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Abstract

The need to estimate structured covariance matrices arises in a variety of
applications and the problem is widely studied in statistics. We propose a new
method for regularizing the covariance structure of a given covariance matrix,
in which the underlying structure is usually blurred due to random noises
particularly when the dimension of the covariance matrix is high. The reg-
ularization is made by choosing an optimal structure from an available class
of covariance structures in terms of minimizing the discrepancy, defined via
the entropy loss function, between the given matrix and the class. A range
of potential candidate structures such as tridiagonal, compound symmetry,
AR(1), and Toeplitz are considered. Simulation studies are conducted, show-
ing that the proposed new approach is reliable in regularization of covariance
structures. The approach is also applied to real data analysis, demonstrating
the usefulness of the proposed approach in practice.

Keywords: Covariance estimation; Covariance structure; Entropy loss function;
Kullback-Leibler divergence; Regularization.

1 Introduction

The need to estimate structured covariance matrices arises in a variety of appli-
cation fields including signal processing (Pascal et al., 2008) and control problems
(Lin and Jovanović, 2009) and the problem is widely studied in statistics; see, e.g.,
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Pourahmadi (1999) and Pan and Mackenzie (2003). A conventional way, known as
the “Burg technique”, is to find the maximum likelihood estimation for a covari-
ance matrix that has a specific/regularized structure using random samples drawn
from a stochastic process (Burg et al., 1982). However, this method has some draw-
backs, including that (a) it is based on the presumption that the stochastic process
is multivariate normal, (b) the structure of the covariance must be prespecified,
and (c) the sample covariance matrix must be available. This method fails when
the dimension of the covariance matrix is large or close to the sample size, because
the sample covariance matrix is then ill conditioned. Furthermore, it is difficult
to deduce the underlying covariance structure from the sample covariance matrix,
because of random noise or large dimension of the matrix, for example.

To overcome these difficulties, in this paper we propose a new method for regu-
larizing the underlying structure of a given covariance matrix. Our method is based
on the entropy loss function (Dey and Srinivasan, 1985; James and Stein, 1961)

L(A,B) = tr(A−1B)− log(det(A−1B))−m, (1.1)

where A and B are m ×m matrices and, to ensure that log det(A−1B) is real, we
assume that A and B are symmetric positive definite. The entropy loss function,
also known as the Kullback-Leibler divergence, is a well-accepted nonsymmetric
measure of the discrepancy between two probability distributions (Pan and Fang,
2002). It is a special case of the Bregman divergence (Dhillon and Tropp, 2007) and
has been widely used in statistics (Pan and Fang, 2002). The problem of interest
here is, given a covariance matrix A whose underlying structure is blurred due to
random noises particularly when the dimension m is high, to identify the underlying
structure of A from a class of candidate covariance structures. To demonstrate our
idea, we introduce the following notation. Let S be the set of all positive definite
covariance matrices with structure s. We define the discrepancy between a given
positive definite covariance matrix A and the set S by

D(A,S) = min
B∈S

L(A,B), (1.2)

where L(A,B) is the entropy loss function in (1.1). Our idea is that, among a
given class of k candidate covariance structures {s1, s2, . . . , sk}, the structure with
which A has the smallest discrepancy can be viewed as the possible underlying
structure of A. We refer to the replacement of A by a matrix B achieving the
minimum in (1.2) as the process as regularizing A. It is worth pointing out that
the matrix A is not necessarily a sample covariance matrix. It can be any estimator
of a covariance matrix, obtained by statistical methods such as those based on
modified Cholesky decomposition methods (Pan and Mackenzie, 2003; Ye and Pan,
2006). Regularization of the given covariance matrix helps the understanding of
the underlying correlation/covariance process and simplifies complicated and high-
dimensional data problems.
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In this paper we consider the following four candidate covariance structures that
are commonly used in practice, for example, in longitudinal and spatial studies.

(1) The order-1 moving average structure, MA(1), has a tridiagonal and Toeplitz
covariance matrix

B = σ2


1 c · · · 0
c 1 · · · 0
...

. . . . . .
...

0 · · · c 1

 , (1.3)

where σ2 > 0 and −1/ cos(π/(m+ 1)) < c < 1/ cos(π/(m+ 1)).

(2) The covariance of compound symmetry (CS) structure assumes that the cor-
relation coefficients of any two observations are the same, i.e.,

B = σ2


1 c · · · c
c 1 · · · c
...

. . . . . .
...

c · · · c 1

 , (1.4)

where σ2 > 0 and −1/(m− 1) < c < 1.

(3) The covariance of autoregression of order 1, AR(1), has the property that the
correlation between any pair of observations decays exponentially towards zero
as the distance between two observations increases. It is of the form

B = σ2


1 c c2 · · · cm−1

c 1 c · · · cm−2

c2 c 1 · · · cm−3

...
. . . . . . . . .

...
cm−1 cm−2 · · · c 1

 , (1.5)

where σ2 > 0 and −1 < c < 1.

(4) More generally, banded Toeplitz covariance matrices have constant subdiago-
nal entries, i.e., constants at lag 1, lag 2, . . . , and lag p:

B = σ2



1 c1 · · · cp · · · 0

c1 1 c1
. . . . . .

...
...

. . . . . . . . . . . . cp

cp
. . . . . . . . . . . .

...
...

