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On Commuting Graphs for Elements of

Order 3 in Symmetric Groups

Athirah Nawawi and Peter Rowley

Abstract

The commuting graph C(G,X), where G is a group and X is a
subset of G, is the graph with vertex set X and distinct vertices being
joined by an edge whenever they commute. Here the diameter of
C(G,X) is studied when G is a symmetric group and X a conjugacy
class of elements of order 3.
(MSC2000: 05C25 ; keywords: Commuting graph, Symmetric group,
Order 3 elements, Diameter)

1 Introduction

Suppose that G is a finite group and X is a subset of G. The commuting
graph C(G,X) is the graph with X as the vertex set and two distinct ele-
ments of X being joined by an edge if they are commuting elements of G.
This type of graph has been studied for a wide variety of groups G and se-
lection of subsets of G. One of the earliest investigations occurred in Brauer
and Fowler [8] in which X = G\{1}. This particular case has recently been
the subject of further study by Segev [14], [15] and Segev and Seitz [16]. A
great deal of attention has been focussed on the case when X is a conjugacy
class of involutions – the so-called commuting involution graphs. Pioneering
work on such graphs appeared in Fischer [13] which led to the construction
of the three Fischer groups. Recently various properties of other commuting
involution graphs have been studied; see, for example, [2], [3], [4], [5], [11] and
[12]. When X is a conjugacy class of non-involutions, C(G,X) has to date
received less attention. Never-the-less graphs of this type can be of interest
– witness the computer-free uniqueness proof of the Lyon’s simple group by
Aschbacher and Segev [1] which employed a commuting graph whose vertex
set consisted of the 3-central subgroups of order 3. Also see Baumeister and
Stein [7], the results obtained there being used to describe the structure of
Bruck loops and Bol loops of exponent 2. Further, commuting graphs when
G is a symmetric group have been investigated in Bates, Bundy, Perkins and
Rowley [6] and Bundy[9]. The former paper concentrates on the structure
of discs (around some fixed vertex) and the diameter of the graph while the
latter gives a complete answer as to when C(G,X) is a connected graph.

In the present paper we shall determine the diameters of C(G,X) when G is
a symmetric group and X is a G-conjugacy class of elements of order 3. So
for the rest of this paper we assume G = Sym(Ω) = Sym(n) with G acting
upon the set Ω = {1, . . . , n} in the usual manner. Also let

t = (1, 2, 3)(4, 5, 6)(7, 8, 9) . . . (3r − 2, 3r − 1, 3r).
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Thus t has order 3 and cycle type 1n−3r3r. Set X = tG, the G-conjugacy
class of t, and let Diam (C(G,X)) denote the diameter of the commuting
graph C(G,X). Our main results are as follows.

Theorem 1.1 If n ≥ 8r, then Diam (C(G,X)) = 2.

Theorem 1.2 If 6r < n < 8r, then Diam (C(G,X)) = 3.

Our last theorem only gives a bound on Diam (C(G,X)).

Theorem 1.3 If r > 1 and n = 6r, then Diam (C(G,X)) ≤ 4.

Consulting Table 1 (or Table 1 of [6]) we see that for r = 1, n = 7 or
r = 2, n = 15 we have that Diam (C(G,X)) = 3 and so Theorem 1.1 is
sharp. For r = 2 the same table gives Diam (C(G,X)) = 4 when n = 12
and 2 when n = 16, so Theorems 1.2 and 1.3 are also sharp. We note that
for r = 1 and n = 6, C(G,X) is disconnected which explains the assumption
r > 1 in Theorem 1.3. All the graphs we consider here are connected – see
[9]. For g ∈ G, supp(g) denotes the set of points of Ω not fixed by g. We use
d(, ) for the usual distance metric on the graph C(G,X). For x ∈ X, the ith

disc, ∆i(x), is defined as follows

∆i(x) = {y | y ∈ Xand d(x, y) = i}.

