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Abstract: In this paper, we study optimal revenue management applied to carparks, with primary objective to maximize
revenues under a continuous-time framework. We develop a stochastic discrete-time model and propose a
rejection algorithm that makes optimal decisions (accept/reject) according to the future expected revenues
generated and on the opportunity cost that arises before each sale. For this aspect of the problem, a Monte
Carlo approach is used to derive optimal rejection policies. We then extend this approach to show that there
exists an equivalent continuous-time methodology that yields to a partial differential equation (PDE). The
nature of the PDE, as opposed to the Monte Carlo approach, generates the rejection policies quicker and causes
the optimal surfaces to be significantly smoother. However,because the solution to the PDE is considered not
to solve the ‘full’ problem, we propose an approach to generate optimal revenues using the discrete-time
model by exploiting the information coming from the PDE. We give a worked example of how to generate
near-optimal revenues with an order of magnitude decrease in computation speed.

1 INTRODUCTION

Over the last twenty years, cars have formed the
main transportation system for people worldwide, es-
pecially in developed countries. Since parking is
essential for cars, this creates an opportunity for
carparking owners to exploit the increased demand
to maximize their turnover. This can be achieved
through revenue management (RM) techniques, such
as those used in the hotel industry, where customers
purchase multiple units in one transaction. Neverthe-
less, in carparking, most research has focused upon
the problem of reducing traffic congestion; For ex-
ample, Young et al. (1991) argue that carparks play a
major role in the planning and management of trans-
portation systems and thus, appropriate parking pric-
ing polices can be used to reduce traffic congestion. A
sample list of related work includes Vickrey (1969),
Vikrey (1994), Young et al. (1991), Verhoef et al.
(1995), Teodorović and Vukadinović (1998), Arnott
and Rowse (1999) and Zhao et al. (2010). Whilst the
literature upon carparking RM is small, there are two
worthy studies of mention. The first is Teodorović and
Lučić (2006), who propose an “intelligent” parking
space inventory control system, based on fuzzy logic
and integer programming techniques. They study the

problem of maximizing revenues when customer ar-
rival and departure times are stochastic, assuming dif-
ferent parking tariffs (prices). For a parking request
of a particular tariff, it is possible to know the per-
centage of the capacity remaining and the relative re-
quests’ revenue, as well as the percentage of all future
requests that make less relative revenue than the cur-
rent request; in this way, fuzzy rules are generated
(for detailed information in creating fuzzy rules, the
reader is referred to the work of Wang and Mendel
(1992)). The problem is studied under several sce-
narios and the results show that the relative error (be-
tween the proposed algorithm and the optimal upper
bound) never exceeds 10%. The initial setup of their
objective function has strong similarities to the setup
of our discrete-time model; however, their algorithm
is assumed to be able to “recognize” the type of the
request and to direct it to the appropriate fuzzy rule
base, in which a decision is made. Our system com-
bines all booking requests from both customers sets
in consideration, so that it makes a decision to ac-
cept/reject a request without knowing the booking set
each request comes from.

Onieva et al. (2011) also study revenue manage-
ment being applied in carparks. They consider the
presence of a group of subscribers along with the



individual customers while the arrivals are assumed
to follow a non-homogeneous Poisson distribution.
They examine the problem under both a deterministic
and a stochastic environment and they develop three
different algorithms for capacity allocation; a first-
come-first-served, distinct and nested method. Us-
ing these simulation techniques, profit maximization
were investigated, although little insight into the core
dynamics of the model was supplied. Their results
suggest that a stochastic model using nested alloca-
tion provides revenues that are closest to the optimal
values.

Within this study we assume the following:

1. Their is a finite fixed number of spaces in a
carpark. Fixed capacity means that no more rev-
enue can be generated when there are no spaces
left.

2. The inventory is perishable and it can be sold in
advance or on arrival.

3. The demand for the product is time-invariant.

The main objective of our study is toMaximize
Profits by Optimally Managing the Bookings in a
Continuous-Time Environment. What makes it dis-
tinct in our carparking revenue maximization problem
is the assumption of a continuous time framework.

