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PRECONDITIONING STEADY-STATE NAVIER–STOKES

EQUATIONS WITH RANDOM DATA

CATHERINE E. POWELL∗ AND DAVID J. SILVESTER∗

Abstract. We consider the numerical solution of the steady-state Navier–Stokes equations with
uncertain data. Specifically, we treat the case of uncertain viscosity, which results in a flow with
an uncertain Reynolds number. After linearization, we apply a stochastic Galerkin finite element
method, combining standard inf-sup stable Taylor–Hood approximation on the spatial domain (on
highly stretched grids), with orthogonal polynomials in the stochastic parameter. This yields a sequence
of non-symmetric saddle-point problems with Kronecker product structure. The novel contribution of
this study lies in the construction of efficient block triangular preconditioners for these discrete systems,
for use with GMRES. Crucially, the preconditioners are robust with respect to the discretization and
statistical parameters, and we exploit existing deterministic solvers based on the so-called Pressure
Convection-Diffusion and Least-Squares Commutator approximations.

Keywords Navier–Stokes equations, random data, stochastic Galerkin method, finite
elements, mixed approximation, preconditioning, multigrid, uncertainty quantification.
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1. Introduction. Our starting point is the steady-state Navier–Stokes equations
for an incompressible fluid with a fixed viscosity ν > 0. The fluid moves inside a domain
Ω ⊂ R

n and the velocity is nonzero on some part of the boundary Γ. We want to
compute the fluid velocity ~u : Ω → R

n and the pressure p : Ω → R satisfying

−ν∇2~u + ~u · ∇~u + ∇p = ~0 in Ω, (1.1)

∇ · ~u = 0 in Ω. (1.2)

For ease of exposition we only consider two-dimensional spatial domains Ω ⊂ R
2. We

also focus exclusively on inflow–outflow configurations, where the boundary comprises
two non-overlapping segments ΓD ∪ΓN associated with a specified inlet flow field ~g (set
to zero at a fixed wall) and a standard natural outflow boundary condition,

~u = ~g on ΓD, (1.3)

ν∇~u · ~n − p~n = ~0 on ΓN . (1.4)

We assume that |ΓN | 6= 0 to ensure the pressure p is uniquely specified by the outflow
condition (1.4). In the case of fully-developed parallel flow, ~u ·~t = 0 and the pressure at
the outflow boundary will automatically be set to zero (see Elman et al. [4, p. 216]).

A simple approach to solving systems of nonlinear partial differential equations is
to apply a linearization scheme, followed by a mixed finite element method, and then
solve the resulting sequence of discrete systems using appropriate preconditioned Krylov
subspace methods. Before progress can be made, however, all the input data needs to
be supplied. For the Navier–Stokes equations (1.1)–(1.2), we require the viscosity ν;
the spatial geometry, i.e., the domain Ω, and the boundary data ~g (which depends
on the configuration of the boundary ΓD). In real-life applications, where we rarely
have access to all of this information, hypothetical data is often used. An alternative
modelling approach is to represent unknown inputs as random variables and view the
solution variables, also, as random variables. Numerical methods are then required to
perform uncertainty quantification, the process of determining statistical information
about the solution, given a statistical description of the input data.
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1.1. Outline. In Section 2, we review the numerical solution of the deterministic
steady-state Navier–Stokes equations (1.1)–(1.4) via stable mixed finite element meth-
ods, focusing on the classical flow over a backward-facing step problem. We combine
Picard iteration with finite elements on stretched grids and derive a sequence of struc-
tured saddle-point systems. State of the art preconditioners based on the Pressure
Convection-Diffusion (PCD) and Least-Squares Commutator (LSC) approximations are
also reviewed. In Section 3, and in the sequel, we consider a more challenging modelling
situation where the viscosity in the flow equations is a random variable. We show that
this is equivalent to a scenario where the volume of fluid moving into the channel is un-
certain. In Section 4, we derive a fully discrete problem by combining Picard iteration
with a stochastic Galerkin mixed finite element method. Finally, in Sections 5 and 6,
we demonstrate that the deterministic PCD and LSC preconditioners can be used as
building blocks to provide new, effective solvers for the saddle-point systems arising in
the nonlinear iteration for the stochastic Navier–Stokes problem.

2. Deterministic Navier–Stokes problem. The flow inside a channel with a
sudden expansion, or flow over a backward-facing step, is a classical test problem. The
geometry is shown in Figure 2.1. The re-entrant corner is positioned at the origin (0, 0)
and we fix d = 1 and L = 5. A quadratic flow profile, ~g = (gx, gy) = (4y(d − y)/d3, 0),
is imposed on the inflow boundary, Γin, and a steady no-flow condition is applied on
Γwall. At the outflow boundary, Γout, the natural condition (1.4) forces the mean outflow
pressure to be zero. To non-dimensionalize the Navier–Stokes equations, we define the
reference length L̄ as the length of the outflow channel and the reference velocity Ū as

the average inlet velocity, V := ( 1
d
)
∫ d

0
gx dy (see Gresho et al. [8]). If d = 1, then Ū is

the volume of fluid flowing into the channel. With the configuration shown in Figure 2.1
and d = 1, we have L̄ = 2, Ū = 2/3 and the Reynolds number is

Re :=
L̄Ū

ν
=

4

3ν
.

