled not just on the maximum pairwise sequence identity, but also structure quality, as measured by minimum 

resolution and R-factor. We used the Leaf algorithm to compare with PISCES, using a range of these parameters 

(SI Document 5). For sets with low sequence identities (20% – 25%), Leaf returns data sets that are around 10% 

larger than from PISCES. 
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Algorithm comparison for the BHOSLIB Benchmarks 

 

BHOSLIB Benchmark 

The results of running Leaf, FIS, GLP, VSA and BlastCuller on the BHOLSIB benchmark datasets can be 

seen in Figure 2, where the mean difference between the number of vertices returned by the algorithms and the 

true MIS is shown.. 

GLP consistently outperforms the other algorithms on the benchmark datasets, unlike the protein datasets. 

For the other algorithms, the structure of the graphs is not suitable for the simple methods used to generate the 

independent sets. For example, the Leaf method is unlikely to be able to use the fact that a clique has a vertex 

which is not connected to any vertices not in the clique, as these vertices are uncommon in this test graphs. This 

will cause Leaf to behave very similarly to NeighbourCull, as it falls back on the removal of the vertex with the 

most neighbours. Hence, the results for Leaf and NeighbourCull are very similar. 

 

Leaf Protein Culling Server 

We have implemented the Leaf method to provide datasets (http://www.bioinf.manchester.ac.uk/leaf/). 

The website uses Leaf to cull subsets of the PDB or submitted user sequences. Pre-computed sets of nonredundant 

PDB chains can also be downloaded, along with the source code and data files needed to run the culling on a local 

machine. Preculled PDB datasets are available with various sequence identity cut offs, resolutions and R-value 
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limits. Culled proteomes are available for h. sapiens, E. coli, Arabidopsis thaliana, S. cerevisiae and mus muscu-

lus. 

 

Discussion 
When comparing algorithms, the one that clearly underperforms is GLP. This algorithm substantially un-

derperforms when compared to Leaf, and occasionally when compared to PISCES. Even when the time was in-

creased to 500 times that of Leaf, the datasets returned by GLP were still smaller than those returned by Leaf. 

GLP has to work on very large graphs as it uses the complement of the protein similarity graph. While this prob-

lem can be overcome by using large amounts of memory,  the time needed to produce a suitable result on larger 

graphs is far too large. For these reasons it is undesirable to use GLP, at present, for starting sets of this nature. 

The Leaf algorithm consistently outperformed the other algorithms on both the datasets of random pro-

teins, and the datasets of biological importance. It is not a general solution to the MIS problem, however, as its 

relatively poor performance on the BHOSLIB Benchmark data sets, suggest that it is only appears suitable for 

sparse graphs. In conclusion, the Leaf algorithm is the most suitable for finding non-redundant protein datasets of 

maximal size. 
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TABLES 

 

Table 1. Mean Number Kept from Datasets of 100, 250, 500, 1000, 2000 and 5000 Proteins 

 

100 Proteins 

 

Cut Off PISCES Leaf FIS NeighbourCull VSA BlastCuller 

10% 79.3% 81.3% 81.3% 81.3% 80.9% 81.2%

20% 89.6% 90.2% 90.2% 90.2% 90.1% 90.1%

30% 95.8% 95.9% 95.9% 95.9% 95.9% 95.9%

40% 98.2% 98.2% 98.2% 98.2% 98.2% 98.2%

50% 99.3% 99.3% 99.3% 99.3% 99.3% 99.3%

60% 99.7% 99.7% 99.7% 99.7% 99.7% 99.7%

70% 99.8% 99.8% 99.8% 99.8% 99.8% 99.8%

80% 99.9% 99.9% 99.9% 99.9% 99.9% 99.9%

90% 99.9% 99.9% 99.9% 99.9% 99.9% 99.9%

 

250 Proteins 

 

Cut Off PISCES Leaf FIS NeighbourCull VSA BlastCuller 

10% 174.5% 183.4% 183.4% 183.2% 182.0% 183.0%

20% 204.9% 208.8% 208.7% 208.7% 207.9% 208.5%

30% 231.7% 232.4% 232.4% 232.4% 232.3% 232.4%

40% 241.2% 241.9% 241.9% 241.9% 241.8% 241.9%

50% 246.9% 246.9% 246.9% 246.9% 246.9% 246.9%

60% 248.3% 248.4% 248.4% 248.4% 248.4% 248.4%

70% 248.9% 249.0% 249.0% 249.0% 249.0% 249.0%

80% 249.2% 249.2% 249.2% 249.2% 249.2% 249.2%

90% 249.6% 249.6% 249.6% 249.6% 249.6% 249.6%
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500 Proteins 
 