We consider a carpark operating under the above
conditions and a target timeT for which the spaces
must be used; for this two approaches are introduced.
We begin by generating sets of bookings using a Pois-
son distribution. The bookings arrive continuously,
but the cars are assumed to occupy the parking slots
for discrete periods of time,∆t. The bookings are
allocated a price rate per day according to their du-
ration of stay (the more the stay days, the less the
price paid per day). We develop a discrete-time model
that makes a decision (accept/reject) for each one, in
the order the bookings are recorded. The decision
is based on the expected revenues generated in the
carpark and on the opportunity cost that arises before
each sale. In particular, we develop a rejection al-
gorithm according to which, given there is capacity
available, we do not sell any space for timeT at any
time prior,t < T, for less money than what we expect
to receive for it in the future.

Then, a continuous-time model is introduced,
leading to a partial differential equation (PDE); The
methodology behind the derivation lies in the work of
Gallego and van Ryzin (1994) who proposed a deci-
sion tree approach. The PDE approach aims to repli-
cate the results of the discrete-time model when∆t
tends to zero. The continuous model is based on the
probability distributions used previously to generate
the bookings. Instead of looking at the revenues gen-

erated within a finite time period, the model calculates
the rate at which the value of the carpark changes dur-
ing an instant of time. Again, bookings are allowed
to request any length of stay, but the rejection policy
will make a decision at each time period individually;
given a number of periods requested by a booking, the
policy may deny a parking slot for some of these peri-
ods, but still collect the revenues from the periods that
are accepted. Thus, the PDE is assumed not to solve
the ‘full’ problem.

Each approach will generate an optimal rejection
policy, based on which the revenues will be maxi-
mized. The slight difference in the manner in which
the rejection algorithms work, will generate slightly
higher revenues for the PDE1. However, the use of the
PDE is favourable as it produces much quicker and
smoother results. Therefore, we examine the case of
using the rejection algorithm in the Monte Carlo ap-
proach but with the opportunity costs (rejection pol-
icy) being calculated from the PDE. We show under
which conditions, the use of the PDE rejection pol-
icy generates maximum revenues for the full problem
and, in the case of near optimal revenues, we explain
the adjustments that have to be implemented.

The remainder of this report is organized as fol-
lows. In section 2, we define the problem, list the
set of assumptions used and develop the discrete-time
model. The continuous-time PDE model is intro-
duced and derived in section 3 with the numerical
results from both approaches to follow in section 4.
Section 5 presents our conclusions and thoughts for
future research in this area.

2 PROBLEM FORMULATION

2.1 The model

We begin by describing the structure of the book-
ings. Each booking consists of three characteristics,
the time the booking is made, the time of arrival to the
carpark and the time of departure from the carpark.
Therefore, each bookingi can be written as a vector,
namely

Bi =





tb
ta = tb + η
td = ta + ξ



 (1)

wheretb denotes the booking time,ta the arrival time
with η denoting the pre-booking time andtd the de-
parture time withξ denoting the duration of stay.

Bookings arrive in a continuous time; each one
requires a space in the carpark for a particular time

1Justification on this is shown in section 4.



period and, thus, the customer is required to pay an
amount of money according to his/her duration of
stay.

To achieve this, any given time intervalt ∈ [a,b] is
split into K discrete time steps, each of length∆t, so
that

tk = a+k∆t. for k = 0,1, . . . ,K.

Then, ifCk denotes the number of cars present in
the car park at any time during the periodt ∈ [tk,tk+1),
we have

Ck = ∑
i

f (Bi ,k)

where

f (B,k) =















1 if tk ≤ ta < tk+1

1 if tk < td ≤ tk+1

1 if ta < tk and td > tk+1

0 otherwise

(2)

Note that we discount cars departing att = tk+1 as
being present during the period.
The duration of stay for a booking is, then, the number
of periods at which this booking is present in the car
park,

ξi = ∑
k

f (Bi ,k). (3)

Now, suppose that the price rate per day (period) for a
bookingBi changes according to a log-linear2 pricing
function of the form

Ψ(ξi) = ψ1 + ψ2e−µξ (4)

whereξ is the duration of theith booking in days (pe-
riods) andψ1, ψ2 are positive constants andµ is the
decaying coefficient.