. . . . . . . . . 1 c1

0 · · · cp · · · c1 1


, (1.6)
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where σ2 > 0 and c1, c2, . . . , cp are nonzero.
The main task now is to calculate the discrepancy D(A,S) for each of the candi-

date covariance structures listed in (1)–(4) above, where the covariance matrix A is
given. Equivalently, it is to find for each covariance structure a positive definite ma-
trix B that minimizes the discrepancy L(A,B) within the set of matrices with that
structure. Accordingly, structure s in the candidate class {s1, ..., sk} that has the
smallest discrepancy is the most likely covariance structure, among the candidate
class, for the matrix A.

The rest of this paper is organized as follows. In section 2, we consider first the
case without a structure constraint. Our result shows that, given a symmetric posi-
tive definite covariance matrix A, L(A,B) = 0 if and only if B = A. We then show
in section 3 that the problem of finding B with structure (1.3)–(1.5) that minimizes
L(A,B) reduces to computing the zeros of a nonlinear function in one variable. In
section 4 we discuss solution of the problem for Toeplitz covariance structure. In
section 5 we carry out simulation studies, illustrating how our techniques of comput-
ing the structured covariance matrix that minimizes the entropy loss function can be
used in regularizing the underlying covariance structure. We also apply the proposed
approach to some real data experiments. Some further remarks and discussion are
given in section 6.

2 Unconstrained case

We first show that the problem of finding a general covariance matrix B that mini-
mizes the entropy loss function L(A,B) for a given A is trivial. Define f : Rm×m

+ → R
where Rm×m

+ is the set of all m × m symmetric positive definite matrices and
f(B) := L(A,B). We denote by ∇Bf = (∂f/∂bij) the gradient of f , where bij
is the (i, j) entry of B. Ignoring the symmetry of A and B and using results from
Magnus and Neudecker (1999) we have

∇B tr(A−1B) = A−T = A−1,

∇B log det(B) = B−T = B−1,

and then
∇Bf = A−1 −B−1. (2.7)

Write b = vec(B) ∈ Rm2
where vec denotes the vector obtained by stacking the

columns of its matrix argument on top of each other from first to last. Taking f as
a function from Rm2

to R, the Hessian of f is then given by

∇2
bf :=

(
∂2f

∂bi∂bj

)
= B−T ⊗B−1 = B−1 ⊗B−1 (2.8)

(Magnus and Neudecker, 1999). Since B is positive definite, B−1 ⊗ B−1 is positive
definite, and so f(B) is a strictly convex function of B. Therefore, f(B) has a global
minimum which is attained at ∇Bf = 0, i.e., B = A.
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We mention in passing that provided A is symmetric positive definite, the entropy
loss function L(A,B) at the boundary of the set of symmetric positive definite
matrices is +∞, that is, L(A,B)→ +∞ as det(B)→ 0.

3 Two-parameter problems

We begin by considering the two-parameter matrices (1.3)–(1.5), for which the prob-
lems reduces to minimizing a function of two variables. Define the map B(c, σ) :
R2 → Rm×m

+ where B(c, σ) are as in (1.3)–(1.5) and g(c, σ) := f(B(c, σ)) : R2 → R,
where f(B) := L(A,B). Note that here σ > 0. We now take B(c, σ) as a map from
R2 to Rm2

and denote the Jacobian matrix of B(c, σ) by ∇c,σB, i.e.,

∇c,σB =


∂b1/∂c ∂b1/∂σ
∂b2/∂c ∂b2/∂σ

...
...

∂bm2/∂c ∂bm2/∂σ

 ∈ Rm2×2, (3.9)

where b = vec(B(c, σ)). We denote the second order Jacobian matrix B(c, σ) by
∇2
c,σB ∈ Rm2×2×2. By applying the chain rule, we obtain the gradient of g

∇c,σg = (∇c,σB)T∇Bf ∈ R2, (3.10)

where ∇Bf := (∂f/∂bi) ∈ Rm2
, and the Hessian

∇2
c,σg = (∇c,σB)T∇2

Bf∇c,σB + (∇Bf)T∇2
c,σB ∈ R2×2. (3.11)

3.1 Tridiagonal matrices

Recall that the tridiagonal matrix (1.3)

B = σ2


1 c · · · 0
c 1 · · · 0
...

. . . . . .
...

0 · · · c 1


can be rewritten

B(c, σ) = σ2(I + c T1), (3.12)

where T1 is a symmetric matrix with the first superdiagonal and subdiagonal equal
to 1 and all other elements equal to 0. Note that the eigenvalues of B(c, σ) are
(Higham, 2002, Sec. 28.5)

λj = σ2(1 + 2csj), j = 1 : m,
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where sj = cos(πj/(m + 1)), so that det(B(c, σ)) = σ2m
∏m

j=1(1 + 2csj) and hence
B(c, σ) is positive definite if and only if

− 1

2s1

< c <
1

2s1

. (3.13)

Given a positive definite covariance matrix A, the loss function is now

f(c, σ) := σ2tr(A−1)+cσ2tr(A−1T1)+log(det(A))−m log σ2−
m∑
j=1

log(1+2csj)−m.