This gives a measure of the relative contributions of the diffusion and convection terms
in (1.1) and is an important parameter in testing solver robustness.

d

d

d

L

Γ
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Γ
wal l

Γout

Γin

Fig. 2.1. The backward-facing step domain.

Spatial discretization is accomplished herein via stable, conforming, mixed finite el-
ements (see e.g. Elman et al. [4, Chapter 5]). Specifically, we apply Q2 –Q1 (biquadratic
velocity, bilinear continuous pressure) approximation. The singularity in the solution
at the re-entrant corner is a very important feature of the test problem and spatial dis-
cretization needs to be done carefully. We use non-uniform grids of rectangles, as shown
in Figure 2.2. Observe that there are highly stretched elements in both coordinate di-
rections along the lines x = 0 and y = 0. Such grids are known to provide a stiff test
for solver strategies that employ algebraic multigrid (amg). If we set the viscosity to be
ν = 1/50 then Re = 200/3, and a recirculating eddy develops in the flow, downstream
of the step. A sample finite element solution computed on a stretched grid of 1, 536
Q2 –Q1 elements is shown in Figure 2.3.
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Fig. 2.2. Grid details (plotted to scale) showing the refinement near the corner (×3 in the zoom).
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Fig. 2.3. Streamlines of finite element flow field (top) and pressure field (bottom) for the backward-
facing step test problem with ν = 1/50 and Re = 200/3. The locally refined grid of 1, 536 elements yields
np = 1, 625 and nu = 6, 321, a total of 2nu + np = 14, 267 degrees of freedom.

2.1. Discrete problem. As usual, the grid subdivision is denoted by Th and we
associate the parameter h with the length of the longest edge. Denoting the velocity
finite element solution space by X h

E ⊂ H 1
E(Ω) (interpolating ~g on the inflow boundary

ΓD) and the pressure space by Mh ⊂ L2(Ω), the fully discrete problem is: compute
~uh ∈ X h

E and ph ∈ Mh satisfying the Galerkin formulation,

ν (∇~uh,∇~vh) + (~uh · ∇~uh, ~vh) − (ph,∇ · ~vh)= 0, (2.1)

(∇ · ~uh, qh)= 0, (2.2)

for all test functions ~vh ∈ X h
0 (incorporating zero boundary conditions on ΓD) and

qh ∈ Mh. Herein, (·, ·) represents the L2(Ω) inner product. Given initial guesses ~u0
h

and p0
h, lagging the convection coefficient leads to simple Picard iteration for a sequence
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(~un
h, pn

h) ∈ X h
E × Mh, n = 1, 2, . . . , of finite element solutions satisfying

ν (∇~un+1
h ,∇~vh) + (~un

h · ∇~un+1
h , ~vh) − (pn+1

h ,∇ · ~vh)= 0, (2.3)

(∇ · ~un+1
h , qh)= 0, (2.4)

for all ~vh ∈ X h
0 and qh ∈ Mh.

To see the structure of the sequence of linear algebra problems associated with
(2.3)–(2.4), we need specific basis sets for the approximation spaces:

X h
0 = span

{[
φi

0

]

,

[
0
φi

]}nu

i=1

, Mh = span{ψj}np

j=1.

We compute the discrete updates ~dn
h and δn

h so that the solution at step n + 1 is

~un+1
h = ~un

h + ~dn
h, pn+1

h = pn
h + δn

h . (2.5)

Then, given the expansions

~dn
h =

[ ∑nu

i=1 αx,n
i φi∑nu

i=1 αy,n
i φi

]

, δn
h =

np∑

j=1

αp,n
j ψj ,

the vectors α
u,n = [αx,n,αy,n], α

p,n are found by solving the saddle-point system:
(

F
n
ν BT

B 0

)(
α

u,n

α
p,n

)

=

(
f u,n

f p,n

)

. (2.6)

The vectors on the right-hand side of (2.6) are residuals associated with the updates
and B = [Bx, By] is the discrete divergence operator with components

Bx := [Bx]ji = −
(

ψj ,
∂φi

∂x

)

, By := [By]ji = −
(

ψj ,
∂φi

∂y

)

, (2.7)

for j = 1, . . . , np and i = 1, . . . , nu. F
n
ν is the discrete convection–diffusion operator:

F
n
ν := νA + N(~un

h), (2.8)

where A and N are block-diagonal matrices with (scalar) components,

A := [A]ij = (∇φi,∇φj), i, j = 1, . . . , nu, (2.9)

N(~uh) := [N ]ij = (~uh · ∇φi, φj) i, j = 1, . . . , nu. (2.10)

Note that the inflow–outflow boundary condition ensures that BT has full rank and so
the system in (2.6) is nonsingular.

2.2. Preconditioned GMRES. Our preferred solver is right-preconditioned GM-
RES with a preconditioner that is specially tailored to the matrix in (2.6). First, we
express (2.6) (omitting the subscripts/superscripts) with a preconditioner P so that

(
F BT

B 0

)

P
−1

P

(
α

u

α
p

)

=

(
f u

f p

)

.