Therefore, the revenue generated in thekth period
over all bookings is

Vk = ∑
i

f (Bi ,k)Ψ(ξi) (5)

and the total revenueR for the carpark is

Rk = ∑
k

∑
i

f (Bi ,k)Ψ(ξi). (6)

2.2 Generating bookings

The bookings are generated using a Poisson distribu-
tion with constant intensityλb. Thus, λb indicates
the average number of bookings made during a day

2Our intuition indicates that a pricing function of this
form is more common to be used in a real carpark, and it
is easy to work with. A log-linear pricing function requires
that the price rate per day (period) decreases monotonically
in the number of days requested but, at the same time, it
guarantees that the daily price never drops below a lower
minimum we choose.

(the standard unit of analysis in this paper). Even
though we assumed that the average number of book-
ings made in a day is known, this is a stochastic prob-
lem because their exact number is still unknown.

The time of the next booking can be calculated as
follows

tn = tn−1−
1
λb

log(un), (7)

whereun is a random variable from the uniform dis-
tribution andtn−1 the time of the last booking. If we
know that the average time between booking and ar-
rival is η̄ units of time and the average time between
arrival and departure is̄ξ units of time, then we can
use Poisson processes with intensitiesλa = 1/η̄ and
λs = 1/ξ̄ to model the arrival and duration of stays,
respectively. Therefore, by knowing the last booking
we can generate the next booking as:

Bi+1 =





tb = t i − (1/λb) log(un)
ta = tb− (1/λa) log(un+1)
td = ta− (1/λs) log(un+2)



 . (8)

2.2.1 Notation and Further Assumptions

(i) No discounting takes place, for simplicity. We
do not consider the time-value of money as the
report’s objective is to examine the performance
of the rejection algorithm.

(ii) There is no marginal cost incurred after a sale.
This is valid, because one can always express
price as the increment above cost. Thus, the ex-
pressions “revenue” and “profit” will be used in-
terchangeably.

(iii) There are no cancellations; if a booking for a
particular duration is accepted, then the cus-
tomer will show up and pay with probability al-
most surely.

(iv) Two types of customers are considered - be-
cause there is no time variation, demand inten-
sities can be set to fixed values for the entire
time horizon. Each set of parameters is care-
fully chosen to distinguish between the different
customers types:

• Low-paying customers

BLeis∼







λb = 5
λa = 1/14
λs = 1/7

(9)

These customers book early in advance to
take advantage of any discounts or promo-
tions, they require a space for long periods
and usually these represent leisure customers.



• High-paying customers

BBusi∼







λb = 25
λa = 1/3

λs = 1
(10)

These customers book just before or on
arrival. High-paying customers are usu-
ally business customers who are not flexible
within dates, and thus they are willing to pay
full prices for just a short period of time.

These two sets of customers are combined ac-
cording to the time the bookings are made, so
that the system makes a decision about bookings
in the order they arrive and do not know which
booking set they come from.

2.2.2 Rejection Policy and Expected Values

The manager of the carpark can reject a request for
a space if they so choose. If the booking is rejected
then the customer cannot change their length of stay
to be accepted, the potential revenue for each period
of stay is lost. As such the bookings will be called
groupbookings over different days and hence differ-
ent products. All decisions must be based on current
information and without knowledge of future events,
making it a non-anticipating policy. We call a pol-
icy that satisfies this criteria an admissible policy, de-
noted byπ.

Thus, letV(C,Q, t;k) to denote the expected value
of the carpark of total capacityC with Q spaces re-
maining at timet until the space is used at time period
Tk. By equation (5), this is

V(C,Q, t;k) = E

[

∑
i=i∗

f (Bi ,k)Ψ(ξi)

]

wherei∗ indicates the next booking made aftert.
Since the goal is to maximize expected revenues, we
can write the problem as,

Maximize:

V(C,Q,t;k) =max
π

{

E

[

∑
i=i∗

f (Bi ,k)Ψ(ξi)

]}

(11)

subject to:

0≤Ck ≤C, ∀k = 0,1, . . . ,K, (12)

whereπ ∈ Π is any policy from the set of all admissi-
ble rejection policies. The capacity constraint in (12)
requires that the number of cars present in any period
should never exceed the total capacity of the carpark.

