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Abstract

Ever-increasing core counts create the need to
develop parallel algorithms that avoid closely-
coupled execution across all cores. In this paper
we present performance analysis of several par-
allel asynchronous implementations of Jacobi’s
method for solving systems of linear equations,
using MPI, SHMEM and OpenMP. In particu-

lar we have solved systems of over 4 billion un-
knowns using up to 32,768 processes on a Cray
XE6 supercomputer. We show that the pre-
cise implementation details of asynchronous al-
gorithms can strongly affect the resulting perfor-
mance and convergence behaviour of our solvers
in unexpected ways.
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1 Introduction

Modern high-performance computing systems
are typically composed of many thousands of
cores linked together by high bandwidth and
low latency interconnects. Over the coming
decade core counts will continue to grow as ef-
forts are made to reach Exaflop performance.
In order to continue to exploit these resources
efficiently, new software algorithms and imple-
mentations will be required that avoid tightly-
coupled synchronisation between participating
cores and that are resilient in the event of failure.

This paper investigates one such class of algo-
rithms. The solution of sets of linear equations
Ax = b, where A is a large, sparse n× n matrix
and x and b are vectors, lies at the heart of a
large number of scientific computing kernels, and
so efficient solution implementations are crucial.
Existing iterative techniques for solving such sys-
tems in parallel are typically synchronous, in
that all processors must exchange updated vec-
tor information at the end of every iteration,
and scalar reductions may be required by the
algorithm. This creates barriers beyond which
computation cannot proceed until all participat-
ing processors have reached that point, i.e. the
computation is globally sychronised at each iter-
ation. Such approaches are unlikely to scale to
millions of cores.

Instead, we are interested in developing asyn-
chronous techniques that avoid this blocking be-
haviour by permitting processors to operate on
whatever data they have, even if new data has
not yet arrived from other processors. To date
there has been work on both the theoretical
[3, 4, 7] and the practical [2, 5, 9] aspects of such
algorithms. To reason about these algorithms
we need to understand what drives the speed
of their convergence, but existing results merely

provide sufficient conditions for the algorithms
to converge, and do not help us to answer some
of questions arising in the use of asynchronous
techniques in large, tightly coupled parallel sys-
tems of relevance to Exascale computing. Here,
we look for insights by investigating the perfor-
mance of the algorithms experimentally.

Taking Jacobi’s method, one of the simplest it-
erative algorithms, we implement one traditional
sychronous and two asychronous variants, using
three parallel programming models - MPI [12],
SHMEM [8], and OpenMP [13]. We investigate
in detail the performance of these implementa-
tions at scale on a Cray XE6, and discuss some
counter-intuitive properties which are of great
interest when implementing such methods. Fi-
nally, we comment on the programmability or
ease of expression of asynchronous schemes in
each of the programming models.

2 Jacobi’s Method

Jacobi’s method for the system of linear equa-
tions Ax = b, where A is assumed to have
nonzero diagonal, computes the sequence of vec-
tors x(k), where

x
(k)
i =

1
aii

(
bi −

∑
j 6=i

aijx
(k−1)
j

)
, i = 1:n. (1)

The x
(k)
i , i = 1:n, are independent, which means

that vector element updates can be performed
in parallel. Jacobi’s method is also amenable
to an asynchronous parallel implementation in
which newly-computed vector updates are ex-
changed when they become available rather than
by all processors at the end of each iteration.
This asynchronous scheme is known to converge
if the spectral radius ρ(|M |) < 1 with M =
−D−1(L + U) where D,L,U are the diagonal
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and strictly lower and upper triangular parts of
A. In contrast, the synchronous version of Ja-
cobi’s method converges if ρ(M) < 1 [7].

3 Implementation

To investigate the convergence and performance
of Jacobi’s method, we have implemented three
variants of the algorithm - Synchronous Jacobi
(sync) and two Asychronous Jacobi (async and
racy). The sync algorithm falls into the SISC
(Synchronous Iterations Synchronous Commu-
nications) classification proposed by Bahi et al
[1] i.e., all processes carry out the same num-
ber of iterations in lock-step, and communica-
tion does not overlap computation, but takes
place in a block at the start of each iteration.
The async and racy algorithms are AIAC (Asyn-
chronous Iterations Asynchronous Communica-
tions), since processes proceed through the it-
erative algorithm without synchronisation, and
so may iterate at different rates depending on a
variety of factors (see Section 6.2). Communi-
cation may take place at each iteration, but is
overlapped with computation, and crucially, the
receiving process will continue iterating with the
data it has, incorporating new data as it is re-
ceived. In async we ensure that a process only
reads the most recently received complete set of
data from another process, i.e., for each element
x

(k)
i received from a particular process p, we en-

sure that all such xi read during a single iter-
ation were generated at the same iteration on
the sender. In racy this restriction is relaxed, al-
lowing processes to read elements xi potentially
from multiple different iterations. As is shown
in Section 5, this reduces communication over-
head, but relies on the atomic delivery of data
elements to the receiving process, so that every

element we read existed at some point in the past
on a remote process.