The ideal block-triangular preconditioner

P :=

(
F BT

0 −S

)

≈
(

F BT

B 0

)

, (2.11)

where S is the Schur complement S := BF
−1BT , is motivated by the identity

(
F BT

B 0

)(
F

−1
F

−1BT S−1

0 −S−1

)

︸ ︷︷ ︸

P−1

≡
(

I 0

BF
−1 I

)

. (2.12)
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This shows that the eigenvalues of the preconditioned matrix are clustered at unity.
The matrix on the right-hand side has Jordan blocks of dimension two, which implies
that right-preconditioned GMRES converges in two iterations, independently of the
convection coefficient ~un

h and the specific values of h and ν. Observe that the action of
P−1 can be applied as a three-step process. First, we solve systems associated with the
Schur complement S, second, we perform a matrix–vector multiplication with BT , and
finally we solve two scalar systems associated with the convection-diffusion matrix F .

It is not practical to work with the Schur complement S and there are two state of
the art strategies that circumvent its use (e.g. see [4]). The first approach, referred to
as Pressure Convection–Diffusion (PCD) preconditioning, is a triple product approxi-
mation. The ingredients are a matrix-vector multiplication with a matrix Fp (obtained
by constructing F = F

n
ν in (2.8) with velocity basis functions φi replaced by pressure

basis functions ψj ; see Section 5.2), together with linear solves for a pressure diffusion
matrix Ap and a pressure mass matrix Qp. That is,

S−1 = (BF
−1BT )−1 ≈ Q−1

p Fp A−1
p . (2.13)

Elman & Tuminaro [5] suggest implementing PCD preconditioning via

S−1 = (BF
−1BT )−1 ≈ Q−1

∗
Fp A−1

∗
, (2.14)

where Q∗ is the diagonal of Qp and A∗ := BM
−1
∗

BT , where M∗ is the diagonal of the
velocity mass matrix. The second approach, referred to as Least-Squares Commutator
(LSC) preconditioning, avoids the construction of Fp and is given by

S−1 = (BF
−1BT )−1 ≈ A−1

∗
(BM

−1
∗

FM
−1
∗

BT )A−1
∗

. (2.15)

The action of A−1
∗

in (2.14) and (2.15) can also be applied inexactly using amg (typically
with one or two V-cycles). Studies of PCD and LSC preconditioning for (1.1)–(1.2) are
mature and a summary of their performance for the deterministic backward-facing step
problem is presented in [4, Section 8.2]. We focus, now, on a more realistic modelling
situation where there is uncertainty in the input data.

3. Navier–Stokes problems with uncertain data. Suppose that the fluid vis-
cosity ν is spatially constant but that its value is not known precisely. Instead of guessing
a value, we can model ν as a random variable on a probability space (Ξ, F, P). Here, Ξ
denotes the set of outcomes, F is a σ-algebra of events and P : F → [0, 1] is a proba-
bility measure. The corresponding Navier–Stokes velocity and pressure are also random
variables and the numerical solution of the flow equations is far more challenging.

Given a (deterministic) vector function ~g = ~g(~x) on ΓD, the boundary value problem
for the Navier–Stokes equations with a random viscosity reads as follows: find ~u =
~u(~x, ω) and p = p(~x, ω) such that P-a.s (i.e., with probability one),

−ν(ω)∇2~u + ~u · ∇~u + ∇p = ~0 in Ω, (3.1)

∇ · ~u = 0 in Ω, (3.2)

~u = ~g on ΓD, (3.3)

ν∇~u · ~n − p~n = ~0 on ΓN . (3.4)

The solution variables ~u, p : Ω×Ξ → R are now random fields. One way to interpret this
is that realizations of ν give rise to deterministic functions ~u(·, ω), p(·, ω) on Ω which
satisfy the standard deterministic Navier–Stokes equations.

Why would we want to solve the Navier–Stokes equations with a random viscosity?
The uncertainty could physically stem from measurement error in ν. Note, however,
that if ν is a random variable then so is the Reynolds number, Re. Indeed, for the fixed
spatial geometry in Figure 2.1, we have,

Re(ω) :=
L̄Ū

ν(ω)
=

2d · 2
ν(ω) · 3d

=
4

3ν(ω)
.
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Now suppose we want to investigate the properties of the flow in the presence of an
uncertain Reynolds number Re(ω), with a particular statistical distribution. One way
to achieve this is by fixing the geometry and the boundary conditions and choosing ν to
be an appropriate random variable, but there are other possibilities.