The quantityV(C,Q, t;k)−V(C,Q−1, t;k), is the
opportunity cost lost, incurred when we move from a
carpark of total capacityC with Q spaces remaining

at timet to one withQ−1 spaces left. This quantity
suggests how much theqth unit of space is expected
to be worth at timet, denoted as theExpected Added
Value of the space at time t.

2.3 Rejection Algorithm

Our rejection algorithm is based on Gallego and
van Ryzin (1994) and Littlewood’s Rule (Littlewood
(1972)), and suggests that a booking (attb) will be
rejected if the total revenue generated is lower than
the expected revenue of all potential future bookings
that the car will displace over all periods it is present
in the carpark. In other words, it makes sense to
accept the bookingi, only if the price satisfies:

Ψ(ξi) > V(C,Q,tb;k)−V(C,Q−1,tb;k) (13)

However, the booking decision should be taken ac-
cording to the total length of stay and not for each
day period individually; so for theith booking made
within the periodtn we find it convenient to introduce
theAdded Value across all periodsduring which the
car is present to be:

A = ∑
k

f (Bi ,k)[Ψ(ξi)−

(V(C,Q,tn;k)−V(C,Q−1,tn;k))], (14)

with n≤ k. Then, the rule is

Accept if: A≥ 0

Reject if: A < 0.

That demand is time invariant along with the no
discounting assumption enable us to calculate the ex-
pected valueV going backward and forwards in time
at the same time. Therefore, the expected value of the
carpark of total capacityC with Q j spaces remaining
at tn for the space to be used attk is

V(C,Q j ,t
n;k) = V(Q j ,Q j ,0;k−n) = vk−n, j .

The resulting 2D-matrixv will then be used to deter-
mine the rejection policyπ in the following algorithm;

2.3.1 Optimal Rejection Policy Algorithm

1. Choose a booking horizonT with K periods suf-
ficiently large to capture nearly all of bookings in
each set and a maximum capacity for the carpark
C.

2. Initialize the rejection matrixv0 = 0 so the value
of a space is zero, wherevq is theqth guess at the
solution of the rejection algorithmv.



Table 1: Parameters Used

Maximum Capacity Cmax= 100

Time Horizon [0,T], whereT = 30 days

Pricing function ψ1 = 5, ψ2 = 10, µ= 2/11

3. Use Monte-Carlo to generate booking sets in
within the time interval[0,T].

4. Evaluate the expected value of the carpark (of to-
tal capacityC) at timet for all time periodstk and
all possible capacities 0< Q j < C to generate the
matrix

vq+1
k, j = E

[

∑
i

f (Bi ,k)Ψ(ξi)

]

given that for theith booking in the periodtn the
added value is

A = ∑
k

f (Bi ,k)[Ψ(ξi)−

(

vq
k−n, j −vq

k−n, j−1

)

]. (15)

5. Go to step 3 and repeat until||vq+1−vq|| < ε.

The parameters we use to derive our results are
listed in table 1.

2.4 Probability Distributions

Previously, we described how a set of bookings can
be characterized by intensity parameters denotedλb,
λa andλs, and assumed that the number of bookings
made in a period of time follows a Poisson distribu-
tion.

Next, denote the parameters that correspond to the
leisure booking set and those that correspond to the
business booking set by the subscripts 1 and 2, respec-
tively. Thus, the probability that a customer arrives
at the carparkη (= ta − tb) days after the booking
has been made, follows an Exponential distribution,
namely

ρa(η) = ∑
i

αiρai (η)

= ∑
i

αiλai e
−λai η for i = 1,2 (16)

and, similarly, the probability that a customer stays in
the carpark forξ (= td − ta) days is given by

ρs(ξ) = ∑
i

αiλsi e
−λsi ξ for i = 1,2, (17)

where the weight

αi =
λbi

∑
j

λb j

is the probability of the next booking to be from
booking seti.