Instead of a general Jacobi solver with explicit
A matrix, we have chosen to solve the 3D diffu-
sion problem ∇2u = 0 using a 6-point stencil
over a 3D grid. This greatly simplified the im-
plementation, since there was no load-imbalance
or complex communication patterns needed, and
it allowed us to easily develop multiple versions
of our test code. In all cases, we have fixed the
grid size for each process at 503, and so as we
increase the number of participating processes
the global problem size is weak-scaled to match,
allowing much easier comparison of the relative
scalability of each communication scheme, since
the computational cost per iteration in each case
is identical. The boundary conditions for the
problem are set to zero, with the exception of a
circular region on the bottom of the global grid
defined by e−((0.5−x)2+(0.5−y)2), where the global
grid is 0 ≤ x, y, z ≤ 1. Physically, this could be
thought of as a region of concentrated pollutant
entering a volume of liquid or gas, and we solve
for the steady state solution as the pollution dif-
fuses over the region. The interior of the grid is
initialised to zero at the start of the iteration,
and convergence is declared when the `2-norm
of the residual (normalised by the source) is less
than 10−4. In practice a smaller error tolerance
might be chosen to stop the calculation, but this
allows us to clearly see trends in convergence
without the calculation taking excessively long.
For our system, the iteration matrix M ≥ 0 so
ρ(|M |) = ρ(M). The spectral radius was found
to be strictly less than one, so both synchronous
and asynchronous Jacobi’s algorithm are guar-
anteed to converge.
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3.1 MPI

MPI is perhaps the most widely used program-
ming model for HPC today, and the de-facto
standard for implementing distributed memory
applications. The MPI standard [12] contains
both two-sided (sender and receiver cooper-
ate to pass messages), and single-sided (sender
puts data directly into the receiver’s address
space without explicit cooperation) communica-
tion calls. However, as single-sided MPI usually
gives poor performance [11], we choose to use
only two-sided and collective communication -
representing the typical programming model of
parallel HPC applications today.

In common with many grid-based applica-
tions, when implemented using a distributed
memory model a ‘halo swap’ operation is re-
quired, since the update of a local grid point
requires the data from each of the 6 neighbour-
ing points in 3D. If a point lies on the bound-
ary of a process’ local grid, then data is required
from a neighbouring process. To achieve this,
each process stores a single-element ‘halo’ sur-
rounding its own local grid, and this is updated
with new data from the neighbouring processes’
boundary regions at each iteration (in the syn-
chronous case), and vice versa, hence ‘swap’.

The overall structure of the program is shown
in Figure 1, which is common between all three
variants of the algorithm. However, the imple-
mentation of the halo swap and the global resid-
ual calculation vary as follows:

3.1.1 sync

Halo swaps are performed using MPI_Issend and
MPI_Irecv followed by a single MPI_Waitall for
all the sends and receives. Once all halo swap
communication has completed, a process may

proceed. Global summation of the residual is
done every 100 iterations via MPI_Allreduce
which is a blocking collective operation. In
this implementation, all processes are synchro-
nised by communication, and therefore proceed
in lockstep.

3.1.2 async

This implementation allows multiple halo swaps
to be ‘in flight’ at any one time (up to R between
each pair of processes). This is done by means of
a circular buffer storing MPI_Requests. When a
process wishes to send halo data it uses up one
of the R MPI requests and sends the halo data
to a corresponding receive buffer on the neigh-
bouring process. If all R MPI requests are ac-
tive (i.e., messages have been sent but not yet
received) it will simply skip the halo send for
that iteration and carry on with the computa-
tion, until one or more of the outstanding sends
has completed. We chose R = 100 for initial
experiments and consider the effects of different
values in Section 6.3. On the receiving side, a
process will check for arrival of messages and, if
new data has arrived, copy the newest data from
the receive buffer into the halo cells of its u ar-
ray (discarding any older data which may also
have arrived). If no new data was received dur-
ing that iteration the calculation continues using
whatever data was already in the halos. By us-
ing multiple receive buffers (one for each message
in-flight) we ensure that the data in the u array
halos on each process is a consistent image of
halo data that was sent at some iteration in the
past by the neighbouring process.

In addition, since non-blocking collectives do
not exist in the current MPI standard (although
they have been proposed for MPI 3) we also
replace the blocking reduction with an asyn-
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do

swap a one-element-thick halo with each neighbouring process

every 100 steps

calculate local residual

sum global residual

if global residual < 10^-4 then stop

for all local points

u_new(i,j,k) = 1/6*(u(i+1,j,k)+u(i-1,j,k)+u(i,j+1,k)+u(i,j-1,k)+u(i,j,k+1)+u(i,j,k-1))

for all local points

u(i,j,k) = u_new(i,j,k)

end do

Figure 1: Pseudocode of parallel Synchronous Jacobi using MPI or SHMEM

chronous binary-tree based scheme, where each
process calculates its local residual and inputs
this value into the reduction tree. These lo-
cal contributions are summed and sent on up
the tree until reaching the root, at which point
the global residual is broadcast (asynchronously)
down the same reduction tree. Since the reduc-
tion takes place over a number of iterations (the
minimum number being 2 log2 p), as soon as a
process receives the global residual it immedi-
ately starts another reduction. In fact, even on
32768 cores (the largest run size tested), this
asynchronous reduction took only around 50 it-
erations to complete. Compared with the syn-
chronous reduction (every 100 iterations), this
gives the asynchronous implementations a slight
advantage in potentially being able to terminate
sooner after convergence is reached. This could
of course also be achieved in the synchronous
case, but at a higher communication cost.