Consider the rescaled fields ~U(~x, ω) := ~u(~x, ω)/ν(ω) and P (~x, ω) := p(~x, ω)/ν2(ω)

where ~u and p satisfy (3.1)–(3.4). Then, P-a.s, ~U(~x, ω), P (~x, ω) satisfy

−∇2~U + ~U · ∇~U + ∇P = ~0 in Ω, (3.5)

∇ · ~U = 0 in Ω, (3.6)

~U = ~G on ΓD, (3.7)

∇~U · ~n − P~n = ~0 on ΓN , (3.8)

where ~G = ~G(~x, ω) := ~g(~x)/ν(ω). The boundary value problem (3.5)–(3.8) consists of
the steady-state Navier–Stokes equations with unit viscosity, subject to the homogeneous
Neumann boundary condition (3.8) and the stochastic Dirichlet boundary condition
(3.7). For the inflow-outflow configuration and spatial geometry shown in Figure 2.1,
with d = 1, the inlet profile ~g(~x) is now scaled by 1/ν(ω). Physically, this means that
the (quadratic) shape of the inflow profile is fixed, but the maximum velocity is unknown

and hence so is the volume V (ω) :=
∫ 1

0
gx(y)/ν(ω) dy of flow moving into the channel.

The Reynolds number, Re(ω) = 4/(3ν(ω)), is unchanged and hence so are the dynamical
properties of the flow. If the physical source of uncertainty is the volume of fluid moving
into the channel, we have a choice of two problem formulations.

For the backward-facing step problem, there is actually a third possibility. If we fix
the volume of fluid moving into the channel to be Ū = 1 and choose the length of the
outflow channel to be L̄(ω) = 2d(ω), where the length of the inlet is the random variable
d(ω) = ν(ω)−1, then it is possible to recover the same Reynolds number distribution
by solving a problem with a deterministic viscosity parameter. In this formulation,
however, the flow equations need to be solved on a random spatial domain, Ω(ω).

3.1. Uncertain viscosity. We focus on the random viscosity formulation (3.1)–
(3.4). There are two reasons for this: first, the formulation (3.1)–(3.4) is more compatible
with our existing software (ifiss, see [2], [13]) and allows maximal reuse of deterministic
solvers; second, we can make a direct comparison with results in the literature, see, e.g.
Le Mâıtre & Knio [10, Chapter 6]. Specifically, we consider

ν(ω) := ν0 + ν1ξ(ω), (3.9)

where ν0, ν1 ∈ R
+ and ξ is a random variable on (Ξ, F, P). If we know a range of possible

values for ν, it is natural to focus on the uniform distribution. With ξ ∼ U(−
√

3,
√

3),
we have ν ∼ U(νmin, νmax) where

νmin := ν0 −
√

3ν1, νmax := ν0 +
√

3ν1. (3.10)

The expectation and variance of the viscosity are then given by

E[ν] = ν0, Var[ν] = ν2
1 , (3.11)

and we can model different statistical scenarios by varying ν0 and ν1. For a well-posed
problem we require that P(ν(ω) > 0) = P({ω ∈ Ξ | ν(ω) > 0}) = 1 and so, for a fixed
mean viscosity, the choice of standard deviation is constrained by the condition,

νmin > 0 =⇒ ν1 < ν0/
√

3. (3.12)

For a sufficiently small ν1, if we fix ν0 = 1/50 and select the same finite element
grid, we anticipate close agreement between the mean flow and the mean pressure and
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the deterministic solutions shown in Figure 2.3. Recall, when ν = 1/50, the Reynolds
number for the deterministic test problem is Re = 200/3. For the stochastic problem,

E[Re] =
4

3
E[ν−1] =

2

3
√

3ν1

log

(

ν0 +
√

3ν1

ν0 −
√

3ν1

)

=
2

3
√

3ν1

log

(
νmax

νmin

)

and when ν0 = 1/50, the expected Reynolds number is close to 200/3 (see Table 3.1).

ν1 = ν0/10 ν1 = 2ν0/10 ν1 = 3ν0/10 ν1 = 4ν0/10

ν0 = 1/50 67.35 69.54 73.88 82.11
ν0 = 1/100 134.69 139.08 147.75 164.23
ν0 = 1/200 269.38 278.17 295.51 328.46

Table 3.1

Expected Reynolds number E[Re] for fixed mean viscosity ν0 = E[ν] and varying ν1.

3.2. Stokes problem with random viscosity. Before tackling the Navier-Stokes
equations, it is instructive to briefly consider the boundary value problem for the linear
Stokes equations that correspond to taking the limit Re → 0. If the viscosity is a random
variable, the problem reads as follows: find ~u = ~u(~x, ω) and p = p(~x, ω) such that P-a.s,

−ν(ω)∇2~u + ∇p = ~0 in Ω, (3.13)

∇ · ~u = 0 in Ω, (3.14)

~u = ~g on ΓD, (3.15)

ν∇~u · ~n − p~n = ~0 on ΓN . (3.16)

Rescaling by ν−1 we find that the velocity ~u does not depend on ν, and thus is a
deterministic function. We also see that p(~x, ω) = ν(ω) pdet(~x), where pdet(~x) is the
solution to the deterministic Stokes problem with unit viscosity. Thus, for the choice
(3.9), the Stokes pressure p(~x, ω) depends linearly on the random variable ξ(ω).

The nonlinear convection term in (3.1) makes it more difficult to characterize the
dependence on ξ(ω) of the Navier–Stokes velocity and pressure. When Re = O(1), the
deterministic Navier-Stokes solution is close to the deterministic Stokes solution. Hence,
when realisations of Re(ω) are close to order one (e.g., with ν0 = 1 and ν1 = 0.1), we
anticipate a close-to-linear dependence on ξ(ω) for the pressure solution of the stochastic
problem. As the Reynolds number is increased however, we anticipate that nonlinear
effects will become increasingly important — realizations of the stochastic Navier–Stokes
velocity solution could vary significantly from the flow solution obtained by solving the
deterministic Navier–Stokes problem with the Reynolds number set to E[Re].