The proofs of Theorems 1.1, 1.2 and 1.3 adopt a similar, somewhat direct,
approach. Since G acting by conjugation upon X induces graph automor-
phisms on C(G,X) and of course is transitive on X, it suffices to determine
(or bound) d(t, x) for an arbitrary vertex x of X. This we do by writing
down explicit paths in C(G,X).

2 Diameter of C(G,X)

We begin by establishing Theorem 1.1.

Proof of Theorem 1.1

Let x ∈ X. Set Λ = supp(t) ∪ supp(x) and s = |supp(t) ∩ supp(x)|. Then
|Λ| = 6r − s. If s ≥ r, then |Λ| ≤ 5r. Hence there exists y ∈ X with
supp(t) ∩ supp(y) = ∅ = supp(x) ∩ supp(y) and so d(t, x) ≤ 2. Now con-
sider the case s < r, and set e = r − s. Without loss of generality we
may suppose that supp(t) ∩ supp(x) ⊆ {1, 2, 3, . . . , 3s − 2, 3s − 1, 3s}. Put
y1 = (3s+ 1, 3s+ 2, 3s+ 3) . . . (3r− 2, 3r− 1, 3r) (so y1 is the product of the
”last” r − s = e 3-cycles of t). Since |Ω \ Λ| = 8r − (6r − s) = 2r + s > 3s
and s < r, we may select y2 with supp(y2) ⊆ Ω \ Λ and y2 is a product of
s pairwise disjoint 3-cycles. So y = y1y2 ∈ X, ty = yt and xy = yx. Thus
d(t, x) ≤ 2. Clearly Diam (C(G,X)) ≥ 2, and so the theorem follows.

Before proving Theorems 1.2 and 1.3 we introduce some notation and cer-
tain permutations of Sym(Ω). These permutations, though elements of
order 3, are not in general in X. We will assume that |Ω| ≥ 6r. For
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x ∈ X, we let {ϑi(x)}i=1,...,r denote the orbits of 〈x〉 on Ω of size 3. So
supp(x) =

⋃r
i=1 ϑi(x). Write t = t1t2 . . . tr where ti = (3i− 2, 3i− 1, 3i). So

ϑ(ti) = ϑi(t) = {3i− 2, 3i− 1, 3i}.

Let x ∈ X. Denote the product of the ti’s for which ϑi(t) ∩ supp(x) = ∅ by
τ0 and let τ3 be the product of the ti’s for which ϑi(t) ⊆ supp(x). Also let τ1
be the product of r1 ti’s where |ϑi(t) ∩ supp(x)| = 1, 3 | r1 and r1 is as large
as possible. Analogously, τ2 is the product of r2 ti’s where |ϑi(t)∩supp(x)| =
2, 3 | r2 and r2 is as large as possible. Setting τ∗ = tτ−1

0 τ−1
1 τ−1

2 τ−1
3 we

have t = τ∗τ0τ1τ2τ3. Let r∗ be the number of ti’s in τ∗, r0 the number
of ti’s in τ0 and r3 the number of ti’s in τ3. Observe that the maximality
of r1 and r2 means r∗ ≤ 4 and that at most two of the ti’s in τ∗ will have
|ϑi(t)∩supp(x)| = 1 and at most two will have |ϑi(t)∩supp(x)| = 2. Evidently
r = r∗ + r0 + r1 + r2 + r3 and, for i = 0, 1, 2, 3, |supp(x) ∩ supp(τi)| = iri.
Putting s∗ = |supp(x) ∩ supp(τ∗)|, we also have

|supp(t) ∩ supp(x)| = s∗ + r1 + 2r2 + 3r3.

Set Λ = Ω \ (supp(t) ∪ supp(x)). Since

|supp(t) ∪ supp(x)| = 3r + 3r − (s∗ + r1 + 2r2 + 3r3)

= 6r − (s∗ + r1 + 2r2 + 3r3)

it follows that
|Λ| = s∗ + r1 + 2r2 + 3r3 if n = 6r and

|Λ| ≥ 1 + s∗ + r1 + 2r2 + 3r3 if n > 6r.