One side-effect of the asynchronous reduction
is that by the time processes receive a value for
the global residual indicating that convergence
is reached, they will have performed some num-

ber of further iterations. Since convergence in
the asynchronous case is not necessarily mono-
tonic (see Section 6.2), it is possible that the cal-
culation may stop in an unconverged state (al-
though we did not observe this in practice in
any of our tests). In addition, since the residual
is calculated piecewise locally, with respect to
current halo data, rather than the data instan-
taneously on a neighbouring process, the con-
verged solution may have discontinuities along
process’ grid boundaries. To overcome this we
propose that on reaching asychronous conver-
gence a small number of synchronous iterations
could then be performed to guarantee true global
convergence, but we have not yet implemented
this extension to the algorithm.

3.1.3 racy

A potential performance optimisation is that in-
stead of having R individual buffers to receive
halo data, we have a single buffer to which all
in-flight messages are sent. This introduces a
deliberate race condition in that as data is read
out of the buffer into the u array, other messages
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may be arriving simultaneously, depending on
the operation of the MPI library. In this case,
assuming atomic access to individual data ele-
ments (in this case double-precision floats), we
are no longer guaranteed that we have a consis-
tent set of halo data from some iteration in the
past, but in general will have some combination
of data from several iterations. It is hoped that
this reduces the amount of memory overhead
(and cache space) needed for multiple buffers,
without harming convergence in practice. If ac-
cess to individual elements is not atomic (e.g. in
the case of complex numbers - a pair of floats -
or more complex data structures), such a scheme
would not be appropriate as we might read an
element which is incorrect, composed of partial
data from multiple iterations.

3.2 SHMEM

As a second programming model for evalua-
tion, we chose SHMEM as a representative of
the Partitioned Global Address Space (PGAS)
paradigm. Each process has its own local ad-
dress space, which allows SHMEM codes to run
on massively parallel distributed memory ma-
chines, but can directly access memory locations
in remote processes’ memory spaces via single-
sided API calls. There are many SHMEM im-
plementations available and effort is ongoing to
standardise these [6]. In our case we use Cray’s
SHMEM library which is available on the Cray
XT/XE series. Conceptually, the single-sided
nature of SHMEM should map well to our asyn-
chronous implementation of Jacobi’s algorithm,
and since on the Cray XE remote memory ac-
cess (RMA) is supported directly by the network
hardware, we should expect good performance.

3.2.1 sync

We implement synchronous Jacobi with
SHMEM following the same structure as
the MPI implementation (Figure 1). How-
ever, whereas we use the implicit pair-wise
synchronisation of MPI_Issend for the MPI
implementation, there is no direct equivalent
available in SHMEM, only a global barrier
(SHMEM_barrier_all), which does not scale
well to large numbers of processes. To achieve
pair-wise sychronisation in SHMEM we use the
following idioms. On the sending side:

call shmem_double_put(remote_buf, ...)

call shmem_fence()

local_flag = 1

call shmem_integer_put(remote_flag, 1, ...)

...

call shmem_wait_until(local_flag, &

SHMEM_CMP_EQ, 0)

And on the receiver:

call shmem_wait_until(remote_flag, &

SHMEM_CMP_EQ, 1)

read data from buffer

remote_flag = 0

call shmem_integer_put(local_flag, 0, ...)

In this way the sender cannot progress from
the halo swap until the receiving process has
acknowledged receipt of the data. The re-
ceiver does not read the receive buffer until the
data is guaranteed to have arrived since the
shmem_fence() call ensures the flag is not set
until the entire data is visible to the receiving
process.

The global reduction is almost identical to
the MPI implementation, using the routine
shmem_real8_sum_to_all() in place of the
MPI_Allreduce.
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3.2.2 async

Implementing the asynchronous variant in
SHMEM has similar difficulties to sychronous
Jacobi. However, in this case, instead of wait-
ing for a single flag to be set before reading the
buffer, here the process tests the next flag in a
circular buffer of R flags, and if it is set, reads
the corresponding receive buffer, before notifying
the receiver that the buffer has been read and
can be reused. The asynchronous reduction is
performed using a binary tree, exactly as for the
MPI implementation, but using SHMEM point-
to-point synchronisation via the put-fence-put
method.

3.2.3 racy

This variant is very straightforward to imple-
ment using SHMEM. At each iteration, a pro-
cess initiates a shmem_put() operation to send
its halo to the appropriate neighbour processes,
and carries on. The receiver reads data from its
receive buffer every iteration without any check
to see if the data is new or any attempt to ensure
the buffer contains data from a single iteration.
We recognise that this is not a direct equivalent
to the MPI racy code (as is the case for sync and
async) since there is no upper limit on the num-
ber of messages in flight, but it seems to be the
most natural way of expressing an asynchronous
algorithm using SHMEM.

3.3 OpenMP

As one of the objectives of this work is to com-
pare the ease with which asynchronous algo-
rithms can be expressed in a variety of pro-
gramming models, we chose to also implement
the three variants of Jacobi’s method using
OpenMP. As a shared memory programming

model, OpenMP is limited in scalability to the
size of a shared-memory node (in our case, 32
cores), but direct access to shared memory with-
out API calls (such as SHMEM), or explicit mes-
sage passing (MPI), should map well to asyn-
chronous algorithms. Hybrid programming us-
ing MPI between nodes and OpenMP within a
node is also becoming a popular programming
model. Because of the relatively small number
of cores we cannot draw direct performance com-
parisons with the other two implementations so
we chose to use a 1-D domain decomposition us-
ing OpenMP parallel loops rather than an ex-
plicit 3D domain decomposition. The global do-
main increases in the z-dimension with the num-
ber of threads to maintain weak scaling. Be-
cause of the shared memory nature of OpenMP,
the explicit halo swap step is unecessary, and is
replaced with direct access to the neighbouring
cells during the calculation loops (see Figure 2).