Cut Off PISCES Leaf FIS NeighbourCull VSA BlastCuller 

10% 311.2% 329.8% 329.5% 329.1% 326.3% 328.6%

20% 371.9% 384.3% 384.1% 384.0% 380.4% 383.4%

30% 442.2% 445.1% 445.0% 445.0% 444.5% 444.8%

40% 472.3% 474.5% 474.5% 474.5% 474.1% 474.4%

50% 488.5% 489.0% 489.0% 489.0% 488.9% 489.0%

60% 493.4% 493.4% 493.4% 493.4% 493.4% 493.4%

70% 496.0% 496.0% 496.0% 496.0% 496.0% 496.0%

80% 497.2% 497.2% 497.2% 497.2% 497.2% 497.2%

90% 498.4% 498.4% 498.4% 498.4% 498.4% 498.4%

 

1000 Proteins 

 

Cut Off PISCES Leaf FIS NeighbourCull VSA BlastCuller 

10% 554.4% 591.1% 589.6% 589.1% 582.7% 587.9%

20% 668.0% 699.6% 698.7% 698.0% 688.2% 695.8%

30% 840.2% 849.2% 849.0% 849.0% 846.9% 848.6%

40% 917.4% 922.0% 921.9% 921.9% 920.6% 921.6%

50% 958.4% 960.3% 960.3% 960.3% 960.2% 960.3%

60% 976.6% 977.0% 977.0% 977.0% 977.0% 977.0%

70% 985.5% 985.6% 985.6% 985.6% 985.6% 985.6%

80% 990.4% 990.6% 990.6% 990.6% 990.6% 990.6%

90% 994.8% 994.9% 994.9% 994.9% 994.9% 994.9%
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2000 Proteins 

 

Cut Off PISCES Leaf FIS NeighbourCull VSA BlastCuller 

10% 969.1% 1040.0% 1036.9% 1036.1% 1022.9% 1033.4%

20% 1158.2% 1240.1% 1236.2% 1234.9% 1210.1% 1229.9%

30% 1544.7% 1575.5% 1574.8% 1574.6% 1566.2% 1573.0%

40% 1754.6% 1768.7% 1768.2% 1768.4% 1765.6% 1767.9%

50% 1864.1% 1870.1% 1870.1% 1870.1% 1869.3% 1870.1%

60% 1920.1% 1922.1% 1922.1% 1922.1% 1922.0% 1922.1%

70% 1947.9% 1948.9% 1948.9% 1948.9% 1948.8% 1948.9%

80% 1980.6% 1980.9% 1980.9% 1980.9% 1980.9% 1980.9%

90% 1980.6% 1981.0% 1981.0% 1981.0% 1981.0% 1981.0%

 

5000 Proteins 

 

Cut Off PISCES Leaf FIS NeighbourCull VSA BlastCuller 

10% 1940.6% 2107.7% 2098.1% 2096.6% 2063.9% 2090.5%

20% 2284.0% 2520.0% 2504.7% 2503.3% 2439.7% 2491.8%

30% 3293.0% 3423.1% 3419.2% 3417.7% 3380.8% 3410.7%

40% 3997.3% 4052.1% 4050.5% 4050.6% 4040.9% 4048.5%

50% 4385.4% 4417.8% 4417.8% 4417.5% 4413.0% 4416.9%

60% 4622.7% 4634.1% 4634.0% 4634.0% 4632.7% 4633.7%

70% 4756.5% 4762.5% 4762.5% 4762.5% 4762.2% 4762.4%

80% 4905.6% 4908.5% 4908.5% 4908.5% 4908.4% 4908.5%

90% 4905.8% 4908.7% 4908.7% 4908.6% 4908.6% 4908.7%
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Table 2. Comparisons to exact algorithm 

 

100 Protein Subsets 

 

 