Since 3 divides r1, we may write

τ1 =
∏

µi1i2i3

where the product of the µi1i2i3 = ti1ti2ti3 is pairwise disjoint. For each
µi1i2i3 = ti1ti2ti3 = (3i1−2, 3i1−1, 3i1)(3i2−2, 3i2−1, 3i2)(3i3−2, 3i3−1, 3i3)
we may without loss, suppose that supp(µi1i2i3) ∩ supp(x) = {3i1 − 2, 3i2 −
2, 3i3 − 2}. Put

λi1i2i3 = (3i1 − 2, 3i2 − 2, 3i3 − 2)(3i1 − 1, 3i2 − 1, 3i3 − 1)(3i1, 3i2, 3i3).

Then λi1i2i3 commutes with µi1i2i3 . Let

ρ1 =
∏

λi1i2i3

and observe that ρ1 commutes with t and will be a pairwise disjoint product of
r1 3-cycles. Further, r1

3
of the 3-cycles in ρ1 will have their support contained

in supp(x) while the remaining 2r1
3

3-cycles in ρ1 will have their support
intersecting supp(x) in the empty set.
Also, as 3 divides r2, we may express

τ2 =
∏

ηj1j2j3
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where ηj1j2j3 = tj1tj2tj3 with the product being pairwise disjoint. For each
ηj1j2j3 we may suppose that supp(ηj1j2j3)∩ supp(x) = {3j1 − 2, 3j1 − 1, 3j2 −
2, 3j2 − 1, 3j3 − 2, 3j3 − 1}. Define

δj1j2j3 = (3j1, 3j2, 3j3)(3j1 − 2, 3j2 − 2, 3j3 − 2)(3j1 − 1, 3j2 − 1, 3j3 − 1),

and let
ρ2 =

∏
δj1j2j3 .

Evidently ρ2 commutes with t and ρ2 is a pairwise disjoint product of r2
3-cycles. Moreover, 2r2

3
of the 3-cycles in ρ2 will have their support contained

in supp(x) and the remaining r2
3

have supports intersecting supp(x) in the
empty set.
Let σ1 (respectively σ2) be the product of the 2r1

3
(respectively r2

3
) 3-cycles

in ρ1 (respectively ρ2) whose support intersects supp(x) in the empty set.
Also let σ4 be a pairwise disjoint product of ( r1

3
+ 2r2

3
+ r3) 3-cycles with

supp(σ4) ⊆ Λ. Put ∆ = Λ\supp(σ4).

We now summarize the pertinent properties of the permutations just intro-
duced.

Lemma 2.1 (i) supp(τ0ρ1ρ2τ3) ⊆ supp(t), τ0ρ1ρ2τ3 commutes with t and is
the product of r − r∗ pairwise disjoint 3-cycles.

(ii) σ1σ2τ0σ4 commutes with τ0ρ1ρ2τ3 and is the product of r − r∗ pairwise
disjoint 3-cycles. Moreover supp(σ1σ2τ0σ4) ∩ supp(x) = ∅.
(iii) |∆| = s∗ if n = 6r and |∆| ≥ 1 + s∗ if n ≥ 6r.

Proof (i) Since supp(ρ1ρ2) = supp(τ1τ2), τ0ρ1ρ2τ3 is the product of pairwise
disjoint 3-cycles, and the number of such 3-cycles is r − r∗. Because ρ1 and
ρ2 both commute with t, τ0ρ1ρ2τ3 commutes with t.
(ii) Since supp(σ4) ⊆ ∆ and supp(τ0ρ1ρ2τ3) ⊆ supp(t), σ4 commutes with
τ0ρ1ρ2τ3. While σ1σ2τ0 is a product of 3-cycles which appear in τ0ρ1ρ2τ3 and
therefore σ1σ2τ0σ4 commutes with τ0ρ1ρ2τ3. By construction σi ∩ supp(x) =
∅(i = 1, 2), supp(τ0) ∩ supp(x) = ∅ by definition and because we chose σ4 so
as supp(σ4) ⊆ Λ we get supp(σ1σ2τ0σ4) ∩ supp(x) = ∅.
(iii) Part (iii) follows from |supp(σ4)| = r1 + 2r2 + 3r3 and ∆ = Λ\supp(σ4).

