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We consider a subset of the set of solutions to the n-body problem, termed chore-
ographies, which involve a motion of particles where each follows the same path in
space with a fixed time delay. Focusing on planar choreographies, we use the action
of symmetry groups on the spatial and temporal motion of such systems to restrict
a space of loops and study the topology of the resulting manifolds.

As well as providing a framework of notation and terminology for the study of
such systems, we prove various useful properties which allow us to classify the possible
groups of symmetries, and discuss which are likely to be realisable as that of a motion
of bodies.
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Chapter 1

Introduction

The n-body problem is that of determining, given the initial positions and velocities

of n bodies moving in space, the path which they will take. The particles will interact

by gravitational attraction. Solutions to the n-body problem will be curves which

describe a valid motion of the particles, given a set of masses and a formula for

gravitational potential.

The study of n-body problems has deep roots in the history of mathematics, and

was originally motivated by the motion of the planets and stars. Such mathematics

may also be applied to the study of molecular particles, and also to point vortices in

fluid dynamics [6]. Many different approaches have been taken to try to understand

such systems.

In particular, my study focuses on a subset of n-body solutions termed chore-

ographies. These are motions where each of the particles follows the same path

but with a fixed time delay. Leading figures in the study of choreographies include

Chenciner and Montgomery, who discovered the figure eight choreography [12], which

we will use extensively as an example in this thesis; and Gerver, whose ‘super-eight’

choreography is also useful in studying a particular class of examples which we find

interesting. These three have worked together with Simó in [11], where they prove

some fundamental results about the nature of choreographical solutions.

14



CHAPTER 1. INTRODUCTION 15

Conventionally, the existence of solutions has been proven using variational meth-

ods. The existence of planar n-body choreographies may be proved using computer-

assistance. Simó’s [29] numerical calculations have proven the existence of many

choreographical motions, and he has also produced beautiful animations of many

such examples. Kapela and Zgliczynski ([18], [16]) have done similar work employ-

ing interval arithmetic. Many of the examples in this thesis have been proven to

exist in this way. There also exist computer assisted proofs [17] of the existence of

non-symmetrical planar choreographies.

The work of Ferrario and Terracini [14] involves using the inherent spatial and

temporal symmetries implied by the definiton of a choreography to restrict the space

of loops being considered. This topological approach considers the effect of the action

of the symmetry group on the spaces of loops in the configuration space of n particles.

Ferrario and Terracini also provide conditions to ensure the success of variational

methods, which guarantee the solutions will exist and be without collisions.

In this thesis, we attempt to apply techniques from algebraic topology and the

study of loop spaces on manifolds to the behaviour of bodies in a dynamical system.

In particular, we will be considering the action of symmetry groups on systems of

particles, and using the symmetries to consider a restricted set of motions, following

the methods proposed by Ferrario and Terracini.

In Chapter 2, we describe our aim to study spaces of loops possessing symmetries.

We begin by considering relative loops. These are not closed loops, but paths which

run from a point to its image under some automorphism of the space on which they

are defined. We also define a system of notation, and a set of maps between such

spaces of loops. We will also introduce some key motivating examples, namely those

of n-body problems and k-centre problems.

The particular subset of paths we will be considering is that of choreographies.

In Chapter 3, the concept of a choreography will be defined and explored in detail,

determining what effect such a restriction has on the space of loops being considered.

We introduce a system of representations for the group of symmetries, which al-

lows us to interpret the effect of each symmetry on the space and time in which the
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particles move. In Chapter 4 we attempt to classify the different types of symmetry

group possible, using these representations, and define certain special types of sym-

metry depending on how they act on the passage of time. We will also discuss how

each symmetry group leads to multiple connected components of the loop space, each

of which possesses the same group of symmetries but is in a different homotopy class

of loops.

Many examples will be considered and studied in detail to build up a picture of

how different groups of symmetries give different types of orbit, and how each system

may be specified. We also prove several useful results regarding the different types

of symmetries which exist, and how this affects the choreographies.

In Chapter 5, and in the Appendix, we discuss several classes of examples and ex-

plore their relationship with each other and the way they may be realised as subspaces

of the space of relative loops.

It is also possible, using minimisation of the energy of the system, to determine

when certain homotopy classes of paths will be realisable as a motion of particles. In

Chapter 6 we will discuss some approaches which have been made in this area, and

highlight in particular what this means for the choreographies we have been studying,

in terms of whether they will be realisable.

Chapter 7 deals with other considerations which may lead on to further study,

some of which have been touched on earlier in the thesis, and others which would

possibly be interesting to investigate further.



Chapter 2

Preliminaries

This chapter is devoted to introducing some of the notation, structures, maps and

definitions which will be relied on during this work. We will start by considering

spaces of loops, and then introducing the concept of relative loops. We will define

several different spaces of loops and relative loops on a given manifold, with respect

to the action of a group, and a set of maps between the different spaces which behave

in a sensible way. We also consider some key motivating examples, and how they fit

into this framework.

2.1 Introductory concepts

In this work, we will be studying group actions on manifolds and their effect on the

spaces of loops defined on those manifolds. Groups will usually be denoted G, group

elements g, and manifolds, which we assume to be connected unless otherwise stated,

will be denoted M . In general, groups will be discrete, and manifolds will normally

be the configuration space of a physical system.

We will use the standard notation for the fundamental group π1(M, x), the based

loop space Ω(M, x) and free loop space Λ(M), given a topological space M and base

point x ∈ M .

When discussing dihedral groups, we will use Dn to denote the group of symme-

tries of the regular n-gon, which will be a group of order 2n.

17
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We will also be considering the relative loop spaces - which are defined as

follows, with the compact-open topology. Let G be a group acting on a manifold M .

Definition 2.1.1. We define the based relative loop space of a manifold M , with

respect to an automorphism g of the manifold and a basepoint x ∈ M , to be the

space of continuous maps of the interval [0, 1] into M such that 0 is mapped to x,

and 1 is mapped to gx, the image of x under g. Alternatively, this can be thought of

as the space of all paths which run from the point x ∈ M to the point gx. We denote

this space

Ωg(M,x) = {γ : [0, 1] → M | γ(0) = x, γ(1) = gx}.

Compare this with the space of ordinary closed based loops, which is usually given

by

Ω(M, x) = {γ : [0, 1] → M | γ(0) = γ(1) = x}.

Definition 2.1.2. We define the free relative loop space of M to be the space of

all paths in M which run from any point to its image under g. This can be thought

of as the union of all the based loop spaces over x ∈ M . We denote this space

Λg(M) = {γ : [0, 1] → M | γ(1) = gγ(0)}.

Again, compare with the free loop space

Λ(M) = {γ : [0, 1] → M | γ(1) = γ(0)}

or equivalently, Λ(M) = C(S1,M), the space of continuous maps of S1 into M .

If we consider the quotient of the based loop space up to homotopy, in the case

of ordinary closed loops, we obtain the fundamental group:

Ω(M,x)/∼ = π1(M,x)

In the case of relative loops, taking the quotient with respect to homotopy does not

result in a group, but a torsor which we call the relative fundamental torsor of

M with respect to the basepoint x, denoted πg
1(M,x).

Ωg(M,x)/∼ = πg
1(M,x)
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Remark 2.1.3. A torsor, sometimes also called a principal homogeneous space

for a group G, is a set X on which the group G acts both freely and transitively, so

that for any x, y in X there exists a unique g ∈ G such that g · x = y. A familiar

example is the way in which an affine space is related to a vector space - here, the

affine space corresponds to the torsor and the vector space to the group.

The fundamental group π1(M, x) acts on πg
1(M,x) by composition, with γ ∈

π1(M, x) taking a homotopy class of paths from x to gx to a different class of paths,

given by passing along γ first, then the path to gx. This action is free, since the action

is defined up to homotopy and two homotopic paths will be given by the action of

homotopic loops. It is transitive, since π1 is the set of all possible homotopy classes,

and πg
1 all paths, and any path may be mapped to any other path by the action of

composition with some loop.

The relative fundamental torsor consists of homotopy classes of paths running

from x to gx. It does not have a group structure like the usual fundamental group,

since paths do not return to the same point, so there is no natural way to compose

two paths. It can be given a group structure by choosing a path τx which runs from

x to gx. Then, by travelling along a path which is an element of πg
1 and returning via

τx, we have an element of π1. Hence, the choice of τx gives us an identification of the

torsor with the underlying fundamental group, where τx corresponds to the identity

element. This allows us to multiply two elements of πg
1 together, by mapping both

to the fundamental group and composing the two elements under the multiplication

there, before mapping back to the torsor. The result of this operation depends on

the choice of τx. The structure of πg
1 and more concrete notation for these maps is

outlined in Section 2.3.1.

These spaces consist of paths which are not closed loops but run between two

distinct points. We will later find it useful to denote such a space in generality by

P(Y, Y1, Y2) where Y1 and Y2 are subspaces of Y . This denotes the space of paths in

Y which start at a point in Y1 and end at a point in Y2.

Next, we will set out some notation which will be of use.
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2.2 Paths and loops

In general, the letters γ, δ, σ, λ will be used to denote loops and paths as necessary.

Additionally, we have specific notation for certain useful paths, namely ω and τx,

described below.

A path from x to an alternative basepoint y ∈ M will be called ω, and we

will use the notation ω : x Ã y to mean ω runs from x to y, or more strictly

ω : ([0, 1], 0, 1) → (M,x, y). In order to reduce the number of elements which must

be chosen, we must choose such a path ω : x Ã z for each z in M , and then we can

select a path between any two points in M , by travelling via the point x. We will,

when it is necessary to specify the start and endpoints, denote a path from y to z by

ωyz.

The reverse of any loop or path γ will be denoted γ, and means the same path

traversed in the opposite direction. The reverse of a path is the inverse of the path

as an element of the fundamental group or relative fundamental torsor, in the sense

that composition of the path with its inverse is homotopic to the trivial path.

The composition of two paths γ, δ will be denoted γ ∗ δ, which means travelling

along γ then along δ.

γ ∗ δ(t) =





γ(2t) t ∈ [0, 1
2
]

δ(2t− 1) t ∈ [1
2
, 1]

A path from x to its image gx will be denoted τx, so we may write τx : x Ã gx. We

may also make use of τy : y Ã gy, which may be defined in terms of τx in order to

simplify the maps. Given ω : x Ã y, we set τy = ω ∗ τx ∗ gω, which runs from y to gy

via x and gx. In this way, a single choice of τx gives a canonical choice of path from

any point to its image, given our already chosen path ω from x to that point. This

can be seen in Figure 2.1.

This method of choosing paths then allows us to find τy in terms of τz, by τy =

ωyz ∗ τz ∗ gωyz provided our path ωyz from y to z is that which travels via x, as

discussed previously.
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x
y z

gxgy gz

ω
ω'

gω'
gω

τx

Figure 2.1: Finding τy and τz given τx

Indeed, let ω be a path from x to y, and ω′ a path from x to z. Then τy = ω∗τx∗gω,

then we can rearrange to obtain τx = ω ∗ τy ∗ gω. Substituting into τz = ω′ ∗ τx ∗ gω′,

we obtain τz = ω′ ∗ ω ∗ τy ∗ gω ∗ gω′, which is equal to (ω ∗ ω′) ∗ τy ∗ g(ω ∗ ω′). Here,

(ω ∗ ω′) is a path from y to z, and hence is our ωyz above. This is also easily seen in

Figure 2.1.

2.3 Maps of the fundamental group

2.3.1 Some standard maps

All of the following maps may be defined on spaces of paths which run from one point

to another - although they are described here as maps between relative fundamen-

tal torsors, since they induce maps which send homotopy classes of paths to other

homotopy classes of paths.

Given a path ω : [0, 1] → M which runs from x ∈ M to y ∈ M , and an appropriate

loop or path γ : [0, 1] → M for which γ(1) = x, we define ω∗(γ) = γ ∗ ω - that is,

we travel along the path γ and then along ω. We may replace ω with its reverse,

giving the map ω∗(γ) = γ ∗ω, for which we need γ(1) = y in order for the path to be

well-defined. We will also define ω̂∗(γ) = ω ∗ γ, where the path ω is travelled along

first, in which case we require γ(0) = y, and similarly ω̂∗(γ) = ω ∗ γ when γ(0) = x.

Remark 2.3.1. The maps ω∗ and ω̂∗ are the inverses of the maps ω∗ and ω̂∗. While
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strictly ω∗ ◦ ω∗ 6= id, the loop resulting from applying these two maps will be homo-

topic to the original loop. The same holds for ω̂∗ ◦ ω̂∗. The maps can be thought

of as inverses when they induce maps on πg
1(M, x), since ω ∗ ω is homotopic to the

constant loop.

Under this notation, we may note that, given a path τx : x Ã gx, τx∗ and its

inverse τx∗ induce maps between π1(M, x) and πg
1(M, x), and hence these are the

maps which define the structure on πg
1(M, x) relative to the ordinary group structure

on π1(M,x). Indeed, for γ, δ in πg
1(M, x), we can write their composition as:

γ ~ δ = τx∗(τx∗(γ) ∗ τx∗(δ))

Here τx∗(γ), τx∗(δ) are elements of π1(M, x) and can be composed as ordinary group

elements, and then the whole thing is mapped back into πg
1(M,x) by applying τx∗.

In order to clarify in the following the difference between composition of paths and

composition of elements of the relative fundamental torsor, we will use the symbol

~ as above to denote this operation. This is the binary operation analagous to

composition of group elements, and determines a group structure on πg
1 . Again, the

definition of this group structure depends on a choice of τx.

We may verify the group structure on πg
1(M,x). For example, ~ is associative.

For γ, δ and σ in πg
1(M, x), we have:

(γ ~ δ) ~ σ = τx∗(τx∗(τx∗(τx∗(γ) ∗ τx∗(δ))) ∗ τx∗(σ))

= τx∗(τx∗(γ ∗ τx ∗ δ ∗ τx) ∗ τx) ∗ (σ ∗ τx))

= γ ∗ τx ∗ δ ∗ τx∗ 6 τx∗ 6 τx ∗ σ∗ 6 τx∗ 6 τx

= γ ∗ τx ∗ δ ∗ τx ∗ τx ∗ τx ∗ σ

And also:

γ ~ (δ ~ σ) = τx∗(τx∗(γ) ∗ τx∗(τx∗(τx∗(δ) ∗ τx∗(σ))))

= τx∗((γ ∗ τx) ∗ τx∗(δ ∗ τx ∗ (σ ∗ τx) ∗ τx))

= γ ∗ τx ∗ δ ∗ τx ∗ τx ∗ τx ∗ σ∗ 6 τx∗ 6 τx∗ 6 τx∗ 6 τx

= γ ∗ τx ∗ δ ∗ τx ∗ τx ∗ τx ∗ σ
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These are equal, since we may cancel τx with τx up to homotopy, and hence we have

associativity.

It is also worth noting that while these maps are defined here in the language of

specific paths running from one point to another, they induce maps on the spaces of

homotopy classes of such paths. When referring to ‘an element γ of π1’, we will often

denote by γ the homotopy class of paths containing γ. In cases where ambiguity

arises, the homotopy class may be denoted [γ] and the specific path γ.

Given a choice of ω (which specifies the two maps ω∗ and ω̂∗), we can define

another map, denoted Φω : π1(M,x) → π1(M, y), which acts by Φω(γ) = ω ∗ γ ∗ ω,

and similarly Φω(γ) = ω ∗γ ∗ω. This map gives a change of basepoint, for ω : x Ã y,

from π1(M, x) to π1(M, y). Note that Φω = ω̂∗ ◦ω∗, and Φω = ω̂∗ ◦ω∗. Here ◦ denotes

composition of maps.

All of the maps given above between the fundamental groups and relative funda-

mental torsors at different basepoints are isomorphisms. Given these maps, and two

basepoints x, y ∈ M , with M path connected, we may construct the diagram seen in

Figure 2.2.

π1(M,x)

τx∗

²²

Φω //
π1(M, y)

τy∗

²²

Φω

oo

πg
1(M, x)

Φg
ω //

τx∗

OO

πg
1(M, y)

Φg
ω

oo

τy∗

OO

Figure 2.2: The maps between the fundamental groups and relative fundamental
torsors based at x and y

Here, the map Φg
ω is a modification of Φω where we map γ to ω ∗ γ ∗ gω, and this

gives a map between the two relative fundamental torsors. It may be noted also that

Φg
ω = ω̂∗ ◦ ωg

∗ , where ωg
∗ is the map given by γ 7→ γ ∗ gω.

For different choices of ω, we obtain different isomorphisms Φω between π1(M,x)

and π1(M, y). We also have:

Proposition 2.3.2. If π1(M) is an abelian group, for M path connected, then the
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map Φω is independent of the choice of ω.

Proof. Let M be such that π1(M,x) is abelian, and let ω, ω′ be paths from x ∈ M

to y ∈ M . Here ∼ denotes homotopy equivalence. Then, for an equivalence class γ

in π1(M,x),

Φω ◦ Φω′(γ) ∼ ω ∗ (ω′ ∗ γ ∗ ω′) ∗ ω

∼ (ω ∗ ω′) ∗ γ ∗ (ω′ ∗ ω)

∼ (ω ∗ ω′) ∗ (ω′ ∗ ω) ∗ γ

(since π1(M, x) is abelian, and (ω ∗ ω′), (ω′ ∗ ω) are elements of π1(M, x))

∼ γ

Hence, Φω and Φω′ are equal.

We may now prove the following:

Proposition 2.3.3. The diagram given in Figure 2.2 above, using a choice of τy

defined in terms of τx and ω as described earlier, commutes.

Proof. Let us take an element γ of π1(M, x), a homotopy class of loops, and take its

image under each of the maps around the diagram, until we return to π1(M, x).

γ ∈ π1(M,x)

τx∗(γ) = γ ∗ τx ∈ πg
1(M,x)

Φg
ω(τx∗(γ)) = Φg

ω(γ ∗ τx) = ω ∗ (γ ∗ τx) ∗ gω ∈ πg
1(M, y)

τ y∗(Φg
ω(τx∗(γ))) = ω ∗ (γ ∗ τx) ∗ gω ∗ τy ∈ π1(M, y)

Φω(τ y∗(Φg
ω(τx∗(γ))) = ω ∗ ω ∗ (γ ∗ τx) ∗ gω ∗ τy ∗ ω ∈ π1(M,x)

= γ ∗ τx ∗ gω ∗ τy ∗ ω
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Now, given that τy = ω ∗ τx ∗ gω, we have

= γ ∗ τx ∗ gω ∗ (ω ∗ τx ∗ gω) ∗ ω

= γ ∗ τx ∗ gω ∗ (gω ∗ τx ∗ ω) ∗ ω

= γ ∗ τx∗ 6 gω∗ 6 gω ∗ τx∗ 6 ω∗ 6 ω

= γ ∗ τx ∗ τx

= γ

And hence the diagram commutes.

2.3.2 Loops based at gx

The map Φτx will act as a change of base point map from π1(M,x) to π1(M, gx). In

this case, we have a similar diagram to that above, seen in Figure 2.3, and again we

assume M is path connected.

π1(M, x)

τx∗

²²

Φτx // π1(M, gx)

τgx∗

²²

Φτx

oo

bτx∗

wwpppppppppppppppppppppppp

πg
1(M,x)

dτx∗

77pppppppppppppppppppppppp Φg
τx //

τx∗

OO

πg
1(M, gx)

Φg
τx

oo

τgx∗

OO

Figure 2.3: The maps between the fundamental groups and relative fundamental
torsors based at x and gx

This diagram also now incorporates the map τgx∗ and its inverse, which are defined

in terms of a path τgx, which runs from gx to its image g2x. If g is a transformation

of order greater than two, this will, in general, be distinct from x. The logical choice

of τgx, in order to simplify calculations and ensure this diagram commutes, is g(τx),

the image of the path τx we have already chosen under the map g. This ensures that

the map Φg
τx

is equal to τ̂x∗ ◦ τgx∗, since τ̂x∗ ◦ τgx∗(γ) is given by τx ∗ γ ∗ τgx, which is

the same as τx ∗ γ ∗ g(τx), which is how Φg
τx

is defined.

Proposition 2.3.4. The diagram in Figure 2.3 also commutes, given a choice of τx.
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Proof. Since we have already proved that the outer ring of the diagram commutes

for a change of basepoint from x to y, y = gx is just a special case of this. Hence, it

suffices to prove the maps running diagonally in this second diagram commute with

those on the outer ring. Consider an element γ ∈ π1(M, x).

γ ∈ π1(M, x)

Φτx(γ) = τx ∗ γ ∗ τx ∈ π1(M, gx)

τ̂x∗(Φτx(γ)) = τ̂x∗(τx ∗ γ ∗ τx) = τx ∗ (τx ∗ γ ∗ τx) ∈ π1(M, gx)

= γ ∗ τx ∈ πg
1(M,x)

τx∗(γ ∗ τx) = γ ∗ τx ∗ τx ∈ π1(M, x)

= γ

Hence we are back to our original element. Since all the maps are isomorphisms and

the square outer ring commutes, the whole diagram commutes.

The maps τ̂x∗ and τ̂x∗ are maps between πg
1(M,x) and π1(M, gx), which work in

an analogous way to the maps τx∗ and τx∗, except instead of interpreting composition

of paths from x to gx by considering loops based at x, we instead consider loops based

at gx, the other end of the path. This allows us, in a similar way to that defined

using loops at x, to impose another kind of group structure on πg
1(M, x) given the

existing group structure on π1(M, gx).

Proposition 2.3.5. The group structure induced on πg
1(M,x) from π1(M, x) via the

maps τx∗ and τx∗ is the same as that drawn from π1(M, gx) via the maps τ̂x∗ and τ̂x∗.

Proof. This follows from Proposition 2.3.4, and that Φτx is an isomorphism between

π1(M, x) and π1(M, gx) - if the composition of two elements from πg
1(M, x) is mapped

to a particular element in π1(M,x), then under the isomorphism it will be the same

as that mapped to in π1(M, gx). Similarly, the identity of πg
1(M, x) will be τx under

either structure.
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2.4 Equivariant fundamental group

Let M be a manifold, and let G be a finite group acting on M . Let us define

πG
1 (M, x) = {([γ], g) | γ : [0, 1] → M s.t γ(0) = x, γ(1) = gx, g ∈ G}

Here [γ] denotes a homotopy class of paths running from x to gx. This construction

is called the equivariant fundamental group of M with respect to the group G.

It is indeed a group, with structure as follows:

• The identity element of πG
1 (M, x) is a pair ([e], id) where e denotes the trivial

loop based at x, and id the identity transformation.

• The operation in the equivariant fundamental group is given by, for paths γ, δ

and g, h ∈ G:

([γ], g) · ([δ], h) = ([γ ∗ gδ], gh)

Here γ : x Ã gx, δ : x Ã hx and γ ∗ gδ : x Ã ghx, as seen in Figure 2.4.

x

hx

gx

ghx

γ

δ

gδ

Figure 2.4: The operation in the equivariant fundamental group

• The inverse of an element is given by

([γ], g)−1 = ([g−1γ], g−1)

Then we have

([γ], g) · ([g−1γ], g−1) = ([γ ∗ gg−1γ], gg−1) = ([e], id)
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We may note that there exists a homomorphism β : πG
1 (M, x) → G given by

β : ([γ], g) 7→ g

In this case, ker β = π1(M, x) since this is the subgroup of πG
1 corresponding to g = id.

We then have that the following sequence is exact:

1 −→ π1(M,x) −→ πG
1 (M,x)

β−→ G −→ 1

Remark 2.4.1. The equivariant fundamental group can also be defined for G an infinite

group. However, not all of the following results will still hold. Since all of the examples

we will be considering use a finite G, assume G is always finite.

Remark 2.4.2. In the field of equivariant homotopy, there exists a construction called

the equivariant fundamental group, which is the first homotopy group of the so-called

Borel space for the action of G on M , usually denoted MG. In fact, in the case where

G is a discrete group, it is the same as our equivariant fundamental group, and hence

we will use this name without confusion.

Depending on how G acts on M , we have the following results.

Proposition 2.4.3. Let G be a finite group acting on a manifold M .

1. If G acts freely on M , then πG
1 (M, x) ' π1(M/G, x̄), where x̄ is the orbit of x

under the action of G

2. If G fixes some x ∈ M , that is, gx = x for every g ∈ G, then

πG
1 (M, x) ' π1(M, x)oG

where the G-action is given by

ρg : π1(M, x) → π1(M, x), ρg : [γ] 7→ g([γ])

3. If K ¢ G and K acts freely on M , then πG
1 (M,x) ' π

G/K
1 (M/K, x̄), where x̄ is

the orbit of x under the action of K.
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Proof. 1. Consider M as a covering space for M/G. The point x ∈ M , as well as

the points gx for g ∈ G, will sit above x̄ in the covering and be mapped to x̄

under the projection map p.

Since we have a covering, the map p is a local homeomorphism, and so we have

by the path lifting property (see [15], p.60) that loops based at x̄ in M/G may

be lifted to paths running between two of the gx for g ∈ G, and these lifts may

always be found, since the action of G on M is free. That is, for a path in M/G

based at x̄, it may be lifted to a path in M , and this path will be continuous

as the action has no fixed points.

The free action also ensures that under the assumption that we lift the start of

the path to x ∈ M , this lift may be chosen uniquely, and the lifted paths will

end at gx, for some g ∈ G. Since the action is free, g is uniquely determined

by the path.

We also know that by the homotopy lifting property, there exist homomor-

phisms

πG
1 (M,x)

projection p−−−−−−−⇀↽−−−−−−−
lifting `

π1(M/G, x̄)

which are well defined on homotopy classes of paths and loops.

The compositions p ◦ ` and ` ◦ p both exist and are equal to the identity map in

their respective domains. A uniquely chosen lift will project down to the same

original loop, and the image of a path may always be lifted to the original path.

Hence, πG
1 (M, x) ' π1(M/G, x̄) since we have isomorphism.

2. First, note that elements of πG
1 (M,x) will be a pair ([γ], g) where [γ] ∈ π1(M,x),

since x is fixed by G, so [γ] : x Ã gx is actually [γ] : x Ã x. So we have that

πG
1 (M, x) has the elements of π1(M, x)×G.

We may also note that G acts on π1(M, x) by automorphism, where, as stated

earlier,

ρg : [γ] 7→ g([γ]), ρg : π1(M, x) → π1(M,x)
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It takes elements of π1(M, x) to elements of π1(M, x), since in this case x is a

fixed point of the action and so gx = x and g2x = gx = x for all g.

The product in πG
1 (M,x) is given by

([γ], g) · ([δ], h) = ([γ ∗ gδ], gh)

Since ρg(δ) = gδ, this means the product is exactly ([γ ∗ ρg(δ)], gh), and hence

we have a semidirect product.

3. The proof of this follows largely as the proof of part (1), but now our covering

is given by M → M/K, where K acts freely on M . Since K ¢ G, the action

of G on M induces an action of G/K on M/K by sending Kx to Kgx = gKx.

The point x ∈ M , as well as the points kx for k ∈ K, will sit above x̄ = Kx in

the covering and be mapped to Kx under the projection map p.

Since the map p is a local homeomorphism, we have by the path lifting property

that paths from x̄ Ã h(x̄), for some h ∈ G/K, may be lifted to paths running

from x Ã g(x) for some g ∈ G for which g ∈ Kh, and these lifts may always

be found, since the action of K on M is free. The free action also ensures that

under the assumption that we lift the start of the path to x ∈ M , this lift may

be chosen uniquely, and the lifted paths will end at khx, for a unique k ∈ K.

Since the action is free, k is uniquely determined by the path.

We also know that by the homotopy lifting property, there exist homomor-

phisms

πG
1 (M, x)

projection p−−−−−−−⇀↽−−−−−−−
lifting `

π
M/G
1 (M/K, x̄)

which are well defined on homotopy classes of paths and loops.

The compositions p ◦ ` and ` ◦ p both exist and are equal to the identity map in

their respective domains. A uniquely chosen lift will project down to the same

original path, and the image of a path may always be lifted to the original path.

Hence, πG
1 (M, x) ' π

M/G
1 (M/K, x̄) since we have isomorphism.
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The following examples illustrate the use of Proposition 2.4.3.

Example 2.4.4. 1. Let M = R2 \ {a, b}, the twice punctured plane (considered

again in Section 2.6.2, Key examples).

a k1

k2

k2

k1

b

α αa b

Figure 2.5: The twice punctured plane, with symmetries

Let G = Z2×Z2 be the group acting on the space, generated by the reflections

κ1 and κ2, as shown in Figure 2.5. Without loss of generality, we may consider

the two removed points to be arranged as shown. Then, κ1 fixes a and b, and

κ2 and the rotation κ1κ2 both swap a and b over.

The centre of the plane, x0 is a fixed point of the action of G, and so by

Proposition 2.4.3(2), we have

πG
1 (M, x0) ' π1(M, x0)oG

Here π1(M,x0) = F2, the free group on two generators, which is generated

by the loops αa and αb, as shown in Figure 2.5. This means πG
1 (M, x0) '

F2 o (Z2 × Z2).

The action of Z2 × Z2 on F2 is given as follows: κ1 sends αa and αb to their

inverses, the rotation κ1κ2 swaps the two generators, and κ2 sends αa to the

inverse of αb and vice versa.

2. Now let M = R2 \ {a, b, c}, the thrice punctured plane, and let the three

punctures be arranged so as to be collinear, as shown in Figure 2.6(a).
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a k1

k2

k2

k1

c b k1cb

a) b)

x0 x0

Figure 2.6: (a) The thrice punctured plane, with symmetries (b) The quotient space
by Z2

Again we consider the action of G =< κ1, κ2 >' Z2 × Z2 on this space, but in

this case the action has no fixed points, since the point b is removed.