(3.14)
It follows that

∇f :=


∂f

∂c

∂f

∂σ

 =

[
σ2tr(A−1T1)−

∑m
j=1

2sj
1 + 2csj

2σtr(A−1)− 2m/σ + 2cσtr(A−1T1)

]
(3.15)

and

∇2f :=


∂2f

∂c2

∂2f

∂c∂σ
∂2f

∂c∂σ

∂2f

∂σ2

 =


m∑
j=1

(2sj)
2

(1 + 2csj)2
2σtr(A−1T1)

2σtr(A−1T1) 2tr(A−1) +
2m

σ2
+ 2ctr(A−1T1)

 .
(3.16)

The stationary points (c, σ) satisfy the equations
σ2 =

m∑
j=1

2sj
1 + 2csj

/tr(A−1T1)

h(c) :=
m∑
j=1

2sj
1 + 2csj

− mtr(A−1T1)

tr(A−1) + ctr(A−1T1)
= 0.

(3.17)

Recalling (3.13), as c → −1/(2s1) we have 2s1/(1 + 2cs1) → +∞, so h(c) → +∞,
while as c → 1/(2s1) = −1/(2sm) we have 2sm/(1 + 2csm) → −∞ and so h(c) →
−∞. Therefore, there exists at least one zero of h(c) on [−1/(2s1), 1/(2s1)]. Since
for every c satisfying h(c) = 0,

h′(c) = −
m∑
j=1

(2sj)
2

(1 + 2csj)2
+

m(tr(A−1T1))2

(tr(A−1) + ctr(A−1T1))2

= −
m∑
j=1

(2sj)
2

(1 + 2csj)2
+

1

m

(
m∑
j=1

2sj
1 + 2csj

)2

< 0,

where the last inequality is from the Cauchy–Schwarz inequality |xT e| ≤ ‖x‖2‖e‖2,
with e = [1, 1 . . . , 1]T , there exists only one zero of h(c) on [−1/(2s1), 1/(2s1)] and
thus a unique stationary point of f(c, σ) satisfying (3.17).
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It is clear that the (1, 1) element of the Hessian matrix ∇2f in (3.16) is positive
and it can be easily verified that for any (c, σ) satisfying (3.17), we have

det(∇2f(c, σ)) =
4m

σ2

m∑
j=1

(2sj)
2

(1 + 2csj)2
− 4σ2(tr(A−1T1))2

=
4

σ2

(
m

m∑
j=1

(2sj)
2

(1 + 2csj)2
− σ4(tr(A−1T1))2

)

=
4

σ2

m m∑
j=1

(2sj)
2

(1 + 2csj)2
−

(
m∑
j=1

2sj
1 + 2csj

)2


> 0,

where the last inequality is from the Cauchy–Schwarz inequality. Therefore the
Hessian matrix ∇2f is positive definite and so the stationary point is a minimum
point. Note that f(c, σ) is defined on the open set {(c, σ) : σ > 0 and (3.13) holds}
on which B(c, σ) is positive definite. As (c, σ) approaches the boundary of the set or
as σ →∞, we have f(c, σ)→ +∞. It follows immediately that the global minimum
of f(c, σ) is obtained at the unique stationary point.

We summarize the discussion above in the following theorem.

Theorem 3.1 Given a positive definite covariance matrix A, there exists a unique
tridiagonal positive definite matrix B(c, σ) of the form (3.12) that minimizes the
loss function f(c, σ) := L(A,B(c, σ)) given by (3.14). Furthermore, the minimum
is attained at (c, σ) satisfying (3.17).

3.2 Compound symmetry

The matrix in (1.4) can be rewritten as

B(c, σ) = σ2


1 c · · · c
c 1 · · · c
...

. . . . . .
...

c · · · c 1

 = σ2(I + c(eeT − I)). (3.18)

The eigenvalues of B(c, σ) are σ2(1 + (m− 1)c) and σ2(1− c) of multiplicities 1 and
m − 1, respectively, so B(c, σ) is a positive definite matrix if and only if (Borsdorf
et al., 2010, Lem. 2.1)

− 1

m− 1
< c < 1.

Given A, we define f(c, σ) := L(A,B(c, σ)), where L(A, ·) is the entropy loss function
in (1.1). We want to find an explicit solution to the corresponding optimization
problem

min
σ>0

−1/(m−1)<c<1

f(c, σ). (3.19)
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First, it is clear that det(B(c, σ)) = σ2m(1 − c)m−1(1 + (m − 1)c). Denoting
t := tr(A−1(eeT − I)), we have

f(c, σ) = σ2tr(A−1 + cσ2t+ log(det(A))−m log(σ2)

− (m− 1) log(1− c)− log(1 + (m− 1)c)−m.

Second, we have

∇f :=


∂f

∂c

∂f

∂σ

 =

[
σ2t+

m− 1

1− c
− m− 1

1 + (m− 1)c
2σtr(A−1) + 2σct− 2m/σ

]
(3.20)

and

∇2f :=


∂2f

∂c2

∂2f

∂c∂σ
∂2f

∂c∂σ

∂2f

∂σ2

 =

 m− 1

(1− c)2
+

(m− 1)2

(1 + (m− 1)c)2
2σt

2σt 2(tr(A−1) + ct) +
2m

σ2

 .
(3.21)

Therefore, the stationary points (c, σ) of f(c, σ) must satisfy
h(c) := σ2t+

m− 1

1− c
− m− 1

1 + (m− 1)c
= 0

m

σ2
= tr(A−1) + ct.