3.3.1 sync

In the synchronous case the global residual
is simply calculated using an OpenMP reduc-
tion clause, formed by the summation of each
thread’s local residual. Once this is done, a sin-
gle thread normalises the shared residual value,
and all threads test to see if convergence has
been obtained. The two calculation loops are
done in separate OpenMP parallel loops, with
an implicit synchronisation point at the end of
the first loop, ensuring that each process reads
consistent data from the neighbouring threads’
u array, while unew is being updated.

3.3.2 async

In this variant, we allow each thread to pro-
ceed though its iterations without global syn-
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do

calculate local residual

sum global residual

if global residual < 10^-4 then stop

for all local points

u_new(i,j,k) = 1/6*(u(i+1,j,k)+u(i-1,j,k)+u(i,j+1,k)+u(i,j-1,k)+u(i,j,k+1)+u(i,j,k-1))

for all local points

u(i,j,k) = u_new(i,j,k)

end do

Figure 2: Pseudocode of parallel Synchronous Jacobi using OpenMP

chronisation. To avoid a race condition, when-
ever a thread reads neighbouring threads’ data,
the neighbouring thread must not modify that
data concurrenently. In addition, we ensure (as
per the MPI and SHMEM implementations) that
when we read boundary cells from a neighbour-
ing thread we read a complete set of values from
a single iteration. To do this, we create OpenMP
lock variables associated which each inter-thread
boundary, and the lock is taken while a thread
reads or writes to data at the boundary of its
domain. To allow threads to progress asyn-
chronously, we split the loops over local points
into three parts:

call omp_set_lock(ithread)

loop over lower boundary plane

call omp_unset_lock(ithread)

loop over interior points

call omp_set_lock(ithread+1)

loop over upper boundary plane

call omp_unset_lock(ithread+1)

Each of these parts can proceed independently,
and with 50 planes of data per thread, we ex-
pect lock collisions to be infrequent. This model

is used for both calculating local residuals and
updating the u and unew arrays.

To assemble a global residual asynchronously,
instead of summing local contributions, we keep
a running global (squared) residual value in a
shared variable, and each thread calculates the
difference in its local residual since the last it-
eration, and subtracts this difference from the
shared global residual, protecting access via an
OpenMP critical region. To avoid a race condi-
tion during the convergence test, the thread also
takes a private copy of the global residual in-
side the same critical region. This critical region
could be replaced by an atomic operation in fu-
ture versions of OpenMP which support atomic
add-and-capture. If the local copy of the global
residual is seen to be less than the termination
criteria, then a shared convergence flag is set to
true. Any thread which subsequently sees the
flag set to true exits the calculation loop.

3.3.3 racy

As for SHMEM, allowing deliberate race condi-
tions simplifies the code somewhat. In this case
we can simply remove the locks present in the
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async implementation. We can also remove the
critical sections around the global residual calcu-
lation - simply an OpenMP atomic subtraction
is enough to ensure no deltas are ‘lost’. Here we
are again relying on hardware atomicity of reads
and writes to individual data elements (double
precision floats) to ensure that we always read
valid data from a particular iteration on a per-
element basis.

4 Programability

One of the aims of our study was to charac-
terise the ease with which one can express asyn-
chronous algorithms in each of the programming
models, and secondly to understand how easy it
is to convert an existing synchronous implemen-
tation into an asynchronous one.

MPI was found to be easy to work with, due
in part to the authors’ existing familiarity with
it, as well as widely available documentation and
published standard. While the synchronous al-
gorithms are very easy to implement in MPI
as the two-sided point-to-point semantics auto-
matically provide the pairwise synchronisation
needed, converting to an asynchronous imple-
mentation is challenging. Due to all asynchrony
being achieved by the use of ‘non-blocking’ com-
munications such as MPI_Issend, a great deal
of extra book-keeping code has to be written
to ensure all outstanding message handles are
eventually completed, via corresponding calls to
MPI_Wait. In addition, collective communica-
tions must be replaced by hand-written non-
blocking alternatives - in our implementation,
over 60 lines of code in place of a single call to
MPI_Allreduce. The addition of non-blocking
collective operations has been proposed [10], so
there is hope that these may appear in a future

version of the MPI standard. In addition, ter-
mination of the asynchronous algorithm is prob-
lematic, since when processes reach convergence
there may be sends outstanding for which no
matching receive will ever by posted and vice-
versa. MPI provides a subroutine MPI_Cancel
which can be used to clean up any such outstand-
ing communications, but in practice cancelling of
outstanding sends (specified in MPI-2.2) was not
supported by the Cray MPT implementation. It
would be possible - and necessary for use in a
real code - to have processes exchange data on
the number of outstanding sends remaining, and
post matching MPI_Recv calls to terminate in a
clean manner.