4. A fully discrete problem. To obtain a fully discrete version of (3.1)–(3.4)
with ν(ω) as in (3.9), we linearize the equations, reformulate as an equivalent parametric
problem and then apply a stochastic Galerkin mixed finite element method. The problem
nonlinearity is not our focus herein and we take a simple Picard linearization of the
convection term (as in Section 2). Hence, at the nth iteration, we have to solve a problem
with ~un+1 · ∇~un+1 in (3.1) replaced by the lagged convection field ~un · ∇~un+1. The
corresponding weak problem is: compute ~un+1(~x, ω) ∈ L2(Ξ,H 1

E(Ω)) and pn+1(~x, ω) ∈
L2(Ξ, L2(Ω)) satisfying

E
[
ν(ξ(ω))

(
∇~un+1,∇~v

)]
+ E

[(
~un · ∇~un+1, ~v

)]
− E

[(
pn+1,∇ · ~v

)]
= 0, (4.1)

E
[(

q,∇ · ~un+1
)]

= 0, (4.2)

for all ~v(~x, ω) ∈ L2(Ξ,H 1
0 (Ω)) and q(~x, ω) ∈ L2(Ξ, L2(Ω)). This closely ressembles the

deterministic weak problem (2.3)–(2.4) but now the solutions and test functions are
random fields and we have taken expectations.
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For the random variable ξ in (3.9) the probability density function is ρ(λ) = 1/(2
√

3)
and Λ := ξ(Ξ), the range of ξ, is a finite interval. A key point for implementation is that
for any measurable function f of ξ, the expectation is given by the standard integral

E[f(ξ)] =

∫

Λ

ρ(λ)f(λ)dλ.

Since ν = ν(ξ(ω)), ~u and p also depend on ω ∈ Ξ via ξ and by defining λ = ξ(ω), we
can transform (4.1)–(4.2) into the equivalent parametric formulation: find ~un+1(~x, λ) ∈
VE(Ω,Λ) and pn+1(~x, λ) ∈ W (Ω,Λ) satisfying

∫

Λ

ρ(λ)
{
ν(λ)

(
∇~un+1,∇~v

)
+

(
~un · ∇~un+1, ~v

)
−

(
pn+1,∇ · ~v

)}
dλ = 0, (4.3)

∫

Λ

ρ(λ)
(
q,∇ · ~un+1

)
dλ = 0, (4.4)

for all ~v(~x, λ) ∈ V0(Ω,Λ) and q(~x, λ) ∈ W (Ω,Λ). Note that (·, ·) in (4.3)–(4.4) represents
the standard L2(Ω) inner product. The spaces V0(Ω,Λ) and W (Ω,Λ) now contain
functions of the image coordinate λ ∈ Λ and are defined as follows

V0(Ω,Λ) := L2
ρ(Λ,H 1

0 (Ω)) =

{

v : Ω × Λ → R |
∫

Λ

ρ(λ) ‖ v ‖2
H 1

0
(Ω) dλ < ∞

}

, (4.5)

W (Ω,Λ) := L2
ρ(Λ, L2(Ω)) =

{

w : Ω × Λ → R |
∫

Λ

ρ(λ) ‖ w ‖2
L2(Ω) dλ < ∞

}

.(4.6)

The solution space VE(Ω,Λ) := L2
ρ(Λ,H 1

E(Ω)) is analogously defined and incorporates
the essential (Dirichlet) boundary conditions on ΓD.

Next, we derive a finite-dimensional Galerkin formulation by combining the stable
spatial Q2– Q1 velocity–pressure approximation with standard polynomial approxima-
tion on Λ. To that end, let Sk = Sk(Λ) ⊂ L2

ρ(Λ) be the set of univariate polynomials
in λ of degree ≤ k on Λ. Then, the Picard linearization of the convection term re-
quires us to compute the stochastic Galerkin solution ~un+1

hk ∈ X h
E ⊗Sk ⊂ VE(Ω,Λ) and

pn+1
hk ∈ Mh ⊗ Sk ⊂ W (Ω,Λ) satisfying the fully discrete formulation,

E

[

ν(λ)
(
∇~un+1

hk ,∇~vhk

)]

+ E

[(
~un

hk · ∇~un+1
hk , ~vhk

)]

− E

[(
pn+1

hk ,∇ · ~vhk

)]

= 0, (4.7)

E

[(
∇ · ~un+1

hk , qhk

)]

= 0, (4.8)

for all ~vhk ∈ X h
0 ⊗ Sk and qhk ∈ Mh ⊗ Sk. Alternatively, given ~un

hk ∈ X h
E ⊗ Sk and

pn
hk ∈ Mh ⊗ Sk, we can compute the updates ~dn

hk := ~un+1
hk − ~un

hk ∈ X h
0 ⊗ Sk and

δn
hk := pn+1

hk − pn
hk ∈ Mh ⊗ Sk by solving the system

E

[

ν(λ)
(
∇~dn

hk,∇~vhk

)]