Now consider the group G = 〈κ1, κ2〉 = {id, κ1, κ2, κ1κ2} and in particular

consider the subgroup K = 〈κ1κ2〉. This is a normal subgroup of G, since G is

abelian. The quotient space M/K, shown in Figure 2.6(b), is the quotient of

R2 \ {a, b, c} under the rotation by π given by κ1κ2. This means that points a

and c are identified, and b remains in place. The base point x0 is replaced by

x0, also denoted Kx0, which is a pair of points opposite each other either side

of b. The action of K on this M/K is free, since its only fixed point is again b

which is removed. The cosets κ1K and κ2K are equal, and the two reflections

are equivalent in this quotient space.

Then, by Proposition 2.4.3(1), we have that

πG
1 (M,x0) ' π

G/K
1 (M/K, x0)

That is,

πZ2×Z2
1 (M, x0) ' π

Z2×Z2/Z2

1 (M/Z2, x0)

The quotient space M/K is the twice punctured plane. If we choose our base-

point x0 to be a point on the horizontal axis between b and c, it is fixed under

the action of G/K ' Z2 (acting by κ1 reflection), and so we can then use

Proposition 2.4.3(2) to find

π
Z2×Z2/Z2

1 (M/Z2, x0) ' π1(M/Z2, x0)oG/K
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So we have

πG
1 (M, x0) ' π1(R2 \ {b, c}, x0)o Z2 = F2 o Z2

where the action of Z2 on the free group is by κ1 reflection, which sends each

of the generators to its inverse.

This gives us the short exact sequence:

1 −→ π1(M, x) −→ πG
1 (M,x)

β−→ G −→ 1

1 −→ F3 −→ F2 o Z2
β−→ Z2 × Z2 −→ 1

We can understand the maps involved in this sequence by considering the way

in which the generators of each group are acted on.

Here F2 o Z2 is generated by a loop around b and a loop around c, each based

at x0. The Z2 part indicates whether the loop goes from x0 to itself, or from

x0 to its image under κ1, which is the same point.

The F3 is generated by three loops, based at x0 and each passing around only

one of the three punctures. This is mapped into F2 by the way the rotation

κ1κ2 quotients the plane. We find the loop around c goes to itself, b goes to b2

(since to go around b in the full plane, we go from x0 to a point which is the

image of x0 under κ1 and then back to x0) and a goes to bcb−1. These three

elements of F2 generate a copy of F3 as a normal subgroup.

The map β takes an element ([γ], g) of πG
1 (M, x) to the element g in Z2 × Z2.

2.5 Reidemeister conjugacy

In the case of ordinary loop spaces, we have the following.

Lemma 2.5.1. Conjugacy classes in the usual fundamental group π1(M, x) corre-

spond to connected components of the free loop space Λ(M).

Proof. If we have a pair of homotopy classes of loops based at x, called α, β ∈
π1(M, x), then the element α ∗ β ∗ α will be conjugate to β in π1. This element can
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be seen to be in the same connected component of Λ(M) as a loop representing β,

since we need simply move the basepoint x along the loop α, which we may do in the

space of free loops, to obtain a path to β.

In the case of relative loops, we may consider a ‘twisted’ conjugacy, which we call

Reidemeister conjugacy.

Definition 2.5.2. For a group H, if we consider a map φ : H → H which is an

automorphism, then we can construct a ‘twisted’ conjugacy by, for h, h′ ∈ H, h ∼
h′ ⇔ there exists j ∈ H such that h = j ∗h′ ∗φ(j)−1. The equivalence classes under

such a type of conjugacy are called Reidemeister conjugacy classes (with respect

to the automorphism φ). In the case where φ is the identity map, this is just usual

conjugacy.

We may find the Reidemeister conjugacy classes of the relative fundamental torsor

πg
1(M, x), with a group structure donated from the fundamental group by choice of

ω, with respect to the automorphism φ defined by the transformation g ∈ G as it

acts on paths in πg
1(M, x). That is, for γ a path in M ,

φ : πg
1(M, x) → πg

1(M, x), φ(γ(t)) = gγ(t)

Reidemeister conjugacy in this case is given by:

δ ∼ σ ⇔ there exists γ ∈ πg
1(M, x) such that δ = γ ~ σ ~ gγ,

where the operation ~ is as previously defined - by mapping the paths from x Ã gx

into the space of closed loops, then composing them, and mapping the result back.

We find that this twisted form of conjugacy is very useful in the case of relative loops.

Theorem 2.5.3. Two elements δ, σ of πg
1(M,x), the relative fundamental torsor

of M based at x, are in the same Reidemeister conjugacy class of πg
1(M,x), with φ

defined as above, (that is, there exists γ ∈ πg
1(M,x) such that δ = γ ~ σ ~ gγ), if and

only if δ and σ are in the same connected component of the free relative loop space,

Λg(M) of paths in M whose endpoints are related by g.
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Proof. (⇒)

Let δ, σ, γ be such that σ = γ ~ δ ~ gγ. Let us calculate the result of composing

these three elements of πg
1(M, x). That is,

σ = τx∗(τx∗(γ) ∗ τx∗(δ) ∗ τx∗(gγ)).

First we must note that while δ and γ are defined elements of πg
1(M,x), it is not

clear what is meant by gγ, or indeed τx∗(gγ), since it is not obviously an element of

πg
1(M, x). First, given γ we apply g, which gives an element of πg

1(M, gx). We then

need to find its inverse, so we map it into π1(M, gx) using τgx∗, which gives gγ ∗ τ gx,

a loop based at gx. Its inverse is gγ ∗ τ gx, and this is then mapped into π1(M,x) by

Φτx , giving the element τx ∗ (gγ ∗ τ gx) ∗ τx, which is our τx∗(gγ) as required.

We may now calculate σ as given above.

σ = τx∗(τx∗(γ) ∗ τx∗(δ) ∗ τx∗(gγ))

= τx∗((γ ∗ τx) ∗ (δ ∗ τx) ∗ (τx ∗ (gγ ∗ τgx) ∗ τx))

= γ ∗ τx ∗ δ∗ 6 τx∗ 6 τx ∗ (gγ ∗ τgx)∗ 6 τx∗ 6 τx

= (γ ∗ τx) ∗ δ ∗ (gγ ∗ τgx)

The last part of this, to the right of δ, is a path from gx to itself, and it is easily

seen that it is the image under g of the inverse of the path γ ∗ τx, a loop at x. This

means that this object consists of the path δ from x to gx, with a loop at each end,

which are inverses up to the action of g. This is illustrated in Figure 2.7. We can

use this to construct a homotopy between this object, which from the above is equal

to σ, and δ, by taking the objects σs in which s ∈ [0, 1] and each σs is given by the

path travelling along δ plus adding the sections of the loops at each end of δ given

by travelling a distance of s along each. This gives a homotopy in Λg, as required,

since both endpoints of such paths will always be related by g.

(⇐)

Let σs be a homotopy between σ and δ. Then, the path σs(0) may be used in

place of γ to show that the two paths are Reidemeister conjugate in π1(M,x).
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x

gx

δ

γ ∗ τx

γ ∗ τgxg

Figure 2.7: The resulting path σ = γ ~ δ ~ gγ, which is homotopy equivalent to δ

Remark 2.5.4. This result is the same as Theorem 2.1 from [24], where it is expressed

in a different way, without defining Reidemeister conjugacy classes as such. For a

more detailed analysis, see Section 6.4.

2.5.1 Reidemeister conjugacy and the equivariant fundamen-

tal group

The notion of Reidemeister conjugacy is also connected with πG
1 , the equivariant

fundamental group. Consider the short exact sequence:

π1(M, x) → πG
1 (M,x)

β→ G

The map β maps (γ, g) ∈ πG
1 (M, x) to g ∈ G. For a given g ∈ G, we may find

β−1(g) ⊂ πG
1 (M,x). This is a subset of πG

1 consisting of {(γ, g)|γ(0) = x, γ(1) = gx}
up to homotopy.

In fact, it is a coset of π1(M, x) and can easily be seen to be equal to πg
1(M,x),

where πg
1 = ω∗(π1), for ω : x Ã gx, ω ∈ πg

1 .

Proposition 2.5.5. Reidemeister conjugacy in the torsor πg
1(M,x) ' β−1(g) is or-

dinary conjugacy in πG
1 (M, x), the equivariant fundamental group.
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That is, if two elements in πg
1 are Reidemeister conjugate, then their images in

πG
1 under the inclusion map will be conjugate.

Proof. Let δ, σ be two Reidemeister conjugate elements of πg
1(M, x), so that [δ] =

[γ ∗ σ ∗ gγ] in the relative fundamental torsor. Now consider the images of δ and σ

in πG
1 (M, x), denoted ([δ], g) and ([σ], g). There exists an element in πG

1 (M, x) which

conjugates these elements to each other under usual conjugacy, namely ([γ], e), where

e is the identity element of G. Then

([γ], e)([σ], g)([γ̄], e) = ([γ ∗ σ], g)([γ̄], e)

= ([γ ∗ σ ∗ gγ], g)

This is the element of πG
1 (M, x) corresponding to [γ ∗ σ ∗ gγ] in πg

1(M, x), and since

this is equal to ([σ], g) we have conjugacy in πG
1 (M,x), as required.

2.6 Key examples

2.6.1 n-body problems

An important motivating example in which we study the spaces of loops defined on

a manifold is that of n-body problems. If we consider the problem of n particles

moving in Rd, and we wish to exclude any case where a collision of one or more

particles occurs, we find of interest the space

M = (Rd)n \∆ = {x = (x1, . . . , xn) | xi ∈ Rd, xi 6= xj for all i 6= j}

This space then consists of all valid arrangements of n particles in Rd, and paths

in this space will describe motion of the particles. Closed loops here will be closed

orbits in which all of the particles trace out individual paths, without colliding, and

return to their original positions.

The space M is the complement of a subspace arrangement, so we remove from

(Rd)n all the linear subspaces corresponding to collisions between one or more parti-

cles.
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Remark 2.6.1. In the case d = 2, in which we will mainly be working, we will use the

notation

X(n) = (R2)n \∆

That is, X(n) denotes M in the case where d = 2.

We may consider the space X(n) as a the complement of a complex hyperplane

arrangement. The diagonal set of collisions ∆ is made up of complex hyperplanes

Hij ⊂ Cn = (R2)n defined by the equations zi = zj, such that ∆ =
⋃

Hij. Such

spaces may be easier to work with. In general, we do not have the complement of a

hyperplane arrangement, since the codimension is not 1.

In this work, we will frequently be working in X(n), using planar configurations of

particles, rather than the more general case. The space X(n) has fundamental group

Pn, the pure braid group on n strands (proven below in Proposition 2.6.2). The

pure braid group on n strands is sometimes called the coloured braid group. This

is the normal subgroup of the braid group in which each strand returns to its original

position. There exists an inclusion of Pn into Bn, the full braid group on n strands,

since every element of Pn already exists there, and we can also define a projection

map ϕ from Bn into Sn, the group of permutations on n objects. Each braid in Bn

is mapped to the permutation corresponding to the final arrangement of the strands

once the braid has been applied. The pure braid group will be equal to the kernel of

this map, since ϕ(p) = id for all p ∈ Pn, and if ϕ(p) 6= id then p /∈ Pn.

We have a short exact sequence:

1 −→ Pn −→ Bn −→ Sn −→ 1

2.6.1.1 Presentation of the pure braid group - the case n = 3

The pure braid group on three strands can be presented as:

P3 =
〈
a12, a13, a23 | a−1

12 a23a12 = a13a23a
−1
13 = a13a23a13a

−1
23 a−1

13

〉

Here, the three generators aij correspond to strands i and j being fully twisted around

each other once and returning to their original positions. In usual braid notation,
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where σi denotes a braid passing strand i over strand (i + 1), and where ∗ denotes

composition in the braid group, such twists can be written

a12 = σ1 ∗ σ1

a23 = σ2 ∗ σ2

a13 = σ−1
2 ∗ σ1 ∗ σ1 ∗ σ2

It is important to note that a13, which is a twisting together of the first and third

strands, requires the seconds strand to be moved off to one side in order to perform

the twist. It is irrelevant whether this strand moves to the left or right, and the braid

σ1 ∗ σ2 ∗ σ2 ∗ σ−1
1 is equal to a13 as a braid. However, it is significant that the middle

strand sits behind the other two - a braid which performs the same action but with

the middle strand in front, such as σ2 ∗σ1 ∗σ1 ∗σ−1
2 or its equivalent σ−1

1 ∗σ2 ∗σ2 ∗σ1

is not equal to the generator a13 (in fact such a braid is equal to a23 ∗ a13 ∗ a−1
23 ).

In the notation given by these generators, the full twist, an element which com-

mutes with every element in the braid group, is written a12 ∗ a13 ∗ a23. This will also

commute with every pure braid.

In the general case of n strands, the set of generators of the pure braid group is

given by (from [22]):

aij = σj−1σj−2 . . . σi+1σ
2
i σ

−1
i+1 . . . σ−1

j−2σ
−1
j−1 for 1 ≤ i < j ≤ n

that is, aij wraps the ith strand around the jth strand. The group relations are given

by

a−1
rs aij ars =





aij if i < r < s < j or r < s < i < j

arjaij a−1
rj if r < i = s < j

arjasjaij a−1
sj a−1

rj if i = r < s < j

arjasja
−1
rj a−1

sj aij asjarja
−1
sj a−1

rj if r < i < s < j

Proposition 2.6.2. The space X(n) as defined above has fundamental group Pn, the

pure braid group on n strands.
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Proof. We have X(n) = (R2)n \∆. Loops in this space will consist of motions of the

n particles in the plane which return to their original positions.

Consider the map which takes such motions to a corresponding braid, by plotting

the evolution of the two-dimensional system in three dimensions, with time on a third

axis as shown in Figure 2.8.

The starting points of the particles are regularly spaced along the x axis, and their

paths run along in the direction of the z axis. Strands may cross over and under each

other in the y dimension whenever the particles move around each other in the plane.

If we take a cross sectional slice through parallel to the xy plane, we obtain a single

position of the n points in the plane - this can be thought of as a snapshot of an

instant of motion. Looking down in the y direction, we see usual braid diagrams,

where strands pass over or under each other as they would in a braid diagram. This

defines a map between such motions and the diagrams of braids, up to homotopy.

We can map any existing braid to a motion of the particles in this way also.

Any closed motion of particles (one returning to its original configuration) will

be homotopic to some braid in the pure braid group. Hence, this is the fundamental

group of the space.

Figure 2.8 does not show a closed loop - it illustrates the braid denoted σ2
1σ

−1
2 .

Given a motion of particles, it is possible to express this as a braid in the notation

1

3
2

y

x

z

Figure 2.8: The braid denoted σ2
1σ

−1
2 .

σxi
i σ

xj

j . . . by choosing and fixing a line of reference, and then numbering the particles

from left to right with respect to this baseline - by drawing perpendicular lines to this

baseline. Then, at any point during the motion if any particle passes above another
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with respect to the baseline, this counts as the relevant braid generator.

For example, if the left most particle passes above the second particle, this is

σ1. The particles are renumbered from left to right after each generator. Continue

naming braid generators in this way until the end of the motion. This will give a

braid which corresponds to the motion, with respect to that baseline.

If it happens that two pairs of particles pass above or below each other at the

same time, then choose another baseline with respect to which the crossings occur at

slightly different times.

The majority of our work here will be considering the case of n particles in Rd,

and in particular the case where d = 2 - where the particles move in a plane.

2.6.2 k-centre problems

Another case to which we may apply such considerations is that commonly called

the k-centre problem. In this we consider the motion of a single particle, in a space

where k particles are fixed. The configuration space is k-times punctured Euclidean

space. We study the planar case; topologically, this means we are considering the

motion of the particle in the k-times punctured plane:

M = (R2 \ {a1, a2, . . . , ak})

Here a1, a2, . . . , ak ∈ R2 are distinct points which are removed to form our k punc-

tures.

The k-times punctured plane R2 \ {a1, . . . ak} is a topological space homotopic to

the wedge of k circles, with fundamental group Z ∗ Z ∗ . . . ∗ Z, the free group on k

generators. If we consider the possible curves traced out by a single free particle in

this space, then we are considering loops in the k-times punctured plane, and hence

elements of this fundamental group.

We may apply our study of group actions to this system as for the n-body problem

- the arrangement of the punctures will determine which symmetries of the plane need

to be considered.
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For example, if we consider the twice punctured plane (k = 2) with a single

particle moving in the space M = R2 \ {a, b}, we may (without loss of generality)

assume the points sit on the horizontal axis, an equal distance either side of the

vertical axis, to make symmetries easier to define. Then the space has the symmetry

group of a rectangle, that is, the dihedral group D2, consisting of a rotation by π and

two reflections, in the horizontal and vertical axes.

In the case k = 3, there are different arrangements of punctures to consider -

different symmetries are present if the three points are collinear or if they sit at the

points of a triangle. Example 2.4.4 from page 31 earlier in this section considers the

2- and 3-times punctured plane.

The different possible symmetry groups will lead to different relative loop spaces,

although for a given value of k the spaces will have the same fundamental group.

2.7 Examples of Reidemeister conjugacy classes

Here we consider the example of three bodies in R2, with the transformation g being

reflection in the horizontal axis, which we will denote κ1. We will calculate the

Reidemeister conjugacy classes in this case.

In this case, M = R2×3 \ ∆, and the fundamental group π1(M,x) here is the

pure braid group on three strands, P3. Generators of P3 are a12 = σ2
1, a23 = σ2

2 and

a13 = σ−1
2 σ2

1σ2 . We must first determine how κ1 acts on each of these generators.

When we interpret a motion of particles as a braid, we must choose an axis in the

plane to interpret as the direction of the x-axis as seen in Figure 2.8. In this case,

we choose the horizontal axis, which means any time the leftmost particle passes

above the centre particle relative to this axis, we count it as being an instance of

the braid generator σ1. Hence, the braid σ2
1, which corresponds to the leftmost two

particles passing around each other anticlockwise in a circle, is mapped to σ−2
1 , its

inverse, under the action of κ1. Similarly, κ1(σ
2
2) = σ−2

2 . The third braid generator,

σ−1
2 σ2

1σ2 , is mapped to σ2σ
−2
1 σ−1

2 . This is not equal to the inverse of a13, since the

reflection κ1 turns each σi into its own inverse but does not change the ordering of the
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generators, whereas inverting reverses the order. We in fact have that κ1(a12) = a−1
12 ,

κ1(a23) = a−1
23 , and κ1(a13) = a23 · a−1

13 · a−1
23 .

This then allows us to calculate the Reidemeister conjugacy classes of pure braids.

For instance, a braid γ would be Reidemeister conjugate to a braid a12 · γ · κ1(a12),

which based on our calculation above would be a12 · γ · a12. We in fact have

γ ∼ a12 · γ · a12

γ ∼ a23 · γ · a23

γ ∼ a13 · γ · a−1
23 · a13 · a−1

23

However, we must note that κ1(a12a23) = a23a12, not a12a23. Indeed,

γ ∼ a12 · a23 · γ · a23 · a12

Also,

γ ∼ a23 · a13 · a12 · γ · a12 · (a23 · a13 · a−1
23 ) · a23

∼ a23 · a13 · a12 · γ · a12 · a23 · a13

Hence, any braid is Reidemeister conjugate under the action of κ1 to a braid which

has the arrangements of generators as specified above, with a12 and a23 mirroring

each other, and a13 as shown. Hence the Reidemeister classes will each contain

distinct ‘core’ braids which do not have this property, and cannot have such generators

‘cancelled’ from either end.

By Proposition 2.5.5, we have that the Reidemeister conjugacy in this case is

just ordinary conjugacy in πZ2
1 (X(3), x), where the map φ defining the Reidemeister

conjugacy classes is given by composition with τx, a path from x Ã gx = κ1x.
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Choreographies

When considering the motivating example of n-body problems and particle dynamics,

we will mainly be considering a subset of n-body solutions which possesses a specific

kind of symmetry. These solutions are called choreographies. In this chapter we will

define a choreography, and give some examples, as well as constructing a framework

of group representations which allow us to describe the properties of such an orbit in

terms of its spatial, temporal and labeling symmetries.

3.1 Definition of a choreography

We define a choreography as follows:

Definition 3.1.1. A periodic solution of the n-body problem is said to be a chore-

ography if each of the n particles trace the same curve in space, with a fixed time

delay and without colliding.

Such orbits are visually quite attractive, and the term ‘choreography’ was coined

by Simó (see [30]) on noting the way the particles seem to dance around each other

in a fixed pattern.

If we denote the orbit of a system with n particles by γ , we may write

γ(t) = (x1(t), x2(t), . . . , xn(t))

44
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In this notation, the condition for such a path to be a choreography can be written

γ(t) = (x(t), x(t + T/n), x
(
t + 2T/n

)
, . . . , x

(
t +

(n− 1)T

n

)

Here T denotes the time taken for each particle to complete one full orbit. Each

particle xk follows the same path as the particle xk+1, and particle xn follows x1.

We proceed by giving some examples to solidify the notion of a choreography, as

well as applying symmetry constraints to systems of particles, including that imposed

by the condition of being a choreography. We also attempt a classification of all orbits

satisfying the choreography constraint.

3.2 Basic examples

The circular choreography is one of the simplest examples of a choreography, and

consists of n masses moving with constant velocity on a circle of fixed radius, centred

at the centre of mass of the system. The example of three bodies as the three points

of an equilateral triangle rotating with constant velocity on its circumscribing circle

was found by Lagrange in 1772. In the case of more than three masses, this is replaced

by a regular n-gon.

Another example of note is the figure eight, discovered by Chenciner and Mont-

gomery (see [12]), consisting of three particles moving on a figure eight shape.

Example 3.2.1 (Three particles on a figure eight). The figure eight choreography,

shown in Figure 3.1, was discovered by Chenciner and Montgomery [12] and is one of

the simplest examples of a choreographic motion. The particles visit all three‘Euler’

configurations, where the three particles are collinear, during the course of an orbit.

The figure eight curve has the symmetry group of a rectangle, which is generated

by the vertical reflection κ1 and the horizontal reflection κ2, and includes the rotation

by π, κ1κ2.

Much more complicated choreographical motions have been shown to exist, and

many have been found numerically, including long chains of loops, flowers, foils, and
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1

2

3

t = 0

k1 k2k2 k1

Figure 3.1: Three particles on a figure eight, at t = 0

even shapes which possess no rotational or reflectional symmetries as a curve. Many

examples of such choreographies will also be studied later.

3.3 Types of choreography

The following definitions are due to Chenciner et al (see [11]).

Definition 3.3.1. A simple choreography is one as defined in Definition 3.1.1, in

which all masses move on the same curve.

A double, or multiple choreography is a choreography in which the bodies

separate into two or more groups, and the bodies of each group form a simple chore-

ography. Two bodies in the same group move on the same curve, exchanging their

position after a fixed period of time, which is the same for all groups.

Definition 3.3.2. We say two choreographies are equivalent if they move on similar

curves, with the same number of particles, and if the motions described are the same

but with a different value of t = 0 or length of period.

A satellite choreography is a non-equivalent choreography which is derived

from an existing choreography. A main choreography is one which is not the

satellite of any other choreography.



CHAPTER 3. CHOREOGRAPHIES 47

Satellite choreographies can be found from any main choreography in a number

of ways:

• Subharmonics – travelling around the same curve a multiple of times

• Varying the angular momentum, resulting in a very long period choreography

which looks like the other one being slowly rotated – as an example, see Figure

5.1 from [11] which has a figure eight shape which precesses and forms a closed

curve after 37 passes along the figure eight.

• Combinations of the above

Transformations, such as reflections, rotations, rescaling or phase shift result in equiv-

alent choreographies. In each of the examples we study, we will select an arrangement

of particles corresponding to t = 0 and a spatial orientation of the curve which gives

the simplest calculations - for instance, so that reflectional symmetries occur in co-

ordinate axes where possible.

In most of our work we will be considering primarily simple choreographies which

are of main type, unless otherwise stated.

3.4 Properties of choreographies

The definition of a choreography leads on to some interesting results.

Proposition 3.4.1. In a choreography, for n ≤ 5 and d = 2, all n particles must be

of the same mass.

Proof. See [9], Proposition 3.

Additionally, in the same paper, Chenciner proves in Proposition 4 that for n = 6

the only way the bodies could be not of all equal mass is if they are in two groups

which are each themselves choreographies with the same centre of mass. A double

choreography of this type can be seen in Example 7.1.1 of six particles on a star of

David, on page 145, although it is considered with all masses equal.
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Chenciner also proves in Proposition 5 of [9] that the planar relative equilibrium

solutions of Lagrange, featuring points at the corners of a regular n-gon, must also

have equal masses for all n > 3.

3.5 Symmetries of the n-body problem

In order to study n-body orbits and in particular, choreographies, it has been useful

to adopt the method given by Ferrario and Terracini in [14], which is described here

using notation conventions which have been adapted to suit our existing notation.

We may consider the group of symmetries G acting on a given system of n particles

moving in Rd by taking three representations, as detailed below. We also require that

G be a finite group.

• A representation ρ : G → O(d), which provides information about what g ∈ G

does to the Rd in which the particles are moving. The transformation ρ(g) can

be a rotation or a reflection. For d = 2, the elements ρ(g) for g ∈ G will sit in

some dihedral group, a subgroup of O(2).

As an example, if our choreography is on the regular figure eight curve in the

plane (d = 2), it possesses the same spatial symmetries as a rectangle, and so

the ρ(g) will be from D2 = 〈a, b | a2 = b2 = 1, ab = ba〉, consisting of a rotation

by π, and two reflections, in the horizontal and vertical axes.

When d > 2, the number of possible symmetry groups becomes very large.

Even for d = 3, there are seven infinite families of 3-dimensional point groups,

and seven others.

While we do not extensively consider any examples with d ≥ 3 in this thesis,

there have been discovered choreography type motions in three dimensions, such

as Hip-hop orbits (see [2]) in which the symmetry group of the curve is a sub-

group of a cylindrical symmetry group, with a symmetry plane perpendicular

to the axis of rotation.

Remark 3.5.1. We have specified that G is a finite group. This specifically
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excludes the example of n particles on a circle, described earlier, since the

group of symmetries of a circle in the plane is O(2) and not finite. All of the

other examples of choreographies in the plane we will discuss have finite G.

The example of the circle is considered in more detail in Example A.2.4 on page

168.

• A representation τ : G → O(2), the group of symmetries of the time circle T.

To distinguish between the two different copies of O(2) involved we will write

τ : G → Ŝ1. This representation provides information about what g ∈ G does

to the time circle T ' S1. Since choreographies are closed periodic orbits, we

may consider time to run as t ∈ [0, T ], and if we identify 0 with T , we call this

circle T. We will use T to denote the time taken for one complete orbit, and in

all of our examples we take T = 2π, to make the time circle easier to visualise.

Again, τ(g) will in many of our examples sit in some dihedral subgroup of

O(2) = Ŝ1 for a given choreography; although which dihedral group will vary

with n and with the degree of symmetry of the curve.

We define the following types of symmetry based on the nature of τ(g). We say

a symmetry is time reversing if τ(g) is a reflection, such as τ(g) : t 7→ −t, or

τ(g) : t 7→ −t + kT/n. Otherwise, it is non-time reversing.

We also define a symmetry to be time preserving if τ(g) : t 7→ t, that is,

τ(g) is the trivial transformation of T. These types of symmetry will become

important tools in studying the curve γ(t).

• A representation σ : G → Sn, where n is the number of particles, giving infor-

mation about how g ∈ G acts to permute the n different copies of Rd when the

symmetry is applied. In fact, since the order in which the particles move on

the curve cannot change, for a simple choreography this permutation can only

ever be an n-cycle or a product of disjoint transpositions which corresponds to

fully reversing the order of the particles, as in a reflection. Hence, we can think

of σ as σ : G → Dn ⊂ Sn.
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Remark 3.5.2. In the case of multiple choreographies, the restriction to a di-

hedral subgroup applies to the subset of the particles on each curve. So, for

example, if there are two sets of five particles, each moving on a different curve,

the permutations will be elements of D5 × D5, as a subgroup of S10 with the

natural inclusion (by one copy of D5 acting on particles 1-5, and the other on

6-10).

Since the nature of the permutation σ(g) will be related to the action of ρ(g) on

the space, the type of permutation (cyclic (rotation) or involution (reflection))

will be the same for each component of a multiple choreography, since the action

of ρ(g) affects them all in the same way.

The action of all three of these representations on a curve γ(t) = (x1(t), x2(t), . . . , xn(t))

may be written

(x1(t), x2(t), . . . , xn(t)) 7→

(ρ(g)xσ(g)(1)(τ(g)t), ρ(g)xσ(g)(2)(τ(g)t), . . . , ρ(g)xσ(g)(n)(τ(g)t))

That is, the position of each particle is moved by the transformation ρ(g) which acts

on the space Rd in which the particles live; the n copies of Rd in which the particles

live (and hence the particles) are permuted by the permutation σ(g); and the time

circle is acted on by τ(g).

If a group element g is to be a symmetry of the path γ(t), we must have that the

left and right hand sides of the above mapping are equal.

Proposition 3.5.3. For all elements g ∈ G, the symmetry ρ(g) is a symmetry of the

curve in Rd on which the particles travel. That is, if γ(t) is a curve in Rd then for

every t we have

ρ(g) · γ(t) = γ(t′)

for some t′.