These are the quantities used to generate a booking
set in the Monte-Carlo approach. Given these quanti-
ties, we may denote the cumulative probability that a
customer arrives not more thanη days after booking
as

Pa(η) = ∑
i

αiPai (t)

= ∑
i

αi

η
Z

0

ρai (t)

= 1−∑
i

αie
−λai η, (18)

and the cumulative probability of staying not more
thanξ days as

Ps(ξ) = 1−∑
i

αie
−λsi ξ (19)

Now, let us consider the probability that a cus-
tomer departs from the carpark exactlyzdays after the
booking has been made. If we denote this byρd(z) we
then may write:

ρd(z) = ∑
i

αi

Z z

0
ρai (t)ρsi (z− t)dt. (20)

Thus,ρd(z) can be found by integrating over all pos-
sible combinations of arrival time and length of stay
that if added together they give exactlyz days. Or
in other words we sum over all instances where the
length of stay plus the arrival time is equal toz.

Then, by defining the corresponding cumulative
probability as,

Pd(z) =

z
Z

0

ρd(t)dt (21)

and using (18), it can be proved that the probability
of a customer being presentz days after the booking,
g(z), may be written as,

g(z) = Pa(z)−Pd(z) (22)

Next, using conditional probabilities, we can show
that the expected distribution of stay given that the
customer bookingz days in advance will be present
and stayξ days is

ρs(ξ|z) = ∑
i

αi
ρsi (ξ) [Pai (z)−Pai(max{z− ξ,0})]

g(z)
.

(23)
This probability is the most important function we
deal with, as it will tell us the distribution of which



type of customers (characterized by their length of
stay) are present on a particular day. Therefore, the
cumulative probability of a customer staying at most
ξ days given that he is presentz days after the book-
ing, is given by

Ps(ξ|z) =

ξ
Z

0

ρs(s|z)ds for i = 1,2. (24)

This cumulative probability will be vital for con-
structing the rejection policy.

3 Linking to the PDE

We can now consider the continuous dynamic for-
mulation for the revenue generated in the carpark at
the instantt = T. The aim is to derive a PDE, going
backwards in time, such that the Monte Carlo simula-
tions will converge to its solution as the time interval
goes to zero,∆t → 0. The PDE method implies that
the problem is solved for each period of time inde-
pendently, because the states of the carpark before or
after the period in consideration do not contribute to
the decision being made. This implies that there are
no group bookings and, therefore, the expected added
values of the spaces should be slightly higher.

Let V = V(Q, t;T), be the instantaneous rate at
which revenue is generated at timet for cars present
over the instantT.

Assume that bookings present at timeT arrive ac-
cording to a Poisson distribution with time varying
intensity derived by the functionf (t;T). This can be
written as,

f̄ (t;T) =

(

∑
i

λbi

)

g(T − t).

Let Q(t;T) to express the number of carparking
spaces remaining at timet for the instantT. We can
then consider what happens during an infinitesimal
period dt (see Gallego and van Ryzin (1994)); we
sell one space (dQ=−1) with probability f̄ (t;T)dt+
o(dt), we do not sell any space (dQ= 0) with prob-
ability 1− f̄ (t;T)dt − o(dt) and we sell more than
one spaces (dQ > 1) with probabilityo(dt). Taking
dt → 0, we obtain thatE[dQ] = − f̄ (t;T)dt.

Noting thatQ is a discrete jump process, as only
entire spaces can be sold and not parts of them, we
could write that the change in the value over an instant
t is,

dV =
∂V
∂t

dt− f̄ (t;T)dt[V(Q, t;T)−V(Q−1,t;T)].

(25)

Equation (25) gives us an indication on the probabil-
ity of a customer arriving but, it does not capture the
booking’s length of stay nor the price he has to pay
for that period.