�
We are now in a position to prove Theorem 1.2.

Proof of Theorem 1.2

Let y ∈ X be such that |supp(y) ∩ ϑi(t)| = 1 for i = 1, . . . , r. Then
CG(t)∩CG(y) = Sym(Ψ) where Ψ = Ω\ (supp(t)∪supp(y)). Now |supp(t)∪
supp(y)| = 3r + 3r − r = 5r and so |Ψ| = n − 5r < 8r − 5r = 3r.
Thus X ∩ CG(t) ∩ CG(y) = ∅ and consequently d(t, y) ≥ 3. Hence Diam
(C(G,X)) ≥ 3.

Let x ∈ X. We aim to show that d(t, x) ≤ 3. On account of CG(t) having
shape 3rSym(r) × Sym(n − 3r) there is no loss in supposing τ∗ = t1 . . . tr∗
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where 0 ≤ r∗ ≤ 4 (r∗ = 0 meaning τ∗ = 1). Depending on τ∗ we define two
elements ρ∗ and σ∗ which will be the product of r∗ pairwise disjoint 3-cycles.

(1) r∗ = 4

Then we have τ∗ = t1t2t3t4 = (1, 2, 3)(4, 5, 6)(7, 8, 9)(10, 11, 12), s∗ = 6 and
we may, without loss, assume supp(τ∗) ∩ supp(x) = {1, 4, 7, 8, 10, 11}. Ob-
serve that |supp(x)\supp(t)| ≥ 6 and so we may select α1, α2, α3, α4, α5, α6 ∈
supp(x)\supp(t). Also by Lemma 2.1(iii), as s∗ = 6, |∆| ≥ 7. Thus we may
also select β1, β2, β3, β4, β5, β6 ∈ ∆. Define

ρ∗ = (α1, α2, α3)(α4, α5, α6)(β1, β2, β3)(β4, β5, β6)

and
σ∗ = (2, 3, 5)(6, 9, 12)(β1, β2, β3)(β4, β5, β6).

(2) r∗ = 3

So τ∗ = t1t2t3 = (1, 2, 3)(4, 5, 6)(7, 8, 9). First we examine the case when
s∗ = 4, and may suppose that supp(τ∗) ∩ supp(x) = {1, 4, 7, 8}. Here
we have |supp(x)\supp(t)| ≥ 5 and |∆| ≥ 5. Choose α1, α2, α3, α4, α5 ∈
supp(x)\supp(t) and β1, β2, β3, β4, β5 ∈ ∆, and define

ρ∗ = (α1, α2, α3)(α4, α5, β1)(β2, β3, β4)

and
σ∗ = (2, 3, 5)(6, 9, β5)(β2, β3, β4).

We move onto the case when s∗ = 5 and, without loss of generality, assume
supp(τ∗)∩supp(x) = {1, 2, 4, 5, 7}. Since |supp(x)\supp(t)| ≥ 4 and |∆| ≥ 6,
we may select α1, α2, α3 ∈ supp(x)\supp(t) and β1, β2, β3, β4, β5, β6 ∈ ∆.
Then we take

ρ∗ = (α1, α2, α3)(β1, β2, β3)(β4, β5, β6)

and
σ∗ = (3, 6, 8)(β1, β2, β3)(β4, β5, β6).

(3) r∗ = 2

So τ∗ = t1t2 = (1, 2, 3)(4, 5, 6) with s∗ = 2, 3 or 4. First we look at the case
when s∗ = 2 or 3. Then we have |supp(x)\supp(t)| ≥ 3, |supp(t)\supp(x)| ≥
3 and |∆| ≥ 3. Choosing α1, α2, α3 ∈ supp(x)\supp(t), β1, β2, β3 ∈ ∆ and
γ1, γ2, γ3 ∈ supp(t)\supp(x)), we let

ρ∗ = (α1, α2, α3)(β1, β2, β3)

and
σ∗ = (γ1, γ2, γ3)(β1, β2, β3).