Proof. Let g ∈ G. We have

γ(t) = (x1(t), x2(t), . . . , xn(t))
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For g to be a symmetry of this system, we must have that ρ(g) maps each particle to

a position where itself or some other particle either is at time t, or will be after some

time delay; that is, some other point γ(t′) also on the curve. In fact, since whenever

g is a symmetry of the curve, we have

xi(t) = ρ(g) · xσ(g)(i)(τ(g) · t)

The point xi(t) is mapped by ρ(g) to xσ(g)(i)(τ(g) · t). So, this will be on the curve

γ(τ(g) · t), and so t′ in the above is τ(g) · t.

We now consider an example of a symmetry g and determine the values of

ρ(g), τ(g) and σ(g).

Example 3.5.4. Let us consider the example of three particles moving on a figure

eight, as shown in Figure 3.1 on page 46. Take g0 ∈ G to be the element for which

ρ(g0) = κ1. Then we may find τ(g0) by noting that this reflection reverses the

direction in which the particles are moving on the curve, but it also maps all the

particles onto the positions previously held by themselves or by other particles. Hence,

its effect on the time circle contains no time shift, but does contain a reversal in

direction. So we have τ(g0) : t 7→ −t. Finally, the corresponding permutation can be

seen to swap particles 1 and 3, and leave 2 fixed. So σ(g0) = (13).

3.5.1 The choreography symmetry

Since we are considering choreographies, a symmetry which will always be present

in such cases, by the definition of a choreography, is that which we refer to as the

choreography symmetry. It is given by g for which:

ρ(g) = id τ(g) : t 7→ t + T/n σ(g) = (12 . . . n)

This means that no transformation is applied to the space, but the particles are

all pushed forward in time by T/n – and, since the time delay for the motion of

the particles is equal for each particle, this means that they are each moved round

to the position previously occupied by the preceding particle. The corresponding

permutation is the given n-cycle.
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In order for a choreography to exist, we must therefore have that the group of

symmetries of the system must contain as a subgroup the cyclic group generated by

this element, which will have order n.

Lemma 3.5.5. If ρ(g) acts trivially, for some g ∈ G, then g must be a choreography

symmetry. That is, τ(g) must act by τ(g) : t 7→ t + kT/n, and σ(g) must be some

power of the cyclic permutation (12 . . . n) moving all n indices.

Proof. Let g be a symmetry for which ρ(g) = id. Then, we need to show that σ(g)

is cyclic and moves all n indices, and that τ(g) : t 7→ t + kT/n.

Particles must be mapped to particles, and since there is no action of ρ(g) moving

the particles, this must either be trivially or by the movement of time. The only

non-trivial way for τ to map all the particles directly on to each other is τ(g) : t 7→
±t + kT/n. However, since the action of ρ(g) is trivial, there cannot be time reversal,

since this would require a reflection or rotation of the curve to take place and so we

have τ(g) : t 7→ t + kT/n.

Given this τ(g), and the fact that no ρ(g) action moves the position of the par-

ticles, the resulting σ(g) action must move each of the particles to the position they

are moved to by τ(g), which is that they all move along the curve by some multiple

of T/n. This will result in σ(g) being a permutation which moves all n particles as

required. Hence, we have a choreography symmetry.

Any closed loop γ̂ in the space M describing a motion of particles which satisfies

the definition of a choreography may be considered as the composition of a series of

relative loops γ, gγ, g2γ . . . for which g is the choreography symmetry. That is, each

segment of the full loop runs from a point x to its image gx (where the particles have

all moved on to the next position), and from there to g2x, the image of gx, and so on

up to gnx = x (since the choroeography symmetry has order n). We will denote the

full loop by γ̂, and the segments by γ, gγ, . . . , giγ. In our notation of the composition

of relative loops, we write

γ̂ = γ ~ gγ ~ · · ·~ gn−1γ
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We may also examine the effects of other symmetries on the full loop γ̂, in order

to study the properties of choreographies possessing those symmetries.

3.5.2 Symmetries of the time circle

The action of elements of G on the progress of time along the curve is represented by

τ(g), and manifested on the time circle, denoted T and running from 0 to T = 2π.

Then, symmetries g for which τ(g) reverses time will correspond to reflections of this

circle, and if τ(g) pushes time forward by some amount, this will be a rotation of T.

Since for a given finite symmetry group G, there will only be finitely many such

rotations and reflections, the time circle can in fact be thought of as a ‘time polygon’,

an `-sided figure where the number of sides ` will be dependent on the number of

particles, and the degree of symmetry of the curve.

Note that, if the time polygon has an odd number of sides, all reflections of this

shape will be conjugate to each other - their axes of reflection all pass through a

vertex and the centre of an edge. If the number of sides is even, there will be two

conjugacy classes of reflections, since some will have axes of reflection which pass

through two vertices, and some will pass through the centres of two edges. This can

easily be seen in Figure 3.2 on page 55, which shows the cases ` = 6 and ` = 5.

Lemma 3.5.6. The order of the group G is equal to the number of particles n times

the order of the group of spatial symmetries of the curve.

Proof. Consider the representation ρ, as defined previously. By the first isomorphism

theorem, we have that |G| = |im(ρ)| × | ker ρ|.
By Proposition 3.5.5, we have that | ker ρ| = n, since it consists only of the

choreography symmetry. Additionally, |im(ρ)| is by definition the order of the group

of spatial symmetries of the curve. Hence, the result holds.

If the symmetry group of the curve is the dihedral group Dk of order 2k, and the

number of particles is n, then ` = kn, which by the above is |G|
2

.

Exceptions to this include curves with no time-reversing symmetries, such as

Example 5.3.1(2) of three particles on a distorted figure eight shape, on page 131
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- in which case the time circle is not a regular polygon, as it has only rotational

symmetries, and in this case ` is not equal to |G|
2

, but instead ` = |G|. This includes

cases where the curve possesses no symmetries at all, such as Example A.2.1 of six

particles on a non-symmetrical figure, on page 158. Another exception is multiple

choreographies, which display other properties, discussed in Section 7.1.

The other important exception to this is the case in which the choreography

possesses a time-preserving symmetry, such as in the case of four particles on a

super-eight. In this case, ` is given by |G|
2

divided by the order of ker τ . The time

preserving symmetry divides the group into | ker τ | cosets Gi, each of which is subject

to our condition ` = |Gi|
2

. This is illustrated in Example 4.5.3 of four particles on a

super-eight, on page 93 in the next section.

Table 3.1 shows the values of n, 2k, ` and |G| for the examples considered in this

thesis. Entries marked with a dagger have time-preserving symmetries and hence

` = n.

Table 3.1: The relationship between |G|, n, k and `

Example n 2k ` |G|
3 on a figure 8 (3.2.1) 3 4 6 12
† 4 on a super 8 (4.5.1) 4 4 4 16

4 on a trefoil (5.1.7) 4 6 12 24
5 on a 4-flower (5.1.10) 5 8 20 40
5 on a figure 8 (5.2.1) 5 4 10 20
5 on a 4-chain (5.2.3) 5 4 10 20
5 on a super 8 (5.2.2) 5 4 10 20
† 6 on a 3-flower (A.2.2) 6 6 6 36

6 on a non-symmetrical figure (A.1) 6 1 6 6
† 8 on a 4-flower (A.2.3) 8 8 8 64

9 on a bifurcated 6-chain (A.2.5) 9 2 9 18

Remark 3.5.7. The entry for 6 particles on a non-symmetrical figure (Example A.1)

lists 2k as equal to 1. This curve has no non-trivial rotational or reflectional symme-

tries, and so it does not have Dk as its symmetry group for any k. The order of the

group of symmetries is 1, and this fits with the conclusion of Lemma 3.5.6 that |G|
is n times the order of the symmetry group.
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t=0

t = /T 12

t=0

t = /T 10

l = 6 (even)

l = 5 (odd)

Figure 3.2: The time circle, shown as a ‘time polygon’ with five or six sides

Remark 3.5.8. In all of the examples listed in the table above, with one exception,

the time polygon has an even number of sides, and hence there are two conjugacy

classes of time reversing symmetries. The exception is Example A.2.5 on page 171

of nine particles on a bifurcated 6-chain, in which the symmetry is a single reflection

(and hence k = 1), giving ` = kn = 9 × 1 = 9. Since ` is odd, this means that

all reflections of the time circle (time reversing symmetries) are conjugate to each

other. This can be seen in that all of the time reversing symmetries - the lower half

of Table A.4 on page 175 - have the same cycle type in σ(g), unlike most of our other

examples, where there are two different cycle types present among the time reversals,

such as in Table 4.2 on page 91 for four particles on a super-eight. An exception to

this is when n = 3, for which Dn contains only one cycle type of involutions.
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3.5.3 The full symmetry group

As proven in Lemma 3.5.6 in the section on the time circle, the order of G is given by

the product of the number of particles n with the order of the group of symmetries

of the curve.

For a given directed curve and number of particles, it is possible to determine the

group of symmetries G, by writing a list of all the elements as a triple [ρ(g), τ(g), σ(g)]

which exists as an element of G ⊂ Γ = O(2) × Ŝ1 × Dn. We will use the following

notation:

• For ρ(g), write the element in terms of the generators - reflections κi, where

by our convention κ1 denotes a reflection in the horizontal axis, κ2 denotes a

reflection in the vertical axis, and κj for j ≥ 3 are used to denote a reflection

in an appropriate diagonal angled at a fraction of 2π (depending on the degree

of rotational symmetry present). The identity element here will be denoted I.

• For τ(g), denote by A the map τ(g) : t 7→ t+A, and by A the map τ : t 7→ −t+A.

Hence 0 is the identity, 0 is a time reflection about t = 0, T/k is a pushing forward

(rotation) of the time polygon by T/k, and T/k is a reflection on the time circle

which fixes T/2k and T/2 + T/2k, and so maps 0 to T/k.

• For σ(g), which is an element of Dn ⊂ Sn, we use the disjoint cycle permutation

notation (e.g. (123), (12)(34)) to describe how the particles are exchanged. We

will use e to denote the identity element.

Here, we describe a method for creating a table of group elements for a given chore-

ography, as seen in the examples given from now on.

The columns of the table are, from left to right: the symmetry of Rd given by

ρ(g); the symmetry of T given by τ(g); the permutation of the particles given by

σ(g); and in the fourth column, the order of the corresponding element g. Each

row describes an element of the group G, and the tables have been obtained by the

following method.
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First, list the identity element [I, 0, e], followed by the choreography symmetry

[id, T/n, (123...n)], and all powers of this element. This gives n group elements. Then

the left column must be extended to contain all the symmetries of the curve (in the

majority of cases, these will be the elements of some dihedral group) - for example,

the group table for the figure eight lists all the elements of D2, and that of the three-

petal flower lists all elements of D3. Each element in the left column will occur n

times.

Next to each of these elements will be the action of τ(g) on the time circle, which

in the case of a non-time reversing symmetry will be the value of t at which the

spatial symmetry applies. If the symmetry is time reversing, the elements in the

second column will be of the form 0 or T/k. The value listed is that which gives both

fixed points - if the fixed points are at T/2k and T/2 + T/2k, then this column will list

T/k.

The corresponding permutations will be written in the third column, where in

the case of time reversing symmetries the permutation is that applicable at the fixed

points (this will be the same at both fixed points).

Having completed the table, we are able to fully ascertain the structure of the

group G, firstly by examining the total number of elements (this is the product of n

with the order of the symmetry group of the curve) and then the order of the elements,

which are written in a fourth column on the right. This allows us to determine the

structure of the group.

The table is also useful in the process of determining the images and kernels of the

maps ρ, τ and σ. Several illustrative examples will be given in the following sections,

such as Example 3.2.1 of three particles on a figure eight, on page 45, and further

examples may be found in the Appendix.

Example 3.5.9 (Three particles on a figure eight). Table 3.2 shows the symmetry

group for our previously considered example of three particles on a figure eight shape.

The symmetries are those of a rectangle, giving four different entries in the ρ(g)

column. There are three particles, meaning three rows correspond to each entry. The
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first three rows can be seen to correspond to the choreography symmetry.

This group has order 12, and a dihedral structure generated by the starred ele-

ments, and hence is the dihedral group D6.

ρ(g) τ(g) σ(g) Order

I 0 e 1
I T/3 (123) 3
I −T/3 (132) 3
κ1 0 (13) 2

κ1
T/3 (12) 2

κ1
−T/3 (23) 2

∗κ2
T/6 (132) 6

κ2
T/2 e 2

κ2
−T/6 (123) 6

κ1κ2
T/6 (23) 2

∗κ1κ2
T/2 (13) 2

κ1κ2
−T/6 (12) 2

Table 3.2: Three particles on a figure eight - elements of the symmetry group

3.6 The maps ρ, σ and τ

For a group G which is the group of symmetries of some choreography, we may

consider the interactions between the three representations ρ, σ and τ . We introduce

a diagram of the form seen in Figure 3.3.

K

iτ

²²

Sn

C
iρ // G

τ

²²

ρ //

σ

77pppppppppppppp
O(2)

M

iσ

88qqqqqqqqqqqqq
Ŝ1

Figure 3.3: The maps ρ, σ and τ

Here, we see the representations and their images: ρ : G → O(2), σ : G → Sn

and τ : G → Ŝ1. The diagram also shows the inclusion maps iρ, iσ and iτ from the

kernels of the three maps, here denoted C = ker ρ, M = ker σ and K = ker τ .
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Information about these maps and their kernels may be determined by examining

how the maps work and what they do to a given element of G. This allows us to

examine the structure of G and the relationships between the maps. Recall that the

action of G on a path γ = (x1(t), . . . , xn(t)) may be written

g(x1(t), . . . , xn(t)) = (ρ(g) · xσ(g)·(1)(τ(g) · t), . . . , ρ(g) · xσ(g)·(n)(τ(g) · t)

• The image of σ will be either the dihedral group Dn or cyclic Zn, since it can

only contain elements of Sn preserving the ordering of the particles. If there do

not exist time reversing symmetries, then the image will be cyclic Zn. (This is

proved in Proposition 4.1.2 on page 68).

• The image of ρ is either dihedral or cyclic, depending on the symmetries present.

• The image of τ will again be dihedral or cyclic, since it is a symmetry group of

the polygon inherent in the time circle T.

We may also analyse the kernels of the maps, leading to the following:

• C = ker ρ is always isomorphic to Zn, since by Proposition 3.5.5 we only have

the choreography symmetry t 7→ t + T/n, (12 . . . n), which generates Zn.

• K = ker τ consists entirely of time preserving symmetries, meaning that if there

are no time-preserving symmetries, we have imτ ' G. Examples of non-trivial

K include Example 4.5.1 on page 88, of four particles on a super-eight, which

has K ' Z2 since there exists a time-preserving symmetry.

Time preserving symmetries will be discussed later in Section 4.5.

• The kernel of σ, denoted M , will contain any symmetry which does not exchange

any of the particles. In G, there will be |G|
|imσ| copies of imσ, and each will be

either cyclic or dihedral. Hence there will be |G|
|imσ| elements of G for which

σ(g) = id. So |M | = |G|
2n

, when imσ = Dn, and |M | = |G|
n

when imσ = Zn.

For example, if we examine Table 5.3 on page 120, which shows the group G

for the motion of five particles on a four-flower, we see that in the σ(g) column
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there are four elements which map to the identity under σ. These four elements

are shown in Table 3.3, and it can be seen that they form a cyclic group of order

four. Comparing this to the full table allows us to see that there are four copies

of D5 present.

Table 3.3: Five particles on a four-flower - elements of ker σ

ρ(g) τ(g) σ(g) Order

I 0 e 1
κ3κ1

T/4 e 4
(κ1κ3)

2 T/2 e 2
κ1κ3

−T/4 e 4

We can additionally determine the following facts about the intersections of the ker-

nels of the maps.

• K ∩C, the intersection of the kernels of τ and ρ, will always be trivial. Indeed,

by Lemma 3.5.5, the only g in C = ker ρ, are choreography symmetries, and

the only choreography symmetry for which τ(g) is trivial is the identity, since

all the others involve a time shift of kT/n.

• K ∩M will again always be trivial, since in the case where K = ker τ is non-

trivial, any elements in K will have ρ(g) a rotation by Proposition 4.5.1, and

τ(g) : t 7→ t. Then, any such element satisfying σ(g) = e will only apply to all

points colliding at the centre, and not to any collisionless motion.

We will use the kernel and images of these maps to classify the different possible

types of symmetry group in Section 4.1.

We now return to our example of three particles on a figure eight shape, and

consider the resulting diagram of maps.

Example 3.6.1 (ρ, σ and τ for three particles on a figure eight). Let us consider the

setup given in Example 3.2.1 on page 45, of three particles on a figure eight. In this

case, G ' D3 × Z2 ' D6, as given in Table 3.2 on page 58, and the diagram from

Figure 3.3 can be completed as seen in Figure 3.4.
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1

iτ
²²

D3

Z3

iρ // D6

τ

²²

ρ //

σ

66nnnnnnnnnnnnnnn Z2 × Z2

Z2

iσ

88ppppppppppppp
D6

Figure 3.4: The maps ρ, σ and τ for three particles on a figure eight

Here, the kernel of τ is trivial, since there are no non-trivial symmetries which act

trivially on the time circle T, and so the image of τ is isomorphic to the full group

G. The action of ρ will always have kernel Zn, since it contains only those elements

which are powers of the choreography symmetry, so in this case it is Z3. The action

of σ has Z2 as its kernel, since the non-time-reversing action of κ2 has a power which

leaves the elements unpermuted with a time shift of T/2.

Solutions of the n-body problem which fit our requirement of planar simple chore-

ographies, with a given set of spatial symmetries, will exist as some subspace of the

space of free loops in X(n) = (R2)n \ ∆. The following constraints may initially be

placed on the loops:

• The motion must obey the choreography symmetry - as described in the section

defining choreographies, this means the loop γ̂ must be composed of γ ~ gγ ~

. . . ~ gnγ, where γ is a relative loop running from a point in M to its image

under the choreography symmetry, and hence the particles will behave as in a

choreography.

• The curve on which the particles are moving must obey the given spatial sym-

metries.

This restricts the subset of the loop space which we are considering to those whose

motion is choreographical, and then further to those obeying the spatial symmetries.

Each spatial symmetry, when applied to the system, will correspond to some

permutation of the particles, if the arrangement of the particles also possesses that
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symmetry, and otherwise will correspond to some permutation of the particles com-

bined with an alteration of the map to the time circle, such as a shift forward in time

around the circle.

3.7 Time reversing symmetries

The map ρ assigns to each element of the symmetry group an element of O(d), and

in the planar case we are considering, an element of O(2). For a given curve in the

plane, the values ρ(g) can take will depend on the degree of symmetry of the curve,

and will belong to some dihedral group Dk (given our finite group constraint).

These will therefore either be a reflection or a rotation, and, depending on the

curve, will result in a curve which traces out time in the same direction as the original

curve, or the opposite direction. In the case that ρ(g) reverses the direction of time

on the curve, we refer to g as a time reversing symmetry.

Example 3.7.1 (Three Particles on a Figure Eight). The figure eight example pos-

sesses symmetries which are time reversing.

The arrangements of particles possess spatial symmetry at t = kT/12, as seen in

Figure 4.2 on page 86 in the next section, with κ1 symmetry at even values of k and

κ1κ2 symmetry when k is odd. The symmetry of κ2 involves a time shift of T/2. The

choreography symmetry is present, as are time-reversing symmetries such as g0 and

g1, given by ρ(g0) = κ1 with σ(g0) = (12), and τ(g0) : t 7→ −t, and ρ(g1) = κ1κ2 with

σ(g1) = (13), and where τ(g1) : t 7→ −t + T/6.

If a symmetry is time reversing at t = 0 such as g0 in the example above, this

corresponds to a reflection on the time polygon through t = 0, fixing 0 and T/2, and

the path γ : x Ã gx must also obey this symmetry. Coupled with the choreography

symmetry, one or two time reflections will allow us to reduce the description of γ to

be given on an even smaller small portion of the time circle, and the symmetries will

give the full curve γ̂. This is discussed in more detail in the next chapter.

It may be noted that whether a given reflection or rotation is time reversing is
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dependent on the shape of the curve - in particular, the degree of the symmetry is

significant, as well as the number of crossings present in the curve.

Figure 3.5: Linear chains, with one, two, three and four crossings

The shapes depicted in Figure 3.5 are called linear chains, and form an infinite

family of curve shapes, for all of which ρ(g) will be from D2, due to the rectangular

symmetry of such objects. It can be seen that the reflection in the horizontal axis,

κ1, is time reversing, while the reflection in the vertical axis, κ2, is time reversing if

and only if the curve contains an even number of crossings. The rotation by π, κ1κ2,

is time reversing if and only if the curve has an odd number of crossings. Chains are

considered in more detail in Chapter 5.

Figure 3.6: Curves with rotational symmetries of order three

For curves with k-fold rotational symmetry, such as the k-flowers, k-windmills and
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k-foils defined in Chapter 5 and shown in Figure 3.6 for the case k = 3, any reflection

will be time-reversing, but a rotation will not. This is because the motion proceeds

around the central point in each case, and rotation merely moves the particles further

along. Reflection, at any point, will reverse the direction of motion along the path.

In the general case, it is difficult to classify the many shapes of curves possible, but

it is always simple to determine if a given symmetry is time-reversing, by examination.

We have the following results:

Proposition 3.7.2. For any simple choreography in R2, any symmetry g which is

time-reversing for a given curve {x(t)|t ∈ [0, T ]} must have ρ(g) with order two.

Proof. Two cases:

• ρ(g) is a reflection, in which case result follows.

• ρ(g) is a rotation.

Assume the rotation is of order `, greater than two. The value of ` must be

even, since the rotation reflects time with order 2.

Since the curve has order ` symmetry, and this rotational symmetry is time-

reversing, we require that the curve consists of ` petals, with alternating ori-

entations, which all meet in the centre. This is because each petal must map

onto each other, and with time running in the opposite direction. This cannot

occur without creating an inconsistency in the orientation of the whole curve,

unless all the petals meet at the centre of rotation.

This means we must have an odd number of particles moving on our curve,

since with an even number of petals, any particles which were T/2 apart would

collide at the centre.

As the symmetry g is time-reversing, then we may choose an arrangement at

t = 0 such that τ(g) = 0. This means the rotation of order ` must map all of

the particles to the positions of other particles, since there cannot be any time

shift.
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Since we have an odd number of particles, this means one particle must sit at

the centre of rotation at t = 0, since the rotation is of even order. Then σ(g),

the corresponding permutation, will leave this particle fixed and permute the

remaining n− 1.

This permutation will be a product of cycles, and have order `. However, such

a permutation cannot be an element of Dn, where n is odd and ` even, and

hence cannot permute the particles while preserving the ordering of particles

on the curve. This cannot happen in a simple choreography. Hence we must

have ` = 2.

Corollary 3.7.3. If a symmetry group possesses a rotational symmetry which is both

time reversing and a rotation, then it cannot contain any other rotations.

Proof. Let g ∈ G be a time reversing rotation (of order two, by Proposition 3.7.2),

and assume g′ ∈ G is a rotation of order b > 2 (since if g′ were of order two, it would

be the same as g since there is only one rotation of order two on any given object).

Then the element gg′ is a time reversing rotation of order 2b > 2. Contradiction!

Since, by Proposition 3.7.2, all time reversing rotations must be of order two. Hence,

no other rotations can exist.

Time reversing rotations and reflections of order two may be seen in Example 3.2.1

on page 45. Example 7.1.1 on page 145 shows a multiple choreography consisting of

two groups of three particles on a star of David, which has time reversing rotations

of order six due to the multiple components of the curve being differently oriented.

3.7.1 Table of time reversing symmetries

Table 3.4 gives a list of the time-reversing symmetries present in many of the examples

considered here. From left to right, the columns indicate which example the symmetry

occurs in, and which symmetry is being considered, the corresponding permutation,

the homotopy type of the fixed point spaces Fi (i ∈ {0, 1}), defined in the next



CHAPTER 3. CHOREOGRAPHIES 66

Table 3.4: Time reversing symmetries

Choreography Symmetry σ(g) Fixed pt space Fi π0(Fi)

3 on Fig 8 κ1 (12) 2[pt] 2
Ex 3.2.1 κ1κ2 (13) S1 1

4 on 3-foil κ2 (13) 4[pt] 4
Ex 5.1.7 κ3 (24) 4[pt] 4

5 on 4-flwr κ1 (12)(35) 4[S1] 4
Ex 5.1.10 κ3 (12)(35) 4[S1] 4

5 on 4-chn κ1 (25)(34) 4[S1] 4
Ex 5.2.3 κ1κ2 (25)(34) K(Z× F3, 1) 1

5 on fig8 κ1 (25)(34) 4[S1] 4
Ex 5.2.1 κ1κ2 (25)(34) K(Z× F3, 1) 1

5 on sup8 κ1 (25)(34) 4[S1] 4
Ex 5.2.2 κ2 (25)(34) 4[S1] 4

4 on sup8 κ1 (13) 4[pt] 4
Ex 4.5.1 κ1 (12)(34) 4[pt] 4

6 on 3-flwr κ1 (13)(46) 6[pt] 6
Ex A.2.2 κ1 (12)(36)(45) 6[pt] 6

8 on 4-flwr κ1 (28)(37)(46) 8[pt] 8
Ex A.2.3 κ1 (18)(27)(36)(45) 8[pt] 8
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chapter, and number of connected components possessed by these spaces. Here, for

example, 4[S1] denotes a space consisting of the disjoint union of four copies of S1.

Note that for the bottom three entries, there additionally exists a time preserving

symmetry and the fixed point spaces given have been restricted further by considering

this time preserving symmetry. As we will discover in the next chapter, the fixed point

spaces F0 and F1 may be further restricted to F ′
0 and F ′

1, which are the spaces given

in this table.



Chapter 4

Loop Spaces

In this chapter, we discuss topological devices for studying the spaces of choreo-

graphical solutions, and how the symmetries of such motions, as expressed using the

representations previously defined, may be used to reduce the space of loops being

considered. These representations will allow us to first attempt a classification of the

different possible symmetry groups. We will exploit the way in which τ(g) acts on

the time circle, using reflections of the time circle and also the case in which τ(g)

acts trivially, to place restrictions on the permitted arrangements of particles.

4.1 Classifying choreographies

4.1.1 Reversing and non-reversing symmetry groups

We define the following:

Definition 4.1.1. We say that a symmetry group is reversing if imσ ' Dn, and

non-reversing if imσ ' Zn.

We may divide all symmetry groups into one of these two types. First, a prelim-

inary result:

Proposition 4.1.2. For a simple choreography, imσ, the image of the map from G

to Sn, must contain the cyclic subgroup generated by the n-cycle (12 . . . n).

68



CHAPTER 4. LOOP SPACES 69

Proof. Given that we have a choreography, we must have that G contains the sub-

group corresponding to the choreography symmetry. For a simple choreography,

where all n particles move on the same curve, the corresponding permutation of the

symmetry will be the n-cycle (12 . . . n). All n powers of the choreography will also

be present in the symmetry group, and so the corresponding permutations will be

the powers of this n-cycle. These n elements will form a cyclic subgroup of imσ, as

required.

We now have:

Proposition 4.1.3. For a simple choreography, we must have that either imσ ' Dn,

in which case the symmetry group is reversing, or imσ ' Zn, in which case it is

non-reversing.

Proof. First we show that imσ must be Zn or Dn.

We know that imσ must contain only elements of Sn which preserve the ordering

of the particles, so it must be a subgroup of Dn < Sn. Non-trivial subgroups of

Dn are exactly Zm and Dm for m | n. We know that imσ must contain a cyclic

subgroup of order n, corresponding to the powers of the n-cycle (12 . . . n) given by

the choreography symmetry, by Proposition 4.1.2. The dihedral group Dm, for m < n,

contains no cyclic subgroup of order n, and so we have that imσ must either be all

of Dn, or the cyclic subgroup Zn, as required.

Now, we must simple consider the fact that any symmetry of the choreography

which reverses time must also reverse the order of the particles on the curve, in order

for it to be a symmetry, and since all permutations in Zn as a permutation group

are cyclic, time reversing symmetries will be present if and only if imσ ' Dn. In

the absence of time reversing symmetries, permutations of the particles (which must

preserve the ordering of the particles around the curve) can only be cyclic, and so

imσ ' Zn.

Proposition 4.1.4. The symmetry group of a choreography is reversing if and only

if imρ ' Dk, where Dk is the symmetry group of the curve.



CHAPTER 4. LOOP SPACES 70

Proof. (⇒) Assume the curve has symmetry group Dk and imρ = Dk; We will show

that the symmetry group must contain reversing symmetries.

Indeed, assume there are not time reversing symmetries in G. This means imτ is

cyclic Zb for some b, since it consists only of symmetries which push time along and

none that reverse it.

We may also note that since we have the short exact sequence

Zn → G
ρ→ Dk

where Zn is ker ρ and Dk = imρ, we know that G is not a cyclic group since Dk has

multiple generators, and hence so must G. This means that in the sequence

ker τ → G
τ→ Zb

we must have that ker τ is non-trivial, since otherwise G would have to be equal to a

cyclic group. This means there exist time-preserving symmetries of this choreography.

So, let ker τ = Z`, and note the following facts:

• ` must divide n, by Corollary 4.5.2 from page 92 in our section on time pre-

serving symmetries. So, write n = m`, for some m.

• ` must also divide k, since there is an inclusion of ker τ into imρ, because any

time preserving symmetry (one which is in ker τ) must move all of the particles,

and therefore cannot map to the identity under ρ. So, write k = r`, for some r.

Then, we have the following diagram:

Z`

iτ
²²

Zm`

iρ // G

τ

²²

ρ // Dr`

Z2rml

Here we note that the order of G must be the product of m` with 2r` = |Dr`|,
and hence |G| = 2rm`2. Then, if ker τ = Z`, we have that b = 2mr`; that is,

imτ = Zb = Z2mr`.
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However, by Proposition 4.1.5(1), since our symmetry group is non-reversing, we

have that G is isomorphic to the direct product Zm` ×Dr`.