(3.22)

Third, it is clear that h(c) is continuous in the interval (−1/(m − 1), 1). Since
h(c)→ +∞ as c→ 1 and h(c)→ −∞ as c→ −1/(m− 1), there exists at least one
solution to h(c) = 0. The stationary points are obtained immediately by solving
h(c) = 0, which gives c = −t/((m− 1)tr(A−1) + (m− 2)t).

Finally, since

(∇2f)11 =
m− 1

(1− c)2
+

(m− 1)2

(1 + (m− 1)c)2
> 0

at the stationary points (c, σ) satisfying (3.22), and we also have

det(∇2f) =
4m

σ2

(
m− 1

(1− c)2
+

(m− 1)2

(1 + (m− 1)c)2

)
− 4σ2t2

= (m− 1)

(
m− 1

1 + (m− 1)c
+

1

1− c

)2

> 0,

it follows that ∇2f is positive definite. Thus every stationary point is a minimum
point. Since f(c, σ) is defined on an open set such that B(c, σ) > 0 and as (c, σ)
approaches the boundary or as σ →∞, we have f(c, σ)→ +∞, the global minimum
of f(c, σ) is obtained at the unique stationary point.

We summarize the above discussion in the following theorem.
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Theorem 3.2 Given a positive definite covariance matrix A ∈ Rm×m, define f(c, σ) :=
L(A,B(c, σ)) where B(c, σ) is a positive definite covariance matrix of compound
symmetry in (3.18). Then the global minimum of f(c, σ) over σ > 0 and c ∈
(−1/(m− 1), 1) is attained at

c = − t

(m− 1)tr(A−1) + (m− 2)t
,

m

σ2
= tr(A−1) + ct,

(3.23)

where t = tr(A−1(eeT − I)).

3.3 AR(1)

We rewrite B in (1.5) as

B(c, σ) = σ2


1 c c2 · · · cm−1

c 1 c · · · cm−2

c2 c 1 · · · cm−3

...
. . . . . . . . .

...
cm−1 cm−2 · · · c 1

 = σ2

m−1∑
i=0

ciTi, (3.24)

where T0 = I and Ti is a symmetric matrix with ones on the ith superdiagonal and
subdiagonal and zeros elsewhere. It can be shown that the k × k leading principal
minor of B(c, σ) is σ2k(1− c2)k−1, k = 2 : m (Horn and Johnson, 1985, Prob. 7.12).
Therefore, B(c, σ) is a positive definite covariance matrix if and only if

−1 < c < 1. (3.25)

The entropy loss function is now

f(c, σ) := σ2

m−1∑
i=0

citr(A−1Ti) + log det(A)−m log σ2 − (m− 1) log(1− c2)−m.

We find that

∇f :=


∂f

∂c

∂f

∂σ

 =

[
σ2
∑m−1

i=1 ici−1tr(A−1Ti) +
2(m− 1)c

1− c2

2σ
∑m−1

i=0 citr(A−1Ti)− 2m/σ

]
. (3.26)

So the stationary points (c, σ) of f(c, σ) satisfy
m
∑m−1

i=1 ici−1tr(A−1Ti)∑m−1
i=0 citr(A−1Ti)

+
2(m− 1)c

1− c2
= 0

m

σ2
=

m−1∑
i=0

citr(A−1Ti).

(3.27)
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Since
∑m−1

i=0 citr(A−1Ti) = tr(A−1B)/σ2 > 0 and 1 − c2 6= 0 for c ∈ (−1, 1), by
rearranging the first equality in (3.27) we have

h(c) := m

m−1∑
i=1

ici−1tr(A−1Ti)−m
m−1∑
i=1

ici+1tr(A−1Ti)+2(m−1)
m−1∑
i=0

ci+1tr(A−1Ti) = 0.

Since h(c) is continuous in (−1, 1), h(−1) = −2(m − 1)eTA−1e < 0 and h(1) =
2(m − 1)eTA−1e > 0, there exists at least one root of h(c) in (−1, 1). Numerical
experiments show that in some cases there exists more than one solution to h(c) = 0.
We then can only expect to find a local minimum in general.

We summarize the discussion above in the following theorem.

Theorem 3.3 Given a positive definite covariance matrix A ∈ Rm×m, define f(c, σ) :=
L(A,B(c, σ)) where B(c, σ) is a positive definite covariance matrix of the AR(1)
model as in (3.24). Then the local minima of f(c, σ) are attained at the points (c, σ)
satisfying (3.27).

4 Toeplitz problems

The banded Toeplitz matrix (1.6) can be rewritten as

B(c, σ) = σ2



1 c1 · · · cp · · · 0

c1 1 c1
. . . . . .

...
...

. . . . . . . . . . . . cp

cp
. . . . . . . . . . . .

...
...

. . . . . . . . . 1 c1

0 · · · cp · · · c1 1


= σ2(I +

p∑
i=1

ciTi), (4.28)

where c = [c1, c2, . . . , cp]
T ∈ Rp and Ti is a symmetric matrix with the ith super-

diagonal and subdiagonal equal to 1 and zeros elsewhere. Define

p(t) = 1 + 2

p∑
k=1

ck cos(kt). (4.29)

Then B(c, σ) is positive-definite if and only if p(t) ≥ 0, p(t) 6≡ 0, for all t ∈ R
(Parter, 1962, Remark II).

