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Notes on Circulant Matrices
James Montaldi

October 2008

A real n× n matrix M is circulant if mi j = m( j− i), for all i, j, wherem(r) is an
n-periodic function:m(r+n) = m(r) defined on the integers. For example

M =









1 2 3 4
4 1 2 3
3 4 1 2
2 3 4 1









wherem(r) = r+1 mod 4.M is symmetric iffm(−r) = m(r) as in the example on the
next page.

It will be convenient to define the (discrete) Fourier coefficients ofm as usual to
be,

a(ℓ) =
n

∑
r=1

m(r)cos(2πℓr/n), b(ℓ) =−

n

∑
r=1

m(r)sin(2πℓr/n), (1)

for eachℓ= 0, . . . ,n−1. In other words, ifα(ℓ) = a(ℓ)+ ib(ℓ) ∈C then

α(ℓ) = ∑
r
e
−2iπℓr/nm(r),

which is the usual definition of discrete Fourier transform of m (hence the choice of
minus sign inb). Note that the inverse Fourier transform formula gives

m(r) =
1
n ∑

ℓ

exp(2iπ jℓ/n)(a+ ib)(ℓ).

We now wish to determine the eigenvectors ofM, and it turns out that they are the
same for any circulant matrix. First define the vectorsu(ℓ),v(ℓ) ∈R

n, with components

u(ℓ)j = cos(2π jℓ/n), v(ℓ)j = sin(2π jℓ/n).

Note thatu(n−ℓ) = u(ℓ) andv(n−ℓ) =−v(ℓ). In particular,v(0) = 0 and ifn is even then
v(n/2) = 0. There is therefore a total ofn linearly independent vectors1,

u(ℓ)
(

ℓ= 0, . . . ,
[

n
2

])

and v(ℓ)
(

ℓ= 1, . . . ,
[

n−1
2

])

.

That is, they form a basis forRn.

Now calculate, foru = u(ℓ),

(Mu)k = ∑
j

m( j− k)cos(2π jℓ/n)

= ∑
r

m(r)cos(2π(k+ r)ℓ/n)

= ∑
r
(m(r)cos(2πrℓ/n))cos(2πkℓ/n)

−∑
r
(m(r)sin(2πrℓ/n))sin(2πkℓ/n)

= a(ℓ)cos(2πkℓ/n)+b(ℓ)sin(2πkℓ/n)

= a(ℓ)uk +b(ℓ)vk.

1[q] denotes the greatest integer less than or equal toq
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Similarly for v = v(ℓ), (Mv)k =−b(ℓ)uk +a(ℓ)vk. That is,

Muℓ = a(ℓ)u(ℓ)+b(ℓ)v(ℓ),

Mvℓ = −b(ℓ)u(ℓ)+a(ℓ)v(ℓ).

It follows that the complex eigenvectors ofM are,

ζ(ℓ) = u(ℓ)
± iv(ℓ),

with eigenvalues
λ(ℓ) = a(ℓ)± ib(ℓ), (2)

with a(ℓ),b(ℓ) given in (1). That is, the eigenvalues ofM are the discrete Fourier
coefficientsα(ℓ) of the functionm.

In particular,u(0) = (1 1 . . . 1)T andu(n/2) = (1 (−1) 1. . . (−1))T (the latter ifn is
even) are real eigenvectors, with respective eigenvaluesa(0) = ∑m(r), anda(n/2) =
∑(−1)rm(r).

Example The eigenvalues of the matrixM above are 10,−2,−2±2i.

Symmetric circulant matrices A circulant matrixM is symmetric if and only if
m(−r) = m(r). This in turn is equivalent tob(ℓ) = 0 (for all ℓ)—as should be familiar
from ordinary Fourier series. Hence the eigenvalues in (2) are simply

λ(ℓ) = a(ℓ) (3)

(the eigenvalues of a symmetric matrix are of course real). For example, for

M =









1 2 5 2
2 1 2 5
5 2 1 2
2 5 2 1









wherem(0) = 1, m(1) = m(−1) = 2, m(2) = 5, the eigenvalues are 10,2,−4,−4.