Cut Off 

Exact 

Kept 

NeighbourCull 

Error 

FIS 

Error 

Leaf Er-

ror 

VSA 

Error 

BlastCuller 

Error 

GLP 

Error 

PISCES 

Error 

20% 90.2 0 0 0 0.1 0.1 0 0.5 

30% 95.7 0 0 0 0 0 0 0.1 

40% 98.1 0 0 0 0 0 0 0 

50% 99.2 0 0 0 0 0 0 0 

60% 99.6 0 0 0 0 0 0 0 

70% 99.7 0 0 0 0 0 0 0 

80% 99.8 0 0 0 0 0 0 0 

90% 99.9 0 0 0 0 0 0 0 
 

250 Protein Subsets 

 

 

Cut Off 

Exact 

Kept 

NeighbourCull 

Error 

FIS Error Leaf 

Error 

VSA Error BlastCuller 

Error 

GLP 

Error 

PISCES 

Error 

20% 209.71 0.04 0.04 0 0.86 0.14 0.04 3.75 

30% 232.64 0 0 0 0.11 0 0 0.79 

40% 242.21 0 0.04 0 0.07 0.04 0 0.57 

50% 247.00 0 0 0 0.04 0 0 0.07 

60% 248.25 0 0 0 0 0 0 0.04 

70% 248.82 0 0 0 0 0 0 0.04 

80% 249.04 0 0 0 0 0 0 0.04 

90 249.50 0 0 0 0 0 0 0.04 
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500 Protein Subsets 

 

Cut Off Exact 

Kept 

NeighbourCull 

Error 

FIS Error Leaf 

Error 

VSA 

Error 

BlastCuller 

Error 

GLP 

Error 

PISCES 

Error 

20% 385.34 0.3 0.3 0.07 4.0 1.00 4.7 11.5 

30% 445.9 0.2 0.1 0 0.6 0.4 0.2 2.7 

40% 476.1 0 0 0 0.4 0.07 0.7 2.3 

50% 489.9 0 0 0 0.07 0 0.3 0.3 

60% 494.0 0 0 0 0 0 0 0.03 

70% 496.2 0 0 0 0 0 0 0 

80% 497.3 0 0 0 0 0 0 0 

90% 498.4 0 0 0 0 0 0 0 

 

1000 Protein Subsets 

 

Cut Off Exact 

Kept 

NeighbourCull 

Error 

FIS Error Leaf 

Error 

VSA Error BlastCuller 

Error 

GLP 

Error 

PISCES 

Error 

20% 699.7 1.7 1.0 0.1 11.5 3.9 40.3 31.7 

30% 849.2 0.2 0.2 0 2.3 0.6 174 9.0 

40% 922.0 0.2 0.2 0.06 1.4 0.4 2.4 4.6 

50% 960.3 0.02 0 0 0.2 0.02 1.2 1.9 

60% 977.0 0 0 0 0 0 0 0.4 

70% 985.6 0 0 0 0 0 0 0.2 

80% 990.6 0 0 0 0 0 0 0.1 

90% 994.9 0 0 0 0 0 0 0.1 
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Table 3. Number of Proteins Kept from Human Proteome 