Recall that our problem is

min L(A,B) = tr(A−1B)− log(det(A−1B))−m, (4.30a)

subject to B ∈ Ω :=
{
B ∈ Rm×m : B = σ2(I +

p∑
i=1

ciTi)

is positive definite
}
. (4.30b)
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We note that this problem was mentioned in a recent work by Ning et al. (2011),
but no solution method was developed there. Setting f(c, σ) := L(A,B(c, σ)) and
applying the chain rule, we have the gradient of f ,

∇cif = σ2tr(Ti(A
−1 −B−1)), i = 1 : p,

∇σf = 2(tr(A−1B)−m)/σ,

for which a necessary condition for a local minimum of (4.30) can be obtained
immediately.

Davis et al. (1998) proposed an approach based on the method of outer approx-
imation where they consider the problem of computing the structured covariance
estimator through maximum likelihood estimation. Suppose that we are now to
minimize a general function f(B) subject to B being a symmetric positive definite
Toeplitz matrix. The idea is to expand the semi-infinite problem with constraint
yTBy > 0 for all y ∈ Rm into an infinite sequence of ordinary nonlinear programming
problems {P k}∞k=0 with P k having the form

P k : min f(B) subject to B ∈ Ωk :=
{
B ∈ Rm×m : B = σ2(I +

p∑
i=1

ciTi), (4.31a)

yTBy > 0, y ∈ Yk
}
, (4.31b)

where Yk is a finite subset of the ball
{
y ∈ Rm : ‖y‖ = 1

}
. This is called an outer

approximation because the constraint Ω ⊂ Ωk. It is proved that any limit point of
the sequence generated by outer approximation is a solution of the original problem.
Davis, Evans, and Polak (1998) use the linearly convergent Polak–He algorithm to
solve P k. However, this idea cannot be applied to our case because B ∈ Ωk may not
imply B > 0 and our objective function is defined only when B > 0.

A related problem to (4.30) is to find a symmetric positive semidefinite Toeplitz
matrix that is the nearest to a given matrix in the Frobenius norm. A method
using alternating projections is proposed by Suffridge and Hayden (1993) and a
sequential quadratic programming (SQP) algorithm is given by Al-Homidan (2002).
This ability to project onto the constraint set in (4.30) motivates us to use a spectral
projected gradient method (SPGM) introduced by Birgin et al. (2000, 2001). The
method aims to minimize a continuously differentiable function f(x) on a closed
convex set by generating a sequence of vectors that is guaranteed to converge r-
linearly to a stationary point of f . It generates vectors of the form xk+1 = xk +αkdk
with the spectral projected gradient direction dk = P (xk − λk∇f(xk)) − xk, where
P denotes projection onto the convex set of constraints, λk > 0 is a precomputed
scalar, and αk is chosen by a nonmonotone line search strategy. The direction dk is
guaranteed to be a descent direction (Birgin et al., 2000, Lem. 2.1). The method
is intended particularly for problems where it is computationally efficient to project
onto the feasible set. The computational cost for finding the nearest symmetric
positive semidefinite Toeplitz matrix to a given matrix in the Frobenius norm is

11



O(m3) flops for the alternating projection method and O(m2) flops for each iteration
of SQP, so it may be quite expensive to apply SPGM to our problem when m is
large.

Another closely related approach is semidefinite programming (Vandenberghe
and Boyd, 1996) which deals with optimization problems over symmetric positive
semidefinite matrix variables with linear cost function and linear constraints; some
techniques therein can be extended to our problem.

Comparing the various different approaches to solving the optimization problem
(4.30) is beyond the scope of this paper, so we leave it to future work.

5 Numerical Experiments

In this section, we illustrate numerically how the techniques discussed above can be
used in regularizing the underlying covariance structure. We first carry out simula-
tion studies and then apply our techniques to real data analysis. All computations
were performed with MATLAB 2011a.

5.1 Simulation studies

Recall that our idea is, given a covariance matrix and a class of possible candidate
covariance structures, to find for each structure a covariance matrix that minimizes
the entropy loss function. The structure of the minimizer that has the smallest
entropy loss function value among the class is considered to be the most likely un-
derlying covariance structure for the given covariance matrix. To examine the idea,
our simulation experiments were carried out as follows. We first generate an m× n
data matrix R with columns randomly drawn from the multivariate normal distribu-
tion with a common mean vector µ = σ2e ∈ Rm (recall that e is the vector of ones)
and a common covariance matrix Σ = σ2V (c) ∈ Rm×m, where σ2 > 0 and the matrix
V is fully determined by the correlation coefficients c. We then compute the sample
covariance matrix A with the generated data R: A = n−1

∑n
i=1(ri − r̄)(ri − r̄)T ,

where ri is the ith column of R and r = n−1
∑n

i=1 ri is the sample mean. We
test with the true covariance matrix Σ of various dimensions m and structures as
discussed in the previous sections, where for each structure we consider several dif-
ferent values for σ2 and c. The sample size is chosen as n = 1000. We summarize
the experimental results in Tables 1–3, which are for the experiments with covari-
ance matrix size m = 100, and Tables 4–6, which are for m = 200. We choose
c ∈ {0.2, 0.5, 0.75} and σ2 ∈ {2, 4, 8}. In Tables 1–6 each row stands for one exper-
iment and for each experiment we report the results averaged over 1000 repeated
simulations. The first column gives the true underlying covariance structure and the
second column presents the discrepancy between the true covariance matrix Σ and
the sample covariance matrix A under the measure of entropy loss function. The
rest of the columns report the results from the computed matrix B with different
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structures. Note we do not include a row for tridiagonal Σ with c = 0.75 because
there does not exist such a positive definite covariance matrix in this case. The
notation and abbreviation for the results reported in the tables are summarized

• Σ: true covariance matrix.