This group cannot contain an element of order 2mr`, since the maximal order of

an element of Dr` is r`, and the maximal order of an element of Zm` is m`, so their

product will contain elements of order at most mr`.

Therefore, G cannot map into the cyclic group Z2rm` under τ as we have here.

This is a contradiction, and so we cannot have that there do not exist time reversing

symmetries - the group G must be reversing, as required.

(⇐) Assume the symmetry group is reversing, and we will show that if Dk is the

symmetry group of the curve, it is also equal to imρ. We consider three cases, by

different values of k.

• k = 1 Here the symmetry group of the curve is D1 ' Z2, and hence possesses

only one non-trivial symmetry, a rotation or reflection. If this rotation or

reflection is time-reversing, which it must be if G is a reversing symmetry

group, then imρ ' D1 as required.

• k = 2 Consider the map Or : G → Z2, where

Or(g) =





+1 if g acts trivially on the orientation of T

−1 otherwise.

Then if k = 2, we have |G| = 2nk = 4n, and 2n of these elements will map to

−1 under Or and will hence be time reversing. In this case, D2 consists of the

identity, a rotation and two reflections. The n elements which are powers of the

choreography symmetry will not be time reversing. This means at least one of

the two reflections must be time reversing, and hence imρ contains a reflection.

This means it must be the whole of D2.

• k > 2 Here Dk must contain at least two rotations, and hence by Corollary

3.7.3, any time reversing symmetries present must be reflections since there

cannot be more than one rotation if one of them is time reversing. So, imρ

must again contain a reflection and hence must be all of Dk, as required.
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This leads us to the following classification of G as reversing or non-reversing

symmetry groups:

Proposition 4.1.5. 1. If G is non-reversing, and S = imσ is isomorphic to the

cyclic group Zn, then G is a direct product of C = ker ρ and R = imρ; that is,

G ' C ×R.

2. If G is reversing, then we may classify it by Z2-extensions.

Proof. 1. imσ = Zn

Consider the sequence of maps

1 −→ C
iρ−→ G

ρ−→ R −→ 1

This sequence is exact.

We may define a map from G to C by σ, since C = ker ρ ' Zn always, and if

imσ = Zn then σ defines a map from G to Zn.

We need to show that σ ◦ iρ = idC . Indeed, take an element g of C ⊂ G. Then

iρ(g) will map under σ to the element of Zn it originally represented, since C

consists only of the choreography symmetries (by Proposition 3.5.5), each of

which corresponds to a unique element of Zn. Hence, σ ◦ iρ = idC . Then this

short exact sequence is left split, and hence by the splitting lemma (see [20] pp.

16-17), G ' C ×R as required.

2. imσ = Dn

Consider the group G. The map σ will map half of the group G to Zn, namely

the half consisting only of the rotations. Let this part be denoted G′ = σ−1(Zn).

Then, by part 1), G′ is isomorphic to a direct product of C and R.

We know C ' Zn, and since G is reversing, we have imρ ' Dk by Proposition

4.1.4. So, G′ ' Zn ×Dk.
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We also have that G′ is a normal subgroup of G, since it is of index two in G.

We may now construct the following short exact sequence:

1 −→ (G′ ' Zn ×Dk)
i−→ G

Or−→ Z2 −→ 1

Here, the map Or is that defined in Proposition 4.1.4, given by

Or(g) =





+1 if g acts trivially on the orientation of T

−1 otherwise.

We may use this exact sequence to determine G, for different values of n and k.

1 −→ (Zn ×Dk)
i−→ G

Or−→ Z2 −→ 1

Note that the sequence splits on the right, since we may define a map from Z2 into G

which takes the non-identity element to a time reversing symmetry in G. The map Or

composed with this map is the identity on Z2, and so we have that G ' (Zn×Dk)oZ2.

4.1.2 Types of orbits

In [34], Terracini considers the representation τ , and makes use of the way the group

G = G/ ker τ acts on T to classify symmetries into one of three types. As previously

discussed, the kernel of τ may be trivial, so G/ ker τ 6= G only in the case where there

exist time preserving symmetries.

• If the group G acts trivially on the orientation of T - that is, there do not exist

any time reversing symmetries, then G is a cyclic group and we say that the

action of G on the space of loops is of cyclic type. Examples include the

second part of Example 5.3.1 (which starts on page 131) of three particles on a

distorted figure eight (possessing no κ1 symmetry), and Example A.2.5 of nine

particles on a bifurcated six-chain, on page 171 (possessing no κ2 symmetry).

• Otherwise, we say that the action of G on the space of loops is of dihedral

type. Most of the examples we have seen fall into this category.
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These correspond to our definitions given above of reversing and non-reversing sym-

metry groups.

Remark 4.1.6. Terracini also defines an orbit of brake type, where G consists of

a single reflection on T. This corresponds to motions where a particle moves back

and forth with a change of direction. None of our simple choreography examples fall

into this category, since we consider choreographies with n ≥ 3 particles, and if all

particles must follow the same path, such behaviour would lead to a collision.

4.1.3 Map kernels and images

Given the maps ρ, σ and τ and their kernels and images, it is possible to attempt

a classification of all the different groups G which could be the symmetry group of

some choreography.

ker(τ)

iτ

²²

im(σ)

ker(ρ)
iρ // G

τ

²²

ρ //

σ
66nnnnnnnnnnnnnnn
im(ρ)

im(σ)

iσ

66nnnnnnnnnnnnnnn
im(τ)

We begin by noting the following facts:

• ker ρ = Zn, for n particles, since it contains only the choreography symmetry.

• ker τ is trivial unless there exists a time preserving symmetry (see Section 4.5).

• imσ must be a dihedral or cyclic group, since it must permute the particles

without altering their order on the curve (only rotations and reflections are

permitted).

• imρ must be the symmetry group of some object in Rd, and for the case d = 2

which we are considering, of some object in the plane. This means it must be

Dk or Zk for some k, since we assume G is finite.

We now find there are two obvious approaches:
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1. To classify G by im(ρ) - since it only has two broad possibilities, we may use

the First Isomorphism Theorem

im(ρ) = G/ ker(ρ)

and the fact that ker(ρ) is known, to list possibilities for G.

2. To classify G by ker(τ) and im(τ). Since ker(τ) may be trivial, in this case

G = im(τ), for which there is a limited number of possibilities. If ker(τ) is not

trivial, we may classify G using both ker(τ) and im(τ).

4.1.3.1 Classification by im(ρ)

1. im(ρ) = Dk

The majority of examples fit here, and the value of k depends on the degree of

symmetry of the curve. We have by Proposition 4.1.4 that G will contain time

reversing symmetries. In this case, G will either be dihedral or a product of

cyclic and dihedral groups.

2. im(ρ) = Zk

This occurs when the object possesses only a discrete rotational symmetry. In

this case G will either be cyclic or dihedral, or a product of cyclic and dihedral

groups. Dicyclic groups can be ruled out as a possibility for G, since they have

no two disjoint non-trivial normal subgroups.

The sub-case k = 1 here corresponds to the curve having no non-trivial symme-

tries, in which case G = Zn, since the system possesses only the choreography

symmetry.

The case which fits in both of the above categories is when im(ρ) = Z2 ' D1. In

this case, the curve possesses a single symmetry. This may either be time reversing

or not, and the difference between these two cases can be seen in Section 5.3 where

we discuss different subgroups of the symmetry group of three particles on a figure

eight.
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4.1.3.2 Classification by ker(τ) and im(τ)

It would also be possible to attempt a classification by the kernel and image of the

map τ , since we know the kernel of τ will be trivial except in the case where there

exist time preserving symmetries.

Proposition 4.1.7. If ker(τ) is trivial, G will either be cyclic Z` or dihedral D`.

Proof. If ker(τ) = 1, then G ' im(τ). The image of τ consists of symmetries of the

time polygon. If the time polygon has ` sides, then symmetries must be from D` or

Z`.

4.2 Classification of symmetry groups for n = 3

Using our now extensive set of results and discoveries about symmetry groups of

choreographical motions, we may give a list of possible symmetry groups for the case

n = 3.

In [5], Barutello, Ferrario and Terracini claim to list all possible symmetry groups

of the planar three-body problem - however, see Remark 4.2.1 below. They include

non-choreographical motions, including what they term the ‘2-1-choreography’, which

is a multiple choreography in which one particle moves on a different path to the other

two. They consider the choreographies up to a rotating frame, and so they list the

symmetry group for the Lagrange circular choreography as being of order six. They

discuss which orbits are of cyclic, dihedral and brake type (as discussed earlier in

Section 4.1.2), and since they do not require simple choreographies, several brake-

type orbits are included.

We will consider only simple choreographies, in the case n = 3, and list all possible

symmetry groups.

First, we must note that for a choreographical motion, the group G must contain

as a subgroup the cyclic group of order three, corresponding to the choreography

symmetry.
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The other part of the group will be determined by the order of the planar sym-

metry group of the curve. By Proposition 3.5.6, the order of G will be n times the

order of this symmetry group. The examples in this thesis treat many of the smaller

cases. Starting with the trivial planar symmetry group and increasing its size, we

find the possible G are as follows:

• G ' Z3. This corresponds to the trivial planar symmetry group of the curve,

where the particles move with choreography symmetry. The space of loops

πG
1 (X(3), x), where G is the cyclic group of order three, will be the normal

subgroup of the braid group B3 of index two, corresponding to even permuta-

tions of the endpoints. By Proposition 2.5.3, the space of such loops will have

connected components corresponding to the Reidemeister conjugacy classes in

πg
1(X

(3), x), where g is the choreography symmetry. It is not possible to con-

struct fixed point spaces for this example, since there are no time reversing

symmetries.

• G ' Z6 = Z3 × Z2. Here the symmetry group of the planar curve possesses

only a single non-time-reversing symmetry, and so the group is like that shown

in Table 5.7 in Chapter 5, where it is cyclic of order six. It is again not possible

to construct fixed point spaces, since there are no time reversing symmetries.

• G ' D3 = Z3oZ2. Here the symmetry group of the planar curve possesses only

a single time reversing symmetry, and so the group is like that shown in Table

5.6 or Table 5.8 in Chapter 5, where the time reversing symmetry is either

a rotation or a reflection. We may determine the connected components by

constructing fixed point spaces of the time reversals, as in our other examples.

• G ' D6 = Z3oD2. This is the symmetry group corresponding to our example

of three particles on a figure eight, seen in Example 3.2.1.

Remark 4.2.1. The classification given by Barutello, Ferrario and Terracini stops at

the symmetry group of the figure eight (in their notation, D12 but in ours D6. How-

ever, we have discovered that larger planar symmetry groups than D2 are permissible
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- in fact, in Example A.12 on page 176 in the Appendix, we give an example of three

particles moving on a curve with square symmetry, which has symmetry group D12

(of order 24). Curves with this symmetry have been found as minima of the action

functional for both strong force and Newtonian potentials (see Section 6 for more

about minimisation). This would suggest that their classification is incomplete.

Increasing the size of the symmetry group in the plane to larger dihedral groups

would result in G ' Z3 o Dk ' D3k, for k > 2, where Z3 is a normal subgroup

being acted on by the dihedral group. However, by Proposition 3.7.2, we may only

have time reversing rotations of order two, and Proposition 3.7.3 means that in such

groups with rotations of higher order, there can be no time reversing rotations. This

means the fixed point spaces will be of the type observed as F0 for three particles in

a figure eight, where two particles are related by reflection in an axis, and never of

the type seen in F1 where one particle is fixed at the origin. This is connected to why

we only get semidirect products with Z3 for such groups.

It is conjectured that for n = 3, all finite symmetry groups are either Z3k or D3k,

for some k. It is not known if there exist solutions for which the symmetry group is

precisely Z3k - although curves with this symmetry do exist. This is the subject of

ongoing work.

Increasing the symmetry group to its maximum size, the infinite group O(2), gives

the Lagrange circular choreography. It has been seen that, for symmetry groups larger

than D6, many curves possessing such symmetry groups will correspond to solutions

which in fact possess the larger symmetry group of the circle. In Chapter 6 we will

discuss how real solutions may be found by minimising the action functional, and

minima in such spaces will in many cases be the circular solution.

Remark 4.2.2. We will define and discuss time preserving symmetries in Section 4.5.

We note that in the case where n = 3, there are no time preserving symmetries

except in the case where we have the Lagrange circular solution. This is because,

by Proposition 4.5.2, for a time preserving symmetry to exist, | ker τ | must divide n,

and hence ker τ must be trivial or of order three. If it contains a rotation of order
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three, such a rotation must move all three particles to each others’ positions, as in

the circular choreography - it cannot fix one, otherwise our choreography would not

be simple.

4.3 Calculating the equivariant fundamental group

for a choreography

Now that we have properly defined choreographies and know how to determine the

full group of symmetries, we may apply this knowledge to these results from the

previous section to find the equivariant fundamental group.

As seen in Proposition 2.4.3(1), if the action of G is free, the equivariant funda-

mental group of M is given by the ordinary fundamental group of the quotient space

of M by G. While a free action is not often present, since many symmetry groups are

reversing and hence have fixed points on the time circle, we can find examples where

the symmetries present are a subgroup of the whole symmetry group containing no

time reversing symmetries.

We consider the example of five particles on a super-eight, but with the curve

distorted so that the symmetry of the curve is no longer from D2 but instead consists

of a single non-time-reversing rotation.

Example 4.3.1 (Five particles on a distorted super-eight). We consider the case

where five particles move on a ‘super-eight’ shape, like that seen in Example 5.2.2 on

page 125 in Chapter 5. The super-eight curve will be seen again in Example 4.5.1 on

page 88, and consists of an extended figure eight shape in which there are now two

crossings, and a third region in the centre.

We also choose to distort the super-eight shape so that it has only a rotational

symmetry by π, and no reflectional symmetries. This rotation is not time-reversing,

and so the group of symmetries does not fix any points on the time circle.

In this case, the group of symmetries G can be shown to be Z10. Our space M is

the plane with five particles, X(5) = (R2)5 \∆.
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The action of G on the space is free, since no points are fixed by the symmetries,

and hence we have, by Proposition 2.4.3(1):

πG
1 (M, x) ' π1(M/G, x̄)

That is,

πZ10
1 (X(5), x) ' π1(X

(5)/G, x̄)

Here x̄ is the orbit of x under the action of G.

4.4 Restriction of the loop space using time rever-

sals

Given a time reversing symmetry g, we know that g will fix two points on the time

circle T. We can use this symmetry to restrict the set of loops we are considering.

The time circle, shown in Figure 3.2 on page 55, is already under the restriction

of the choreography symmetry, as discussed in the previous section. This means that

every T/n section of the path must be identical to the first.

If we additionally have a time reversing symmetry, for instance one which fixes

t = 0, then we must have that the section of the path proceeding forward in time

from t = 0 must be identical to that moving backwards in time, towards the point

t = T −T/n. By the choreography symmetry, this must also be identical to the section

running backwards from t = T/n towards t = 0.

This symmetry can be seen in Figure 3.2, and it means that the section of path

γ from t = 0 to t = T/n must be repeated all the way round the circle, by the

choreography symmetry, and must have reflectional symmetry within itself, around

its midpoint.

Now, let t0, t1 be two points on the time circle which are

1. fixed by time-reversing symmetries,

2. consecutive among such points
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Then, let the symmetries fixing t0, t1 be denoted g0, g1 respectively – that is, we have

τ(g0) · t0 = t0, and τ(g1) · t1 = t1. We denote the subspaces of X = (R2)n \∆ fixed

by g0, g1 respectively by F0, F1.

Fi = {(x1, . . . , xn) ∈ X | (ρ(gi) · xσ(1), . . . , ρ(gi) · xσ(n)) = (x1, . . . , xn)}

These fixed point spaces will be very useful in describing the motion of the whole

curve, and in each of our examples we will examine the topology of F0, F1 ⊂ X.

Now consider the case t0 = 0, t1 = t 6= 0.

This means that if we consider the arrangement of particles at t0 = 0, which will

be some point in F0, then the path γ must run from here to some point in F1. This

means γ ∈ P(X,F0, F1) - the space of paths in X running from a point in F0 to a

point in F1. This is made more precise in Theorem 4.4.6 below.

We now return to the major example of three particles on a figure eight, which

will provide a useful context to discuss some further properties of choreographies,

including how the fixed point spaces F0 and F1 may be found, and how this allows

us to restrict the space of loops.

Remark 4.4.1. In our calculation of fixed point spaces F0, F1 we will use notation as

though X = Cn \ ∆, and points in X will be denoted (z1, . . . , zn) zi 6= zj for i 6= j.

This gives us an easier way to represent a spatial transformation – for instance,

κ1 : z 7→ z̄.

Example 4.4.2 (Three particles on a figure eight). The time-reversing symmetries

we will use to calculate our fixed point spaces are g0 and g1, given by ρ(g0) = κ1 with

σ(g0) = (12), and ρ(g1) = κ1κ2 with σ(g1) = (13), and where τ(g0) : t 7→ −t and

τ(g1) : t 7→ −t + T/6.

Fixed point space F0:

γ(0) = g0γ(0) = κ1(12)γ(0)
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1

2

3

t = 0

k1 k2k2 k1

Figure 4.1: Three particles on a figure eight, at t = 0

Therefore,

(z1, z2, z3) = κ1(12)(z1, z2, z3)

= (z̄2, z̄1, z̄3)

The fact that z3 = z̄3 means that z3 must be real. Then z1 and z2 form a conjugate

pair either side of the real axis, since z1 6= z2. Hence the fixed point space F0 = Fix(g0)

is given by a copy of R, determining the position of z3, crossed with a pair of half-

planes which determines the position of z1 (either Im(z1) > 0 or Im(z1) < 0), and

the position of z2 then follows.

This space has two contractible connected components. So F0 is homotopic to

pt t pt.

Fixed point space F1:

γ(T/12) = g1γ(T/12) = κ1κ2(13)γ(T/12)

Therefore at t = T/12,

(z1, z2, z3) = κ1κ2(13)(z1, z2, z3)

= (−z3,−z2,−z1)

The fact that z2 = −z2 means that z2 must be at the origin. Then z1 and z3 form

a pair either side of this point and each other’s image under rotation by π. Hence
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the fixed point space F1 = Fix(g1) is given by C \ {0} (homotopic to the circle S1),

determining the position of z1, and the position of z3 follows. So F1 ' S1.

Having found the space F0 and F1 of fixed points under time preserving symme-

tries fixing t = 0 and t = T/2n respectively, we now have that paths γ̂ obeying the

symmetries of G must have γ̂(0) ∈ F0 and γ̂(T/2n) ∈ F1.

Let γ̃ be a path running from a point in F0 to a point in F1 – so γ̃(0) ∈ F0, γ̃(1) ∈
F1. As defined in Chapter 2, the space of such paths is denoted P(X, F0, F1).

Since g0 reverses time while fixing t = 0, any path satisfying g0 must behave the

same as t increases away from 0 in the positive direction as it does when t decreases

away from 0 in the other direction around the time circle T. Similarly, we have

another reflection in the time circle about t = T/2n.

Given that the choreography symmetry dictated that the behaviour of the parti-

cles from t = 0 to t = T/n must be repeated around the time circle T up to some cyclic

renumbering, we find that the behaviour of particles on all of T can be extrapolated

from that in the fundamental domain D = [0, T/2n] ⊂ T.

Given any t ∈ T, there will exist some element g of the dihedral group < g0, g1 >

generated by the two time reversing symmetries, whose action on the time circle maps

t to a point in D - that is, τ(g) · t ∈ D. Then γ̂(t) = g · γ̃(τ(g) · t), where γ̃ is the

section of path as defined above, namely γ̃ = γ̂(D).

The complete closed loop γ̂ which results from this process of extending the section

of path around the whole time circle is a choreography and possesses the symmetries

defined by the action of the group G on the space X and on the time circle. We

denote the space of such closed loops ΛG(X), and we call it the space of G-loops.

Given a group G, the number of sections of path which need to be joined together

in this way to make a closed loop will be m = |G|
| ker τ | . This is because we simply need

a group element which maps D to each section of the time circle. An element g, when

multiplied by an element h ∈ ker τ , will map D to the same section of the time circle

since h acts trivially on T. Hence there will be | ker τ | elements of G for each section

of the time circle, and |G|
| ker τ | cosets of ker τ in G. We may choose one element from
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each coset to make up the whole path.

The example given below has trivial ker τ , but later we will explore the cases

where ker τ is non-trivial, and Example 4.5.3 of four particles on a super-eight on

page 93 demonstrates this division into cosets.

Remark 4.4.3. Note that the space ΛG(X) is given by

ΛG(X) = {γ ∈ Λ(X) | g · γ = γ ∀g ∈ G}

Here Λ(X) denotes the free loop space of maps of S1 into X. The composition g · γ
is more precisely defined as the map

g : γi(t) 7→ ρ(g) · γσ(g)(i)(τ(g) · t)

where γi is the component of the path γ travelled along by the ith particle.

This is a stabiliser of the action of G on the space of free loops. While a stabiliser

would usually be denoted by an upper index, it is important to note that other spaces

of loops have been defined in which an upper index of g denotes a relative loop running

from x to gx. In particular, the equivariant fundamental group πG
1 can be thought

of as the union over g ∈ G of the relative fundamental torsors πg
1 . This means that

denoting the space of G-loops by ΛG could lead to the inference it is related to Λg,

the space of free relative loops, in a similar way, which it is not.

Definition 4.4.4. Let F0, F1 be subspaces of X which are fixed by the symmetries

g0, g1 respectively. Precisely,

• We use g0 to denote the symmetry for which τ(g0) = 0. This symmetry is time

reversing about t = 0, and fixes t = 0 and t = T/2.

• We use g1 to denote the symmetry for which τ(g1) = T/n. This is time reversing

and fixes t = T/2n and t = T/2 + T/2n.

• We denote by g2 the symmetry for which τ(g2) = 2T/n, fixing t = T/n and

t = T/2 + T/n.
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These symmetries may be chosen such that (g2g1)
2 is the choreography symmetry. In

fact, in the absence of time reversing symmetries, the choices of such symmetries are

unique. We have that g1 fixes F1, and g2 in fact fixes the points in F0, since at t = T/n

the particles are in the same arrangement as they are at t = 0 but with different

numbering, due to the choreography symmetry.

We define a map Θ: P(X, F0, F1) → ΛG(X) which takes a section of path γ

running from a point in F0 to a point in F1, and extends it onto a loop γ̂ in ΛG(X)

by taking the image of γ under each element of G and concatenating them into a

closed loop. (g2g1)
2 is the choreography symmetry. Then

Θ : P(X, F0, F1) → ΛG(X)

Θ : γ 7→ ((γ ∗ g1γ) ∗ g2g1(γ ∗ g1γ) ∗ (g2g1)
2(γ ∗ g1γ) ∗ . . . ∗ (g2g1)

2n−1(γ ∗ g1γ))

Here we see that we repeatedly travel from points in F0 to points in F1 and back

again, and we apply increasing powers of (g2g1), where (g2g1)
2 is the choreography

symmetry. Such an ordering of the elements can be seen in Example 4.4.8 below,

where the elements g1 and g2 are as given.

Remark 4.4.5. The group G can be generated by g0 and g1, or by g1 and g2. In the

definition of the map θ given above, g0 is actually the element (g2g1)
2n−1g1γ which is

the last one in the sequence. This is more clearly seen in the example, given shortly.

Theorem 4.4.6. The map Θ: P(X, F0, F1) → ΛG(X), as defined above, is a home-

omorphism.

Proof. Let γ ∈ P(X, F0, F1).

The map given above is bijective, since each path γ gives a unique γ̂, and a

given γ̂ can be truncated to the first T/2n of its motion, so the inverse map exists

and both are well defined. The maps are also continuous, since the action of the

elements of G preserves open sets - the action is by permuting the n copies of Rd,

or applying an affine transformation to the Rd. Also, concatenation of paths is

continuous. Truncation of the path, the inverse map, is also continuous as it is a

projection. Hence our map is a homeomorphism.
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The fact that these two spaces are homeomorphic gives us immediately the fol-

lowing corollary:

Corollary 4.4.7. If two paths γ1, γ2 in P(X,F0, F1) are homotopic, then their asso-

ciated G-loops Θ(γ1), Θ(γ2) will be homotopic in ΛG(X).

Example 4.4.8 (Three particles on a Figure Eight). Let G be the group of symme-

tries of the figure eight choreography with three particles. As seen in Example 3.2.1,

this group is the dihedral group D6 with twelve elements.
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t = 0 t = /T 12

t = - /T 12

t = /T 6

t = /T 4 t = /T 3

t = - /T 3

t = - /T 4 t = - /T 6

t = /5T 12

t = - /5T 12t = /T 2

Figure 4.2: Three particles on a figure eight, at t = kT/12

The top left picture in Figure 4.2 shows the movement of the particles from t = 0

to t = T/12, and this is the path γ, which we will combine using the group elements

to produce the full loop γ̂. For instance, the next section of motion corresponds to

the element g1 for which ρ(g1) = κ1κ2, τ(g1) : t 7→ −t + T/6 and σ(g1) = (23). If we

apply this to the section of path γ shown, we find that each particle starts this new

section of path from the correct place, and we get the image in the second diagram.

The full motion of particles around the whole choreography is given by the group
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elements in the order as given in Table 4.1. This helps to understand how the sections

of path all fit together. Applying each of the group elements will give a different

section of path, and the union of all these sections makes the path γ̂.

The map Θ defined earlier uses the elements g1 and g2, and here g1 is given by

κ1κ2, T/6 and (23), while g2 is κ1, T/3 and (12). The choreography symmetry is given

by (g2g1)
2.

Table 4.1: Three particles on a figure eight - the map from γ to γ̂

Time from Time to ρ(g) τ(g) σ(g) g

0 T/12 I 0 e id
T/12

T/6 κ1κ2
T/6 (23) g1

T/6
T/4 κ2

T/6 (132) g2g1
T/4

T/3 κ1
T/3 (12) (g2g1) · g1

T/3
5T/12 I T/3 (123) (g2g1)

2

5T/12
T/2 κ1κ2

T/2 (13) (g2g1)
2 · g1

T/2
−5T/12 κ2

T/2 e (g2g1)
3

−5T/12
−T/3 κ1

−T/3 (23) (g2g1)
3 · g1

−T/3
−T/4 I −T/3 (132) (g2g1)

4

−T/4
−T/6 κ1κ2

−T/6 (12) (g2g1)
4 · g1

−T/6
−T/12 κ2

−T/6 (123) (g2g1)
5

−T/12 0 κ1 0 (13) (g2g1)
5 · g1

4.5 Time preserving symmetries

In certain cases, there exist symmetries which act trivially on the time circle T.

Examples include the rotation by π of the Gerver super-eight (seen below), and the

rotation by π/2 of the four-flower with eight particles (see Example A.2.3 on page

162). We call such symmetries time preserving symmetries, and they require us

to restrict further our space of loops.

If there exists a symmetry for which τ(g) : t 7→ t, this means that for all values of

t, the symmetries ρ(g) and σ(g) are possessed by the arrangement of particles. This

means that we can restrict the manifold X(n) = (R2)n \∆ in such cases to a manifold

X ′ of n particles in R2 possessing the given symmetry.

The following example has a time preserving symmetry, and again is a simple and
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convenient example to use in explaining how various properties of choreographies

express themselves in the presence of a time-preserving symmetry.

4.5.1 Example - four particles on a Gerver super-eight

1

2

3

t = 0

k1 k2k2 k1

4

Figure 4.3: Four particles on a super-eight, at t = 0

The ‘super-eight’ choreography, shown in Figure 4.3 was discovered by Gerver ([11]

p289, also Figure 4.1(b)). Its existence has not been proven analytically, although

there is a computer assisted proof using interval arithmetic ([1] Item 3).

The super-eight curve has the symmetry group of a rectangle, which is generated

by the vertical reflection κ1 and the horizontal reflection κ2, and includes the rotation

by π, κ1κ2.

The arrangements of particles possess reflectional symmetry at t = kT/8, as seen

in Figure 4.7 on page 94 in the next section. At even values of k, the points lie at the

midpoints of the sides of a rectangle symmetrical with respect to the same axes (or

equivalently, at the corners of such a rhombus), and the points lie at the corners of

such a rectangle when k is odd. A rotational symmetry is present at all values of t.

The choreography symmetry is present, as are two time-reversing symmetries g0,

g1, given by ρ(g0) = κ1 with σ(g0) = (13), and ρ(g1) = κ1 with σ(g1) = (12)(34) with

a time shift of T/4. There exist equivalent symmetries under κ2, with the same τ(g)

but with σ(g) = (24) and (14)(23) respectively.
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This choreography additionally possesses a time preserving symmetry, denoted gt

– that is to say, at all values of t, ρ(gt) = κ1κ2 and σ(gt) = (13)(24) with τ(gt) : t 7→ t

is a symmetry of the choreography. This is the reason why the above time reversing

symmetries are equivalent, since combining either of the κ1 symmetries with this time

preserving symmetry gt will result in the equivalent κ2 symmetry. Figure 4.4 shows

the four particles in a generic position, for some value of t between −T/8 and 0, and

it can be seen that the rotational symmetry κ1κ2 still applies.