Cut Off PISCES Leaf FIS NeighbourCull VSA BlastCuller 

10% 5073 5636 5585 5600 5487 5578 

20% 5700 6643 6572 6580 6365 6541 

30% 9007 9856 9796 9800 9594 9762 

40% 12422 12843 12832 12829 12746 12811 

50% 14927 15169 15167 15164 15129 15154 

60% 16771 16887 16884 16886 16874 16884 

70% 17969 18036 18036 18036 18030 18033 

80% 18763 18801 18801 18801 18798 18801 

90% 19366 19389 19388 19389 19388 19388 
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NeighbourCull,
! The!NeighbourCull!algorithm!involves!repeatedly!removing!a!vertex!which!has!the!
highest!connectivity!(i.e.!the!most!neighbours),!but!is!minimally!connected!to!the!vertices!not!in!
its!neighbourhood.!An!outline!of!the!procedure!is!sketched!in!Algorithm!1.!First!the!set!of!
vertices!that!are!not!in!the!maximal!independent!set!is!initialised!(line!1).!Following!this,!the!
loop!(lines!2D14)!that!determines!which!vertices!to!exclude!from!the!maximal!independent!set!is!
entered.!The!first!step!is!to!find!those!vertices!that!are!remain!in!the!graph!and!still!have!
neighbours!(line!3).!If!there!are!no!vertices!with!neighbours,!and!hence!no!edges!in!the!protein!
similarity!graph,!a!maximal!independent!set!has!been!found!and!the!algorithm!can!exit!(lines!4!
and!5).!If!some!edges!remain,!then!we!find!those!vertices!that!have!the!most!neighbours!(line!
7).!If!there!is!only!a!single!vertex!that!has!the!maximum!number!of!neighbours,!it!is!marked!as!
not!being!in!the!maximal!independent!set!(lines!8D10).!However,!if!there!are!multiple!vertices!
with!the!maximum!number!of!neighbours!then!we!do!further!analysis!to!decide!which!one!to!
remove!(lines!12D14).!

! In!cases!where!more!than!one!vertex!has!maximal!degree,!the!one!to!remove!is!

determined!by!two!applications!of!the! !function.!We!compute!the!size!of!the!
extended&neighbourhood!!

!

and!remove!a!vertex!whose!extended!neighbourhood!is!smallest,!resolving!any!remaining!ties!
by!an!arbitrary!choice.!

1. !
2. While! !
3. !!!! !
4. !!!!If! !
5. !!!!!!!!Return! !
6. !!!!Else!
7. !!!!!!!! !!
8. !!!!!!!!If! !
9. !!!!!!!!!!!! !
10. !!!!!!!!!!!!<Update!the!adjacency!list!to!reflect!the!removal!of! >!
11. !!!!!!!!Else!
12. !!!!!!!!!!!!<Select! !such!that! !has!the!smallest!extended!neigbourhood>!
13. !!!!!!!!!!!! !



14. !!!!!!!!!!!!<Update!the!adjacency!list!to!reflect!the!removal!of! >!

Algorithm*1:*Pseudocode*for*the*NeighbourCull*algorithm*

!

Leaf*

The!Leaf!algorithm!works!by!identifying!cliques!in!the!graph!that!satisfy!the!criterion!of!

having!at!least!one!vertex!which!is!not!connected!to!any!vertex!outside!of!the!clique.!An!outline!

of!the!algorithm!can!be!seen!in!Algorithm!2.!First!the!set!of!vertices!that!are!not!in!the!maximal!

independent!set!is!initialised!(line!1).!Next!a!loop!is!entered!(lines!2D18),!which!is!only!exited!

once!there!are!no!edges!remaining!in!the!graph!(lines!4!and!5).!If!there!are!edges!remaining,!

then!the!next!step!is!to!select!a!vertex!to!add!to!the!independent!set,!or!one!to!remove!from!

graph.!First!the!variable! !is!initialised!(line!6).!This!is!the!size!of!the!neighbourhood!that!

all!vertices!in!the!clique!being!searched!for!must!possess.!A!loop!is!entered!to!search!for!

sequentially!larger!cliques!(lines!7D14).!If!a!clique!is!found!where!there!is!at!least!one!vertex! !in!

the!clique!that!does!not!share!any!edges!with!a!vertex!not!in!the!clique,!then! !is!to!be!added!

to!the!independent!set!being!formed!(lines!8D12).!If!no!clique!of!a!given!size!is!found,!then!the!

size!of!clique!being!searched!for!is!incremented!(lines!13!and!14).!If!the!loop!in!lines!7D14!

terminates!without!finding!a!clique,!then!the!NeighbourCull!method!is!used!to!determine!a!

vertex!to!delete!(lines!15D18).!

1. !
2. While! !

3. !!!! !
4. !!!!If! !

5. !!!!!!!!Return! !

6. !!!! !
7. !!!!While!!

8. !!!!!!!!If!there!is!a!clique! !of! !vertices!that!satisfies!the!criterion!for!Leaf!

9. !!!!!!!!!!!! !where! !

10. !!!!!!!!!!!! !
11. !!!!!!!!!!!!<Update!the!adjacency!list!to!reflect!the!removal!of!vertices!in! !that!are!not! >!
12. !!!!!!!!!!!!Exit!the!inner!while!loop!
13. !!!!!!!!Else!
14. !!!!!!!!!!!! !
15. !!!!If!!
16. !!!!!!!!Use!NeighbourCull!to!determine!the!vertex! !to!remove!

