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Notes on Circulant Matrices
James Montaldi
October 2008

A real n x n matrix M is circulant if mjj = m(j —i), for all i, j, wherem(r) is an
n-periodic function:m(r 4+ n) = m(r) defined on the integers. For example

1 2 3 4
4 1 2 3
3 4 1 2
2 3 41

wherem(r) =r+1 mod 4.M is symmetric iffm(—r) = m(r) as in the example on the
next page.

M =

It will be convenient to define the (discrete) Fourier coédfits of m as usual to
be,

n n
Z rycog2rer /n), b(¢ z )sin(2r¢r /n), (1)
for each? =0,...,n—1. In other words, iftx(¢) = a(¢) +ib
_ Ze—ZuTcﬂr/nm(r)7
4

which is the usual definition of discrete Fourier transforfimo(hence the choice of
minus sign inb). Note that the inverse Fourier transform formula gives

m(r) = % ;exp(zinje/n)(m ib)(0).

(¢) € Cthen

We now wish to determine the eigenvectordvibofand it turns out that they are the
same for any circulant matrix. First define the vectdfs, v(¥) € R", with components

uj —cos(ZthE/n), vj = sin(2mj¢/n).

Note thatu™ %) = u® andv(®™?® = —v()_ In particular,v(®) = 0 and ifn is even then
v("2 = 0. There is therefore a total oflinearly independent vectdrs

u¥ (¢=0,...,[8]) and v (¢=1,....[%F]).
That is, they form a basis fd&".
Now calculate, fou = u(®,
(Mu)e = 3 m(j —k)cog2mj¢/n)
]
= Z m(r)cog2r(k+r)¢/n)
= Z(m(r)cos(ZT[rE/n))cos(2nk€/n)

— Z )sin(2rr¢/n)) sin(2rke/n)

= a(¢)cog2rké/n) + b(¢) sin(2rKke /n)
a(f)uk + b(f)Vk

1g] denotes the greatest integer less than or equal to




Similarly forv=v{¥, (Mv)x = —b(¢)ux+ a(¢)vi. That is,

Mu’ = a(@)u + b)),
MV = —b(0)u® +a()v,

It follows that the complex eigenvectors idf are,
20 =u® £iv®,
with eigenvalues
A(¢) =a(t) £ib(0), )

with a(¢),b(¢) given in (1). That is, the eigenvalues bf are the discrete Fourier
coefficientsa (¢) of the functionm.

In particular,u®©® = (11... 1)T andu™? = (1 (1) 1... (—1))T (the latter ifnis
even) are real eigenvectors, with respective eigenva(@s= y m(r), anda(n/2) =

> (=1)"'m(r).

Example The eigenvalues of the matr above are 10-2, -2+ 2i.

Symmetric circulant matrices A circulant matrixM is symmetric if and only if
m(—r) = m(r). This in turn is equivalent tb(¢) = O (for all /)—as should be familiar
from ordinary Fourier series. Hence the eigenvalues inf@semply

A(0) = a(l) )

(the eigenvalues of a symmetric matrix are of course reak) ekample, for
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wherem(0) =1, m(1) = m(—1) = 2, m(2) =5, the eigenvalues are 10 —4, —4.
Using the analysis above with{¢) = 0, we have

Mu® = a@)u®
MV = a()vh,

It follows thatu© and if nis evenu™? are in general simple eigenvectors, while
u®, v share the same eigenvalag) for 0 < ¢ < n/2. Consequently, fan > 2 every
n x n symmetric circulant matrix has eigenvalues of multiplict least 2.

Exercise: What are the corresponding properties of skew-symmetriziigint matri-
ces?



Representation theory These results can be related to the representation theory of
the cyclic group (or dihedral group in the symmetric casefing onR" by

p(xla"'>xn):(Xnaxlw"axnfl% and K'(Xl>"'axn):(xna"'>xl)> (4)

wherep generates the cyclic group, andp, K together generate the dihedral group
D,. The fact thatM is circulant is equivalent td1p = pM, and it being in addition
symmetric means it commutes wih

To describe the representation more explicitly, we desdnitw it decomposes as
a sum of distinct irreducible representations. Bgtdenote the 1-dimensional trivial
representation. For each=1,...,[(n—1)/2] let A; be the following irreducible 2-
dimensional real representationdf: let the rotatiorp act by rotation through®/n
and letk act by some reflexion (this is independent of the choice afxifh as any two
reflexions are conjugate, and the resulting irreps will baéwedent). Finally,Aq is the
trivial representation and if is even, letA, > denote the 1-dimensional representation
wherep andk act by multiplication by—1. These irreducible representations are also
irreducible for the cyclic groug,, (ignoring k).

It is important here to understand the commuting linear mepsh of thesé,, are
irreducible representations for both the dihedral andicygroups. In the case of the
dihedral group, any linear map @a commuting withp,k must be a scalar multiple
of the identity (irreducible representations with thisgedy are said to babsolutely
irreducible). On the other hand, if a matrix just commutes wgthit can be any scalar
multiple of the identity multiplied by a rotation.

Proposition 1 The representation described in (4) above decomposes as a sum of ir-
reducible representations as follows:

R'=A@AL D @Ay

This is called thasotypic decomposition of R" for this action (or representation).
To prove the proposition, it suffices to show that the characagree, and this is left
as an exercise. The following result is also an exercise.

Proposition 2 The component A, is spanned by the vectors uy, v;.

We now return to the real symmetric circulant matkix The following result is
easy to check (for example it can be shown explicitly for 2egators of the group, a
rotation of ordem and a reflexion).

Proposition 3 A matrix M is circulant iff it commutes with the action of C,, and it is
symmetric and circulant iff it commutes with Dy,

It follows from Schur’s lemma thatl preserves each component of the isotypic
decomposition oRR", and moreover iVl is symmetric on each the action lgfis just
multiplication by a scalar multiple of the identity. Of c@ey; these scalar multiples are

3



just the eigenvalues given in (3). In genexaland (ifnis even)A,, » are simple, while
the other\, are double eigenvalues.

Remark If M is not symmetric, then it only commutes with the cyclic subgrC,

of Dn. In that case the isotypic decomposition®f given in Proposition 1 remains
the same, but the irreducibles are no longer absolutelguniele, and consequently
in generalM will have 1 real eigenvalue (2 if is even) corresponding to the 1-
dimensional irreducibléy, (andA,, ), whereas the other eigenvalues may be complex.