Now assume that s∗ = 4, and, without loss, that supp(τ∗) ∩ supp(x) =
{1, 2, 4, 5}. Because |supp(x)\supp(t)| ≥ 2 and |∆| ≥ 5 we may choose
α1, α2 ∈ supp(x)\supp(t) and β1, β2, β3, β4, β5 ∈ ∆ and then define

ρ∗ = (α1, α2, β1)(β2, β3, β4)
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and
σ∗ = (3, 6, β5)(β2, β3, β4).

(4) r∗ = 1

Then τ∗ = t1 = (1, 2, 3) and s∗ = 1 or 2. Suppose s∗ = 1 with supp(τ∗) ∩
supp(x) = {1}. So |supp(x)\supp(t)| ≥ 2 ≤ |∆|. Selecting α1, α2 ∈
supp(x)\supp(t) and β1, β2 ∈ ∆, we set

ρ∗ = (α1, α2, β1)

and
σ∗ = (2, 3, β2).

While if s∗ = 2, then |∆| ≥ 3 and selecting β1, β2, β3 ∈ ∆ we set

ρ∗ = σ∗ = (β1, β2, β3).

(5) r∗ = 0

Here we take ρ∗ = 1 = σ∗.

Put y = ρ∗τ0ρ1ρ2τ3. Since y is the product of r∗ + r0 + r1 + r2 + r3 = r
disjoint 3-cycles, y ∈ X. Further we have that ty = yt by Lemma 2.1(i).
Next we consider z = σ∗σ1σ2τ0σ4. Each of σ∗σ1, σ2, τ0 and σ4 are pair-
wise disjoint. Recalling that σ1, σ2 and σ4 are, respectively, the product of
2r1
3
, r2

3
, ( r1

3
+ 2r2

3
+ r3) disjoint 3-cycles, we see that z ∈ X. It may be further

checked using Lemma 2.1(ii) that yz = zy and xz = zx, and consequently
d(t, x) ≤ 3. This completes the proof of Theorem 1.2.

Proof of Theorem 1.3

Let x ∈ X. Our objective here is to show that d(t, x) ≤ 4 from which it will
follow that Diam (C(G,X)) ≤ 4. We proceed in a similar fashion to that
in the proof of Theorem 1.1 though here, except for some cases, we will de-
fine three permutations ρ∗, σ∗, ξ∗, each a product of r∗ pairwise disjoint cycles.

(6) r∗ = 4

So τ∗ = t1t2t3t4 = (1, 2, 3)(4, 5, 6)(7, 8, 9)(10, 11, 12) with s∗ = 6. Assume,
without loss, that supp(τ∗) ∩ supp(x) = {1, 4, 7, 8, 10, 11}. Since |supp(x)\
supp(t)| ≥ 6 and so we may choose α1, α2, α3, α4, α5, α6 ∈ supp(x)\supp(t).
Further, as |∆| = s∗ = 6 by Lemma 2.1(iii), we may also choose β1, β2, β3, β4,
β5, β6 ∈ ∆. Now define

ρ∗ = (α1, α2, α3)(α4, α5, α6)(β1, β2, β3)(β4, β5, β6)

and
σ∗ = (2, 3, 5)(6, 9, 12)(β1, β2, β3)(β4, β5, β6).