+ E

[(
~un

hk·∇~dn
hk, ~vhk

)]

−E

[(
δn
hk,∇·~vhk

)]

=Rn(~vhk), (4.9)

E

[(
∇ · ~dn

hk, qhk

)]

= rn(qhk), (4.10)

for all ~vhk ∈ X h
0 ⊗ Sk and qhk ∈ Mh ⊗ Sk, where the residuals are given by

Rn(~vhk):=−E

[

ν(λ)
(
∇~un

hk,∇~vhk

)]

− E

[(
~un

hk · ∇~un
hk, ~vhk

)]

+ E

[(
pn

hk,∇ · ~vhk

)]

, (4.11)

rn(qhk):=−E

[(
∇ · ~un

hk, qhk

)]

. (4.12)

If we now select a specific basis set Sk = {ϕℓ}k
ℓ=0 and expand the updates in terms

of the tensor product basis functions,

~dn
hk(~x, λ) =

[
∑k

ℓ=0

∑nu

i=1 αx,n
iℓ φi(~x) ϕℓ(λ)

∑k
ℓ=0

∑nu

i=1 αy,n
iℓ φi(~x) ϕℓ(λ)

]

, δn
hk(~x, λ) =

k∑

ℓ=0

np∑

j=1

αp,n
jℓ ψj(~x) ϕℓ(λ),

8



the coefficient vectors α
u,n = [αx,n,αy,n] and α

p,n are computed by solving the saddle-
point system associated with (4.9)–(4.10). Specifically, we have,

(
F

n
ν B

T

B 0

)(
α

u,n

α
p,n

)

=

(
f u,n

f p,n

)

, (4.13)

where f u,n and f p,n are associated with the residuals Rn and rn in (4.11)–(4.12). Note
that this system has exactly the same saddle-point structure as (2.6).

4.1. Matrix components. The matrices F
n
ν and B in (4.13) are Kronecker prod-

ucts of smaller matrices. To see this, we order the degrees of freedom to run over the
basis functions for Sk in turn. The update vectors α

x,n and α
y,n then each have k + 1

consecutive blocks of length nu, and α
p,n has k + 1 blocks of length np. We obtain

B := [G0 ⊗ Bx, G0 ⊗ By], (4.14)

where Bx, By are the component matrices defined in (2.7), and

G0 := [G0]ℓs = E [ϕs ϕℓ] , ℓ, s = 0, . . . , k. (4.15)

The structure of the convection-diffusion matrix F
n
ν is more complicated:

F
n
ν := (ν0G0 + ν1G1) ⊗ A

︸ ︷︷ ︸

diffusion part

+

k∑

ℓ=0

Hℓ ⊗ N ℓ

︸ ︷︷ ︸

convection part

. (4.16)

However, there is a lot of structure in (4.16) to exploit. Indeed, A is the block-diagonal
matrix representing the vector Laplacian operator with components defined in (2.9) and
the Galerkin “G-matrix” G1 takes the form,

G1 := [G1]ℓs = E [λϕs ϕℓ] , ℓ, s = 0, . . . , k. (4.17)

If we select a basis set {ϕℓ}k
ℓ=0 that is orthonormal with respect to the L2

ρ(Λ) inner
product (scaled Legendre polynomials in the case of the uniform distribution), then
G0 is the identity matrix and G1 is tridiagonal, with zeros on the main diagonal (see
e.g., [11] and [6]). Fortunately, this makes the diffusion part of the matrix F

n
ν in (4.13)

block tridiagonal, and hence block sparse with sparse blocks.
On the other hand, the convection part of F

n
ν is block dense with sparse blocks. It

involves a sum of (k + 1) Kronecker products of the (dense) Galerkin “H-matrices”,

Hℓ := [Hℓ]ms = E [ϕℓ ϕs ϕm] , m, s = 0, . . . , k, (4.18)

with the (sparse) convection matrices N ℓ that have block diagonal components,

Nℓ(~u
n
hk) := [Nℓ]ij = (~un

hℓ · ∇φi, φj), i, j = 1, . . . , nu, (4.19)

(cf. (2.10)). The coefficients ~un
hℓ in (4.19) correspond to the k + 1 spatial coefficients in

the stochastic expansion of the lagged velocity field. To see this, note that at the nth
iteration, the stochastic Galerkin velocity components can be expanded as follows

ux,n
hk (~x, λ) :=

k∑

ℓ=0

∑nu

i=1 ux,n
iℓ φi(~x)

︸ ︷︷ ︸

u
x,n

hℓ
(~x)

ϕℓ(λ), uy,n
hk (~x, λ) :=

k∑

ℓ=0

∑nu

i=1 uy,n
iℓ φi(~x)

︸ ︷︷ ︸

u
y,n

hℓ
(~x)

ϕℓ(λ),

and we have

~un
hk(~x, λ) :=

k∑

ℓ=0

~un
hℓ(~x) ϕℓ(λ), where ~un

hℓ(~x) :=

[
ux,n

hℓ (~x)
uy,n

hℓ (~x)