Defineρs(ξ|t;T) as the conditional probability of
a customer booking att to stay forξ days given that he
is present at timeT. Then, the instantaneous cashflow
at timet for customers present atT can be expressed
as the total number of customers booking multiplied
by the average price paid, namely

dV = − f̄ (t;T)dt

∞
Z

0

ρs(ξ|t;T)Ψ(ξ)dξ. (26)

3.1 Rejection Policy

Since in our current setting, intensities are time in-
variant and the solution ofV atT is independent from
all otherT, we can use a change of variables to write
τ = T − t.
We accept a booking only if its corresponding price
Ψ is greater than some optimal (minimum) price
Ψ∗(Q,τ). Because there is one-to-one correspon-
dence between price and length of stay (see equation
(4)), with the price to be monotonically decreasing in
duration of stay, we accept a booking only if its corre-
sponding duration of stayξ is less than some optimal
(maximum) durationξ∗(Q,τ). Thus, given some op-
timal maximum duration of stayξ∗ we may find that
the instantaneous booking arrival rate for customers
bookingτ days beforeT to be present atT is

Ps(ξ∗|τ) f̄ (τ). (27)

Similarly, we can show that the resulting instanta-
neous cashflow rate is

f̄ (τ)
ξ∗

Z

0

ρs(ξ|τ)Ψ(ξ)dξ. (28)

Therefore, we may equate (25) and (26) and use (27)
and (28), to obtain

∂V
∂τ

+Ps(ξ∗|τ) f̄ (τ)[V(Q,τ)−V(Q−1,τ)]

= f̄ (τ)
ξ∗

Z

0

ρs(ξ|τ)Ψ(ξ)dξ. (29)

Since the objective is to maximizeV by controlling
ξ∗, we may write the problem as,

∂V
∂τ

= max
ξ∗

[Ps(ξ∗|τ) f̄ (τ)(V(Q−1,τ)−V(Q,τ))

+ f̄ (τ)
ξ∗

Z

0

ρs(ξ|τ)Ψ(ξ)dξ], (30)



with the boundary conditions

V = 0 when τ = 0 (31)

V = 0 when Q = 0. (32)

The solution to the optimization problem in equa-
tion (30) is the optimal valueV(Q,τ) and the values
Ψ(ξ∗), with ξ∗ = ξ∗(Q,τ), that achieve the supremum
form the optimal rejection policy.

In order to check if our optimal solution is con-
sistent with that derived in the discrete-time case, we
can differentiate (30) with respect to the controlξ∗ to
obtain,

V(Q,τ)−V(Q−1,τ) = Ψ(ξ∗) (33)

Equation (33) indicates that the marginal value should
always be equal to the revenue generated by rejec-
tion at the optimal levelξ∗ = ξ∗(Q,τ), meaning that a
booking is accepted only ifξ ≤ ξ∗.

4 NUMERICAL RESULTS
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Figure 1: Performance of the rejection algorithm after iter-
ations.

In figure 1, we illustrate the performance of our
rejection algorithm by comparing it with three dif-
ferent carparks which operate on a first-come-first-
served basis; for this we assume day intervals (∆t =
1). Figure 1 shows the expected revenues generated
in the carparks with varying capacities on dayt = T.
One can see, that the revenue increases with capacity.
However, as soon as demand is exhausted, no more
revenue can be generated. In particular, a carpark that
accepts bookings only from the leisure (business) set
does not need more than 40 (60) spaces to meet the
demand. Under the particular set of parameters, when
capacity is large enough, the revenue generated from
the business set (560) is significantly higher than that
from the leisure set (220). Looking at the combined
set we can see that, when capacity is large, the rev-
enue generated equals the sum of the revenues from

the leisure set and the business set (780). This, only
occurs when capacity is more than 100. However,
when capacity is less than 60, accepting only business
customers results in greater revenue. The upper line
(‘Combined Customers after management’) presents
the expected revenues generated after imposing the
proposed rejection algorithm and making optimal de-
cisions based on expected revenues. It is clear that
our algorithm outperforms all other carparks for all
capacities.