By contrast, SHMEM was found to be much
more challenging to work with, mostly due
to lack of a standard, or good documenta-
tion (only man pages, which by nature miss
the bigger picture of how to use the API as a
whole). The interface is much simpler than MPI,
but lacks point-to-point synchronisation, making
synchronous Jacobi difficult to implement with-
out using a global barrier. We had to imple-
ment explicit acknowledgement of message re-
ceipt, something which MPI handles within the
library. Our async implementation was simi-
larly complicated by the need for the sender to
know when a message had been delivered in or-
der to target future shmem_put operations at the
correct buffers. However, one advantage of the
single-sided model in SHMEM is that there is
no need to ‘complete’ non-blocking operations
as per MPI - by default remote writes complete
asynchronously to the caller, and any resources
allocated to process the message are freed au-
tomatically by SHMEM. This made the racy
version very simple to implement, as no book-
keeping code is required. SHMEM also suffered
the same disadvantage as MPI with respect to
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non-blocking collective operations. Perhaps due
to the fact that SHMEM is less used and less
tested than MPI, we found a bug where remote
writes to an area of memory being concurrently
read by the remote process would sometimes
never be seen at the remote side (despite fur-
ther writes completing beyond a shmem_fence,
which guarantees visibility of prior writes). This
was observed when using the PGI compiler, but
since there is no standard that defines a mem-
ory model, it is impossible to say what the ‘cor-
rect’ behaviour should be. We switched to using
the gfortran compiler, which behaved as we ex-
pected.

Finally, OpenMP was much easier for im-
plementing both synchronous and asynchronous
variants. The directives-based approach resulted
in relatively little code change over a serial imple-
mentation, and even when locking was required
for async this was not as difficult as the buffering
schemes implemented in MPI and SHMEM. One
caveat for OpenMP is that the default static
loop schedules map well onto a 1-D domain de-
composition, since we simply divide up the grid
into equal chunks, one per thread. Implementing
a 2-D or 3-D decomposition would be possible
but would require more explicit control of the
loop bounds, somewhat reducing the elegance of
the OpenMP implementation.

5 Performance

To investigate the performance of our implemen-
tations of Jacobi’s algorithm, we used HECToR,
a Cray XE6 supercomputer. HECToR is com-
posed of 2816 compute nodes, each with two 16-
core AMD Opteron 2.3 GHz processors and 32
GB of memory. A 3D torus interconnect ex-
ists between nodes, which are connected to it

via Cray’s Gemini router chip. We performed
runs using 32 cores (4 million unknowns) up to a
maximum of 32768 cores (4.1 billion unknowns)
in powers of two. We do not report any runs
on fewer than 32 cores, since with a partially-
occupied node, each core has access to a greater
fraction of the shared memory bandwidth on a
node, and thus the performance of the grid oper-
ations increases, rendering weak-scaling compar-
ison impossible. To limit the amount of compu-
tational times used, we performed only a single
run for each core count and variant of the code,
but by testing a wide range of core counts we can
look at performance trends without variability in
individual results being a concern. A sample of
results for MPI (Table 1), SHMEM (Table 2),
and OpenMP (Table 3) are shown below:

Processes Iterations Execution
Version Min. Mean Max. Time (s)

32
sync 9100 28.4
async 10737 11245 12231 33.8
racy 8952 9307 10140 27.7
512
sync 37500 132.1
async 36861 44776 51198 146.9
racy 32377 38763 44623 126.4
8912
sync 68500 247.1
async 60612 82381 96700 272.5
racy 61453 77952 90099 264.9
32768
sync 112000 405.2
async 101053 136337 165366 454.4
racy 86814 118967 144902 419.4

Table 1: HECToR MPI results summary

Firstly it is worth stating that our results are
in broad agreement with previous work ([5]),
that the asynchronous algorithms perform bet-
ter than synchronous in some cases, and worse
in others.
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Processes Iterations Execution
Version Min. Mean Max. Time (s)

32
sync 9100 27.6
async 8724 9136 10784 26.7
racy 8496 9088 10725 26.3
512
sync 37500 130.1
async 32356 38285 43178 117.9
racy 32377 38416 46291 117.9
8912
sync 68500 251.5
async 32612 67417 77382 215.5
racy 47231 70087 80620 219.3
32768
sync 112000 491.1
async 11265 229266 331664 858.5
racy 10173 231919 314208 817.6

Table 2: HECToR SHMEM results summary

Threads Iterations Execution
Version Min. Mean Max. Time (s)

32
sync 3487 11.1
async 3383 3456 3530 7.4
racy 3402 3475 3524 7.5

Table 3: HECToR OpenMP results summary

More specifically, we see that for MPI, the
async implementation is significantly worse than
racy in all cases, so much so that it is also slower
than sync. Racy was found to outperform the
synchronous version for all but the largest runs.

For SHMEM, there is little difference be-
tween the two asynchronous implementations,
and both are consistently faster than the syn-
chronous code, except for the 32,768 core runs,
where the performance drops off dramatically
(see Section 5.1 for further discussion). Com-
paring MPI with SHMEM, we find that notwith-
standing the performance problems at very high
core counts, SHMEM is always somewhat faster
than the equivalent MPI implementation.

As mentioned earlier, we cannot directly com-
pare performance between OpenMP and the
other two programming models, since the prob-
lem being solved is slightly different. However, it
is interesting to note here that the asynchronous
variants are consistently and significantly (63%)
faster than the synchronous case.