]

. (4.20)

9



Similarly, the pressure solution has the expansion

pn
hk(~x, λ) :=

k∑

ℓ=0

pn
hℓ(~x)ϕℓ(λ). (4.21)

Our choice of orthonormal basis {ϕℓ}k
ℓ=1 for Sk is often called a (generalized) Poly-

nomial Chaos (PC) basis and the coefficients ~un
hℓ and pn

hℓ are known as PC coefficients.
The usual scaling convention gives ψ0 = 1 and since E[ψℓ] = 0 for ℓ > 1, the first-order
statistics of the numerical solution are given by the leading PC coefficients,

E[~un
hk] = ~un

h0(~x), E[pn
hk] = pn

h0(~x). (4.22)

Before discussing how to solve the saddle-point systems (4.13), we present some numer-
ical results for the backward-facing step problem.

4.2. Flow over a backward-facing step test problem. Mirroring the setup in
Section 2, we choose E[ν] = ν0 = 1/50, d = 1 and L = 5. Below, we show results for
the specific case ν1 = 1/500, which yields ν ∼ U [0.01654, 0.02346] and E[Re] ≈ 67. For
the spatial discretization, we use the same grid as in Figure 2.3 and for the stochastic
approximation, we use polynomials of degree k = 5. The numerical solution is generated
by solving the Picard systems (4.7)–(4.8) (starting from an initial guess provided by
the stochastic Stokes-flow solution; see Section 5.3). The statistical properties of the
converged solution (obtained after 15 Picard steps) are illustrated in Figures 4.1–4.5.

−1 0 1 2 3 4 5
−1

0

1

−0.3

−0.2

−0.1

0

0.1

Fig. 4.1. Streamlines of the mean velocity E[~u15
hk

] (top) and mean pressure E[p15
hk

] (bottom).

As anticipated, the mean solution in Figure 4.1 looks exactly like the deterministic
solution shown in Figure 2.3. The spatial singularity in the pressure solution is still a
key feature. The variance of the pressure, Var[p15

hk], and the variance of the magnitude
of the velocity, Var[|~u15

hk|], are plotted in Figure 4.2. Modelling viscosity as a random
variable is equivalent to having uncertainty in the volume of fluid flow at the inflow.
This generates uncertainty in the length of the recirculating eddy, so the variance of the
velocity is concentrated in two areas downstream of the step. In contrast, the pressure
uncertainty is concentrated at the inflow—the uncertainty in the volume of fluid at the
inflow generates uncertainty in the pressure drop between the inflow and outflow (recall
that the outflow boundary condition forces the pressure to have mean zero).
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−1 0 1 2 3 4 5
−1

0

12

4

6

8

x 10
−4

Fig. 4.2. Variance of the pressure, Var[p15
hk

] (bottom) and variance of the magnitude of the velocity,
Var[|~u15

hk
|] (top). (The maximum value of the peaks in the top plot is 6.4406e-04).

PC component 0   norm=9.9995e−01

−1 0 1 2 3 4 5
−1

0

1
PC component 1   norm=2.5326e−02

−1 0 1 2 3 4 5
−1

0

1

PC component 2   norm=2.0076e−03

−1 0 1 2 3 4 5
−1

0

1
PC component 3   norm=1.8752e−04

−1 0 1 2 3 4 5
−1

0

1

PC component 4   norm=1.5520e−05

−1 0 1 2 3 4 5
−1

0

1
PC component 5   norm=1.5102e−06

−1 0 1 2 3 4 5
−1

0

1

Fig. 4.3. Contours of the PC coefficients ux,15
hℓ

(~x), ℓ = 0, 1, . . . 5, of the horizontal velocity com-

ponent, ux,15
hk

. The norms ‖ ux,15
hℓ

(~x) ‖L∞(Ω) are also displayed, and decay as the index ℓ increases.

The influence of the polynomial degree, k, on the numerical solution can be assessed
by looking at the PC coefficients in (4.20)–(4.21). The scalar coefficients of the horizontal
velocity component, ux,15

hk , of the converged velocity solution are plotted in Figure 4.3.
The coefficients are spatially smooth and the flow resolution increases with increasing
polynomial degree (i.e., the linear component has three “peaks”, whereas the quartic
component has six “peaks”). An important point for our solver (see Lemmas 5.2–5.3)
is that the quantity ‖ ux,15

hℓ (~x) ‖L∞(Ω) decreases rapidly with increasing ℓ. Note also
that the PC coefficients corresponding to ℓ ≥ 1 are not zero, so the velocity solution
depends on the stochastic variable (unlike the Stokes velocity). The PC coefficients of
the converged pressure solution are also plotted in Figure 4.4. Notice that the coefficients
of ϕ0 and ϕ1 are dominant, suggesting the pressure depends almost linearly on λ.
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2

x 10
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PC component 5

Fig. 4.4. PC coefficients px,15
hℓ

(~x), ℓ = 0, 1, . . . 5, of the pressure solution, px,15
hk

.