1

2

3

4

Figure 4.4: Four particles on a super-eight, at some t ∈ (−T/8, 0)

Fixed point space F0 = Fix(g0, X):

γ(0) = g0γ(0) = κ1(13)γ(0)

Therefore,

(z1, z2, z3, z4) = κ1(13)(z1, z2, z3, z4)

= (z̄3, z̄2, z̄1, z̄4)

The fact that z2 = z̄2 and z4 = z̄4 means that z2 and z4 must be real. Then z1

and z3 form a conjugate pair either side of the real axis. Hence the fixed point space

F0 = Fix(g0) is given by a copy of R2 \ ∆, determining the positions of z2 and z4,

crossed with a copy of C \ R which determines the position of z1, and the position

of z3 then follows. So F0 = (C \ R) × (R2 \ ∆). This space has four contractible

connected components. So F0 ' pt t pt t pt t pt.

Fixed point space F1 = Fix(g1, X):

γ̂(T/8) = g1γ̂(T/8) = κ1(12)(34)γ̂(T/8)
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Therefore,

(z1, z2, z3, z4) = κ1(12)(34)(z1, z2, z3, z4)

= (z̄2, z̄1, z̄4, z̄3)

These four points form two conjugate pairs either side of the real axis, where z1 is

conjugate to z2, and z3 is conjugate to z4. Hence the fixed point space F1 = Fix(g1)

is given by the positions of z1 and z3, which will be distinct points in the upper or

lower half-plane. We must also have that as well as z1 6= z3, we have z1 6= z̄3. This

means we take the space (C \ R)2, and subtract two diagonal sets. The resulting

space has four connected components, each of which is homotopic to R4 \ R2 ' S1.

So F1 ' S1 t S1 t S1 t S1.

The existence of gt as a symmetry of this choreography means that when consider-

ing spaces of possible arrangements of particles which will result in this choreography,

we may restrict the manifold X to a subspace X ′, which consists of the set of points

which obey this symmetry. We find that

X ′ = {(z1, z2, z3, z4) ∈ C4 \∆ | z1 = −z3, z2 = −z4, zi 6= 0, zi 6= zj}

Since the positions of z3 and z4 are dependent on z1 and z2, we can write this as

X ′ ' {(z1, z2) ∈ C2 | z1 6= 0, z2 6= 0, z1 6= ±z2}

This is the space C2 minus four complex planes. By Lemma A.1.1 on page 157

in the Appendix, this is K(Z× F3, 1) where F3 is the free group on three generators.

Given this restriction on the arrangement of points at all values of t, once we find

our fixed point spaces they can be restricted to their intersection with this space.

F ′
0 = Fix(g0, X

′) = F0 ∩X ′ is then given by:

F0 ∩X ′ = {(z1, z2, z3, z4)|zi 6= 0, z1 6= z2, z1 = −z3 = z̄3, z2 = −z4, z2 and z4 ∈ R}

So we have that z2 = −z4 are both real, and z1 = z̄3 = −z3, which must both lie in the

imaginary axis and all are non-zero. Since the positions of z3 and z4 are determined

by z1 and z2, the space F ′
0 is given by the positions of two points in R \ {0}, so

F ′
0 ' (R \ {0})2. This space has four contractible connected components.
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F ′
1 = Fix(g1, X

′) = F1 ∩X ′

= {(z1, z2, z3, z4)|z1 = z̄2, z3 = z̄4 and z1 = −z3, z2 = −z4}

= {z1 = −z̄4 = z̄2 = −z3}

So we find that the positions of the four points are all dependent on each other,

and so the space F ′
1 is given by the position of the point z1, which lies in C\{R∪ iR}

- it cannot be on either axis as this would lead to a collision of two or more points,

so F ′
1 ' C \ {R ∪ iR}. This space has four contractible connected components.

The full group of symmetries is given in Table 4.2. It has order 16, but contains

no elements of order 8, therefore it cannot be the dihedral group D8. It is in fact

D4 × Z2. The dihedral structure is generated by the starred elements, and the Z2-

structure is given by the element marked †. The maps ρ, σ and τ for this group can

Table 4.2: Four particles on a Gerver super-eight

ρ(g) τ(g) σ(g) Order

I 0 e 1
I T/4 (1234) 4
I T/2 (13)(24) 2
I −T/4 (1432) 4

* κ1 0 (13) 2

κ1
T/4 (14)(23) 2

κ1
T/2 (24) 2

κ1
−T/4 (12)(34) 2

κ2 0 (24) 2

κ2
T/4 (14)(23) 2

κ2
T/2 (13) 2

κ2
−T/4 (12)(34) 2

†κ1κ2 0 (13)(24) 2
κ1κ2

T/4 (1432) 4
κ1κ2

T/2 e 2
* κ1κ2

−T/4 (1234) 4

be seen in Figure 4.5.

As seen in the above example, the time preserving symmetry is a very powerful

tool in restricting our space of loops to a given subset of the manifold, and allows us

to choose initial starting positions quite specifically.
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Figure 4.5: The maps ρ, σ and τ for four particles on a super-eight

Proposition 4.5.1. All time preserving symmetries gt of simple planar collision-free

choreographies must have that ρ(gt) is a rotation, not a reflection.

Proof. Let g be a time preserving symmetry. Then τ(g) is the identity map. This

means that ρ(g) must act trivially on the orientation of the curve. It also means

that ρ(g) must exactly map the positions of the particles to themselves or positions

occupied by other particles, since we cannot shift time forward, and hence that the

arrangement of particles must also possess the symmetry ρ(g), at all values of t.

Assume ρ(g) is a reflection. Then, if the curve crosses the axis of reflection, it

must do so either perpendicular to the axis, or must form a crossing of 2a curve

arcs, for some a, where the crossing lies on the axis. If it never crosses the axes of

reflection, the choreography must have multiple components and hence is not simple.

If it crosses the axis at right angles, we may note that in this case it cannot

preserve orientation. If it crosses the axis at a crossing, then the orientation of at

least one pair of the arcs meeting at this crossing must be, without loss of generality,

as given in Figure 4.6. If we then consider a particle which is moving along this part

of the curve, which it must at some point do, it must have a partner which is moving

on the opposite arc - then, these two particles will be bound to collide. Hence, if we

require our choreographies to be collision-free, we have a contradiction. Hence, for a

symmetry to be time-preserving, it cannot be a reflection.

Corollary 4.5.2. For a simple planar choreography of n particles to possess a time-

preserving symmetry, n must be divisible by | ker τ |.

Proof. If a choreography possesses a time-preserving symmetry gt, then ρ(gt) must be
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Figure 4.6: Meeting the axis at right angles, or at a crossing

a rotation, by Proposition 4.5.1, and it will be of order | ker τ |. Then, if this number

does not divide the number of particles, one of the particles must be fixed by this

rotation, and hence must be at the centre of rotation for all values of t, since the

rotation applies for all t. This does not occur in a choreography, since all particles

must perform the same motion and therefore we must have | ker τ | | n.

Not many choreographies possess time-preserving symmetries, since as seen in

Proposition 4.5.1, they must be a rotation, and must specifically also map the particles

on to the positions of other particles - meaning that we need the choreography’s

arrangement of particles to possess the same rotational symmetry of the curve at all

values of t.

In the presence of a time-preserving symmetry, the way in which the full loop γ̂ is

made up from copies of γ differs from that shown in Example 4.4.8. We now consider

the same process but for our example of four particles on a Gerver super-eight.

Example 4.5.3 (Four particles on a super-eight). Let G be the group of symmetries

of the super-eight choreography with four particles. As seen in Example 4.5.1, this

group is D4 × Z2, which has sixteen elements.

The top left picture in Figure 4.7 shows the movement of the particles from t = 0

to t = T/8, and this is the path γ, which we will combine using the group elements

to produce the full loop γ̂. Unlike in the case of three particles on a figure eight, in
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Figure 4.7: Four particles on a super-eight, at t = kT/8

which no time-preserving symmetries were present, in this case there are two group

elements which could map γ onto the required section of γ̂ - which are equivalent, up

to multiplication by the element gt, our time preserving symmetry. In Table 4.3, we

see two columns of elements, where each element in the right hand side is the product

of the corresponding element on the left with gt, which is given by ρ(gt) = κ1κ2,

σ(gt) = (13)(24) and τ(gt) = id.

Elements from either side of the table could be used to map γ onto γ̂, as long as

one is taken from each row in order. The sides of the table represent the two cosets

corresponding to the two elements of ker τ .

Table 4.3: Four particles on a super-eight - the map from γ to γ̂

Time from Time to ρ(g) τ(g) σ(g) ρ(g) τ(g) σ(g)

0 T/8 I 0 e κ1κ2 0 (13)(24)
T/8

T/4 κ1
T/4 (12)(34) κ2

T/4 (14)(23)
T/4

3T/8 I T/4 (1234) κ1κ2
T/4 (1432)

3T/8
T/2 κ1

T/2 (24) κ2
T/2 (13)

T/2
−3T/8 I T/2 (13)(24) κ2

T/2 e
−3T/8

−T/4 κ1
−T/4 (14)(23) κ1κ2

−T/4 (12)(34)
−T/4

−T/8 I −T/4 (1432) κ2
−T/4 (1234)

−T/8 0 κ1 0 (13) κ1κ2 0 (24)
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4.6 Topology of the Path Space P(X,F0, F1)

Having determined the nature of the spaces F0, F1 and having gained a good idea of

their relationship with X and choreographies, we may examine the resulting space of

paths P(X, F0, F1) by considering the following. Assume, as always, that X is path

connected.

First note that, given a choice of points f0 ∈ F0, f1 ∈ F1 we may choose a path

ω : f0 Ã f1 using which we have P(X, f0, f1) ' P(X, f0, f0) ' Ω(X, f0), the space of

closed loops based at f0. Using a path ω′ : f0 Ã x, we have that this space is Ω(X, x)

for some arbitrary x ∈ X. This is useful, since we know πi(Ω(X, x)) = πi+1(X, x).

Theorem 4.6.1. Let F0, F1 be such that F0 × F1 is a manifold. Then

P(X, F0, F1)

π

²²

P(X, f0, f1)
ioo

F0 × F1

where f0, f1 are points in F0 and F1 respectively, is a fibration.

Proof. The fibration is given by a choice of f0 and f1 determining a subspace of

P(X, F0, F1) of paths running exactly from f0 to f1, mapped by inclusion into P(X, F0, F1).

An element in P(X,F0, F1) projects down to its endpoints in F0 × F1.

We will show that this is a fibre bundle, and then (from [33]) since F0 × F1 is

paracompact (it is a manifold), we have a fibration.

Indeed, the fibre at every point is homeomorphic to Ω(X, x) as described above.

We also have that given an open neighbourhood (U(f0), U(f1)) ⊂ F0 × F1 we have

that the preimage π−1(U(f0), U(f1)) is homeomorphic to U(f0) × U(f1) × Ω(X, x),

since F0 and F1 are locally path connected. Hence this is a fibre bundle and therefore

a fibration, as required.

Remark 4.6.2. We require here that F0×F1 is a manifold. Since F0 and F1 are fixed

point spaces defined by affine symmetries of the particles, we have that in all our

examples this is the case.
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From this fibration, we may construct the following long exact sequence in homo-

topy:

· · · // π2(Ω(X, x)) // π2(P(X,F0, F1)) // π2(F0 × F1) EDBC δ

GF@A
// π1(Ω(X, x)) // π1(P(X,F0, F1)) // π1(F0 × F1) EDBC δ

GF@A
// π0(Ω(X, x)) // π0(P(X,F0, F1)) // π0(F0 × F1) EDBC δ

GF@A
//___________ 0

Given our knowledge of many of these spaces, we can use this sequence to determine

information about the others, as seen in the following examples.

4.6.1 Examples

• Three particles with the symmetry group of the Figure Eight (Example 3.2.1):

· · · // 0 // π1(P(X, F0, F1)) // Z EDBC δ

GF@A
// P3

// π0(P(X, F0, F1)) // 0

Here, we may note that since πi(Ω(X, x)) = πi+1(X, x), and that our space X is

the K(π, 1) space (R2)3 \∆ for which π1(X, x) = P3, we have that π0(Ω(X, x))

is P3, and all other πi(Ω(X, x)) are zero. Since F0×F1 is homotopic to S1, given

that F0 is has a single contractible connected component and F1 ' S1, we have

that F0 × F1 is a K(π, 1) with π = Z.

The fundamental group of F1 ' S1 as a subgroup of π1(X) = P3 is Z generated

by the full twist, which corresponds to the two particles on the circle moving

round the third particle and returning to their initial positions. The fundamen-

tal group of each connected component of F0 is trivial. This means the map δ

above maps Z into P3 as the subgroup generated by the full twist.

Since this map is injective, we have that π1(P(X, F0, F1)) is trivial. We also

have that π0(P(X, F0, F1)) is P3/ < ∆2 >, where ∆2 is the full twist. This
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means P(X, F0, F1) has infinitely many connected components, and all of its

homotopy groups πi are trivial for i ≥ 1.

The figure eight solution given in Example 3.2.1 on page 45 lies in one of these

connected components.

• Four Particles with the symmetry group of the super-eight (Example 4.5.1):

· · · // 0 // π1(P(X,F ′
0, F

′
1)) // 0 EDBC δ

GF@A
// P4

// π0(P(X,F ′
0, F

′
1)) // 16 EDBC δ

GF@A
//______ 0

In this case, F ′
0 and F ′

1 both have four contractible connected components, and

hence F ′
0 × F ′

1 has 16 contractible components, and so π0(F
′
0 × F ′

1) is 16 and

all other homotopy groups are trivial. We also have that X = K(P4, 1), and so

π0(Ω(X, x)) is P4, and all other πi(Ω(X, x)) are zero.

Exactness forces that π1(P(X, F ′
0, F

′
1)) = 0. We also have a short exact sequence

0 −→ P4 −→ π0(P(X,F ′
0, F

′
1)) −→ 16 −→ 0

There are 16 connected components of F ′
0×F ′

1, corresponding to a renumbering

of the four particles within the restrictions defining the spaces F ′
0, F ′

1.

This means π0(P(X, F ′
0, F

′
1)) consists of sixteen copies of P4, and hence P(X, F ′

0, F
′
1)

has infinitely many connected components. It also has all homotopy groups πi

trivial for i ≥ 1.

This method can be applied to all of the examples in this thesis, to determine the

topology of the path space P(X,F0, F1).

Example 4.6.3 (Different connected components for the symmetry group of 4 on a

super-eight). The sixteen components of F0×F1 in the example above correspond to

a renumbering of the particles. A generic arrangement of particles for each choice of

F0, F1 is shown in Figure 4.8.
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Figure 4.8: Different labellings for the particles giving different connected components

We can choose a diagram from each column and this will give us a connected

component of choreographies for this n and symmetry group. There may be multiple

paths joining the two points, and our choice of path is our γ which we use to construct

the full loop.

The example of four particles on a super-eight, given in Example 4.5.1 on page

88 is in the connected component corresponding to F0(3) and F1(3).

In Figure 4.9 we see a path between the two configurations, and the corresponding

image from our previous diagram of the motion. In this case our time preserving

symmetry gt dictates we must have κ1κ2 symmetry for all values of t, which is seen

in our motion.

Choosing a different pair of fixed point space components can give a different

curve. For example, F0(1) to F1(4) with the appropriate choice of path gives an

equivalent choreography to the super-eight one shown above, but with different t = 0

and numbering of particles. Choosing F0(3) to F1(2) with a certain path gives a

connected component containing the Lagrange circular solution, as does F0(1) to

F1(1).
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Figure 4.9 shows an example of a path γ, from F0(3) to F1(3), which can be seen

to be equivalent to the section of motion described in the adjacent diagram, which

shows the motion from t = 0 to t = T/8 in Example 4.5.1 of four particles on a

super-eight.

1

2

3

4

z1

z4 z2

z3

z3

z4

z2

z1

Figure 4.9: The path γ, from F0(3) to F1(3)

Example 4.6.4 (Different connected components for the symmetry group of 3 on

a figure eight). While the fixed point spaces for four particles on a super-eight in

the example above are very restricted, due to the application of the time preserving

symmetry, we may similarly examine different ways to connect F0 to F1 for other

examples. Below we present an alternative relative loop for the example of three

particles on a figure eight, and see that we obtain a new solution which is in a

different connected component.

The fixed point spaces for three particles with figure eight symmetry are given

by:

F0 = {(z1, z2, z3) ∈ C3 \∆ | z1 = z̄2, z3 = z̄3}

F1 = {(z1, z2, z3) ∈ C3 \∆ | z2 = −z2, z1 = −z3}

Two different ways to connect these sets of points, for a given choice of numbering

of particles, can be seen in Figure 4.10.

Extending path a) from Figure 4.10 results in the figure eight choreography,

whereas path b) gives the choreography shown in Figure 4.11.

This curve is a local minimum for the action functional under the strong force,

on the connected component given by path b) in Figure 4.10. The given path was
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a) b)

Figure 4.10: Two non-homotopic paths connecting F0 (hollow dots) to F1 (solid dots)

1

2

3

t = 0 k1 k2k2 k1

Figure 4.11: Three particles on a curve with figure eight symmetry which is in a
different connected component to the figure eight

approximated by a Fourier series of order 23, subject to the constraint of the figure

eight symmetry group, and this was iterated in the direction of negative slope of

the action functional with strong force potential action until a local minimum was

attained. This means the curve shown will be a choreographical solution of the n-

body problem. For an explanation of the action functional and n-body solutions, see

Chapter 6.

Proposition 4.6.5. The two choreographies obtained from extending the sections of
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path shown in Figure 4.10 lie in different connected components of ΛG.

Proof. The set of connected components of ΛG, for the symmetry group G corre-

sponding to the figure eight curve, is given by π0(Ω(X, F0, F1)) = P3/〈∆2〉, as shown

in Example 4.6.1. For two elements to be equal in this space, they must differ by a

multiple of ∆2.

If we consider the motion given by travelling along path a) and returning by

travelling backwards along path b), this will give us the difference between these two

paths. This curve is shown in Figure 4.12, and can be seen to be equivalent to the

braid σ2
1, which is not a multiple of ∆2. Hence, the two choreographies lie in different

connected components.

1

1
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3

3

1

1

2

2

3

3

Figure 4.12: Travelling along path a) and returning along path b)

This method may be used to find solutions in different connected components for

any given symmetry group - by starting with an existing choreography, reducing it to

a path connecting the fixed point spaces, and choosing a different (non-homotopic)

way of connecting the points. The method has been employed in Example A.12 on

page 176 in the Appendix, to discover a choreography in which three particles move

on a curve with square symmetry in the plane.



Chapter 5

Examples of n-body choreographies

In the previous chapters, we saw some examples demonstrating interesting properties,

namely the example of three particles on a figure eight, and four particles on a super-

eight. In this chapter we consider some more examples and families of examples which

exist as solutions to n-body problems with certain sets of symmetries. We discuss

some methods of classifying such examples up to homotopy, as well as the different

connected components of the loop space of collisionless motions which are present.

5.1 Rotationally symmetrical examples

There are a large number of closed curves which possess the symmetry group Dk of

the regular k-gon, consisting of k rotations by multiples of 2π/k and k reflections, in

axes which differ by multiples of π/k. Here we attempt to classify some such curves

and introduce notation.

5.1.1 Foil type curves

There exist familiar foil-type curves, such as the trefoil, seen in Figure 5.1, which is

well known as the prime knot 31 from knot theory. (Here we consider the projection

of a trefoil onto the plane; the orientation of crossings is irrelevant). In an attempt

to generalise this concept, we note the following.

102
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Figure 5.1: A trefoil

• The centre of the trefoil is a ‘triangle’ - made up of three curved arcs, which

meet at three points

• The vertices of this central shape are joined to each other around the outside

of the curve by arcs, and in the case of the trefoil, each is joined to an adjacent

vertex

Two variables may be identified here, and will be defined as follows:

• Let p denoted the ‘petal number’ of a foil. This is the number of petals the

curve will possess, and corresponds to the number of sides (equivalently, the

number of vertices) possessed by the central ‘polygon’ made of arcs. It also

corresponds to the degree of rotational symmetry of the curve. In the case of

the trefoil, p = 3.

• Let j denote the ‘joining number’. This will denote the way in which the arcs

connect the vertices around the outside of the central shape. It counts, inclusive,

the number of vertices between where each arc leaves and rejoins the shape. In

the case of the trefoil, where arcs join adjacent vertices, j = 2. Were the arc to

join a vertex to the next-but-one vertex, j would equal 3.

Note here that the definition of j relies on a choice of direction around the polygon

in which to progress, but as long as all arcs are drawn in the same way, the resulting

curve will be equivalent regardless of which direction that is.
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Remark 5.1.1. The curve resulting from drawing the central polygon first and adding

arcs does not always initially look smooth as a curve - however, this is merely a

guideline to assist in constructing the curve, which may be refined to produce a

smooth continuous and symmetrical path.

Further, the rotational symmetry constraint requires that each arc joins the poly-

gon in a natural way, such that the side of the polygon it joins then receives an

orientation which means particles travel in the same direction around the polygon.

This is necessary to ensure each side of the polygon is traveled along exactly once.

Remark 5.1.2. It is possible to construct similar curves which do not have the orienta-

tion of the arcs around the central polygon all the same. If we alternate the direction

of the arcs on successive sides of a p-gon (for even values of p), the (p, j)-foils as

defined below may only be constructed for even values of j, since in other cases we

find the arc would need to enter a corner toward which both arrows are pointing.

Curves constructed from contrarily oriented polygons will, as we will see, for the

consistently oriented case with even p and j, be made up of multiple components, but

these components will have opposite orientations. This is shown in Figure 5.2, which

shows the two different (6, 2)-foils which can be obtained by differing orientations on

the hexagon, each of which is made of two (3, 1)-foils, or triangles. The example with

contrary orientations on successive arcs is explored in more detail in Example 7.1.1

on page 145.

a) b)

Figure 5.2: (6, 2)-foils, with a) complementary orientation, b) contrary orientation
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5.1.2 The notation (p, j)

By defining a (p, j)-foil as the curve with p-fold rotational symmetry made by drawing

a p-gon made of arcs and connecting them all with joining number j, we may then

describe a whole family of foil-type curves, which can generalise in two directions.

The trefoil, for instance, would be a (3, 2)-foil, and Table 5.1 gives the number of

connected components of curves made using several different values of p and j. The

Table 5.1: Table of (p, j)-foils - number of components

Joining number j
No. of petals p 2 3 4 5

3 1 (trefoil) 3 (circles) 1 1
4 2 (lozenges) 1 4 (circles) 1
5 1 1 1 5 (circles)
6 2 (triangles) 3 (lozenges) 2 (trefoils) 1

following facts may be noted:

• If p and j have highest common factor q, then the resulting curve will have q

components, each of which is a curve of type (p/q,
j/q).

• In particular, if p = j we obtain a curve made up of p = j disjoint circles.

• If p and j are coprime, the curve has a single connected component.

Remark 5.1.3. Note that the smallest value of j which may be sensibly considered is

j = 2, and we define j = 1 to mean there are no arcs drawn at the corners of the

shape. Hence, foils of type (p, 1) are not strictly foils - (1, 1) is a circle, (2, 1) is a

lozenge with two straight sides joined with curves at each end, and (3, 1) is a triangle

with rounded corners.

These are not strictly foils, but these are the shapes which result when j/q = 1.

One might expect that we could define a (p, 1)-foil as a shape in which we join back

to the same corner, by means of a loop – but this is what we call a flower-type curve,

and will be defined on page 107.

So, as seen in Table 5.1, a (4, 2)-foil consists of two overlapping lozenge shapes. A

(6, 4)-foil is two trefoils which differ by a reflection.
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3 4 5 6

Figure 5.3: (p, 2)-foils, for p = 3, 4, 5, 6

Figure 5.3 shows a (3, 2), (4, 2), (5, 2) and (6, 2)-foil shape. Note that for j = 2,

even values of p give shapes made up of multiple curves, whereas odd values of p give

a single curve.

5.1.3 The case of (p, p− 1)-foils

(3,2) (4,3) (5,4)

Figure 5.4: (p, p− 1)-foils, for p = 3, 4, 5

Of particular interest in the study of simple choreographies are those curves pos-

sessing a single connected component. In particular we note that the foils making

up the diagonal of Table 5.1, consisting of exactly those foils for which p = j + 1,

all have a single component. These curves are of particular interest, because they

may be considered as part of a family of homotopic curves which differ in appearance

depending on a parameter in the equation of the curve. This may be considered

geometrically to correspond to the size of the central curved polygon, as described

below.

5.1.3.1 Windmills

If we reduce the size of the central polygon in such curves, deforming the whole curve

homotopically, we will eventually obtain a shape where the arcs cross in the centre at
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3 4 5 6

Figure 5.5: p-windmills, for p = 3, 4, 5, 6

a single point. This we call a windmill with p petals, and choreographies have been

found numerically possessing this shape - one is given in the animations of n-body

choreographies in [29], for which p = 6 and n = 7.

5.1.3.2 Flowers

3 4 5 6

Figure 5.6: p-flowers, for p = 3, 4, 5, 6

If we continue to push the curves in the same direction, past the point where they

meet in the middle, we find another p-sided shape forms in the centre, with a loop

at each corner. This we call a flower with p petals, and again examples have been

found with this shape - see Example 5.1.10 on page 116 and Example A.2.2 on page

158, among others.

Remark 5.1.4. The case of the flower differs notably from the foil in that on a foil-type

curve, the particles will always be moving around the central point of the configura-

tion in the same direction. On a flower, the direction of travel relative to the centre

alternates between clockwise and anticlockwise each time a particle travels along one

of the outer loops.

Remark 5.1.5. Not all curves of this type will permit a choreography solution for

every number of particles n. The motion of a single particle on an m-flower can

be broken down into m sections which consist of the same curve in space, up to a
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rotation by 2π/m. As shown in Figure 5.7, we can WLOG take t = 0 to be when the

particle is at the base of the loop, and as t increases it proceeds around the loop.

t=0

t=t

t=
T/m

l

Figure 5.7: One section of the flower motion, for m petals

At some value of t, denoted t`, 0 < t` < 2π/m (the value of t` will depend on the

relative sizes of the loop and central region) it will pass through the point where it

started, then at t = T/m it will arrive at the base of the next loop. This motion is

then repeated on the next section.

This means that for n < m, we will never have a collision, since no two particles

will ever be in the same section at the same time. Hence the only opportunity for

collisions will occur when n ≥ m, and in particular in the case where kT/n = t`, which

may occur for any value of n depending on the value of t`.

As we will see below, different values of t` will sometimes lead to different con-

nected components in the space of loops, either side of a value of t` which results in

a collision, for some values of m and n.

We may consider, as in the example given in Example 5.1.8 of the (4, 3)-foil on

page 115, the curves to be defined using some coefficient in their equation, which

corresponds to the position along a continuum from foil to flower, in terms of the

relative size of the central polygon, with windmills at zero size and negative sizes in

the case of flowers.
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5.1.4 Different connected components

It may be noted that, depending on the number of particles n present on such a curve,

there may be several different connected components of the loop space represented in

the continuum from foil to flower. We now consider two useful examples demonstrat-

ing the transition from foil, through windmill, to flower, with different numbers of

particles, and consider the points on the continuum at which connected components

of the space of collision-free loops begin and end.

5.1.4.1 The trefoil, or (3, 2)-foil

• n = 3

– It may be noted that in the case of three particles on a trefoil, the motion

of the particles is homotopic to the Lagrangian motion of particles on a

circle which sit at the points of an equilateral triangle rotating about its

centre with constant speed. On a trefoil, three particles will be at the

points of an equilateral triangle at all times, except that the size of the

triangle varies from that at the ends of each loop to that at the middle of

each side of the central curved triangle, and the speed will also fluctuate

in a repeating way. The particles pass around the centre point twice for

each complete orbit.

– It is not permissible for three particles to move on a windmill shape with

three petals, since the motion will inevitably lead to a collision of all three

particles at the centre.

– Three particles on a three-flower will again always sit at the points of a

triangle, which will fluctuate in size during the course of an orbit. The

motion will also alternate between clockwise and anticlockwise (although

this does not mean they are ever stationary - at times when the direction

changes, the triangle is still increasing or decreasing in size). This motion

only passes around the centre once per complete orbit, unlike the foil case,

and hence is in a different connected component.
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Remark 5.1.6. This raises the question of whether there might exist motions

where the particles pass around the centre k times per complete orbit. In fact,

this corresponds to foils of type (p, j + kp). Flowers will only ever pass around

once.

• n = 4

The example of four particles on a trefoil, which is treated in more detail as Ex-

ample 5.1.7 later in this section, provides a very interesting range of connected

components of the loop space. Let us first consider a trefoil in which the centre

of the curve is a very large triangle, and gradually reduce its size, eventually

obtaining windmills and flowers.

(a) (b)

Figure 5.8: Four particles on a trefoil - (a) large triangle, (b) small triangle

– Large triangle: Refer to Figure 5.8(a). If we let t = 0 when two of the

particles lie on the vertical axis of reflection, the remaining two will lie on

the central triangle (above the crossing).

Smaller triangle: Refer to Figure 5.8(b). By reducing the size of the

triangle, we find the same situation results in the two lower particles sitting

below the crossing, outside of the central triangle.

This means that at some intermediate triangle size, the two lower particles

will be bound to collide at this crossing. So, these two states give two

distinct connected components in the loop space.

– Four particles may exist on a three-petal windmill, without colliding.
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– If we continue to a flower shape, we again find that as we increase the size

of the triangle, there will come a point at which the time taken to pass

along one of the outer loops, from the crossing back to the crossing, is T/4.

This will cause a collision. So, the flower-type curves with loop sizes either

side of this value will represent two different connected components.