The relative performance of each implementa-
tion is a function of two variables: the iteration
rate - how much overhead does the communica-
tion scheme cause, and the number of iterations -
how an asynchronous scheme affects progress to-
wards convergence at each iteration. These fac-
tors are discussed in the following section.

5.1 Analysis

To understand the scalability of each implemen-
tation, we compared the mean iteration rate
against the number of processes (Figure 3). This
shows clearly that both synchronous variants it-
erate more slowly than either async or racy.
The MPI asynchronous codes have similar per-
formance except at very high process counts, and
the asynchronous SHMEM implementations are
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fastest of all, indicating that where an efficient
implementation exists (such as on the Cray),
SHMEM can provide lower overhead communi-
cations than MPI.
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Figure 3: Comparing iteration rates of MPI and
SHMEM implementations

To understand what drives these differences,
we performed detailed profiling of our codes
using the Cray Performance Analysis Toolkit
(CrayPAT). Figure 4 shows the mean time per
iteration taken by the various steps of the algo-
rithm, as well as the associated communications
cost. Very similar data was also seen for the
SHMEM implementation, but is omitted for the
sake of brevity. By comparing the three graphs,
we see that the time taken for grid operations is
essentially constant as the number of processes
increases. In the synchronous case, however,
there is a much larger amount of time spent
in communication - principally MPI_Waitall -
due to the halo swap communication. Surpris-
ingly, the global sum for the convergence check is
not a significant contribution, although on 8192
cores, the synchronisation cost of this operation
starts to show up in the profile. We note that
although most of the communication (excepting
the small contribution from the global sum) is

nearest-neighbour only, the cost of this does in
fact grow with the number of processes, although
we might expect it to be constant. The reason
for this is due to the mapping of our 3D grid of
processes onto the physical interconnect topol-
ogy. By default we simply assign the first 32
processes (which are assigned to the 3D grid in
a row-major order) to the first node. This means
that in general ‘neighbours’ on the 3D grid are
likely to only be close to each other in the ma-
chine in one dimension, and the others may be
significantly further away, depending on which
nodes are allocated to the job. This effect in-
creases with the number of processes. Investiga-
tion of more efficient mappings of the 3D grid
onto the network topology (e.g. as discussed in
[14]) might well increase overall performance for
both synchronous and asynchronous implemen-
tations.

We have already shown that the SHMEM im-
plementations suffer from very poor performance
at high processor counts. This is illustated in
Figure 5, where we can clearly see that the key
cause of this is a sudden jump in the cost of
shmem_put operations. The other components
(grid operations, other SHMEM calls) are con-
stant. Closer examination of the profiling data
indicates that a small relatively small number of
processes are suffering from very poor communi-
cations performance - in fact they are spending
up to 3.2 times longer than average in shmem_put
despite only making one-sixth as many calls as
an average process. We have been unable to de-
termine the cause of this behaviour, but have
observed that it affects groups of 32 processes
on the same node, and that these are outliers
in terms of the number of iterations completed
- since the communication cost is so large, these
processes complete very few iterations. The vast
majority of processes complete a number of it-
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Figure 4: Profiles showing time per iteration for
MPI on HECToR.

erations more tightly clustered around the mean
(see Figure 7(b)).
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Figure 5: Profile of SHMEM async at varying
process counts.

The other key factor affecting performance is
the total number of iterations needed to con-
verge. In the synchronous case, all processes
execute the same number of iterations, but in
the AIAC model, processes are free to iterate at
different rates, so in Figure 6 we show only the
mean number of iterations across all processes
at the point where convergence is reached. How-
ever, as shown in Tables 1, 2 and 3, the max-
imum and minimum iteration counts are usu-
ally within 20% of the mean, and can be even
higher in the case of SHMEM on 32,768 pro-
cesses. The increasing trend in the graph is due
to the fact that as we increase the number of
processes, the problem size is also increased to
match, thus it takes longer to reach convergence
for larger problem sizes. The ‘stepped’ patternin
Figure 6 is due to the fact that this increase
is done by first increasing the problem size in
the x dimension, then the y and z dimensions at
each doubling. Since the problem is anisotropic
(the non-convergence is centred on the bottom z
plane), some changes cause very little increase in
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the amount of work needed to reach convergence.
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Figure 6: Comparing mean number of iterations
to convergence in MPI and SHMEM implemen-
tations

All the asynchronous implementations take
slightly more iterations to converge than than
the synchronous implementation - as might be
expected, since iterations working with out-of-
date halo data will make less progress than if the
data was current - but this effect is much more
pronounced in the case of MPI. This appears to
be as a result of the timing of MPI message ar-
rival at the receiver (see Section 6.2). The mean
iteration counts of SHMEM async and racy are
seen to increase rapidly at high core counts as
a result of the varying node performance men-
tioned earlier.