17. !!!!!!!! !
18. !!!!!!!!<Update!the!adjacency!list!to!reflect!the!removal!of! >!

Algorithm*2:*Pseudocode*for*the*Leaf*algorithm,*



FIS,
! The!third!new!algorithm!works!by!first!initialising!a!maximal!independent!set!in!a!greedy!
manner,!and!then!attempting!to!permute!this!maximal!independent!set!in!an!attempt!to!

increase!its!size.!An!outline!of!the!algorithm,!including!its!two!subDfunctions! !and!

,!can!be!seen!in!Algorithm!3.!The!algorithm’s!first!step!is!to!determine!the!initial!
vertex!from!which!the!maximal!independent!set!will!be!generated.!This!is!done!in!line!1,!and!is!
chosen!to!be!the!vertex!with!the!fewest!neighbours,!with!ties!broken!arbitrarily.!From!this!initial!
vertex!a!maximal!independent!set!is!generated!(line!3),!and!following!this!the!set!is!permuted!in!
an!attempt!to!increase!its!size!(line!4).!Once!the!set!has!been!permuted,!either!the!permuted!
independent!set!(line!6)!or!the!nonDpermuted!set!(line!8)!is!returned!based!on!which!contains!a!
greater!number!of!vertices.!

! The!majority!of!the!work!in!the!algorithm!is!done!in!the! !subDfunction.!This!
takes!as!its!arguments!the!current!independent!set,!and!the!set!of!all!the!vertices!in!the!graph.!
This!function!works!by!first!determining!if!there!are!any!vertices!that!are!not!adjacent!to!the!
current!independent!set!(line!11).!If!there!are!no!nonDadjacent!vertices,!then!the!current!
independent!set!is!returned!(line!12!and!13).!If!there!are!vertices!which!are!not!adjacent!to!the!
independent!set!being!formed,!then!the!independent!set!can!be!extended!by!adding!a!new!
vertex!(lines!15D17).!This!is!done!by!finding!the!nonDadjacent!vertex!which,!when!added!to!the!
independent!set,!causes!the!fewest!vertices!that!are!currently!not!adjacent!to!the!independent!
set!to!become!adjacent.!The!number!of!currently!nonDadjacent!vertices!that!will!become!

adjacent!if!a!vertex! !is!added!to!the!independent!set! !is!determined!to!be!

.!Therefore!the!vertex! !that!is!added!to!! !is!chosen!such!that!

,!where! !is!the!set!of!all!vertices!that!are!not!

adjacent!to! .!

1. <Select!the!node! !such!that! !is!minimal>!
2. !
3. !
4. !
5. If! !
6. !!!!Return! !
7. Else!
8. !!!!Return! !

:!

9. !
10. While! !
11. !!!! !
12. !!!!If! !
13. !!!!!!!!Return! !



14. !!!!For! !in! !
15. !!!!!!!!If!< !is!the!smallest!number!found!so!far>!
16. !!!!!!!!!!!! !
17. !!!! !

:!

18. ,! ,! !
19. While! !
20. !!!! !
21. !!!!For! !in! !
22. !!!!!!!! !
23. !!!!!!!!If! !
24. !!!!!!!!!!!! !:=! !
25. !!!!!!!!!!!! !
26. !!!!!!!!!!!!If! !
27. !!!!!!!!!!!!!!!! !
28. !!!!!!!!!!!!!!!! !
29. !!!!!!!!!!!!!!!! !
30. Return! !

Algorithm*3:*Pseudocode*for*the*FIS*algorithm*

The!function! !is!used!at!the!end!of!the!algorithm!to!see!if!the!size!of!the!
independent!set!generated!by!line!3!can!be!increased!by!making!small!alterations!to!the!vertices!
in!the!set.!The!vertices!that!are!not!in!the!independent!set!are!tested!one!at!a!time!to!see!how!

many!vertices!from!the!independent!set!they!are!adjacent!to!(lines!21D29).!If!a!vertex! that!is!

not!in!the!independent!set!is!adjacent!to!only!one!vertex! !that!is,!then! !and! !can!safely!be!
swapped!without!invalidating!the!properties!of!a!maximal!independent!set!(line!24).!The!new!

independent!set!resulting!from!this!swap!is!passed!to! !to!see!if!it!can!be!extended!by!

the!addition!of!any!nonDadjacent!vertices!(line!25).!If!the!set!returned!by! !contains!
more!vertices!than!the!largest!maximal!independent!set!previously!found!it!is!recorded!as!the!
current!best!maximal!independent!set!(lines!26D29).!