• A: sample covariance matrix.

• B: the computed covariance matrix that has a certain structure and minimizes
the entropy loss function L(A,B) in (1.1).

• Tm: the averaged time (in second) used to find the optimal matrix B in one
simulation study.

• LΣ,A, LA,B and LΣ,B: the entropy loss function L(Σ, A), L(A,B) and L(Σ, B),
respectively.

[Tables 1-6 are about here.]

In Tables 1–6, we have the following observations. First, we have LΣ,B < LΣ,A

for the all cases as long as the estimated covariance matrix B has the same structure
as the true covariance matrix Σ. In other words, the regularized estimator B that
has the same structure as Σ is much better than the sample covariance matrix A
in terms of the entropy loss function. It shows that regularization of the sample
covariance matrix, or any other available estimators of the covariance matrix, is
really necessary not only for the convenient use of known structure but also for the
accuracy of covariance estimation. Second, for each Σ with an assigned structure,
among different minimizers B the one with the smallest value LΣ,B turns out to
have the same structure as the Σ. The same observation can be made from the
discrepancy LA,B. The latter is extremely important because in practice the true
covariance is usually unknown and so is LΣ,B. Thus, the discrepancy LA,B can be
used to identify the correct covariance structure as long as the class of the candidate
structures is broad enough.

The observations above are common to all choices of the structure of Σ in the
class we considered, the various values of c and σ2 and the dimension m of the
covariance matrix. Therefore, the findings are reliable in this sense.

5.2 Real data analysis

We also did experiments with some real data. Kenward’s (1987) cattle data was an-
alyzed by various statistical methods for longitudinal data in the literature (Pourah-
madi, 1999; Pan and Mackenzie, 2003). In the experiment, 60 cattle were assigned
randomly to two treatment groups 1 and 2, each of which consists of 30 cattle, and
received a certain treatment. The cattle in each group were weighed 11 times over a
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nineteen-week period. The weighing times for all cattle were the same, so that the
cattle data is a balanced longitudinal data set. The aim of Kenward’s study was to
investigate treatment effects on intestinal parasites of the cattle. Our experiments
are carried out with the cattle data in a similar way as in section 5.1 and the results
are reported in Table 7.

[Table 7 is about here.]

Note that in this real data analysis the true covariance matrix Σ is not available,
so LΣ,A and LΣ,B are not available, where A is the sample covariance matrix. Instead,
we use the discrepancy LA,B to identify the most likely covariance structure among
the possible candidate structures, tridiagonal, CS and AR(1).

From Table 7, it is clear that the underlying covariance structures for both groups
are very likely to be AR(1) among the three possible candidate structures, as the
discrepancy LA,B has a smaller value than others. This agrees with the finding by
Pourahmadi (1999) and Pan and Mackenzie (2003).

6 Discussion

We have proposed a method to regularize the underlying covariance structure with
a given covariance matrix A and a class of candidate covariance structures, based
on minimizing the entropy loss function between the given covariance matrix and
the matrix that has a certain structure. Our simulation studies demonstrate the
reliability of the proposed method. Our simulation experiments were carried out
with the given matrix A being the sample covariance matrix. In principle, any
available estimated covariance matrix using a statistical method can be chosen as
the given matrix A. In general, the structure behind the matrix A is not obvious
due to noise in the matrix A, in particular, when the dimension m of the matrix A
is high. Our aim is to regularize the matrix A, so as to filter the noise in A and to
have a standard structure to characterize the covariance/correlation process of the
data studied.

Our proposed method can overcome the difficulties that are met by alternative
approaches and can produce a reliable estimator of the covariance matrix even if
the dimension of the matrix is very high. For example, it is not an easy task to
directly calculate the maximum likelihood estimator of a covariance matrix that has
a certain structure. In contrast, the proposed method does not require any distri-
bution assumption of the data, and can provide a regularized covariance structure
estimator as long as an estimator of the covariance matrix is given.

A restriction of our studies here is that the class of candidate covariance struc-
tures we have considered in this paper may not be very broad. We have considered
four possible structures: tridiagonal, CS, AR(1), and banded Toeplitz structures.
In principle, the ideas and the proposed approach are applicable to any structured
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covariance matrices. We are currently studying some other covariance structures,
including linearly structured covariance, Hankel matrices, and Toeplitz covariance
matrices, all of which are very useful in statistics. However, with more complicated
covariance structures more challenging work is inevitably involved in computing the
structured covariance matrix that minimizes the entropy loss function. For exam-
ple, we have carried out some similar simulation experiments for banded Toeplitz
matrices but are unable to draw similar conclusions as we have had from Tables
1–6. A crucial reason is the lack of an accurate and efficient algorithm to solve
the optimization problem (4.30), as discussed in Section 4. Note that for the three
structures considered in our experiments, the dimension m of the covariance matrix
does not affect the cost of computing the optimal covariance matrix B, because the
optimization problem reduces to computing the zeros of a nonlinear function of a
single variable. For more complicated covariance structures, the optimization prob-
lem is liable to have more variables and the number of variables may increase with
the dimension m of the covariance matrix, making the solution of the optimization
problem much more challenging.
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Table 1: Simulation results with m = 100; σ2 = 2.
B

c = 0.20 Tri-diag CS AR(1)
Σ LΣ,A LA,B LΣ,B Tm LA,B LΣ,B Tm LA,B LΣ,B Tm

Tri-diag 5.23 5.42 0.55 2.25e-3 9.75 4.88 1.39e-3 5.60 0.73 3.45e-2
CS 5.23 7.70 2.83 2.15e-3 5.42 0.55 1.35e-3 7.70 2.83 3.37e-2