We plotted histograms of the number of iter-
ations completed by each process for both MPI
(Figure 7(a)) and SHMEM (Figure 7(b)), and
observed some interesting behaviour. In both
cases, the distribution of iterations has two main
peaks - most of the processes making up the
lower peak come from the first 8 cores on each
node, with the remaining 24 cores performing
more iterations and making up the higher peak.
This is due to the physical configuration of the
compute node, where the connection to the net-

work is attached directly to the first NUMA node
(first 8 cores). As a result, message traffic to
and from all the other cores on the node are
routed over HyperTransport links through this
NUMA node and onto the network, resulting
in those nodes processing each iteration slightly
slower. The main difference between MPI and
SHMEM results, however, is the appearance of
a ‘long tail’ of processes doing very few itera-
tions in the SHMEM case. These are the same
processes mentioned above that suffer very poor
communication performance. The root cause of
this is currently unknown, but effectively negates
the performance benefits of using SHMEM seen
at lower core counts when running at very large
scale.

6 Discussion

6.1 Performance Defects

One of the reasons asynchronous algorithms in
general are of interest for future Exascale HPC
applications is that the loose coupling between
processes increases the scope for fault-tolerance.
While we have not implemented any fault toler-
ance that would handle hardware faults, or the
loss of a node, we have observed two cases of
performance faults which our asynchronous al-
gorithms were impervious to.

In the first case, we initially observed the per-
formance of our async and racy codes to be ap-
proximately twice as fast as the sync version
when running at large scale e.g. on 32768 cores.
On closer investigation of profiling data from the
sync runs, it was determined that there was one
single CPU core in the machine which was run-
ning much slower (by about a factor of two) than
all other cores. The node reported no memory or
hardware faults that could be observed by sys-
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Figure 7: Iteration histograms for MPI and
SHMEM async on 32768 processes

tems administration, and so was almost unde-
tectable except by per-process profiling. Criti-
cally, the synchronous Jacobi method forces all
processes to run at the same speed as this one
slowest process, while the asynchronous variants
continued to iterate as normal, with the single
slow process lagging behind. This did not how-
ever affect the overall convergence by any noti-
cable amount.

Secondly, when HECToR was upgraded from
AMD Magny-cours to AMD Interlagos proces-
sors (HECToR phase 2b - phase 3), we observed
a curious convergence profile which affected only
the synchronous Jacobi variants (see Figure 8).
The figure shows two clear regimes. In the first,
the slower convergence rate is caused by the fact
that each iteration rate is much lower than ex-
pected (up to approx 3.5 times), before suddenly
switching to the normal speed, which carries on
until termination. This initial period can slow
down the synchronous algorithm by up around
50% (for Synchronous MPI on 32768 cores) but
is noticable when using at least 512 cores. The
duration of this slow-down is governed by the
rate at which non-zero values propagate across
the global domain. As long as exact zeros re-
main, due to the synchronous nature of the algo-
rithm, all processes proceed at a slower rate. Use
of hardware performance counters revealed that
during this period, processes do more FLOPs per
memory load than during the normal regime. We
hypothesise that when exact zeros are involved
in the calculation, this inhibits the use of vector-
ization (e.g. AVX). It is not clear whether this
is due to the different CPU or the compiler since
both were changed during the upgrade. How-
ever, it is important to note that this effect does
not affect the asynchronous codes in the same
way. Due to the construction of the problem, the
processes which contribute most to the residual
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are close to the source of the non-zero values,
and so quickly begin iterating at a higher rate.
Processes further away retain exact zeros (and
run slower) for longer, but as there is no syn-
chronisation between processes, they do not slow
down the others, and make no noticable differ-
ence to the global rate of convergence. For the
sake of fair comparison we modified the system
by adding 1 to the boundary conditions and ini-
tialising the grid to 1. Thus the same amount of
work has to be done to converge, but the effect
of exact zeros is avoided.
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Figure 8: Convergence of Synchronous MPI on
1024 cores showing effect of exact zeros as initial
conditions

Both of these performance effects are subtle,
unexpected, and may have gone unobserved in
a real application code. As larger systems are
solved regularly in the future it becomes increas-
ingly likely that software or hardware effects
such as the above might cause some processes
to run slower, and global synchronisation need-
lessly slows down the remaining processes. We
argue that this is further justification for use of
asychronous algorithms in practice.

6.2 Convergence of asynchronous Ja-
cobi

As discussed in Sections 2 and 3, for our systems
with ρ(|M |) = ρ(M) < 1, both synchronous
and asychronous variants of Jacobi’s method are
guaranteed to converge, but we are interested
in how the use of asynchrony affects the conver-
gence behaviour. From our tests we observe that
though all of our implementations converged
with broadly the same profile, closer examina-
tion revealed that while in the synchronous im-
plementations convergence was monotonic, this
is not the case for the asynchronous implementa-
tions (Figure 9). While halo data is sent at each
iteration (subject to the limit of 100 outstanding
messages) it turns out that messages are not re-
ceived in such a regular manner, but rather tend
to arrive in batches. For both SHMEM async
and racy, and MPI racy we see small batches of
around 5 messages arriving in the same iteration
but with MPI async much larger batches of up
to 60 messages arrive at once. Because data ar-
riving on a process is out-of-date with respect to
its current iteration, it increases the local con-
tribution to the residual, which then decreases
again as further local iterations are performed
until more halo data arrives. This effect is clearly
much more visible in the convergence profile of
MPI async, but can also be seen in the other
cases where the batching of messages is a much
smaller effect.