!

!
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,

Example,
! The!simplest!method!of!fully!understanding!the!new!algorithms!is!through!an!example!which!
demonstrates!the!differences!between!them.!The!graph!in!Figure!1!is!one!such!graph,!and!will!be!
used!to!illustrate!the!execution!of!the!Leaf,!NeighbourCull!and!FIS!algorithms.!For!all!three!
algorithms!the!alphabetic!names!of!the!vertices!will!be!used!to!arbitrarily!break!any!ties.!

!

Figure'1:'An'example'graph'to'demonstrate'the'differences'between'Leaf,'NeighbourCull'and'FIS.'

The!execution!of!the!Leaf!algorithm!on!the!graph!in!Figure!1!is!as!follows:!

1. Select!vertex!!!to!keep.!This!is!because!vertices!!!and!!!comprise!the!only!maximal!clique!of!
two!vertices.!Vertex!!!is!not!kept!because!it!is!connected!to!vertices!that!are!not!in!the!
clique!(Figure!2).!

2. There!are!no!more!maximal!cliques!of!two!vertices,!so!cliques!of!three!vertices!are!
examined.!

3. Select!vertex!!!to!keep.!There!are!three!maximal!cliques!of!three!vertices!({!,!,!},!
{!,!,!}!and!{!,!, !}),!all!of!which!contain!at!least!one!vertex!that!has!no!connection!to!a!
vertex!not!in!the!clique.!Clique!{!,!,!}!is!arbitrarily!chosen!as!the!one!to!keep!a!vertex!
from.!Vertex!!!is!chosen!arbitrarily!from!this!clique.!(Figure!2).!

4. There!are!no!maximal!cliques!of!two!vertices,!so!cliques!of!three!vertices!are!examined.!
5. Select!vertex!!!to!keep.!Clique!{!,!,!}!is!arbitrarily!chosen!as!the!maximal!3Lclique!to!keep!

a!vertex!from.!Vertex!!!is!the!only!vertex!in!the!clique!that!has!no!connections!to!vertices!
not!in!the!clique.!Therefore!vertex!!!is!kept.!(Figure!2).!

6. Keep!vertex!!!as!it!has!no!neighbours!(Figure!2).!
7. The!final!independent!set!is!{!,!,!, !}.!



!

Figure'2:'The'progress'of'execution'of'the'Leaf'algorithm'on'the'graph'seen'in'Figure'1.'Black'vertices'are'in'the'
independent'set'being'generated,'white'vertices'have'been'removed'and'grey'vertices'are'those'that'are'still'to'be'
decided'upon.'Dashed'edges'indicate'edges'that'have'been'removed'from'the'graph'due'to'a'vertex'being'removed.'

Each'graph'corresponds'to'the'results'of'one'the'execution'steps'of'the'Leaf'algorithm.'(a)'corresponds'to'step'1,'(b)'to'
step'3,'(c)'to'step'5,'(d)'to'step'6.'

The!execution!of!the!NeighbourCull!algorithm!on!the!graph!in!Figure!1!is!as!follows:!

1. Vertices!!,!,!,!!and!!!all!have!three!neighbours,!and!no!other!vertex!has!more,!so!we!
need!to!look!at!the!sizes!of!their!extended!neighbourhoods!to!choose!a!vertex!for!deletion.!
The!relevant!data!are!summarised!in!the!table!below!where,!in!the!column!headings,!!(!)!is!
an!abbreviation!for!!"#$ℎ!"#$ℎ!!" ! !and!# !(!) ∪ !(! ! ) !is!the!size!of!the!extended!
neighbourhood.!

Vertex!!! !(!)! !(! ! )! #!(!)! # !(!) ∪ !(! ! ) !
!! !,!,! ! !,!,!,!,! ! 3! 8!
!! !,!,! ! !,!,!,!,!, ! ! 3! 7!
!! !,!,! ! !,!,!,!,! ! 3! 6!
!! !,!, ! ! !,!,!,!, ! ! 3! 5!
!! !,!, ! ! !,!,!,!, ! ! 3! 5!