Using the analysis above withb(ℓ) = 0, we have

Mu(ℓ) = a(ℓ)u(ℓ)

Mv(ℓ) = a(ℓ)v(ℓ).

It follows that u(0) and if n is evenun/2 are in general simple eigenvectors, while
u(ℓ),v(ℓ) share the same eigenvaluea(ℓ) for 0< ℓ< n/2. Consequently, forn> 2 every
n×n symmetric circulant matrix has eigenvalues of multiplicity at least 2.

Exercise: What are the corresponding properties of skew-symmetric circulant matri-
ces?
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Representation theory These results can be related to the representation theory of
the cyclic group (or dihedral group in the symmetric case), acting onRn by

ρ(x1, . . . ,xn) = (xn,x1, . . . ,xn−1), and κ · (x1, · · · ,xn) = (xn, . . . ,x1), (4)

whereρ generates the cyclic groupCn andρ,κ together generate the dihedral group
Dn. The fact thatM is circulant is equivalent toMρ = ρM, and it being in addition
symmetric means it commutes withκ.

To describe the representation more explicitly, we describe how it decomposes as
a sum of distinct irreducible representations. LetA0 denote the 1-dimensional trivial
representation. For eachℓ = 1, . . . , [(n− 1)/2] let Aℓ be the following irreducible 2-
dimensional real representation ofDn: let the rotationρ act by rotation through 2πℓ/n
and letκ act by some reflexion (this is independent of the choice of reflexion as any two
reflexions are conjugate, and the resulting irreps will be equivalent). Finally,A0 is the
trivial representation and ifn is even, letAn/2 denote the 1-dimensional representation
whereρ andκ act by multiplication by−1. These irreducible representations are also
irreducible for the cyclic groupCn (ignoringκ).

It is important here to understand the commuting linear maps. Each of theseAℓ are
irreducible representations for both the dihedral and cyclic groups. In the case of the
dihedral group, any linear map onAℓ commuting withρ,κ must be a scalar multiple
of the identity (irreducible representations with this property are said to beabsolutely
irreducible). On the other hand, if a matrix just commutes withρ, it can be any scalar
multiple of the identity multiplied by a rotation.

Proposition 1 The representation described in (4) above decomposes as a sum of ir-
reducible representations as follows:

R
n = A0⊕A1⊕·· ·⊕A[n/2].

This is called theisotypic decomposition of Rn for this action (or representation).
To prove the proposition, it suffices to show that the characters agree, and this is left
as an exercise. The following result is also an exercise.

Proposition 2 The component Aℓ is spanned by the vectors uℓ,vℓ.

We now return to the real symmetric circulant matrixM. The following result is
easy to check (for example it can be shown explicitly for 2 generators of the group, a
rotation of ordern and a reflexion).

Proposition 3 A matrix M is circulant iff it commutes with the action of Cn, and it is
symmetric and circulant iff it commutes with Dn.

It follows from Schur’s lemma thatM preserves each component of the isotypic
decomposition ofRn, and moreover ifM is symmetric on each the action ofM is just
multiplication by a scalar multiple of the identity. Of course, these scalar multiples are
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just the eigenvalues given in (3). In generalλ0 and (ifn is even)λn/2 are simple, while
the otherλℓ are double eigenvalues.

Remark If M is not symmetric, then it only commutes with the cyclic subgroup Cn

of Dn. In that case the isotypic decomposition ofR
n given in Proposition 1 remains

the same, but the irreducibles are no longer absolutely irreducible, and consequently
in generalM will have 1 real eigenvalue (2 ifn is even) corresponding to the 1-
dimensional irreducibleA0 (andAn/2), whereas the other eigenvalues may be complex.
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