AR(1) 5.23 5.57 0.70 2.17e-3 9.21 4.34 1.32e-3 5.42 0.55 3.35e-2
B

c = 0.50 Tri-diag CS AR(1)
Σ LΣ,A LA,B LΣ,B Tm LA,B LΣ,B Tm LA,B LΣ,B Tm

Tri-diag 5.24 5.43 0.55 2.41e-3 290.10 285.29 1.39e-3 185.73 180.90 3.45e-2
CS 5.23 9.03 4.16 2.13e-3 5.42 0.55 1.30e-3 9.03 4.16 3.35e-2

AR(1) 5.23 10.25 5.37 2.23e-3 26.84 21.96 1.37e-3 5.42 0.55 3.38e-2
B

c = 0.75 Tri-diag CS AR(1)
Σ LΣ,A LA,B LΣ,B Tm LA,B LΣ,B Tm LA,B LΣ,B Tm
CS 5.23 10.11 5.25 2.16e-3 5.42 0.55 1.38e-3 10.11 5.25 3.40e-2

AR(1) 5.23 23.87 19.00 2.25e-3 47.94 43.08 1.35e-3 5.42 0.55 3.42e-2

Table 2: Simulation results with m = 100; σ2 = 4.
B

c = 0.20 Tri-diag CS AR(1)
Σ LΣ,A LA,B LΣ,B Tm LA,B LΣ,B Tm LA,B LΣ,B Tm

Tri-diag 5.23 5.42 0.55 2.22e-3 9.75 4.88 1.36e-3 5.60 0.73 3.40e-2
CS 5.23 7.70 2.83 2.15e-3 5.42 0.55 1.35e-3 7.70 2.83 3.37e-2

AR(1) 5.23 5.57 0.70 2.15e-3 9.21 4.34 1.31e-3 5.42 0.55 3.32e-2
B

c = 0.50 Tri-diag CS AR(1)
Σ LΣ,A LA,B LΣ,B Tm LA,B LΣ,B Tm LA,B LΣ,B Tm

Tri-diag 5.23 5.42 0.55 2.37e-3 290.21 285.31 1.37e-3 185.81 180.91 3.42e-2
CS 5.23 9.03 4.16 2.12e-3 5.42 0.55 1.30e-3 9.03 4.16 3.35e-2

AR(1) 5.23 10.24 5.37 2.21e-3 26.82 21.96 1.35e-3 5.42 0.55 3.37e-2
B

c = 0.75 Tri-diag CS AR(1)
Σ LΣ,A LA,B LΣ,B Tm LA,B LΣ,B Tm LA,B LΣ,B Tm
CS 5.23 10.12 5.24 2.10e-3 5.42 0.55 1.33e-3 10.12 5.24 3.34e-2

AR(1) 5.23 23.87 19.00 2.22e-3 47.96 43.08 1.33e-3 5.42 0.55 3.40e-2
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Table 3: Simulation results with m = 100; σ2 = 8.
B

c = 0.20 Tri-diag CS AR(1)
Σ LΣ,A LA,B LΣ,B Tm LA,B LΣ,B Tm LA,B LΣ,B Tm

Tri-diag 5.23 5.42 0.55 2.21e-3 9.75 4.88 1.35e-3 5.60 0.73 3.35e-2
CS 5.23 7.71 2.83 2.16e-3 5.42 0.55 1.36e-3 7.71 2.83 3.36e-2

AR(1) 5.23 5.57 0.70 2.19e-3 9.20 4.33 1.35e-3 5.42 0.55 3.35e-2
B

c = 0.50 Tri-diag CS AR(1)
Σ LΣ,A LA,B LΣ,B Tm LA,B LΣ,B Tm LA,B LΣ,B Tm

Tri-diag 5.23 5.42 0.55 2.37e-3 290.03 285.29 1.36e-3 185.66 180.89 3.39e-2
CS 5.23 9.03 4.16 2.19e-3 5.42 0.55 1.34e-3 9.03 4.16 3.37e-2

AR(1) 5.23 10.24 5.37 2.29e-3 26.83 21.96 1.40e-3 5.42 0.55 3.43e-2
B

c = 0.75 Tri-diag CS AR(1)
Σ LΣ,A LA,B LΣ,B Tm LA,B LΣ,B Tm LA,B LΣ,B Tm
CS 5.23 10.12 5.25 2.12e-3 5.42 0.55 1.35e-3 10.12 5.25 3.31e-2