!
Vertices!!!and!!!have!the!smallest!extended!neighbourhoods,!and!so!vertex!!!is!arbitrarily!
chosen!to!be!removed!instead!of!!!(Figure!3).!

2. Vertices!!!and!!!now!have!the!most!neighbours!of!the!remaining!vertices,!3,!while!their!
extended!neighbourhoods!contain!7!and!6!vertices,!respectively.!!Thus!we!remove!vertex!!.!

3. Now!vertices!!,!!and!!!all!have!two!neighbours!apiece,!while!their!extended!
neighbourhoods!contain!either!4!(for!!!and!!)!or!5!(for!!)!vertices.!We!choose,!arbitrarily,!
to!remove!vertex!!.!

4. Vertex!!!will!be!removed!as!it!has!the!most!neighbours!(Figure!3).!
5. Vertices!!!and!!!both!have!the!most!neighbours.!Remove!vertex!!!arbitraily!(Figure!3).!
6. The!final!independent!set!is!{!,!,!, !}!(Figure!3).!



!

Figure'3:'The'progress'of'execution'of'the'NeighbourCull'algorithm'on'the'graph'seen'in'Figure'1.'Black'vertices'are'in'
the'independent'set'being'generated,'white'vertices'have'been'removed'and'grey'vertices'are'those'that'are'still'to'be'
decided'upon.'Dashed'edges'indicate'edges'that'have'been'removed'from'the'graph'due'to'a'vertex'being'removed.'

Each'graph'corresponds'to'the'results'of'one'the'execution'steps'of'the'NeighbourCull'algorithm.'(a)'corresponds'to'step'
2,'(b)'to'step'4,'(c)'to'step'6,'(d)'to'step'7,'(e)'to'step'8'and'(f)'to'step'9.'

The!execution!of!the!FIS!algorithm!on!the!graph!in!Figure!1!is!as!follows:!

1. The!initial!vertex!is!set!to!!!as!it!has!the!fewest!neighbours!(Figure!4).!
2. !"# = {!}!
3. Vertices!!,!,!,!!and!!!would!all!cause!the!fewest!new!vertices!to!become!adjacent!to!!"#.!

Vertex!!!is!added!arbitrarily!(Figure!4).!
4. Vertices!!!and!!!would!both!cause!the!fewest!new!vertices!to!become!adjacent!to!!"#.!

Vertex!!!is!added!arbitrarily!(Figure!4).!
5. Vertex!!!is!added!to!!"#!as!it!is!the!only!vertex!available!to!add!(Figure!4).!
6. !"#!is!{!,!,!, !}!after!the!function!!""#$"%&!completes.!
7. The!first!vertex!that!is!not!in!!"#,!and!is!only!adjacent!to!one!vertex!in!!"#,!is!!.!!!is!

swapped!with!!,!and!!""#$"%&!is!called!with!!"# = {!,!,!, !}!(Figure!4).!
8. No!additional!vertices!can!be!added.!
9. The!size!of!!"#!has!not!increased!so!!"#!"#!is!still! !,!,!, ! .!
10. The!next!vertex!that!is!not!in!!"#,!and!is!only!adjacent!to!one!vertex!in!!"#,!is!E.!!!is!

swapped!with!!,!and!!""#$"%&!is!called!with!!"# = {!,!,!, !}!(Figure!4).!
11. No!additional!vertices!can!be!added.!
12. The!size!of!!"#!has!not!increased!so!!"#$%&!is!still! !,!,!, ! .!



13. No!more!vertices!can!be!swapped!so!the!final!independent!set!is!{!,!,!, !}.!

!

Figure'4:'The'progress'of'execution'of'the'FIS'algorithm'on'the'graph'seen'in'Figure'1.'Black'vertices'are'in'the'
independent'set'being'generated,'white'vertices'are'the'vertices'adjacent'to'the'independent'set'and'grey'vertices'are'
those'that'are'still'to'be'decided'upon.'Each'graph'corresponds'to'the'results'of'one'the'execution'steps'of'the'FIS'

algorithm.'(a)'corresponds'to'step'1,'(b)'to'step'3,'(c)'to'step'4,'(d)'to'step'5,'(e)'to'step'7'and'(f)'to'step'10.'