Example 5.1.7 (Four particles on a trefoil). The trefoil is an example of a foil

type curve, with three petals, and here we consider it with four particles. In

this example, our diagram of a trefoil is as in Figure 5.8(b) where the triangle

is small and the two points lie outside the central triangle, but we are actually

considering all curves with this group of symmetries, and hence all connected

components of such loops.
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Figure 5.9: Four particles on a trefoil, at t = 0

The trefoil curve has the symmetry group of a triangle, which is generated by

the horizontal reflection κ2 and a diagonal reflection κ3, which reflects in the

axis with negative slope at an angle of π/3 below the horizontal. The other

reflection is κ3κ2κ3 and the possible rotations are by 2π/3 clockwise, κ2κ3, and

by 4π/3 clockwise, κ3κ2.
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The arrangements of particles possess symmetry at t = kT/12, with κ3 reflection

symmetry when k = 0 mod 3, κ2 reflection symmetry when k = 1 mod 3, and

κ3κ2κ3 symmetry when k = 2 mod 3. The rotational symmetries κ3κ2 and κ2κ3

involves a time shift of some multiple of T/12.
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Figure 5.10: Four particles on a trefoil, at t = kT/12

The choreography symmetry is present, as are two time-reversing symmetries,

given by ρ(g0) = κ3 with σ(g0) = (24), and ρ(g1) = κ2 with σ(g1) = (13), with

a time shift of T/6.
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Fixed point space F0:

γ(0) = g0γ(0) = κ3(24)γ(0)

Therefore,

(z1, z2, z3, z4) = κ3(24)(z1, z2, z3, z4)

This means that z1 and z3 must both lie on the axis of reflection of κ3, and

z2 and z4 form a pair where each is the image of the other under κ3. This is

equivalent to two distinct points lying on the real axis plus one conjugate pair.

Hence the fixed point space F0 = Fix(g0) is given by two distinct points in

R, determining the positions of z1 and z3, crossed with a copy of C \ R which

determines the position of z2, and the position of z4 then follows.

This is therefore (R2 \∆)× (C \R). This space has four contractible connected

components. So F0 ' pt t pt t pt t pt.

Fixed point space F1:

γ̂(T/12) = g1γ̂(T/12) = κ2(13)γ̂(T/12)

Therefore,

(z1, z2, z3, z4) = κ2(13)(z1, z2, z3, z4)

= (−z̄3,−z̄2,−z̄1,−z̄4)

The fact that z2 = −z̄2 and z4 = −z̄4 means that z2 and z4 must be on

the imaginary axis. Then z1 and z3 form a pair either side of this axis, each

other’s image under the reflection κ2. This is again equivalent to two real points

and a conjugate pair. Hence the fixed point space F1 = Fix(g1) is also given

by R2 \ ∆ × (C \ R), and has four contractible connected components. So

F1 ' pt t pt t pt t pt.

This choreography has no symmetries which act trivially on the time circle -

those symmetries which are not time-reversing require a time shift.
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Table 5.2: Four particles on a trefoil

ρ(g) τ(g) σ(g) Order

I 0 e 1
I T/4 (1234) 4
I T/2 (13)(24) 2
I −T/4 (1432) 4

κ2
T/6 (13) 2

κ2
5T/12 (12)(34) 2

κ2
−T/3 (24) 2

κ2
−T/12 (14)(23) 2

*κ3 0 (24) 2

κ3
T/4 (14)(23) 2

κ3
T/2 (13) 2

κ3
−T/4 (13)(34) 2

*κ3κ2
T/12 (1234) 12

κ3κ2
T/3 e 3

κ3κ2
−5T/12 (1432) 12

κ3κ2
−T/6 (13)(24) 6

κ2κ3
T/6 (13)(24) 6

κ2κ3
5T/12 (1234) 12

κ2κ3
−T/3 e 3

κ2κ3
−T/12 (1432) 12

κ3κ2κ3
T/12 (12)(34) 2

κ3κ2κ3
T/3 (24) 2

κ3κ2κ3
−5T/12 (14)(23) 2

κ3κ2κ3
−T/6 (13) 2

The full group of symmetries is given in Table 5.2. It has order 24, includes 12

reflections, and has a dihedral structure generated by the starred elements. It

is the dihedral group D12. The maps ρ, σ and τ for this group can be seen in

Figure 5.11.
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Figure 5.11: The maps ρ, σ and τ for four particles on a trefoil

• n = 5 The case for five particles follows similarly to that for four, in that there
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are two kinds of flower and two kinds of foil, except that the top half of the

trefoil contains three particles instead of two, as shown in Figure 5.12.

(a) (b)

Figure 5.12: Five particles on a trefoil - (a) large triangle, (b) small triangle

Example 5.1.8 (The (4, 3)-foil, or 4-superfoil). It has been previously noted that

the examples of (p, j)-foils which generalise to windmills and flowers are precisely the

(p, p − 1)-foils. Here, we present the (4, 3)-foil which admits five particles. Figure

5.13 shows a curve given by γ(t) = e3it + ae−it, for six different values of a.

a=1.0

a=0.9

a=1.4

a=0.5 a=0.7

a=1.8

Figure 5.13: The curve γ(t), with five particles

Proposition 5.1.9. For all values of a, the curve given by γ(t) = e3it+ae−it possesses

the symmetry group D4, symmetries of a square.



CHAPTER 5. EXAMPLES OF N -BODY CHOREOGRAPHIES 116

Proof. The symmetry group of a square can be generated by a rotation by π/2 and

any reflection. We will show that for each of these two symmetries, for all values of

t ∈ (0, 2π], there exists u ∈ (0, 2π] such that γ(u) is the image under the symmetry

of γ(t).

• Rotation by π/2

Need that ∀t ∃u such that γ(u) = iγ(t). In fact, u = t− π/2.

γ(t− π/2) = −ie3it + ae−it = iγ(t)

• Reflection in the real axis

Need that ∀t ∃u such that γ(u) = γ(t) (complex conjugate). In fact, u = −t.

γ(−t) = e−3it + aeit = e3it + ae−it = γ(t)

The curve therefore possesses these two symmetries, and hence the whole symmetry

group D4 of symmetries.

The curves with this equation, for different values of the parameter a, can be

seen to demonstrate a range of curve types, from a (4, 3)-foil to a 4-flower, as well as

exhibiting three different connected components of the loop space, as in the example

of the trefoil. For a = 0.5 and a = 0.7 it can clearly be seen in Figure 5.14 that the

two particles lie inside or outside a crossing, and hence these two states give different

connected components, since at some intermediate point there will necessarily be a

value of a for which a collision occurs here.

The homotopy class of curves corresponding to the case a = 1.4 is seen in the

following example.

This is an example of a flower type curve, with four petals. The presence of five

particles on the curve means that to avoid collisions, the curve can be any size except

that in which the time taken to pass along a petal and return to the crossing is T/5,

in which case we would have a collision.
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a=0.5 a=0.7

Figure 5.14: The curve γ(t), showing the different components between a = 0.5 and
a = 0.7

The four-petal flower curve has the symmetry group of a square, which is gener-

ated by the vertical reflection κ1 and the diagonal reflection in the line of positive

slope, denoted κ3. The total symmetry group has eight elements, including two other

reflections (κ3κ1κ3, horizontally, which has elsewhere been denoted κ2; and κ1κ3κ1,

in the other diagonal) as well as rotations κ1κ3, (κ1κ3)
2 and κ3κ1, by π/2, π and 3π/2

clockwise, respectively.

The arrangements of particles possess symmetry at t = kT/20, with κ1 symmetry

at even values of k and κ3κ1κ3 symmetry when k is odd. The rotational symmetries

involve a time shift of some multiple of T/20. The choreography symmetry is present,

as are two time-reversing symmetries, given by ρ(g0) = κ1 with σ(g0) = (12)(35), and

ρ(g1) = κ3 with σ(g1) = (12)(35).

Fixed point space F0:

γ(0) = g0γ(0) = κ1(12)(35)γ(0)

Therefore,

(z1, z2, z3, z4, z5) = κ1(12)(35)(z1, z2, z3, z4, z5)

= (z̄2, z̄1, z̄5, z̄4, z̄3)

Since z4 = z̄4, this point must lie on the real line, and the other four points form two

conjugate pairs either side of this line. Hence the fixed point space F0 = Fix(g0) is

given by a point in R, and the positions of z1 and z3, which will be distinct points

in the upper or lower half-plane. We must also have that as well as z1 6= z3, we have
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Example 5.1.10 (Five particles on a four-flower).

1

2

3

t = 0

k1

4

5

k3k1 k3

k1k3

90o

k3k1

90o

k1

k1k3 k3

180o

k3k1( )2

Figure 5.15: Five particles on a four-flower, at t = 0

z1 6= z̄3. This means we take the space (C \ R)2, and subtract two diagonal sets.

The resulting space has four connected components, each of which is homotopic to

R4 \ R2 ' S1. So F1 ' R× (S1 t S1 t S1 t S1) ' S1 t S1 t S1 t S1.

Fixed point space F1:

γ̂(T/20) = g1γ̂(T/20) = κ3(12)(35)γ̂(T/20)

Therefore,

(z1, z2, z3, z4, z5) = κ3(12)(35)(z1, z2, z3, z4, z5)

= (−iz̄2,−iz̄1,−iz̄5,−iz̄4,−iz̄3)

This means that z4 is a point on the diagonal axis of reflection, and the other

points form two pairs under the reflection. This is just the same as the situation

above up to a rotation, and so the fixed point space F1 = Fix(g1) is again homotopic

to S1 t S1 t S1 t S1.
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Figure 5.16: Five particles on a four-flower, at t = kT/20

This choreography has no symmetries which act trivially on the time circle - any

which are not time reversing involve a time shift.

The full group of symmetries is given in Table 5.3 on page 120. It has order 40,

and a dihedral structure generated by the starred elements, and hence is the dihedral

group D20. The maps ρ, σ and τ for this group can be seen in Figure 5.17.

Further examples of flower-type choreographies, including six particles on a three-

flower, and eight particles on a four-flower, can be seen in the Appendix.
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Table 5.3: Five particles on a four-flower

ρ(g) τ(g) σ(g) Order

I 0 e 1
I T/5 (12345) 5
I 2T/5 (13524) 5
I −2T/5 (14253) 5
I −T/5 (15432) 5

*κ1 0 (12)(35) 2

κ1
T/5 (15)(24) 2

κ1
2T/5 (13)(45) 2

κ1
−2T/5 (25)(34) 2

κ1
−T/5 (14)(23) 2

κ3
T/20 (13)(45) 2

κ3
9T/20 (25)(34) 2

κ3
−3T/20 (14)(23) 2

κ3
T/4 (12)(35) 2

κ3
−7T/20 (15)(24) 2

*κ3κ1
T/20 (12345) 20

κ3κ1
T/4 e 4

κ3κ1
9T/20 (15432) 20

κ3κ1
−7T/20 (14253) 20

κ3κ1
−3T/20 (13524) 20

κ1κ3
3T/20 (14253) 20

κ1κ3
7T/20 (13524) 20

κ1κ3
−9T/20 (12345) 20

κ1κ3
−T/4 e 4

κ1κ3
−T/20 (15432) 20

κ3κ1κ3
T/10 (14)(23) 2

κ3κ1κ3
3T/10 (13)(45) 2

κ3κ1κ3
T/2 (12)(35) 2

κ3κ1κ3
−3T/10 (25)(34) 2

κ3κ1κ3
−T/10 (15)(24) 2

κ1κ3κ1
3T/20 (15)(24) 2

κ1κ3κ1
7T/20 (14)(23) 2

κ1κ3κ1
−9T/20 (13)(45) 2

κ1κ3κ1
−T/4 (12)(35) 2

κ1κ3κ1
−T/20 (25)(34) 2

(κ1κ3)
2 T/10 (13524) 10

(κ1κ3)
2 3T/10 (12345) 10

(κ1κ3)
2 T/2 e 2

(κ1κ3)
2 −3T/10 (15432) 10

(κ1κ3)
2 −T/10 (14253) 10
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Figure 5.17: The maps ρ, σ and τ for five particles on a four-flower

5.2 Chains

Figure 5.18: Linear chains, with one, two, three and four crossings

A curve which takes the form of an elongated circle which has been twisted at

regular intervals along its length to form crossings is called an s-chain, where s is the

number of segments formed. A figure eight shape is a simple example of a 2-chain,

possessing merely one crossing and two segments. Such chains can be described

numerically as Lissajous-type curves given by

x = A cos(t) y = B sin(bt)

where b determines the number of crossings. The values of A and B determine the

relative width and height of the curve.

Many choreographies have been found to exist numerically on chains - see Figure

4.2(a) in [11], or Figure 5 in [18]. The segments of the chain are not always all
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the same size - the super-eight of Gerver is often found with the central segment

being larger or smaller than the other two, depending on the number of particles. If

the segments are either all the same size, or differ in a symmetrical way, the chain

possesses the same spatial symmetries as a rectangle - those in D2, consisting of a

rotation by π and a pair of orthogonal reflections.

There exist examples of non-symmetrical chains, such as that shown in Figure

4.2(c) in [11], where 8 bodies move on a chain with six segments, where the second

segment from the left is enlarged and the third reduced.

The examples of five particles on a figure eight, super-eight and four-chain, given

below and shown in Figures 5.19, 5.22 and 5.25 respectively, all exhibit the same

overall symmetry group, namely the dihedral group D10 of order twenty. In the

case of the super-eight, the group is generated slightly differently, since the rotation

symmetry is not time reversing and the reflection κ2 is. The same group structure

results. The three examples can be thought of as existing in the same loop space, of

five particles in the plane with D2 spatial symmetries, but being in different connected

components of this loop space as we increase the number of segments.

There exist other types of chain which do not possess the same D2 spatial symme-

try group. In Example A.2.5 on page 171 we see a bifurcated chain for which one end

splits into two, and while this still has one reflectional symmetry in the horizontal

axis, no other symmetry is present.

Example 5.2.1 (Five particles on a figure eight). The figure eight shape has pre-

viously been considered with three particles, and many choreographies have been

discovered in which odd numbers of particles move on the figure eight curve. In the

case of five particles, seen in Figure 5.19, it will become apparent that the symmetries

of this choreography are similar to those of five particles on a four-chain and on a

super-eight, and that these examples are closely related.

The figure eight curve has the symmetry group of a rectangle, which is generated

by the reflection κ1 and the reflection κ2, and includes the rotation by π, κ1κ2.

The arrangements of particles possess symmetry at t = kT/20, as seen in Figure
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Figure 5.19: Five particles on a figure eight, at t = 0

5.20, with κ1 symmetry at even values of k and κ1κ2 symmetry when k is odd. The

symmetry of κ2 involves a time shift of T/10. The choreography symmetry is present,

as are two time-reversing symmetries, given by ρ(g0) = κ1 with σ(g0) = (25)(34), and

ρ(g1) = κ1κ2 with σ(g1) = (25)(34) and a time shift of T/10.

Fixed point space F0:

γ(0) = g0γ(0) = κ1(25)(34)γ(0)

Therefore,

(z1, z2, z3, z4, z5) = κ1(25)(34)(z1, z2, z3, z4, z5)

= (z̄1, z̄5, z̄4, z̄3, z̄2)

Since z1 = z̄1, this point must lie on the real line, and the other four points form two

conjugate pairs either side of this line. Hence the fixed point space F0 = Fix(g0) is

given by a point in R, and the positions of z2 and z3, which will be distinct points

in the upper or lower half-plane. We must also have that as well as z2 6= z3, we have

z2 6= z̄3. This means we take the space (C \ R)2, and subtract two diagonal sets.

The resulting space has four connected components, each of which is homotopic to

R4 \ R2 ' S1. So F1 ' R× (S1 t S1 t S1 t S1) ' S1 t S1 t S1 t S1.

Fixed point space F1:

γ̂(T/4) = g1γ̂(T/4) = κ1κ2(13)(45)γ̂(T/4)
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Figure 5.20: Five particles on a figure eight, at t = kT/20

Therefore,

(z1, z2, z3, z4, z5) = κ1κ2(13)(45)(z1, z2, z3, z4, z5)

= (−z3,−z2,−z1,−z5,−z4)

Since z2 = −z2, this forces z2 = 0. The other four points form two pairs either side of

0, where z1 = −z3 and z4 = −z5. Hence the fixed point space F1 = Fix(g1) is given

by two distinct points in the punctured plane, which also cannot be equal to each

other’s negatives.

F1 = {(z1, z4) ∈ C2 | z1 6= 0, z4 6= 0, z1 6= ±z4}

This is the space C2 minus four complex planes. By Lemma A.1.1 on page 157 in

the Appendix, this is K(Z× F3, 1) where F3 is the free group on three generators.

This choreography has no symmetries which act trivially on the time circle - those

which are not time reversing require a time shift.

The full group of symmetries is given in Table 5.4. It has order 20, and a dihedral

structure generated by the starred elements, and hence is the dihedral group D10.
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The maps ρ, σ and τ for this group can be seen in Figure 5.21.

Table 5.4: Five particles on a figure eight

ρ(g) τ(g) σ(g) Order

I 0 e 1
I T/5 (12345) 5
I 2T/5 (13524) 5
I −2T/5 (14253) 5
I −T/5 (15432) 5

*κ1 0 (25)(34) 2

κ1
T/5 (15)(24) 2

κ1
2T/5 (14)(23) 2

κ1
−2T/5 (13)(45) 2

κ1
−T/5 (12)(35) 2

κ1κ2
T/10 (13)(45) 2

κ1κ2
3T/10 (12)(35) 2

κ1κ2
T/2 (25)(34) 2

κ1κ2
−3T/10 (15)(24) 2

κ1κ2
−T/10 (14)(23) 2

*κ2
T/10 (14253) 10

κ2
3T/10 (15432) 10

κ2
T/2 e 2

κ2
−3T/10 (12345) 10

κ2
−T/10 (13524) 10
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Figure 5.21: The maps ρ, σ and τ for five particles on a figure eight

The ‘Super-Eight’ of Gerver, commonly seen with four particles, also permits five,

although in this case the central loop of the three is bigger, not smaller, than the

other two.

The super-eight curve has the symmetry group of a rectangle, which is generated

by the reflection κ1 and the reflection κ2, and includes the rotation by π, κ1κ2.
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Example 5.2.2 (Five particles on a super-eight).
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Figure 5.22: Five particles on a super-eight, at t = 0

The arrangements of particles possess symmetry at t = kT/20, with κ1 symmetry

at even values of k and κ2 symmetry when k is odd. The symmetry of κ1κ2 involves

a time shift of T/10 and a permutation of the particles.

The choreography symmetry is present, as are two time-reversing symmetries,

given by ρ(g0) = κ1 with σ(g0) = (25)(34), and ρ(g1) = κ2 with σ(g1) = (13)(45) and

a time shift of T/10.

Fixed point space F0:

γ(0) = g0γ(0) = κ1(25)(34)γ(0)

Therefore,

(z1, z2, z3, z4, z5) = κ1(25)(34)(z1, z2, z3, z4, z5)

= (z̄1, z̄5, z̄4, z̄3, z̄2)

Since z1 = z̄1, this point must lie on the real line, and the other four points form two

conjugate pairs either side of this line. Hence the fixed point space F0 = Fix(g0) is

given by a point in R, and the positions of z2 and z3, which will be distinct points

in the upper or lower half-plane. We must also have that as well as z2 6= z3, we have

z2 6= z̄3. This means we take the space (C \ R)2, and subtract two diagonal sets.

The resulting space has four connected components, each of which is homotopic to

R4 \ R2 ' S1. So F0 ' R× (S1 t S1 t S1 t S1) ' S1 t S1 t S1 t S1.
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Figure 5.23: Five particles on a super-eight, at t = kT/20

Fixed point space F1:

γ̂(T/4) = g1γ̂(T/4) = κ2(25)(34)γ̂(T/4)

Therefore,

(z1, z2, z3, z4, z5) = κ2(25)(34)(z1, z2, z3, z4, z5)

= (−z̄1,−z̄5,−z̄4,−z̄3,−z̄2)
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Since z1 = −z̄1, this forces z1 to lie in the vertical axis. The other four points

form two pairs either side of the vertical axis, where z2 = −z̄5 and z3 = −z̄4. Hence

the fixed point space F1 is the same as the fixed point space F0 up to a rotation, and

hence is also S1 t S1 t S1 t S1.

This choreography has no symmetries which act trivially on the time circle - those

which are not time reversing require a time shift.

The full group of symmetries is given in Table 5.5. It has order 20, and a dihedral

structure generated by the starred elements, and hence is the dihedral group D10.

The maps ρ, σ and τ for this group can be seen in Figure 5.24.

Table 5.5: Five particles on a super-eight

ρ(g) τ(g) σ(g) Order

I 0 e 1
I T/5 (12345) 5
I 2T/5 (13524) 5
I −2T/5 (14253) 5
I −T/5 (15432) 5

*κ1 0 (25)(34) 2

κ1
T/5 (15)(24) 2

κ1
2T/5 (14)(23) 2

κ1
−2T/5 (13)(45) 2

κ1
−T/5 (12)(35) 2

κ2
T/10 (13)(45) 2

κ2
3T/10 (12)(35) 2

κ2
T/2 (25)(34) 2

κ2
−3T/10 (15)(24) 2

κ2
−T/10 (14)(23) 2

*κ1κ2
T/10 (14253) 10

κ1κ2
3T/10 (15432) 10

κ1κ2
T/2 e 2

κ1κ2
−3T/10 (12345) 10

κ1κ2
−T/10 (13524) 10

The four-chain has similarities with the figure eight, in that it is a chain-type

curve with an odd number of crossings - this means that it possesses a rotational

symmetry which is time-reversing.

The four-chain curve has the same symmetry group as the figure eight. The
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1

iτ
²²

D5

Z5

iρ // D10

τ

²²

ρ //

σ

66mmmmmmmmmmmmmmm
Z2 × Z2

Z2

iσ

77ppppppppppppp
D10

Figure 5.24: The maps ρ, σ and τ for five particles on a super-eight

Example 5.2.3 (Five particles on a four-chain).

1

2 3

t = 0
k1 k2k2 k1

5 4

Figure 5.25: Five particles on a four-chain, at t = 0

arrangements of particles possess symmetry at the same times in the same way, and

can be seen in Figure 5.26 on page 130.

The time-reversing symmetries and fixed point spaces are also the same. The

group of symmetries is the same as that given in Table 5.4 on page 125.

5.3 Distorted figure eights

The figure eight curve, considered with three particles in Example 3.2.1, has the

planar symmetry group D2 consisting of two perpendicular reflections and a rotation

by π.

D2 = {I, κ1, κ2, κ1κ2}
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Figure 5.26: Five particles on a four-chain, at t = kT/20

We consider here distorted versions of the curve which possess a subgroup of these

symmetries. The dihedral group D2 has three different non-trivial subgroups, each
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of order two, and we realise each as the planar symmetry group of a curve.

Example 5.3.1 (Three particles on a distorted figure eight).

5.3.0.2 Vertical reflection only - G = {I, κ1}

t = 0 k1

3

1

2

Figure 5.27: Three particles on a distorted figure eight with κ1 symmetry, at t = 0

In this case, we have only the κ1 reflection, which is time reversing and swaps a

pair of particles each time. The choreography symmetry is also present. The resulting

group of symmetries is the dihedral group D3.

Choreographic motions with this shape of curve have been proven to exist with

four and five particles, in [16]. Four particles are not permitted on an ordinary figure

eight shape, since they would collide at the centre. Five particles can be found on an

ordinary figure eight, as seen in Example 5.2.1 on page 122.

Table 5.6: Three particles on a distorted figure eight with κ1 symmetry

ρ(g) τ(g) σ(g) Order

I 0 e 1
I T/3 (123) 3
I −T/3 (132) 3
κ1 0 (13) 2

κ1
T/3 (23) 2

κ1
−T/3 (12) 2

The maps ρ, σ and τ for this group can be seen in Figure 5.28.
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1
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iρ // D3
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σ

88ppppppppppppp
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1

iσ
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Figure 5.28: The maps ρ, σ and τ for three particles on a distorted figure eight with
κ1 symmetry

1
t = 0

k2

3

2

Figure 5.29: Three particles on a distorted figure eight with κ2 symmetry, at t = 0

5.3.0.3 Horizontal reflection only - G = {I, κ2}

In this case, there are no time-reversing symmetries, and we set the arrangement of

points at t = 0 to possess the symmetry given by the reflection κ2, which requires

a time shift of T/2. The choreography symmetry is still present, and the group

of symmetries is generated by this and the κ2 reflection. The resulting group is

Z2 × Z3 ' Z6.

Table 5.7: Three particles on a distorted figure eight with κ2 symmetry

ρ(g) τ(g) σ(g) Order

I 0 e 1
I T/3 (123) 3
I −T/3 (132) 3
κ2 0 (132) 3
κ2

T/3 e 3
κ2

−T/3 (123) 3

The maps ρ, σ and τ for this group can be seen in Figure 5.30.
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Figure 5.30: The maps ρ, σ and τ for three particles on a distorted figure eight with
κ2 symmetry

5.3.0.4 Order two rotation only - G = {I, κ1κ2}

1

t = 0

3

2

k2k1

Figure 5.31: Three particles on a distorted figure eight with κ1κ2 symmetry, at t = 0

Here again the non-trivial symmetry is time-reversing, and so our group is again

the dihedral group of order six, as in the first example, except the permutations

corresponding to each of the reflections are in a different order.

Table 5.8: Three particles on a distorted figure eight with κ1κ2 symmetry

ρ(g) τ(g) σ(g) Order

I 0 e 1
I T/3 (123) 3
I −T/3 (132) 3

κ1κ2 0 (23) 2

κ1κ2
T/3 (12) 2

κ1κ2
−T/3 (13) 2

The maps ρ, σ and τ for this group can be seen in Figure 5.32.
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Figure 5.32: The maps ρ, σ and τ for three particles on a distorted figure eight with
κ1κ2 symmetry

While only the usual figure eight has been proven to exist as a choreography with

three particles, these curves all lie in the same homotopy class as that example. Since

we have the condition that one solution must exist in each homotopy class of curves,

as discussed in Chapter 6, it may be that not all of these other curves are realisable

as motions of particles.

For a given homotopy class of curves, number of particles and group of symme-

tries, there will exist a maximal symmetry group for such a class of curves, found

by deforming the shape until we have the largest possible planar symmetry group,

whilst remaining homotopic to the original curve. Not all such choreographies will

necessarily have this maximal symmetry - it may be that there are multiple connected

components, only some of which have a larger symmetry group.

For example, four particles on a super-eight, as seen in Example 4.5.1 on page

88, has the symmetry group of a rectangle, but another connected component of this

same setup is when the central segment of the super-eight does not overlap. This

component has the maximal symmetry group of the circle, which is much larger, but

the component containing the super-eight does not, since the two particles in the

middle must pass around each other clockwise.

Example 5.2.1 on page 122 of five particles on a figure eight has been shown to

exist numerically as a choreography, and so has a version of the figure eight possessing

only κ1 symmetry with five particles (see Figure 1 in [16]). The symmetry group of

one is a subgroup of the other, and both are realised.



Chapter 6

Application to Variational

Problems

Much of the progress made in finding examples of collision-free n-body solutions has

been made using variational methods. In this chapter, we will discuss the various

approaches which have been made to guarantee that solutions of certain types exist

and are collisionless. In particular, we will consider the action functional of the

system, and discuss its uses in finding solutions.

6.1 The action functional

Given a physical system, the action functional is given by the integral with respect

to time of the Lagrangian of this system. Classical mechanics suggests that the path

actually followed by a physical system is that for which the action is minimized, or

stationary. The method used to find critical points of such a functional is called the

‘direct method’, and involves minimisation.

The Lagrangian may be defined using different types of potential - it is given by

L = T − V , where T is the kinetic energy of the system, and V is the potential. A

general formula for potential between two particles whose positions are denoted xi,

135
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xj and masses mi, mj is given by

V = −G
mimj

|xi − xj|α

Here G is the gravitational constant. In the case where α = 1 we have ordinary

Newtonian (gravitational) potential energy, sometimes also called Keplerian poten-

tial. For values of α ≥ 2 we call this the strong force. For our closed path motions,

the action functional may be written

A(γ, γ̇, t) =

∫ T

0

dt L(γ, γ̇, t)

for γ a closed path mapping T into M .

In the case of strong force potential, many solutions of the n-body problem are

much more easily proven to exist, since in this case any point at which collisions occur

will have infinite action (since the denominator goes to zero very quickly) and will

never be a minimum of the functional. In the case α = 1 (Newtonian), this cannot

be guaranteed and so other methods must be found to eliminate collisions.

In the following sections, we discuss certain relevant works which treat this prob-

lem, and describe their approaches.

Remark 6.1.1. In our consideration of choreographies, we assume all masses mi are

equal (and without loss of generality, equal to 1) and so in this case the potential

only depends on the distance between the particles.

6.2 Ferrario and Terracini [14]

In [14], Ferrario and Terracini discuss the use of carefully chosen symmetry groups

to restrict the space of loops. It had previously been established that considering a

subspace of loops symmetric with respect to given symmetry conditions has led to

finding new periodic orbits for the n-body problem, and Ferrario and Terracini built

on this by establishing conditions under which the action functional will be coercive,

and under which solutions found will be collision-free.

Coercivity is a condition which means the functional grows rapidly at the extremes

of the space on which it is defined. More precisely, f : Rn → Rn is coercive if
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f(x)·x
‖x‖ → +∞ as ‖x‖ → +∞. So, since our configuration space excludes collision

points, this means the action will go to infinity as we approach a collision, and no

minimum can correspond to collision points.

Coercivity also guarantees the existence of minima of the action functional, by

classical arguments – and hence the existence of generalised solutions. Ferrario and

Terracini give conditions on G which guarantee coercivity of the action functional

when restricted to symmetric loops, i.e those equivariant with respect to G, as de-

fined below. This means that choreographies in particular will definitely possess this

property.