(7) r∗ = 3
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So τ∗ = t1t2t3 = (1, 2, 3)(4, 5, 6)(7, 8, 9). If s∗ = 4 we may suppose without
loss that supp(τ∗)∩ supp(x) = {1, 4, 7, 8}. Here we have |supp(x)\supp(t)| ≥
5 and |∆| = s∗ = 4 by Lemma 2.1(iii). Choose α1, α2, α3 ∈ supp(x)\supp(t)
and β1, β2, β3 ∈ ∆, and define

ρ∗ = (α1, α2, α3)(β1, β2, β3)(1, 2, 3),

σ∗ = (5, 6, 9)(β1, β2, β3)(1, 2, 3)

and
ξ∗ = (5, 6, 9)(β1, β2, β3)(α, β, γ),

where (α, β, γ) is a 3-cycle of x for which 1 /∈ {α, β, γ}. Note that {α, β, γ}∩
supp(σ∗) = ∅.
For the case when s∗ = 5, without loss of generality, we assume supp(τ∗) ∩
supp(x) = {1, 4, 5, 7, 8}. Since |supp(x)\supp(t)| ≥ 4 and |∆| = s∗ = 5, we
may select α1, α2, α3 ∈ supp(x)\supp(t) and β1, β2, β3 ∈ ∆. Then we take

ρ∗ = (α1, α2, α3)(β1, β2, β3)(4, 5, 6),

σ∗ = (2, 3, 9)(β1, β2, β3)(4, 5, 6)

and
ξ∗ = (2, 3, 9)(β1, β2, β3)(α, β, γ),

where (α, β, γ) is a 3-cycle of x chosen so as {4, 5} ∩ {α, β, γ} = ∅. Since
r ≥ r∗ = 3 such a choice is possible.

Before dealing with r∗ = 2 we analyze a number of small cases.

(8) Suppose that t = (1, 2, 3)(4, 5, 6) (so r = 2 and n = 12).

(i) If x = (1, 7, 8)(4, 9, 10) or x = (1, 4, 7)(2, 5, 8), then d(t, x) ≤ 4.

(ii)If x = (1, 4, 7)(8, 9, 10), then d(t, x) ≤ 3.

Assume that x = (1, 7, 8)(4, 9, 10), and let x1 = (7, 8, 11)(9, 10, 12), x2 =
(2, 3, 5)(9, 10, 12), x3 = (2, 3, 5)(1, 7, 8). Then x1, x2, x3 ∈ X and (t, x1, x2, x3,
x) is a path in C(G,X) whence d(t, x) ≤ 4. In the case x = (1, 4, 7)(2, 5, 8)
we take x1 = (7, 8, 9)(10, 11, 12), x2 = (1, 3, 6)(10, 11, 12) and x3 = (2, 5, 8)
(10, 11, 12). It is easily checked that (t, x1, x2, x3, x) is also a path in C(G,X),
so proving part (i). For x = (1, 4, 7)(8, 9, 10) taking x1 = (1, 2, 3)(8, 9, 10)
and x2 = (5, 6, 11)(8, 9, 10) gives a path (t, x1, x2, x) in C(G,X). So (ii) holds
and (8) is proved.

(9) Suppose t = (1, 2, 3)(4, 5, 6)(7, 8, 9) with τ∗ = (1, 2, 3)(4, 5, 6) (so r = 3
and n = 18). Let x ∈ X be such that supp(τ∗)∩supp(x) = {1, 4} and assume
1 and 4 are in different 3-cycles of x. Then d(t, x) ≤ 4.

By assumption x = (1, ∗, ∗)(4, δ, ε)(α, β, γ) with {1, 4} ∩ {α, β, γ} = ∅. Be-
cause τ∗ = (1, 2, 3)(4, 5, 6) we must have supp(t) ∩ supp(x) = {1, 4} or
{1, 4, 7, 8, 9}. Suppose the former holds and set x1 = (1, 2, 3)(α, β, γ)(7, 8, 9)
and x2 = (4, δ, ε)(α, β, γ)(7, 8, 9). Then (t, x1, x2, x) is a path in C(G,X).
Hence d(t, x) ≤ 3. Turning to the latter case we have |supp(t)∪supp(x)| = 13.
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So we may choose, say, 16, 17, 18 ∈ Λ and then take x1 = (1, 2, 3)(4, 5, 6)
(16, 17, 18), x2 = (1, 2, 3)(α, β, γ)(16, 17, 18) and x3 = (4, δ, ε)(α, β, γ)(16, 17,
18), giving a path (t, x1, x2, x3, x) in C(G,X). Thus d(t, x) ≤ 4, so proving
(9).