AR(1) 5.23 23.87 19.00 2.27e-3 47.93 43.08 1.36e-3 5.42 0.55 3.40e-2

Table 4: Simulation results with m = 200; σ2 = 2.
B

c = 0.20 Tri-diag CS AR(1)
Σ LΣ,A LA,B LΣ,B Tm LA,B LΣ,B Tm LA,B LΣ,B Tm

Tri-diag 21.62 23.31 4.69 7.23e-3 32.08 13.47 3.48e-3 23.67 5.05 2.96e-1
CS 21.61 26.24 7.63 7.24e-3 23.30 4.68 3.55e-3 26.24 7.63 2.98e-1

AR(1) 21.63 23.62 5.01 7.26e-3 31.04 12.41 3.54e-3 23.32 4.70 2.99e-1
B

c = 0.50 Tri-diag CS AR(1)
Σ LΣ,A LA,B LΣ,B Tm LA,B LΣ,B Tm LA,B LΣ,B Tm

Tri-diag 21.61 23.30 4.69 7.54e-3 727.81 709.43 3.75e-3 499.72 481.20 2.97e-1
CS 21.61 27.60 8.99 7.22e-3 23.30 4.69 3.54e-3 27.60 8.99 2.98e-1

AR(1) 21.62 33.00 14.39 7.28e-3 67.04 48.41 3.60e-3 23.31 4.69 2.98e-1
B

c = 0.75 Tri-diag CS AR(1)
Σ LΣ,A LA,B LΣ,B Tm LA,B LΣ,B Tm LA,B LΣ,B Tm
CS 21.62 28.70 10.08 7.21e-3 23.31 4.69 3.56e-3 28.70 10.08 2.98e-1

AR(1) 21.63 60.21 41.59 7.25e-3 110.44 91.83 3.49e-3 23.32 4.70 2.97e-1
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Table 5: Simulation results with m = 200; σ2 = 4.
B

c = 0.20 Tri-diag CS AR(1)
Σ LΣ,A LA,B LΣ,B Tm LA,B LΣ,B Tm LA,B LΣ,B Tm

Tri-diag 21.62 23.30 4.70 7.32e-3 32.09 13.48 3.54e-3 23.67 5.06 2.97e-1
CS 21.61 26.24 7.64 7.07e-3 23.30 4.69 3.46e-3 26.24 7.64 2.95e-1

AR(1) 21.63 23.62 5.00 7.27e-3 31.02 12.40 3.56e-3 23.32 4.69 2.97e-1
B

c = 0.50 Tri-diag CS AR(1)
Σ LΣ,A LA,B LΣ,B Tm LA,B LΣ,B Tm LA,B LΣ,B Tm

Tri-diag 21.61 23.29 4.69 7.57e-3 727.61 709.39 3.58e-3 499.51 481.16 2.98e-1
CS 21.63 27.62 8.99 7.20e-3 23.32 4.69 3.53e-3 27.62 8.99 2.97e-1

AR(1) 21.62 33.00 14.39 7.25e-3 67.00 48.40 3.54e-3 23.31 4.69 2.97e-1
B

c = 0.75 Tri-diag CS AR(1)
Σ LΣ,A LA,B LΣ,B Tm LA,B LΣ,B Tm LA,B LΣ,B Tm
CS 21.62 28.70 10.08 7.16e-3 23.31 4.69 3.52e-3 28.70 10.08 2.97e-1

AR(1) 21.61 60.18 41.58 7.31e-3 110.43 91.82 3.56e-3 23.30 4.69 2.98e-1

Table 6: Simulation results with m = 200; σ2 = 8.
B

c = 0.20 Tri-diag CS AR(1)
Σ LΣ,A LA,B LΣ,B Tm LA,B LΣ,B Tm LA,B LΣ,B Tm

Tri-diag 21.63 23.32 4.70 7.27e-3 32.11 13.48 3.54e-3 23.68 5.06 2.99e-1
CS 21.62 26.24 7.63 7.22e-3 23.30 4.69 3.57e-3 26.24 7.63 2.98e-1

AR(1) 21.63 23.62 5.00 7.21e-3 31.02 12.40 3.50e-3 23.31 4.69 2.96e-1
B

c = 0.50 Tri-diag CS AR(1)
Σ LΣ,A LA,B LΣ,B Tm LA,B LΣ,B Tm LA,B LΣ,B Tm

Tri-diag 21.62 23.31 4.70 7.51e-3 728.40 709.55 3.65e-3 499.52 481.16 2.98e-1
CS 21.60 27.59 8.99 7.14e-3 23.29 4.69 3.50e-3 27.59 8.99 2.97e-1

AR(1) 21.63 33.02 14.40 7.25e-3 67.05 48.42 3.55e-3 23.32 4.70 2.98e-1
B

c = 0.75 Tri-diag CS AR(1)
Σ LΣ,A LA,B LΣ,B Tm LA,B LΣ,B Tm LA,B LΣ,B Tm
CS 21.62 28.70 10.08 7.16e-3 23.31 4.69 3.56e-3 28.70 10.08 2.99e-1

AR(1) 21.62 60.21 41.59 7.31e-3 110.46 91.83 3.56e-3 23.31 4.70 2.99e-1
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Table 7: Results of experiments on Kenward’s cattle data.
Tri-diag CS AR (1)

LA,B Tm LA,B Tm LA,B Tm
Group 1 9.86 1.37e-003 8.55 1.06e-003 5.22 3.16e-003
Group 2 8.05 7.41e-004 5.92 5.97e-004 3.15 2.57e-003
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