As well as introducing a system of notation, and considering the symmetry group

via a set of three representations, as described in Chapter 3 in this thesis, they give

general conditions on the group action, and define the rotating circle property, under

which minimizers of the action functional will exist and be free from collisions. These

results also hold for all degrees of homogeneous potential, not just the Newtonian

potential. They also describe a method of generating suitable symmetry groups to

find new families of collisionless orbits.

Remark 6.2.1. We must at this point note that the notation in [14] differs slightly

from our own - they denote by X the space of centred configurations of particles (i.e.

those whose centre of mass is at the origin). The space of collisionless configurations

is denoted X̂ , and given by X̂ = X \∆.

The space of loops Λ is defined as a Sobolev space Λ = H1(T,X ) so that all maps

are continuous and L2, and have L2 derivative. Collision-free loops are denoted Λ̂.

They then use the representations defined earlier to specify a subspace ΛG of the

space of loops Λ, given by

∀g ∈ G, ∀t ∈ T,∀i = 1 . . . n : ρ(g)xσ(g−1)(i)(t) = xi(τ(g)t)

That is, if we apply the space transformation and the permutation of particles to a

set of particles, then the result will be the original positions of those particles at a

modified time, and hence that the motion of particles will obey the symmetry group

for all values of t.
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Restricting the action functional A to this space of symmetric loops, which we

denote AG, we find that certain conditions on the group action force this action

functional to be coercive. Namely, in the case where the space XG, the set of points

in X which are fixed by G, is empty, then the action functional AG will be coercive.

By the Palais principle of symmetric criticality (see [26]), we have that a critical

point of AG is also a critical point of A. Hence, we may work in this relative space

under the action of G, and any critical point of the functional we find here will be a

critical point of the full problem.

Proposition 6.2.2 (Proposition 4.1 from [14]). The action functional AG is coercive

if and only if XG = 0.

Proof. See [14].

In this paper, they also define the rotating circle property, which guarantees col-

lisionless solutions by imposing a condition on the group action which ensures that

at any point where a collision might occur, n− 1 of the particles may be moved away

by a rotation and hence the collision may be avoided.

In particular, any particle which is involved in a collision may be replaced by a

circle which is invariant under the action of sufficiently many G-isotropy subgroups,

and is acted on by G in such a way that it rotates the circle. This then allows the

particle involved in a collision to be rotated away, while maintaining the trajectory.

If a group G has the rotating circle property, then all subgroups H < G also have

the property.

Proposition 6.2.3 (Proposition 4.12 from [14]). If XG = 0, then there exists at

least a minimum of the Lagrangian action AG, which yields a generalized solution of

miẍi = δU
δxi

in ΛG, where U is the potential function.

Proof. See [14].

In our examples, we have identified multiple connected components of the space

of loops in which solutions may exist. We may deduce from the above the following

result:
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Theorem 6.2.4. For a given symmetry group G of an n-body choreography, there

exists a local minimum of the action functional in each connected component of the

space ΛG of G-loops. Hence, there exists at least one choreography solution of the

n-body problem for each connected component of this space.

Proof. Follows from Proposition 6.2.3 above.

Remark 6.2.5. While the above gives us that there exists a solution in every connected

component of this space, some of these solutions may be multiples of simpler ones

- for example, in the Lagrange circular solution, a solution in another connected

component could simply be the solution corresponding to travelling around the same

circle twice as fast.

We may identify which of our examples may exploit the fact that XG = 0 implies

solutions, since they will be those in which the action of G on the configuration space

X has no fixed points. For example, on page 79 in Chapter 2 we considered the

example of five particles on a super-eight, treated in more detail as Example 5.2.2

on page 125. We noted that if we restrict G to a subgroup of G containing only a

non-time reversing rotation, by distorting the curve so it has only this symmetry,

then there are no fixed points. In this case, we know the action functional on the

space of relative loops is coercive, and hence that solutions exist.

Many examples are considered in [14], including Examples 3.2.1 and 5.2.1 of three

and five particles on a figure eight, respectively.

The example of three particles on a figure eight is given with a group of symmetries

generated by g1, g2 where (in our notation):

ρ(g1) = κ1κ2, τ(g1) : t 7→ −t, σ(g1) = (23)

ρ(g2) = κ1κ2, τ(g2) : t 7→ −t + T/3, σ(g2) = (12)

They take t = 0 to be the point we denote t = T/12, and the numbering of particles is

also different.
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6.3 Southall [32]

In his thesis, John Southall has considered various n-body and n-centre problems,

and obtained results on which homotopy classes of loops contain periodic solutions

of these problems. Among other things, he applies action-minimising methods to

the planar two-centre problem under the Newtonian potential, and to planar ‘central

force problems’, in which two bodies move under forces acting in the direction of the

vector from one body to the other.

He makes use of relative periodic orbits, and looks at systems which are both

integrable and non-integrable.

In his study of the two-centre problem, Southall uses a classification of the different

types of orbits possible. As discussed in Section 2.6, two points in the plane may

without loss of generality be considered to lie on the horizontal axis and equally

spaced either side of the vertical axis. The shape of the motion of the free particle in

the twice punctured plane (the plane minus the two fixed centres) is classified as:

• P1, if the orbit lies in an elliptic annulus encircling the two centres;

• P2, if the orbit lies within a simply connected region containing both centres

(but is not of type P1);

• P3, if the orbit lies within one of two disconnected regions, each region con-

taining only one of the two centres.

He restates these classifications in terms of which sections of the horizontal axis

are crossed by particles during their motion. He also provides a description of all

homotopy types of orbits in terms of ‘words’, made up of letters corresponding to

crossing different parts of the axes in different directions.

Southall also studies the motion of bodies under other potentials - such as the

Lennard-Jones Potential, which is given by

VLJ(x) =
∑

1≤i≤j≤N

[
1

‖xi − xj‖β
− 1

‖xi − xj‖α

]
, β > α ≥ 2
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This potential is repulsive at short distances and attractive at large distances, and

is used to model interactions between N identical atoms or neutral molecules. For

this reason it is sometimes called the ‘Molecular Potential’, and Southall uses it

to study the motion of N molecules, and proves the existence of periodic solutions

using critical point theory. He goes on, using Morse theory, to prove the existence

of at least two distinct critical orbits in every connected component of a space of

loops satisfying certain conditions - and in particular, these conditions are satisfied

for choreographies. This means that at least two choreographies exist under this

potential, in each connected component. This work has been published in [28].

6.4 McCord, Montaldi, Roberts and Sbano [24]

This paper of 2003, titled “Relative periodic orbits of symmetric Lagrangian sys-

tems” uses topological properties of a Lagrangian system possessing a symmetry g

to determine the number of relative periodic orbits present for each homotopy class

of orbits.

The two major results of the paper, given below, are illustrated using examples

including strong force n-centre problems, and systems on tori.

Remark 6.4.1. The map denoted Φω in the paper is that which has been defined

earlier in this thesis as ω̂∗, namely the map taking a path γ to the path ω ∗ γ, and

so I have denoted it by ω̂∗ in the following to make this work consistent and avoid

confusion. The space Λg(M) is as we have defined it, the space of all paths in M

running from a point to its image under g : M → M .

I have also replaced the notation group g denoting the set of orbits of the g-

twisted action, as defined below, with the notation [group]g, to avoid confusion with

my notation for inverses.

Theorem 6.4.2 (2.1 from [24]). The map Φω induces a bijection

π0(Λ
g(M)) ∼= [π1(M,m)]g,

where [π1(M, m)]g is the set of orbits of the g-twisted action of π1(M, m) on itself.
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This theorem gives us that the number of connected components of the space of

relative loops is equal to the number of orbits of the g-twisted action of π1(M) on

itself. This is the same as our Theorem 2.5.3, where the orbits are called Reidemeister

conjugacy classes.

Theorem 6.4.3 (2.2 from [24]). Assume M is a K(π, 1). Then for any γ ∈ Λg(M, m)

the connected component of Λg(M) containing γ, denoted Λg
γ(M), is also a K(π, 1)

with

π1(Λ
g
γ(M)) ∼= Zg

π1(M)(ω̂∗(γ))

where

Zg
π1(M)(ω̂∗(γ))

.
= {α ∈ π1(M) : αg ∗ ω̂∗(γ) ∗ α = ω̂∗(γ)}

i.e. the isotropy subgroup (or centraliser) at ω̂∗(γ) of the g-twisted action of π1(M, m)

on itself, given by

α · β = αg ∗ β ∗ α for α, β ∈ π1(M, m)

where αg = ω ∗ gα ∗ ω.

Remark 6.4.4. In this paper, there is an automorphism of π1(M, m) defined by, for

α ∈ π1(M, m),

α 7→ αg = ω ∗ gα ∗ ω

for a path ω ∈ Ωg(M, m) - i.e, a path running from m to gm.

This is not the same as our map Φg
ω, defined earlier, which mapped α ∈ πg

1(M, m)

to Φg
ω(α) = ω ∗ α ∗ gω ∈ πg

1(M, m′), for a path ω : m Ã m′. The ω used in the

paper’s definition of αg must have m′ = gm, whereas this is a map between relative

fundamental torsors with different basepoints.

This means that in the case where M is a K(π, 1) space, the homotopy type of

each connected component of loops is known. The following simple example is given

to illustrate how this works.

Example 6.4.5. Let M = S1, the circle, and first consider the case g = id, so we can

study the usual loop space Λ(S1). The g-twisted action of π1(S1) on itself is given by
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conjugation, and since π1(S1) = Z is abelian, this is trivial. So π0(Λ(S1)) ∼= Z, where

the homotopy classes of loops are specified by their winding number.

Since S1 is K(π, 1), the theorem gives us that each component of the loop space

is also a K(π, 1) with π = Z, and hence has the homotopy type of a circle.

Now let g be a reflection. Choose one of the fixed points of the reflection to be

the base point m, and choose ω to be the trivial path based at m, ω : m Ã m. Then

for each α ∈ π1(S1,m) ∼= Z we have αg = ω ∗ gα ∗ ω = −α, and so the g-twisted

action is given by the translation

α · β = β − 2α

This has two orbits, so we write [π1(S1)]g ∼= Z2, and the isotropy subgroups are trivial.

Hence the space of loops Λg(S1) in this case has two connected components, both of

which are contractible.

These results may be used to find the number of connected components of the

space of such loops, by examining the stabilisers of the g-twisted action.

The paper goes on to describe how, in the strong force case, a minimum of the

action functional must exist in each connected component.

It gives the example of the two-centre problem, as stated on page 37 in Section

2.6, where the action of g is a reflection in the axis on which both centres lie. In this

case, there are infinitely many connected components, each given by a word γ in the

generators α1 and α2 of the form

αr1
1 αs1

2 . . . α
rj

1 α
sj

2

where all the ri and si are non-zero.

The action functional will be coercive on the component of Λg(M) containing γ

if the action functional on the full loop space Λ(M) is coercive on the component

containing gγ ∗ γ. It is shown that every component of Λg(M) except those corre-

sponding to the orbits of 1, α1 and α2 will contain at least one relative periodic orbit

of the symmetric strong force two centre problem.



Chapter 7

Further work

7.1 Multiple choreographies

As discussed in Section 3.3, there exist choreographies for which the bodies do not

all move on the same curve. The bodies may be split into two or more equally sized

(or otherwise) groups, each of which has its own curve, and each group obeys the

choreography condition of fixed time delay within the group. In Section 5.3, we

discussed how in the case of the ‘foil’-type choreography, each k-foil where k is even

is not a single choreography, but consists of two or more overlapping curves. Some

of these examples have been shown to exist as solutions to the n-body problem, and

have been studied in [7], [14].

The same kind of representations may be applied to such choreographies as for

the single curve case. The choreography symmetry will map under ρ to the trivial

symmetry of the space, and τ will still give a non-reversing time shift of T/n, but the

permutation given by σ will not be cyclic, but will have subcycles which partition

{1, . . . n} into two or more groups, corresponding to the groups of particles on separate

curves. The order of this element will now, instead of n, be the size of each group of

particles, in the case where each group is the same size, and the least common multiple

of their sizes if not. The total number of particles will be n, so for k equal groups

(where k|n) each group is of size n/k and the order of the choreography symmetry is

also n/k.
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While groups of different sizes are not discussed in these examples, it might be

possible to have unequal groups as part of a multiple choreography, possibly leading

to more interesting and complex interactions between the groups of particles.

Example 7.1.1 (Six particles on a star of David shape).

1

2

3

t = 0

k1

k2

k2

k3

4 5

6

60
o

k3 k4

Figure 7.1: Six particles on a star of David, at t = 0

A good example of a double choreography is that of six particles on a Star of

David, shown in Figure 7.1, studied in [14] (see Example 11.7), and considered in [7]

(see Figure 2). It consists of six particles moving on two curves, each of which is a

triangle with rounded corners, and which carry three particles each. In our notation

from Section 5.1.2, it is a (6, 2)-foil and in this case we have contrary orientation.

The star of David shape has the symmetry group of a hexagon, which is generated

by the rotation by π/3, and the reflection κ1, and includes six reflections, three which

have a line of symmetry passing through the points of the stars (which are time

reversing), and three which pass through the points where the curves meet (which

are not time reversing).

The arrangements of particles possess reflectional symmetry at t = kT/12, as seen

in Figure 7.2. At even values of k, the particles lie at the corners of two concentric

and similarly oriented triangles, one inside the other. Whether k is equal to 0 or 2

mod 4 decides the orientation of the triangles - pointing up, as at k = 0 mod 4, or
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pointing down, at k = 2 mod 4. When k is odd, the particles lie at the points of the

central hexagon shape. A rotational symmetry, either by π/3 or 2π/3, is present at all

values of t.

The double choreography symmetry is present, and it has σ(g) = (123)(456) since

the points move in two cycles. The choreography symmetry has order three. There

are also two time-reversing symmetries, given by ρ(g0) = κ2 with σ(g0) = (12)(45),

and ρ(g1) = κ4κ1 with σ(g1) = (142536) with a time shift of T/12. There exist

equivalent symmetries under different reflections. This choreography additionally
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t = /T 6

t = /T 4
t = /T 3
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1
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Figure 7.2: Six particles on a star of David, at t = kT/12
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possesses a time preserving symmetry, denoted gt — that is to say, at all values of

t, ρ(gt) = κ1κ3 and σ(gt) = (123)(465) with τ(gt) : t 7→ t is a symmetry of the

choreography.

Fixed point space F0:

γ(0) = g0γ(0) = κ2(12)(45)γ(0)

Therefore,

(z1, z2, z3, z4, z5, z6) = κ2(12)(46)(z1, z2, z3, z4, z5, z6)

= (−z̄2,−z̄1,−z̄3,−z̄6,−z̄5,−z̄4)

The fact that z3 = −z̄3 and z5 = −z̄5 means that z3 and z5 must sit on the imaginary

axis. Then z1 and z2 form a κ2-reflected pair either side of the imaginary axis, as do

z4 and z6. Hence the fixed point space F0 = Fix(g0) is given by a copy of R2 \ ∆,

determining the positions of z3 and z5, and a space given by the positions of z1 and

z4, which will be distinct points in the upper or lower half-plane. We must also have

that as well as z1 6= z4, we have z1 6= z̄4. This means we take the space (C \ R)2,

and subtract two diagonal sets. The resulting space has four connected components,

each of which is homotopic to R4 \ R2 ' S1. So F0 will be homotopic to four copies

of S1 crossed with two contractible sets, which gives a space with eight connected

components, each of which is a copy of S1.

Fixed point space F1:

γ̂(T/12) = g1γ̂(T/12) = κ4κ1(142536)γ̂(T/12)

Therefore,

(z1, z2, z3, z4, z5, z6) = κ4κ1(142536)(z1, z2, z3, z4, z5, z6)

= (e
iπ
3 z4, e

iπ
3 z5, e

iπ
3 z6, e

iπ
3 z2, e

iπ
3 z3, e

iπ
3 z1)

These six points must sit at the corners of a hexagon, since each must be a rotation of

π
3

from each other, and the order in which the points must proceed clockwise around

the hexagon is 1,4,2,5,3,6. Hence the fixed point space F1 = Fix(g1) is given by the
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position of one of these points in the punctured plane, and will therefore be C∗, which

is homotopic to S1.

The rotational symmetries κ1κ3 and κ1κ6 are present for all values of t, and hence

may be used to restrict the manifold X to X ′, and the fixed point spaces F0 and F1

to F ′
0 and F ′

1, as in the example of the super-eight.

The time-preserving rotational symmetries are κ3κ1 with (123)(465), and equiva-

lently κ6κ1 with (132)(456). The points with this symmetry satisfy

(z1, z2, z3, z4, z5, z6) = κ1κ3(123)(465)(z1, z2, z3, z4, z5, z6)

= (e
2πi
3 z2, e

2πi
3 z3, e

2πi
3 z1, e

2πi
3 z6, e

2πi
3 z4, e

2πi
3 z5)

This means the points z1, z2 and z3 all lie on an equilateral triangle, as do z4, z5

and z6. This means the space X ′ is given by two points, which are distinct and lie in

the punctured plane, without being equal to the images of each other under rotation.

This means

X ′ ' {(z1, z4) ∈ (C∗)2 | z1 6= z4, ωz4, ωz4}

where ω = e
2πi
3 .

We can then consider the restriction of the fixed point spaces to the manifold X ′.

F ′
0 is then given by:

F0 ∩X ′ = {z3, z5 on vertical axis (not 0),

positions of z1, z2, z4, z6 given by rotation through
2π

3
}

Choosing two distinct values for z3, z5 defines the positions of the other points, and

so F ′
0 = (R∗)2 \∆.

F ′
1 = F1 ∩ X ′ is the space of regular hexagons in the plane such that z1 is two

places away from z2 and four from z3 as we proceed clockwise, and z4 is two places

away from z6 and four from z5 in a clockwise direction. This is already given by the

specified ordering on the particles in F1, and hence F ′
1 = F1 = R2. This space is

contractible.
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The full group of symmetries is given in Table 7.1. It has order 36 and an abelian

normal subgroup of order 9. It has the structure (Z3 × Z3) n (Z2 × Z2), where the

first part is the abelian normal subgroup and the second part is the Klein four group.

Remark 7.1.2. This group does contain time reversing symmetries which are not of

order two. Proposition 3.7.2 on page 64 states that this is impossible for a simple

choreography - so since this example consists of multiple curves, and the symmetries

of the whole shape map particles from one curve onto another, we have time reversing

symmetries of order six. The fact that the two triangles are oppositely oriented is

the reason for this time reversing rotation.

7.1.1 Chen [7]

In [7], Chen discusses the method of treating a systems of n particles as
(

n
2

)
pairs of

particles, each of which can be considered as a ‘binary’ in which a particle interacts

with exactly one other. The total action will be the same as that of the whole system.

He applies his methods to the study of choreographies, and in particular multiple

choreographies. He proves in particular the existence of infinitely many non-trivial

double choreographic n-body solutions, using a proof that a restriction of the action

functional to a space of G-invariant loops for a space of linear transformations G is

coercive.

To generate the group of symmetries for a double choreography, Chen uses the

group elements given in Example 7.1.1 of six particles on a Star of David by (for

n = 6 particles):

τ3 : τ(τ3) : t 7→ −t σ(τ3) = (123)(465) ρ(τ3) = I

σ3 : τ(σ3) : t 7→ t + T/3 σ(σ3) = (163524) ρ(σ3) = κ5κ1

up to a renaming of particles and shifted t = 0. He gives a general formula for such

generators in 2k particles (under his numbering system) as

σk · x(t) = e
iπ
k (x2k, x1, x2, . . . , x2k−1)(−t)
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Table 7.1: Six particles on a star of David

ρ(g) τ(g) σ(g) Order

I 0 e 1
I T/3 (123)(465) 3
I −T/3 (132)(456) 3
κ1

T/6 (152436) 6
κ1

T/2 (14)(26)(35) 2
κ1

−T/6 (163425) 6
κ2 0 (12)(46) 2

κ2
T/3 (23)(56) 2

κ2
−T/3 (13)(45) 2

κ3
T/6 (143526) 6

κ3
T/2 (15)(24)(36) 2

κ3
−T/6 (162534) 6

κ4 0 (23)(45) 2

κ4
T/3 (13)(46) 2

κ4
−T/3 (12)(56) 2

κ5 0 (13)(56) 2

κ5
T/3 (12)(45) 2

κ5
−T/3 (23)(46) 2

κ6
T/6 (142635) 2

κ6
T/2 (16)(25)(34) 2

κ6
−T/6 (153624) 2

κ2κ1
T/6 (15)(26)(34) 6

κ2κ1
T/2 (16)(24)(35) 2

κ2κ1
−T/6 (14)(25)(36) 6

κ3κ1 0 (123)(456) 3
κ3κ1

T/3 (132)(465) 3
κ3κ1

−T/3 e 3

κ4κ1
T/6 (142536) 6

κ4κ1
T/2 (152634) 6

κ4κ1
−T/6 (162435) 6

κ5κ1
T/6 (163524) 6

κ5κ1
T/2 (143625) 6

κ5κ1
−T/6 (153426) 6

κ6κ1 0 (132)(465) 3
κ6κ1

T/3 e 3
κ6κ1

−T/3 (123)(456) 3

τk · x(t) = (x3, x2k, x5, x2, . . . , x2m−1, x2(m−2), . . . , x2(k−2), x2(k−1))(t + T/k)

He also discusses examples of 4n bodies on a (4n, 2n)-foil (as defined in Section

5.1.2) which consists of 2n overlapping ovals. He then covers some of the examples
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treated by Ferrario and Terracini in [14], such as the figure eight, and also four

particles on a Star of David shape, which is proven to exist.

7.2 Other considerations

In this section we suggest other directions in which our study of relative loops and

minima of action may be taken.

7.2.1 Geodesics

The study of spaces of loops has many other applications, an example of which is the

study of geodesics. Originally studied as a way to find the shortest path between two

points on the Earth’s surface, the study of geodesics may very usefully be applied to

studying the motion of particles and other minimisation problems.

Definition 7.2.1. A geodesic is defined to be, for two points in a metric space, the

(locally) shortest path between the two points.

Finding geodesics involves finding critical points of an energy functional on the

path space. We may also define closed geodesics, which are geodesics which return

to their starting point such that for any two points on the path, the section joining

them is a geodesic. These are given by critical points on the energy functional on the

space of closed loops.

We may also define a closed geodesic as the projection of a closed orbit under the

geodesic flow.

While much work has been done in finding and studying geodesics, we will now

attempt to apply the methods we have been using here to such paths, starting with

the following definition which is an extension of our concept of relative loops.

Definition 7.2.2. We define a relative closed geodesic to be a path γ between

two points in a space, where there exists a (finite order) g-action on the space, such

that
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• The path γ is a geodesic

• The path runs from a point to its image under g; that is, γ(1) = gγ(0)

• If we compose the section of path with its image under each successive action

of gn, the resulting closed loop is a closed geodesic.

The relative closed geodesics will be elements of Λg, as defined earlier. We have

found the problem of finding n-body solutions is simplified by considering them up to

a G-action, and in the same way we may use this to simplify the study of geodesics.

Here we present some examples which illustrate the concept.

Example 7.2.3. Let M = S2, the 2-sphere, and let G = Z3 act by rotation of the

sphere by 2π/3 around the vertical axis.

On the sphere, geodesics are arcs of great circles, and closed geodesics are great

circles. The relative closed geodesics will be those comprising great circles which

are invariant under the Z3-action. The only such circle is that running around the

equator, and so the only relative closed geodesic will be an arc which is a third of an

equator.

Example 7.2.4. Let M = S2 and let G = Z2 act on M by the antipodal map. Again,

great circles will be the closed geodesics, and relative closed geodesics will be those

running from a point to its antipodal point, in such a way that the opposite section

of path runs through antipodal points to those on the arc.

Since this is satisfied by any great circle which passes through a given point, there

will be at each point relative closed geodesics which are arcs around to the antipodal

point, and a copy of S1/Z2 at each point represents all the possible directions of arcs.

7.2.2 Different K(π, 1) spaces

The construction of relative loop spaces and the existence of relative periodic orbits

has mainly been considered here as taking place on the manifold Rnd \∆, a K(π, 1)

space, where in the case d = 2, π = Pn, the coloured braid group on n strands.
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It is possible to replace this space with other, more well known K(π, 1) spaces,

such as the torus T2 = S1 × S1, which is K(Z × Z, 1). The study of group actions

on the torus is well established, and that of loop spaces, and the concept of relative

loops may be considered here also.



Chapter 8

Conclusions

While much work has already been done in the study of the problems considered

in this thesis, both on the classical n-body problem in particle mechanics and on

the specific class of choreographical solutions, we have presented several new and

interesting results on the subject, as well as exploring several illuminating worked

examples.

Using the framework of representations defined by Ferrario and Terracini [14], we

have made numerous useful statements on the nature of symmetry groups of simple

choreographies in Chapters 3 and 4, both those which contain time-reversing symme-

tries and those with the more interesting constraint of time preserving symmetries.

Notably:

• For any g, the symmetry ρ(g) must be a symmetry of the curve (Proposition

3.5.3)

• If ρ(g) acts trivially, then g must be a choreography symmetry (Proposition

3.5.5)

• The order of G is n times the order of the symmetry group of the curve (Propo-

sition 3.5.6)

• A time reversing symmetry g must have ρ(g) with order two (Proposition 3.7.2)
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• If a symmetry group contains a time reversing rotation, it can contain no other

rotations (Proposition 3.7.3)

• The image of σ must contain the cyclic group generated by the n-cycle (123 . . . n)

(Proposition 4.1.2)

• Either imσ ' Dn, in which case the symmetry group is reversing, or imσ ' Zn

in which case it is non-reversing (Proposition 4.1.3)

• The symmetry group of a choreography is reversing if and only if imρ ' Dk,

where Dk is the symmetry group of the curve (Proposition 4.1.4)

• Time preserving symmetries must have ρ(g) a rotation, not a reflection (Propo-

sition 4.5.1)

• For a choreography to possess a time-preserving symmetry, n must be divisible

by | ker(τ)| (Proposition 4.5.2)

Following on from the classification of types of three-body choreographies given

in [5], we use the techniques we have developed to classify strictly choreographical

motions, in the case n = 3 (see Section 4.2).

Our main results are in Chapter 4: Theorem 4.4.6 defines how a relative loop

may be extended to create a full choreography, and Theorem 4.6.1 allows us to study

the topology of the space of such loops. While defining a choreography in terms of a

relative loop has been done before, we give an explicit statement for the map from a

relative loop to the full choreography, and show that it is a homeomorphism.

We make use of our definition of the fixed point space of a time reversing sym-

metry, and the results listed above on how such symmetries interact with the whole

group. Since we prove that the space of relative loops for a given symmetry g is home-

omorphic to a space of choreographies, our study of the path space P(X, F0, F1) in

Example 4.6.1 is equivalent to an examination of the pace of choreographies. We use

the fact that the spaces F0 and F1 are spaces with easily calculated homotopy groups,

and may determine fully the homotopy type of the path space for given examples.
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We also apply the work of Ferrario and Terracini in which they place conditions

guaranteeing the existence and collisionlessness of solutions. In Theorem 6.2.4 we

have shown that such a solution may exist in every connected component of the space

of loops, and so there are infinitely many solutions in many cases. For examples, see

Example 3.2.1 of three particles on a figure eight, and Example 4.5.1 of four particles

on a Gerver super-eight. The calculation of the connected components can be found

in Example 4.6.1 on page 96.



Appendix A

Appendix

A.1 Additional Results

Lemma A.1.1. The space (C2 \ {n complex planes}) is K(Z× Fn−1, 1), where Fn−1

is the free group on n− 1 generators.

Proof. Let us denote by Yn the space (C2 \ {n complex planes}).
This space is homotopic to (S3 \ n circles), which we will denote Y ′

n. The circles

we subtract from S3 will be great circles, and orbits of the action of S1 on C2 by eiθ.

This action is free on Yn and Y ′
n, since neither contain the origin.

We may note that Y ′
n/S1 is equal to (S2 \ n points), and also that

Y ′
n/S1 ⊂ S3/S1 = S2(= CP 1)

We then have a fibration

S1 Â Ä // S3 \ n circles

²²
S2 \ n points

Claim: this is the trivial bundle. Indeed, the set of S1-bundles over Y ′
n is the same

as the set of classes of maps from (S2 \ n points) into BS1, the classifying space for

S1 bundles. We have BS1 = K(Z, 2) = CP∞, and so this space of maps is in fact

H2((S2 \ n points),Z), the second cohomology group. However, since S2 \ n points is

a one-dimensional CW -complex, it has trivial H2. So, the bundle must be trivial.

157



APPENDIX A. APPENDIX 158

Then, we have that Y ′
n is diffeomorphic to S1 × (S2 \ n points), and hence that

π1(Y
′
n) = π1(Yn) = π1(S1)× π1(S2 \ n points)

= Z× Fn−1

In fact, since these spaces are both K(π, 1), their product is K(Z×Fn−1, 1) as required.

A.2 Further Examples

In this section, we will give full descriptions of several illustrative examples of chore-

ographies with different numbers of particles, describing the symmetries present and

how they interact.

In each case, we give a description of the choreography, the symmetries present in

time and space, and discuss the fixed point spaces resulting from any time reversing

symmetries present. We also include a list of the elements of the symmetry group in

each case.

In the following, we will consider X(n) = (R2)n \ ∆, where n is the number of

particles. To represent the positions of particles we will use notation as though

X = Cn \∆, where points in X will be denoted (z1, z2, . . . , zn), zi 6= zj for i 6= j.