(10) r∗ = 2

So we have τ∗ = t1t2 = (1, 2, 3)(4, 5, 6) with s∗ = 2, 3 or 4. First we con-
sider the case s∗ = 2, and assume supp(τ∗) ∩ supp(x) = {1, 4}. For the
moment also assume that r = 2 (so t = τ∗). Then, without loss, x is either
(1, 7, 8)(4, 9, 10) (1 and 4 in different 3-cycles of x) or (1, 4, 7)(8, 9, 10) (1 and
4 in the same 3-cycle of x). By (8)(i) we have d(t, x) ≤ 4. So, since we
are aiming to show that d(t, x) ≤ 4, we may suppose r ≥ 3. Now consider
the possibility that r = 3 and 1 and 4 are in different 3-cycles of x. Then,
without loss, x = (1, ∗, ∗)(4, δ, ε)(α, β, γ) in which case d(t, x) ≤ 4 by (9).
Thus, when r = 3, we may suppose 1 and 4 are in the same 3-cycle of x.
Consequently, as r ≥ 3, we may find two 3-cycles of x, (α, β, γ) and (δ, ε, λ)
such that {α, β, γ, δ, ε, λ}∩{1, 4} = ∅. Now we define ρ∗, σ∗ and ξ∗ by taking
ρ∗ = σ∗ = τ∗ and ξ∗ = (α, β, γ), (δ, ε, λ).

Next we look at the case s∗ = 3. Then we have |supp(x)\supp(t)| ≥ 3,
|supp(t)\supp(x)| ≥ 3 and |∆| = s∗ = 3. Choosing α1, α2, α3 ∈ supp(x)\
supp(t), β1, β2, β3 ∈ ∆ and γ1, γ2, γ3 ∈ supp(t)\supp(x)), we let

ρ∗ = (α1, α2, α3)(β1, β2, β3)

and
σ∗ = (γ1, γ2, γ3)(β1, β2, β3).

Finally we come to s∗ = 4. So without loss we have supp(τ∗) ∩ supp(x) =
{1, 2, 4, 5}. Suppose, for the moment, that for all 3-cycles (α, β, γ) we have
{1, 2} ∩ {α, β, γ} 6= ∅ 6= {4, 5} ∩ {α, β, γ}. Then it follows that r = 2 and,
without loss, x = (1, 4, 7)(2, 5, 8). But then d(t, x) ≤ 4 by (8)(ii). Thus we
may suppose x contains a 3-cycle (α, β, γ) such that (α, β, γ) ∩ {1, 2} = ∅,
and we can now define ρ∗ and σ∗. Since |∆| = s∗ = 4, we have β1, β2, β3 ∈ ∆.
Let ρ∗ = (1, 2, 3)(β1, β2, β3) and σ∗ = (α, β, γ)(β1, β2, β3). This completes the
case s∗ = 4 and (10).

Yet another special case must be looked at before doing r∗ = 1.

(11) Let t = (1, 2, 3)(4, 5, 6) with τ∗ = (1, 2, 3). Suppose x = (1, ∗, ∗)(2, ∗, ∗)
∈ X with supp(τ∗) ∩ supp(x) = {1, 2}. Then d(t, x) ≤ 3.

Since τ∗ = (1, 2, 3), supp(t) ∩ supp(x) = {1, 2} or {1, 2, 4, 5, 6}. If supp(t) ∩
supp(x) = {1, 2} and, say Ω\(supp(t) ∩ supp(x)) = {11, 12}, then define
x1 = (4, 5, 6)(10, 11, 12), x2 = (4, 5, 6)(α, β, γ) where (α, β, γ) is a 3-cycle not
containing 10. While in the other case with, say Ω\(supp(t) ∩ supp(x)) =
{8, 9, 10, 11, 12} we define x1 = (8, 9, 10)(7, 11, 12), x2 = (8, 9, 10)(α, β, γ)
where (α, β, γ) is a 3-cycle not containing 7. Hence d(t, x) ≤ 3.
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(12) r∗ = 1

So we have either, without loss, supp(τ∗) ∩ supp(x) = {1} or {2, 3}. In view
of (10), as r > 1, either d(t, x) ≤ 3 or we may find a 3-cycle (α, β, γ) of x for
which supp(τ∗)∩{α, β, γ} = ∅. In the latter case we define ρ∗ = σ∗ = τ∗ and
ξ∗ = (α, β, γ).