6.3 Choice of parameters

As mentioned in Section 3.1 the choice of R =
100 for the maximum number of messages out-
standing was somewhat arbitrary - chosen to be
large enough that there is enough buffering to
allow processes to be able to send messages at
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Figure 9: Detail of convergence of 1024 core runs
on HECToR

each iteration (as per the synchronous case), but
without any associated synchronisation. If in the
worst case we run out of buffers, computation
continues regardless, until the data has arrived
and the receiver has freed up buffer space. We
can see from the profiling data (Figure 4) that
the amount of time taken to complete the grid
operations is higher for async and racy where
multiple messages are allowed in-flight. This is
due to poorer performance of the memory hi-
erarchy (shown by a 25% decrease in Transla-
tion Lookaside Buffer re-use) due to the mem-
ory occupied by buffers (either explicitly, or in-
side MPI), which increases the range of addresses
needed to be stored beyond what can fit in the
TLB, hence the higher miss rate.

To understand the effect of this parameter on
performance, we varied the number of buffers
from 1 to 512 for a fixed problem size of 512
cores. The effects on total runtime, time per it-
eration, and the number of iterations are shown
in Figure 10. The first figure clearly shows that
using only a single buffer is in fact the opti-
mum choice in this case. Moreover, by vary-
ing the number of buffers it is possible to solve
the system in only 120s, which is 11% faster

than the synchronous implementation, compared
with our default choice of 100 buffers, which
is 9% slower! While increasing the number of
buffers causes the number of iterations to in-
crease slightly, most of the gain from using only
a single buffer is due to the dramatic increase
in iteration rate in this case. To understand the
reason for this we examined profiling data from
these runs and discovered that the difference in
iteration rate between one and two buffers is due
to extra time spent packing and unpacking the
halo buffers i.e., when more buffers are avail-
able processes are able to send messages more
frequently. However, we see that the number
of sends per iteration does not freely increase
with the number of buffers but rather plateaus
at 5.12 (slightly less than the average number of
neighbours - 5.25) when there are two or more
buffers available - two buffers would appear to
be enough that processes are able to achieve the
maximum throughput of messages. We might
expect this increase in message throughput to
accelerate convergence, offsetting the increased
cost of packing the halo data into buffers, but
this turns out not to be the case, which shows
global convergence of our test problem is de-
pendent mostly on local calculation, rather than
propagation of the solution by message passing.
Of course, this property cannot be assumed for
general linear systems, where the ratio of ele-
ments communicated at each iteration to values
which can be computed based purely on local
data might be much higher.

To investigate if this is in fact the case we
modified the sync code to only carry out the
halo swap once every N iterations. Figure 11
shows that as the period between halo swaps in-
creases, the overall time to solution decreases
to a minimum at N = 32. This shows the re-
sult that by reducing the communication burden
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Figure 10: Effects of varying the number of
buffers for MPI async on 512 cores

(thus increasing the average iteration rate) we
are able to progress faster towards convergence.
For the N = 32 case, the iteration rate is 33%
greater than N = 1, but only requires 2% extra
iterations to converge. Therefore we conclude
that when designing an asynchronous algorithm,
rather than setting out to allow frequent commu-
nication as cheaply as possible (e.g. by buffering
large numbers of messages), we should first at-
tempt to identify the optimal rate of communica-
tion, and only then consider reducing communi-
cation overhead using an asynchronous method.
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Figure 11: Iteration time against N (period of
halo swap) for MPI sync on 512 cores

7 Conclusion

We have implemented several variations of asyn-
chronous parallel Jacobi using MPI, SHMEM
and OpenMP, evaluated the performance of each
implementation and compared the ease with
which asynchronous algorithms can be imple-
mented in each programming model. The per-
formance of these algorithms depended on two
key factors - the efficiency and scalability of the
implementation, and the effect of asynchrony
on the number of iterations taken to converge
- both of which vary with the number of cores
used. Nevertheless, we have shown that (ex-
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cept on 32768 cores) SHMEM can provide a
more efficient implementation of asynchronous
message-passing than MPI, and that for prob-
lems using on the order of thousands of cores,
asynchronous algorithms can outperform their
synchronous counterparts by around 10%, al-
though in other cases may be slower. OpenMP
was found to give good performance for asyn-
chronous algorithms, and was also very easy to
program compared to either MPI or SHMEM.
Although it has limited scalability due to the
number of cores in a shared memory node, we
suggest that OpenMP might be applicable in
a hybrid model with MPI, for example, partic-
ularly since we found asynchronous Jacobi in
OpenMP to be 33% faster than the sychronous
equivalent even on a relatively modest 32 cores.

Our investigations also uncovered some key is-
sues of practical importance when implementing
asynchronous algorithms, such as the link be-
tween frequency of message passing and progress
to convergence. If optimal parameters were cho-
sen there is hope that we could improve the per-
formance of our asynchronous methods signifi-
cantly, although we recognise that this is difficult
to achieve a priori. In addition, we showed that
asynchronous algorithms are tolerant to perfor-
mance defects, which would be an advantage on
a large, noisy machine.

Nevertheless, further work is needed to gen-
eralise these implementations to solve arbitrary
linear systems rather than Laplace’s equation for
a particular set of boundary conditions. Ex-
tending our experiments to different HPC sys-
tems would also be of interest, since many of
the performance characteristics we discovered
are strongly architecture-dependent. Finally, the
convergence behaviour of our implementations
is still only understood from an implementation
standpoint, and in the future we plan to com-

bine these results with appropriate theoretical
analysis which will give us the tools to make pre-
dictive, rather than empirical, statements about
convergence.
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