!

!
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!

!

The!percentage!improvement!over!PISCES!shown!by!the!Leaf!and!GLP!algorithms.!Graph!(a)!is!for!the!
datasets!of!100!proteins,!(b)!for!the!datasets!of!250!proteins,!(c)!for!the!datasets!of!500!proteins,!(d)!
for!the!datasets!of!1000!proteins,!(e)!for!the!datasets!of!2000!proteins!and!(f)!for!the!datasets!of!
5000!proteins.!
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%!Maximum!
Sequence!
Identity!

Minimum!
Resolution!

Maximum!R6
Factor!

#Proteins!
from!PISCES!

#Proteins!
from!Leaf!

%!Improvement!

20! 1.6! 0.25! 1886! 2021! 7.2!
20! 1.8! 0.25! 2954! 3214! 8.8!
20! 2.0! 0.25! 4030! 4459! 10.6!
20! 2.2! 1.0! 4640! 5179! 11.6!
20! 2.5! 1.0! 5346! 5962! 11.5!
20! 3.0! 1.0! 5922! 6577! 11.1!
25! 1.6! 0.25! 2276! 2415! 6.1!
25! 1.8! 0.25! 3677! 3967! 7.9!
25! 2.0! 0.25! 5089! 5570! 9.5!
25! 2.2! 1.0! 5910! 6518! 10.3!
25! 2.5! 1.0! 6822! 7569! 10.9!
25! 3.0! 1.0! 7525! 8367! 11.2!
30! 1.6! 0.25! 2676! 2772! 3.6!
30! 1.8! 0.25! 4469! 4699! 5.1!
30! 2.0! 0.25! 6360! 6765! 6.4!
30! 2.2! 1.0! 7492! 7986! 6.6!
30! 2.5! 1.0! 8713! 9337! 7.2!
30! 3.0! 1.0! 9615! 10337! 7.5!
40! 1.6! 0.25! 3182! 3259! 2.4!
40! 1.8! 0.25! 5604! 5778! 3.1!
40! 2.0! 0.25! 8337! 8612! 3.3!
40! 2.2! 1.0! 10029! 10392! 3.6!
40! 2.5! 1.0! 11872! 12338! 3.9!
40! 3.0! 1.0! 13219! 13762! 4.1!
50! 1.6! 0.25! 3524! 3567! 1.2!
50! 1.8! 0.25! 6308! 6414! 1.7!
50! 2.0! 0.25! 9571! 9744! 1.8!
50! 2.2! 1.0! 11657! 11885! 2.0!
50! 2.5! 1.0! 13897! 14210! 2.3!
50! 3.0! 1.0! 15584! 15937! 2.3!
60! 1.6! 0.25! 3704! 3743! 1.1!
60! 1.8! 0.25! 6737! 6830! 1.4!
60! 2.0! 0.256! 10336! 10491! 1.5!
60! 2.2! 1.0! 12679! 12865! 1.5!
60! 2.5! 1.0! 15249! 15502! 1.7!
60! 3.0! 1.0! 17221! 17523! 1.8!
70! 1.6! 0.25! 3845! 3874! 0.8!
70! 1.8! 0.25! 7069! 7136! 0.9!
70! 2.0! 0.257! 10927! 11046! 1.1!



70! 2.2! 1.0! 13469! 13625! 1.2!
70! 2.5! 1.0! 16282! 16502! 1.4!
70! 3.0! 1.0! 18463! 18727! 1.4!
80! 1.6! 0.25! 3979! 4000! 0.5!
80! 1.8! 0.25! 7341! 7401! 0.8!
80! 2.0! 0.256! 11416! 11535! 1.0!
80! 2.2! 1.0! 14128! 14288! 1.1!
80! 2.5! 1.0! 17154! 17382! 1.3!
80! 3.0! 1.0! 19535! 19828! 1.5!
90! 1.6! 0.25! 4112! 4132! 0.5!
90! 1.8! 0.25! 7650! 7716! 0.9!
90! 2.0! 0.25! 12009! 12156! 1.2!
90! 2.2! 1.0! 14950! 15133! 1.2!
90! 2.5! 1.0! 18250! 18501! 1.4!
90! 3.0! 1.0! 20916! 21213! 1.4!

!

!

!