Example A.2.1 (Six particles on a non-symmetrical figure). Numerical methods

have discovered many choreographies for which the curve on which the particles

travel has no nontrivial symmetries. An example is shown in Figure A.1. In this

case, as with any choreography possessing no non-trivial spatial symmetries, the only

symmetry present is the choreography symmetry for which in this case ρ(g) = I, τ(g) :

t 7→ t + T/6 and σ(g) = (123456). The symmetry group in this case is simply the

cyclic group of order 6, Z6.

So far, the example of four particles on a Gerver super-eight has been the only

choreography to possess a time-preserving symmetry. The following two examples

both possess this type of symmetry, and can be considered as part of a family of
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Figure A.1: Six particles on a non-symmetrical figure, at t = 0

Example A.2.2 (Six particles on a three-flower).

1

2

3

t = 0

k3 k3k2 k2

4

120
o

k2
k2 k3

240
o

k3 k35

6

Figure A.2: Six particles on a three-flower, at t = 0

solutions. They are also both members of the family of rotationally symmetrical

solutions, of flower type.

The three-flower curve has the symmetry group of a triangle, which is generated

by the reflection in the horizontal axis κ1 and the diagonal reflection κ3, which is a

reflection in the line of negative slope at an angle of π/3 below the horizontal. The

group includes rotation by 2π/3, given by κ3κ1, rotation by 4π/3 given by κ1κ3, and

the reflection in the other diagonal, κ1κ3κ1.

The arrangements of particles possess reflectional symmetry at t = kT/12, with
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the particles forming two triangles which sit one inside the other with opposite ori-

entation at even values of k, and an irregular hexagon when k is odd. Rotational

symmetries are present for all values of t.

The choreography symmetry is present, as are two time-reversing symmetries,

given by ρ(g0) = κ1 with σ(g0) = (13)(46), and ρ(g1) = κ1 with σ(g1) = (12)(36) and

a time delay of T/8.

Fixed point space F0:

γ(0) = g0γ(0) = κ1(13)(46)γ(0)

∴ (z1, z2, z3, z4, z5, z6) = κ1(13)(46)(z1, z2, z3, z4, z5, z6)

= (z̄3, z̄2, z̄1, z̄6, z̄5, z̄4)

The particles z2 and z5 are equal to their own conjugate, and so must lie on the real

line. We also have z1 = z̄3 and z4 = z̄6, which means they form distinct conjugate

pairs either side of the real line. Hence the fixed point space F0 = Fix(g0) is given

by two distinct points in R, and two distinct points in the upper or lower half-plane.

We must also have that as well as z1 6= z4, we have z1 6= z̄4. This means we take

the space (C \ R)2, and subtract two diagonal sets. The resulting space has four

connected components, each of which is homotopic to R4 \ R2 ' S1. So F0 will be

four copies of S1 crossed with two contractible sets, which gives a space with eight

connected components, each of which is a copy of S1.

Fixed point space F1:

γ̂(T/12) = g1γ̂(T/12) = κ1(12)(36)(45)γ̂(T/12)

∴ (z1, z2, z3, z4, z5, z6) = κ1(12)(36)(45)(z1, z2, z3, z4, z5, z6)

= (z̄2, z̄1, z̄6, z̄5, z̄4, z̄3)

The points form three conjugate pairs, either side of the real axis. Hence the fixed

point space F1 = Fix(g1) is given by three distinct points in the upper or lower half-

plane. We must also have that as well as z1 6= z3, we have z1 6= z̄3, and similarly for

each of the other pairs from {z1, z3, z5}. This means we take the space (C \R)3, and
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subtract six diagonal sets. The resulting space has eight connected components, each

of which is homotopic to (R2)3 \∆. This is a K(π, 1) space with π = P3. So F1 will

be eight copies of (R2)3 \∆.

The rotational symmetries are present for all values of t, and hence may be used

to restrict the manifold X to X ′, and the fixed point spaces F0 and F1 to F ′
0 and F ′

1,

as in the example of the super-eight. The time-preserving rotational symmetries are

t = 0 t = /T 12

t = - /T 12

t = /T 6

t = /T 4 t = /T 3

t = - /T 3

t = - /T 4 t = - /T 6

t = /5T 12

t = - /5T 12
t = /T 2
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Figure A.3: Six particles on a three-flower, at t = kT/12

κ3κ1 with (135)(246), and equivalently κ1κ3 with (153)(264).

(z1, z2, z3, z4, z5, z6) = κ3κ1(135)(246)(z1, z2, z3, z4, z5, z6)

= (e
2πi
3 z3, e

2πi
3 z4, e

2πi
3 z5, e

2πi
3 z6, e

2πi
3 z1, e

2πi
3 z2)

This means the points z1, z3 and z5 all lie on an equilateral triangle, as do z2, z4 and

z6. This means the space X ′ is given by two points, which are distinct and lie in the

punctured plane, without being equal to the images of each other under rotation.
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It may be noted that (z1)
3 = (z3)

3 = (z5)
3, and (z2)

3 = (z4)
3 = (z6)

3, so in fact we

simply require that (z1)
3 and (z2)

3 are distinct points in the punctured plane. Hence

X ′ ' (C∗)2 \∆.

The restricted fixed point space F ′
0 = F0 ∩ X ′ consists of (z1, z2, z3, z4, z5, z6)

such that z2, z5 ∈ R, and z1 = z̄3, z4 = z̄6, with the additional restriction that

z1 = e
2πi
3 z3 = e

4πi
3 z5, and z2 = e

2πi
3 z4 = e

4πi
3 z6. This means that this space must

consist of two equilateral triangles, on each of which one point lies on the real line

and the other two are a conjugate pair either side of it. Hence, the space is determined

by the position of the two points in R minus the origin. Hence F ′
0 ' (R∗)2 \∆.

The other restricted fixed point space, F ′
1, again has the restriction that z1 =

e
2πi
3 z3 = e

4πi
3 z5, and z2 = e

2πi
3 z4 = e

4πi
3 z6, but this time the points lie in three sets of

conjugate pairs. This means that the whole space is determined by the position of one

particle, which without loss of generality may be considered to lie in the fundamental

region given by a cone in the plane of angle π/3, taken upward from the positive half

of the real line, and not including the origin or either boundary. This space is just a

plane, and hence F ′
1 ' 6[R2] ' 6[pt], since this point can be in any one of these six

regions.

The full group of symmetries is given in Table A.1. It has order 36, but no

elements of order 18. Its structure is that of ((Z3 × Z3) o Z2) o Z2. Its centre is

generated by the element marked †. The maps ρ, σ and τ for this group can be seen

in Figure A.4.

Z3

iτ
²²

D6

Z6

iρ // G

τ

²²

ρ //

σ

88ppppppppppppp
D3

Z3

iσ

88ppppppppppppp
D6

Figure A.4: The maps ρ, σ and τ for six particles on a three-flower

The four-flower has the symmetry group of a square, which is generated by the

reflection in the horizontal axis κ1 and the diagonal reflection κ3, in the line of
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Table A.1: Six particles on a three-flower

ρ(g) τ(g) σ(g) Order

I 0 e 1
I T/6 (123456) 6
I T/3 (135)(246) 3
† I T/2 (14)(25)(36) 2
I −T/3 (153)(264) 3
I −T/6 (165432) 6
κ1 0 (13)(46) 2

κ1
T/6 (12)(36)(45) 2

κ1
T/3 (26)(35) 2

κ1
T/2 (16)(25)(34) 2

κ1
−T/3 (15)(24) 2

κ1
−T/6 (14)(23)(56) 2

κ3 0 (15)(24) 2

κ3
T/6 (14)(23)(56) 2

κ3
T/3 (13)(46) 2

κ3
T/2 (12)(36)(45) 2

κ3
−T/3 (26)(35) 2

κ3
−T/6 (16)(25)(34) 2

κ3κ1 0 (135)(246) 3
κ3κ1

T/6 (14)(25)(36) 6
κ3κ1

T/3 (153)(264) 3
κ3κ1

T/2 (165432) 6
κ3κ1

−T/3 e 3
κ3κ1

−T/6 (123456) 6
κ1κ3 0 (153)(264) 3
κ1κ3

T/6 (165432) 6
κ1κ3

T/3 e 3
κ1κ3

T/2 (123456) 6
κ1κ3

−T/3 (135)(246) 3
κ1κ3

−T/6 (14)(25)(36) 6
κ1κ3κ1 0 (26)(35) 2

κ1κ3κ1
T/3 (16)(25)(34) 2

κ1κ3κ1
T/6 (15)(24) 2

κ1κ3κ1
T/2 (14)(23)(56) 2

κ1κ3κ1
−T/6 (13)(46) 2

κ1κ3κ1
−T/3 (12)(36)(45) 2
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Example A.2.3 (Eight particles on a four-flower).

1

2

3

t = 0

k1

4

5

k3

k1k3

90o

k3k1

90o

k3k1 k1k1k3 k3

180o

k3k1( )2

6

7

8

Figure A.5: Eight particles on a four-flower, at t = 0

negative slope at π/4 below the horizontal axis. The group incorporates the other

two reflections, κ1κ3κ1 and κ3κ1κ3, as well as rotations κ1κ3, (κ1κ3)
2 and κ3κ1, by

π/2, π and 3π/2 respectively.

The arrangements of particles possess reflectional symmetry at t = kT/16, with

the particles forming two squares which sit one inside the other, differing in orientation

by π/4, at even values of k, and an irregular octagon when k is odd. Rotational

symmetries are present for all values of t. The choreography symmetry is present,

as are two time-reversing symmetries, given by ρ(g0) = κ1 with σ(g0) = (28)(37)(46),

and ρ(g1) = κ1 with σ(g1) = (18)(27)(36)(45) and a time delay of T/8.

Fixed point space F0:

γ(0) = g0γ(0) = κ1(28)(37)(46)γ(0)

∴ (z1, z2, z3, z4, z5, z6, z7, z8) = κ1(28)(37)(46)(z1, z2, z3, z4, z5, z6, z7, z8)
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t = 0 t = /T 16 t = /T 8
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Figure A.6: Eight particles on a four-flower, at t = kT/16
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= (z̄1, z̄8, z̄7, z̄6, z̄5, z̄4, z̄3, z̄2)

The particles z1 and z5 are equal to their own conjugate, and so must lie on the real

line. We also have z2 = z̄8, z3 = z̄7 and z4 = z̄6, which means they form distinct

conjugate pairs either side of the real line. Hence the fixed point space F0 = Fix(g0)

is given by two distinct points in R, and three distinct points in the upper or lower

half-plane. We must also have that as well as z2 6= z3, we have z2 6= z̄3, and similarly

for each of the other pairs from {z2, z3, z4}. This means we take the space (C \ R)3,

and subtract six diagonal sets. The resulting space has eight connected components,

each of which is homotopic to (R2)3 \ ∆. This is a K(π, 1) space with π = P3. So

F0 will be eight copies of (R2)3 \∆, crossed with R2 \∆ (which has two contractible

components). Hence, F0 will be homotopic to sixteen copies of (R2)3 \∆.

Fixed point space F1:

γ̂(T/16) = g1γ̂(T/16) = κ1(18)(27)(36)(45)γ̂(0)

∴ (z1, z2, z3, z4, z5, z6, z7, z8) = κ1(18)(27)(36)(45)(z1, z2, z3, z4, z5, z6, z7, z8)

= (z̄8, z̄7, z̄6, z̄5, z̄4, z̄3, z̄2, z̄1)

The points form four conjugate pairs, either side of the real axis. Hence the fixed

point space F1 = Fix(g1) is given by four distinct points in the upper or lower half-

plane. We must also have that as well as z1 6= z2, we have z1 6= z̄2, and similarly for

each of the other pairs from {z1, z2, z3, z4}. This means we take the space (C \ R)4,

and subtract twelve diagonal sets. The resulting space has sixteen components, each

of which is homotopic to (R2)4 \∆. This is a K(π, 1) space with π = P4. So F1 will

be sixteen copies of (R2)4 \∆.

The rotational symmetries are present for all values of t, and hence may be used

to restrict the manifold X to X ′, and the fixed point spaces F0 and F1 to F ′
0 and F ′

1,

as in the example of the super-eight.

The relevant rotational symmetries are κ1κ3 with (1753)(2864), as well as κ3κ1

with (1357)(2468) and (κ1κ3)
2 with (15)(26)(37)(48).

(z1, z2, z3, z4, z5, z6, z7, z8) = (κ1κ3)(1753)(2864)(z1, z2, z3, z4, z5, z6, z7, z8)
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= (−iz7,−iz8,−iz1,−iz2,−iz3,−iz4,−iz5,−iz6)

This means the points are in two groups of four, each group sitting at the four corners

of a square centred at the origin, with z1 = −iz7 = −z5 = iz3 and z2 = −iz8 = −z6 =

iz4. This means the space X ′ is given by two points, which are distinct and lie in the

punctured plane, without being equal to each other’s images under the rotation by

multiples of pi/2.

It may be noted that (z1)
4 = (z3)

4 = (z5)
4 = (z7)

4, and (z2)
4 = (z4)

4 = (z6)
4 =

(z8)
4, so in fact we simply require that (z1)

4 and (z2)
4 be distinct points in the

punctured plane. Hence X ′ ' (C∗)2 \∆.

The restricted fixed point space F ′
0 = F0∩X ′ consists of (z1, z2, z3, z4, z5, z6, z7, z8)

with the following restrictions:

• z1 and z5 both sit on the real line, and z1 = −z5

• z3 = z̄7, and z3 = −z7, so both must sit on the imaginary axis, equal distances

above and below the origin.

• Since z̄8 = −iz8, we have z8 lies on the positive diagonal line for which re(z) =

im(z), and z4 = −z8 so it lies on this line also but the other side of the origin

• Similarly, z̄6 = iz6 so z6, so z6 must lie on the negative diagonal re(z) = −im(z)

and z2 = −z6

• We also have that z2 = z̄8 and z4 = z̄6, so these four points must form a square

- so the positions of z4, z6 and z8 are specified by z2, which lies in a copy of the

real line minus the origin.

• Similarly, z1 = iz3 and z5 = iz7 so the points z1, z3, z5 and z7 form a square

with each corner lying on an axis, and their positions are specified by z1 which

must lie in a copy of the real line minus the origin.

Hence, the space is determined by the position of the two points in the horizontal

and diagonal axes (R minus the origin in each case). Hence F ′
0 ' (R∗)2. This space

has four contractible connected components.
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The other restricted fixed point space, F ′
1, again has the restriction that z1 =

−iz7 = −z5 = iz3 and z2 = −iz8 = −z6 = iz4, but this time the points lie in four sets

of conjugate pairs. Given the position of z1, the points z7, z5 and z3 are its images

under rotation by multiples of π/2, and the positions of the remaining four particles are

the complex conjugates of these four. This means that the whole space is determined

by the position of one particle which lies in a fundamental domain consisting of one

eighth of the plane, from the horizontal axis up to the positive diagonal re(z) = im(z).

This region is homeomorphic to R2, and so F ′
1 ' 8[R2] ' 8[pt], since this point can

be in any one of these eight regions.

The full group of symmetries is given in Tables A.2 and A.3. It has order 64,

and its centre is isomorphic to the Klein Four group. The quotient G/Z(G) also has

centre Klein Four, and the result of taking the quotient again is the Klein Four group.

The maps ρ, σ and τ for this group can be seen in Figure A.7.

Z4

iτ
²²

D8

Z8

iρ // G

τ

²²

ρ //

σ

88ppppppppppppp
D4

Z4

iσ

88ppppppppppppp
D8

Figure A.7: The maps ρ, σ and τ for eight particles on a four-flower

Example A.2.4 (n particles on a circle). Most commonly referred to as the Lagrange

solution, and sometimes called the ‘trivial’ choreography, any number of particles will

form an orbit as the points of a regular n-gon, rotating with constant speed about

its centre. This motion has been well studied, being one of the earliest examples to

be discovered.

The circle has symmetry group O(2), including rotations Rθ by every angle 0 ≤
θ < 2π, and reflections in lines at every angle also. Symmetries of the particles will be

in the dihedral group Dn, generated by a rotation by 2π/n and any reflection which

maps particles to other particles.
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Table A.2: Eight particles on a four-flower

ρ(g) τ(g) σ(g) Order

I 0 e 1
I T/8 (12345678) 8
I T/4 (1357)(2468) 4
I 3T/8 (14725836) 8
I T/2 (15)(26)(37)(48) 2
I −3T/8 (16385274) 8
I −T/4 (1753)(2864) 4
I −T/8 (18765432) 8
κ1 0 (28)(37)(46) 2

κ1
T/8 (18)(27)(36)(45) 2

κ1
T/4 (17)(26)(35) 2

κ1
3T/8 (16)(25)(34)(78) 2

κ1
T/2 (15)(24)(68) 2

κ1
−3T/8 (14)(23)(58)(67) 2

κ1
−T/4 (13)(48)(57) 2

κ1
−T/8 (12)(38)(47)(56) 2

κ3 0 (13)(48)(57) 2

κ3
T/8 (12)(38)(47)(56) 2

κ3
T/4 (28)(37)(46) 2

κ3
3T/8 (18)(27)(36)(45) 2

κ3
T/2 (17)(26)(35) 2

κ3
−3T/8 (16)(25)(34)(78) 2

κ3
−T/4 (15)(24)(68) 2

κ3
−T/8 (14)(23)(58)(67) 2

κ3κ1 0 (1357)(2468) 4
κ3κ1

T/8 (14725836) 8
κ3κ1

T/4 (15)(26)(37)(48) 2
κ3κ1

3T/8 (16385274) 8
κ3κ1

T/2 (1753)(2864) 4
κ3κ1

−3T/8 (18765432) 8
κ3κ1

−T/4 e 4
κ3κ1

−T/8 (12345678) 8
κ1κ3 0 (1753)(2864) 4
κ1κ3

T/8 (18765432) 8
κ1κ3

T/4 e 4
κ1κ3

3T/8 (12345678) 8
κ1κ3

T/2 (1357)(2468) 4
κ1κ3

−3T/8 (14725836) 8
κ1κ3

−T/4 (15)(26)(37)(48) 4
κ1κ3

−T/8 (16385274) 8
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Table A.3: Eight particles on a four-flower (contd.)

κ3κ1κ3 0 (15)(24)(58) 2

κ3κ1κ3
T/8 (14)(23)(58)(67) 2

κ3κ1κ3
T/4 (13)(48)(57) 2

κ3κ1κ3
3T/8 (12)(38)(47)(56) 2

κ3κ1κ3
T/2 (28)(37)(46) 2

κ3κ1κ3
−3T/8 (18)(27)(36)(45) 2

κ3κ1κ3
−T/4 (17)(26)(35) 2

κ3κ1κ3
−T/8 (16)(25)(34)(78) 2

κ1κ3κ1 0 (17)(26)(35) 2

κ1κ3κ1
T/8 (16)(25)(34)(78) 2

κ1κ3κ1
T/4 (15)(24)(68) 2

κ1κ3κ1
3T/8 (14)(23)(58)(67) 2

κ1κ3κ1
T/2 (13)(48)(57) 2

κ1κ3κ1
−3T/8 (12)(38)(47)(56) 2

κ1κ3κ1
−T/4 (28)(37)(46) 2

κ1κ3κ1
−T/8 (18)(27)(36)(45) 2

(κ1κ3)
2 0 (15)(26)(37)(58) 4

(κ1κ3)
2 T/8 (16385274) 8

(κ1κ3)
2 T/4 (1753)(2864) 4

(κ1κ3)
2 3T/8 (18765432) 8

(κ1κ3)
2 T/2 e 4

(κ1κ3)
2 −3T/8 (12345678) 8

(κ1κ3)
2 −T/4 (1357)(2468) 4

(κ1κ3)
2 −T/8 (14725836) 8
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The full group of symmetries of this choreography can be generated by the ele-

ments

(I, (12 . . . n), t 7→ t + T/n)

(Rθ, e, t 7→ t + θ)

(κ1, σ, t 7→ −t)

Where σ is the corresponding involution depending on how the points are initially

arranged on the circle, and where κ1 maps particles to particles - that is, in the initial

arrangement at t = 0, exactly one or two particles lie on the axis of symmetry defined

by κ1.

There are no time-preserving symmetries. The time-reversing symmetries con-

sist exactly of the reflections which may be denoted κ1, assuming the arrangements

of particles at t = 0 fit with the previous use of that notation, and they will be

accompanied by some appropriate order two permutation.

There will be two cases, depending on whether n is odd or even:

• For odd values of n, all reflections will be conjugate. The fixed point spaces

F0 and F1 will both then consist of one particle moving in R, which is the one

which was fixed by the reflection, and n−1
2

conjugate pairs of particles either

side of the real line. Hence, F0, F1 ' R× C(n−1
2

) \∆.

• For even values of n, there are two different conjugacy classes of reflections - one

corresponding to a reflection which fixes two particles, and one corresponding

to a reflection which fixes no particles. In this case, one of the fixed point spaces

(without loss of generality, F0) will consist of n
2

conjugate pairs, and the other

will be n
2
− 1 conjugate pairs, together with exactly two particles moving in R.

Hence, F0 ' Cn
2 \∆, and F1 ' (R2 \∆)× (C(n

2
−1) \∆).

The maps ρ, σ and τ for the symmetry group of this system can be seen in Figure

A.8.

Example A.2.5 (Nine particles on a bifurcated 6-chain). This example shows that

not all chain-type curves have the symmetry group of the rectangle. It is presented
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1

iτ
²²

SO(2)oDn

Zn

iρ // SO(2)oDn

τ

²²

ρ //

σ
55jjjjjjjjjjjjjjj

O(2)

1

iσ
66mmmmmmmmmmmmmmmm SO(2)oDn

Figure A.8: The maps ρ, σ and τ for n particles on a circle

by Simó in [11] in Figure 4.2(d) as an example of an n-body choreography for the

Newtonian potential, based on his calculations.

k1

1

2

3

t = 0

4

5
67

8

9

Figure A.9: Nine particles on a bifurcated 6-chain, at t = 0

The bifurcated chain has only one reflectional symmetry, κ1, and no others and

hence its symmetry group is D1 = Z2.

The arrangements of particles possess reflectional symmetry at t = kT/18, with

the nine particles forming four pairs and a single particle lying on the line of symmetry.

For even values of k, this single particle is at the rightmost end, and when k is odd

it is at the middle of the downward portion of the bifurcation on the left.

The choreography symmetry is present, as are the two time-reversing symmetries,

given by ρ(g0) = κ1 with σ(g0) = (29)(38)(47)(56), and ρ(g1) = κ1 with σ(g0) =

(19)(28)(37)(46) and a time delay of T/9.

Fixed point space F0:

γ(0) = g0γ(0) = κ1(29)(38)(47)(56)γ(0)
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Figure A.10: Nine particles on a bifurcated 6-chain, at t = kT/18

∴ (z1, z2, z3, z4, z5, z6, z7, z8, z9) = κ1(29)(38)(47)(56)(z1, z2, z3, z4, z5, z6, z7, z8, z9)

= (z̄1, z̄9, z̄8, z̄7, z̄6, z̄5, z̄4, z̄3, z̄2)

The particle z1 is equal to its own conjugate, and so must lie on the real line. We also

have four pairs of conjugate particles, given by z2 = z̄9, z3 = z̄8, z4 = z̄7 and z5 = z̄6.

These eight particles form distinct conjugate pairs either side of the real line. Hence

the fixed point space F0 = Fix(g0) is given by one point in R, and four distinct points

in the upper or lower half-plane. We must also have that as well as z2 6= z3, we have
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z2 6= z̄3, and similarly for each of the other pairs from {z2, z3, z4, z5}. This means we

take the space (C \ R)4, and subtract twelve diagonal sets. The resulting space has

sixteen components, each of which is homotopic to (R2)4 \∆. This is a K(π, 1) space

with π = P4. So F0 will be sixteen copies of (R2)4 \∆, each crossed with a copy of R

giving the position of z1, which is homotopic to sixteen copies of (R2)4 \∆.

Fixed point space F1:

γ̂(T/18) = g1γ̂(T/18) = κ1(19)(28)(37)(46)γ(0)

∴ (z1, z2, z3, z4, z5, z6, z7, z8, z9) = κ1(19)(28)(37)(46)(z1, z2, z3, z4, z5, z6, z7, z8, z9)

= (z̄9, z̄8, z̄7, z̄6, z̄5, z̄4, z̄3, z̄2, z̄1)

The particle z5 is equal to its own conjugate, and so must lie on the real line. We also

have four pairs of conjugate particles, given by z1 = z̄9, z2 = z̄8, z3 = z̄7 and z4 = z̄6.

These eight particles form distinct conjugate pairs either side of the real line. Hence

the fixed point space F1 = Fix(g1) is given by one point in R, and four distinct points

in the upper or lower half-plane. We must also have that as well as z1 6= z2, we have

z1 6= z̄2, and similarly for each of the other pairs from {z1, z2, z3, z4}. This means we

take the space (C \ R)4, and subtract twelve diagonal sets. The resulting space has

sixteen components, each of which is homotopic to (R2)4 \∆. This is a K(π, 1) space

with π = P4. So F1 will be sixteen copies of (R2)4 \∆.

The full group of symmetries is given in Table A.4. It has order 18, and is in fact

the dihedral group D9. It can be generated by the elements marked ∗. The maps ρ,

σ and τ for this group can be seen in Figure A.11.

1

iτ
²²

D9

Z9

iρ // D9

τ

²²

ρ //

σ

88ppppppppppppp
Z2

1

iσ

88pppppppppppppp
D9

Figure A.11: The maps ρ, τ and σ, for nine particles on a bifurcated 6-chain
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Table A.4: Nine particles on a bifurcated 6-chain

ρ(g) τ(g) σ(g) Order

I 0 e 1
∗ I T/9 (123456789) 9
I 2T/9 (135792468) 9
I T/3 (147)(258)(369) 3
I 4T/9 (159483726) 9
I −4T/9 (162738495) 9
I −T/3 (174)(285)(396) 3
I −2T/9 (186429753) 9
I −T/9 (198765432) 9

∗ κ1 0 (29)(38)(47)(56) 2

κ1
T/9 (19)(28)(37)(46) 2

κ1
2T/9 (18)(27)(36)(45) 2

κ1
T/3 (17)(26)(35)(89) 2

κ1
4T/9 (16)(25)(34)(79) 2

κ1
−4T/9 (15)(24)(69)(78) 2

κ1
−T/3 (14)(23)(59)(68) 2

κ1
−2T/9 (13)(49)(58)(67) 2

κ1
−T/9 (12)(39)(48)(57) 2

Example A.2.6 (Three particles on a curve with square symmetry). This example

was discovered in the exploration of higher order symmetry groups for three particles,

as discussed in Section 4.2 and in particular in Remark 4.2.1. Having chosen order

four symmetry, and picked two reflections (which are time-reversing in the case of the

Lagrange circular symmetry), we use the same spaces F0 and F1 as in the circular case,

but choose a non-homotopic path connecting them, to find solutions in a different

connected component - as in Example 4.6.4 on page 99, where the same process

was undertaken for the figure eight curve. This alternative path was approximated

using Fourier series of order up to 29, extended to a full choreographical motion, and

iterated towards a local minimum of the action functional with strong force potential.

The resulting curve is given below in Figure A.12.

It may be noted that while this curve uses the strong force potential, a similar

curve with this symmetry for three particles is also found under the Newtonian po-

tential. While this is not a proof of this solution’s existence, the numerical data

strongly suggests such a solution exists.
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The curve has the symmetry group of a square, which is generated by the vertical

reflection κ1 and the diagonal reflection in the line of positive slope, denoted κ3. The

total symmetry group has eight elements, including two other reflections (κ3κ1κ3,

horizontally, which has elsewhere been denoted κ2; and κ1κ3κ1, in the other diagonal)

as well as rotations κ1κ3, (κ1κ3)
2 and κ3κ1, by π/2, π and 3π/2 clockwise, respectively.

1

2

3

t = 0 k1 k3 k1k3

90o

k3k1

90o

k3k1 k1k1k3 k3

180o

k3k1( )2

Figure A.12: Three particles on a curve with square symmetry, at t = 0

The arrangements of particles possess reflectional symmetry at t = kT/24, with

reflections in the vertical and horizontal axes at even values of k, and diagonal reflec-

tions when k is odd. This can be seen in Figure A.13.

The full group of symmetries is given in Table A.5. It has order 24. Its structure

is that of D12, the dihedral group with 24 elements. The maps ρ, σ and τ for this

group can be seen in Figure A.14.
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Table A.5: Three particles on a curve with square symmetry

ρ(g) τ(g) σ(g) Order

I 0 e 1
I T/3 (123) 3
I 2T/3 (132) 3
κ1 0 (13) 2

κ1
T/3 (12) 2

κ1
−T/3 (23) 2

κ3
T/12 (12) 2

κ3
5T/12 (23) 2

κ3
−T/4 (13) 2

κ3κ1κ3
T/6 (23) 2

κ3κ1κ3
T/2 (13) 2

κ3κ1κ3
−T/6 (12) 2

κ1κ3κ1
T/4 (13) 2

κ1κ3κ1
−5T/12 (12) 2

κ1κ3κ1
−T/12 (23) 2

κ3κ1
T/12 (123) 12

κ3κ1
5T/12 (132) 12

κ3κ1
−T/4 e 4

κ1κ3
T/4 e 4

κ1κ3
−5T/12 (123) 12

κ1κ3
−T/12 (132) 12

(κ1κ3)
2 T/6 (132) 6

(κ1κ3)
2 T/2 e 2

(κ1κ3)
2 −T/6 (123) 6
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Figure A.13: Three particles on a curve with square symmetry, at t = kT/24
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1
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Figure A.14: The maps ρ, σ and τ for three particles on a curve with square symmetry
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