4.1 Monte Carlo Convergence

So far, we have considered a discrete-time model with
the timestep being equal to a day, i.e.∆t = 1. In other
words, if there was a booking request to arrive on
Wednesday at 22:00 pm and leave on Thursday morn-
ing at 08:00 am, the system would reserve a space for
the whole day of Wednesday and Thursday and re-
quire the customer to pay the daily price for two days,
even though the stay would only lasted 10 hours. In
the real world, however, a customer might require a
space for two and a half days, for ten hours or even
for thirty minutes and he would expect to pay the cor-
responding price.
Thus, our rejection algorithm has to decide whether
to accept the booking, according to the availability of
spaces for only the particular hours requested and not
for the whole day period. This effect can be captured
by reducing the time interval in consideration.

Figure 2 shows the convergence of the Monte
Carlo for dayT with varying time intervals. The
maximum daily revenue seems to have converged to
around 497. Nonetheless, this convergence is slow, as
it is of orderO(∆t).
The optimal rejection policy (the 2D-matrixvk, j −
vk, j−1), when∆t = 1/192, can be seen in figure 3. The
figure is smoothed out using 10 iterations of 2000 runs
each. There is an increasing pattern in the spaces val-
ues, as capacity remaining goes to zero; when capac-
ity is large (Q > 60), spaces become worthless for all
times, indicating that bookings are accepted irrespec-
tive of their length of stay. Furthermore, when there
are only few spaces remaining, spaces become more
valuable with a maximum added value of around 12
monetary units. By reducing the time interval∆t, we
managed to ‘squash in’ more customers, meaning that
we accept more bookings than before; however, such
an approach reduces the averaged added values of the
spaces.
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Figure 2: Monte-Carlo Convergence
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Figure 3: Monte-Carlo Optimal Rejection Policy

4.2 PDE Results

Next, we present our results from the continuous-time
PDE model and compare them with the Monte-Carlo
discrete-time model. In figure 4 we compare the ex-
pected revenues generated from the PDE model with
those from the discrete model, for dayT. When ca-
pacity is adequate to meeting the demand from both
customer sets, the Monte Carlo simulations seem to
have converged to the continuous values. However,
for carparks with less than 60 spaces, Monte Carlo ap-
proach generates slightly lower revenues. A possible
explanation to this lies on the way optimal decisions
are made using the rejection algorithm. The decision
was made depending upon the total duration of stay
(added value of all periods) and not as an individual
decision at every period. If the algorithm could treat
each period independently we would expect to be able
to reject a request and reserve the space for another
potentially higher-paying customer. Nevertheless, in
our group-decision algorithm it happens that a space
might be used by a booking that comes and stays for
ten time periods because the added value of the nine
periods is too much to miss out, that we end up filling
up the tenth period too, even though that was not the
optimal decision for that period. Therefore, this prac-

tice slightly reduces the expected revenues since we
tend to slightly accept more long-stay bookings.
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Figure 5: PDE Optimal Rejection Policy

The question, however, is to be able to derive opti-
mal rejection policies for the case where group book-
ings are allowed.

On the one hand, calculating the correct opti-
mal rejection policy using the Monte Carlo approach
is computationally intensive as the simulations are
based on the number of paths and iterations taken; as
a result, the value surfaces produced are not smooth
enough (see figure 3) and it takes too long to be found.
If we knew the correct value surfaces, derived by
avoiding any extensive calculations, we would be able
to run the MC-Group with hundreds of thousand paths
and based on these surfaces we could make optimal
decisions and determine the optimal revenues.

On the other hand, the nature of the continuous
PDE model, generates the values quicker and the op-
timal surfaces are much smoother (see figure 5). This
is a fortunate outcome for us, but still we cannot just
replace the Monte Carlo approach with the PDE ap-
proach, since the latter does not solve the ‘full’ prob-
lem of dealing with group bookings.
Therefore, what would we aim to do now is an attempt



to generate optimal revenues using the MC-Group by
exploiting the information coming from the PDE.

4.2.1 Proposed Approach

We present the steps to be taken, as a possible ap-
proach to the problem:

(i) Solve the PDE and derive the valuesV(Q,τ) for
all states(Q,τ).