(13) r∗ = 0

Just as in (5) we take ρ∗ = 1 = σ∗.
Now let y = ρ∗τ0ρ1ρ2τ3, z = σ∗σ1σ2τ0σ4 and w = ξ∗σ1σ2τ0σ4 (where w is only
defined if in (6), (7), (10), (12), (13) ξ∗ is defined). Then y, z, w ∈ X with
(t, y, z, w, x) is a path in C(G,X). Consequently d(t, x) ≤ 4. Since x was
an arbitrary vertex, this shows that Diam (C(G,X)) ≤ 4 and completes the
proof of Theorem 1.3.

We end this paper with a table containing some calculations on diameters
and discs using Magma[10]. Each entry in the table first gives the size of
the relevant ∆i(t) for the given r and n with the number in brackets being
the number of CG(t)-orbits on ∆i(t). A blank entry means that |∆i(t)| = 0.
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∆1(t) ∆2(t) ∆3(t) ∆4(t) ∆5(t) ∆6(t)
r=1
n = 7 9 (2) 24 (2) 36 (1) - - -
n = 8 21 (2) 90 (3) - - - -
n = 9 41 (2) 126 (3) - - - -

r=2
n = 10 35 (4) 192 (6) 1,008 (10) 2,628 (20) 3,672 (13) 864 (5)
n = 11 83 (4) 1,080 (9) 7,560 (23) 9,756 (23) - -
n = 12 203 (5) 6,300 (16) 28,296 (34) 2,160 (5) - -
n = 13 563 (5) 25,740 (30) 42,336 (25) - - -
n = 14 1,571 (5) 67,140 (48) 51,408 (7) - - -
n = 15 4,035 (5) 168,948 (54) 27,216 (1) - - -
n = 16 9,363 (5) 310,956 (55) - - - -

r=3
n = 9 25 (4) 216 (4) 1,512 (11) 486 (6) - -
n = 12 49 (7) 648 (8) 9,936 (39) 90,990 (139) 327,024 (404) 64,152 (102)
n = 13 121 (7) 2,808 (18) 79,488 (85) 724,086 (383) 783,432 (332) 11,664 (3)
n = 14 265 (7) 9,936 (23) 390,582 (138) 3,217,806 (564) 865,890 (143) -
n = 15 745 (9) 62,424 (46) 2,414,610 (243) 8,733,420 (594) - -
n = 16 2,545 (9) 482,760 (90) 17,798,778 (578) 7,341,516 (220) - -
n = 17 8,089 (9) 3,400,272 (145) 50,175,126 (728) 870,912 (16) - -
n = 18 24,441 (10) 16,126,398 (210) 92,757,960 (679) - - -

Continued on Next Page. . .
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Table 1 – Continued

∆1(t) ∆2(t) ∆3(t) ∆4(t) ∆5(t) ∆6(t)
r=4
n = 12 159 (6) 8,532 (20) 193,104 (121) 44,604 (37) - -
n = 15 367 (11) 37,044 (52) 3,053,160 (682) 81,668,484 (8,294)
n = 16 991 (11) 271,236 (92) 56,926,656 (2,351) 390,829,212 (13,122) 419,904 (12) -
n = 17 2,239 (11) 1,350,612 (112) 487,124,064 (4,539) 1,036,246,284 (12,578) - -

r=5
n = 15 751 (8) 154,440 (44) 17,669,304 (783) 27,020,304 (996) - -

Table 1: Disc sizes and CG(t)-orbits
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