(ii) Find the optimal rejection policy by evaluating
the quantitiesV(Q,τ)−V(Q−1,τ).

(iii) Choose a value for∆t and use this policy in the
Monte Carlo to make decisions and to optimally
manage the group bookings.

(iv) Calculate the effect on the resulting revenues
and compare with the revenues obtained with-
out using the PDE policy.

(v) Based on these values, derive the new “updated”
rejection policy.
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Figure 6: Effect of the PDE rejection policy on Expected
Revenues withdt = 1.

Figure 6 shows the effect on the expected revenues
when the PDE policy is used in the Monte Carlo with
the time intervals to be days (i.e.∆t = 1). The solid
line (‘MC-Group’) shows the expected revenues us-
ing the MC-Group algorithm as in figure 2. These
values are the optimal ones whenτ = 30. Thus, the
objective is to minimize the distance between the op-
timal and the approximated lines. The dashed line
(‘MC-Group-using PDE policy’) shows the expected
revenues generated when the intensive simulations are
replaced by the procedure described above. The ex-
pected revenues with and without using the PDE re-
jection policy are close to each other. In particular,
we find that their difference is always less than 8%
at all capacities. However, we believe that the pro-
posed approach will work even better for small∆t, as
the PDE policy is derived using the continuous-time
model. Figure 7 shows the effect on the expected rev-
enues when the PDE policy is used in the Monte Carlo

with the time interval∆t = 1/192. Clearly, the ex-
pected revenues generated are much closer and they
are always within 4% of each other.

Figure 8 shows how the rejection policies are
formed, before and after using the PDE policy. The
dashed line represents (‘MC-Group’) the optimal re-
jection policy, the solid line (‘pde’) is the PDE pol-
icy we input in the algorithm, and the dotted line
(‘MC-Group-using pde policy’) is the resulting “up-
dated” rejection policy. We observe that the proposed
approach generates a rejection policy that is signifi-
cantly close to the original optimal one whilst achiev-
ing a reduction in the computation time; in particular,
the relative difference between the policies never ex-
ceed 8%.

Our results imply that even though we have used
the PDE optimal policy we could still generate near-
optimal revenues. This validates the use of the PDE
method for deriving the optimal policy and the system
could then use the Monte Carlo approach to make de-
cisions about the ‘group’ bookings.
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5 CONCLUSION

The approach followed to solve the discrete-time
model required the use of a Monte Carlo scheme. The
rejection algorithm was developed to manage book-
ings according to the future expected revenues in the
carpark. Decisions were made optimally and the al-
gorithm has been proven to work well, as it pro-
duced greater expected revenues than all unmanaged
carparks in consideration. However, the large number
of paths and iterations used, slowed down the com-
putation process, and produced an optimal policy that
was not sufficiently smooth.

The fact that each state in the carpark can
be solved without information or dependence on
any other states, has given rise to an equivalent
continuous-time PDE approach. The model was de-
veloped, based on the probability distributions of the
bookings, inter-arrival times as well as the duration of
stay. The rejection algorithm was considered not to
solve the ‘full’ problem and, as a result, the expected
revenues were slightly different (higher) than the ob-
tained values using the Monte Carlo approach; how-
ever, a solution to the problem could be found faster
and the resulting rejection policy was much smoother.

Having this in mind, we developed an approach so
that the smooth rejection policy from the PDE could
be used in the Monte Carlo approach to solve the ‘full’
problem. Our results are promising, since we man-
aged to replicate the optimal expected revenues with
a tolerance of around 8%; a possible further improve-
ment could still be achieved.

One natural extension to the model is to con-
vert it to a dynamic pricing model where demand
intensity may be uncertain; it may be time varying
(λ = λ(t)) or, to also depend on the pricing function
(λ = λ(t,Ψ(p))) - the idea could then be extended to
multiple carparks.
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Teodorović, D. and Lučić, P. (2006). Intelligent parking
systems. European Journal of Operational Research,
175(3):1666 – 1681.
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