The above observations suggest that, for our test problem, solution statistics can be
accurately estimated using low polynomial degrees, k. Consider the vorticity,

ω(~x, λ) :=
∂

∂x
(uy(~x, λ)) − ∂

∂y
(ux(~x, λ)) . (4.23)

Replacing the velocity by ~u15
hk in (4.23) and expanding, yields the approximate vorticity,

ω15
hk(~x, λ) :=

k∑

ℓ=0

∂

∂x

(

uy,15
hℓ (~x, λ)

)

− ∂

∂y

(

ux,15
hℓ (~x, λ)

)

︸ ︷︷ ︸

=ωℓ(~x)

ϕℓ(λ). (4.24)

The vorticity along the lower channel wall [0, 5] is an important quantity of interest.
When ν0 = 1/50, the length of the recirculating eddy in the mean flow is close to two
and it is interesting to study the total vorticity along the wall segment [1, 3], i.e.,

Q(λ) :=

∫ 3

1

ω15
hk(~x, λ)ds. (4.25)

Approximations to the standard deviation, stdv(Q), computed with different polynomial
degrees k, are recorded in Table 4.1. Observe that stdv(Q) grows linearly with the
standard deviation of the viscosity, ν1. The degree of polynomial needed to approximate
stdv(Q) to four decimal places increases as we increase ν1. In general, we observe that
k ≤ 5 suffices for expected Reynolds numbers of up to two hundred (see Table 3.1).
When ν1 = 1/500, there is very little uncertainty in ν and we actually only need k = 2.

For higher Reynolds numbers, slightly higher polynomials degrees are needed to
accurately capture stdv(Q). Fixing ν0 = 1/200 and varying ν1 to produce expected
Reynolds numbers in the range [200, 330], leads to mean flow fields with a much longer
recirculating eddy. The estimated standard deviations of the total vorticity on the wall
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k = 1 k = 2 k = 3 k = 4 k = 5

ν1 = ν0/10 0.2390 0.2392 * * *
ν1 = 2ν0/10 0.4769 0.4768 0.4762 * *
ν1 = 3ν0/10 0.7093 0.6992 0.6942 0.6941 *
ν1 = 4ν0/10 0.9257 0.8683 0.8510 0.8525 0.8526

Table 4.1

Standard deviation of Q in (4.25) for fixed mean viscosity ν0 = 1/50 and varying ν1. The symbol
∗ indicates the approximation has converged to 4 decimal places.

segment [3, 7] (computed by increasing the channel length to L = 15) are recorded in
Table 4.2. The spatial contributions ωℓ in (4.24) to the estimated vorticity on the entire
lower channel wall [0, 15], computed with k = 5, are also plotted in Figure 4.5.

k = 1 k = 2 k = 3 k = 4 k = 5

ν1 = ν0/10 0.6553 0.6492 0.6491 * *
ν1 = 2ν0/10 1.2639 1.2150 1.2139 1.2138 *
ν1 = 3ν0/10 1.7752 1.6197 1.6180 1.6167 1.6162
ν1 = 4ν0/10 2.1379 1.8133 1.8320 1.8287 1.8291

Table 4.2

Standard deviation of Q in (4.25) (with [1, 3] replaced by [3, 7]), for fixed mean viscosity ν0 = 1/200
and varying ν1. The symbol ∗ indicates the approximation has converged to 4 decimal places.

0 5 10 15
−1

−0.5

0

0.5

1

x

PC component 0

0 5 10 15
−0.2

0

0.2

0.4

0.6

x

PC component 1

0 5 10 15
−0.4

−0.2

0

0.2

0.4

x

PC component 2

0 5 10 15
−0.2

0

0.2

x

PC component 3

0 5 10 15
−0.04

−0.02

0

0.02

0.04

0.06

x

PC component 4

0 5 10 15
−0.02

0

0.02

x

PC component 5

Fig. 4.5. Spatial components ωℓ, ℓ = 0, 1, . . . , 5, of the vorticity distribution along the bottom wall
of the channel, {−1} × [0, 15], for ν0 = 1/200, ν1 = 3/2000 and k = 5.

The fact that we don’t need to choose k to be very large (at least for problems with
E[Re] ≤ 330) is advantageous for the linear algebra, since the dimension of the system
(4.13) is a factor of k + 1 larger than (2.6), and the number of blocks in the Kronecker
product matrices is then guaranteed to be small. The issue of how to balance the spatial
error (depending on h) and the spectral error (depending on k) in stochastic Galerkin
approximation is currently an active research topic, (e.g., see Xiu [15, Chapter 6] and
Le Mâıtre & Knio [10, Chapter 9] for further discussion).
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5. Preconditioned GMRES. We now focus on the solution of the linear systems
(4.13) and develop new preconditioners for use with GMRES. Our aim is to generalize the
preconditioner (2.11) to the stochastic problem. Although the new saddle-point systems
have increased dimensionality (i.e., there are now (2nu+np)(k+1) equations) and a more
complex Kronecker product structure, right-preconditioned GMRES still converges in
two iterations if the ideal preconditioner (2.11) is applied to (4.13). In the sequel, we will
drop the superscript n and consider a single system. To build a practical preconditioner,
we need two ingredients: an approximation PF to the convection-diffusion matrix Fν in
(4.16); and an approximation PS to the Schur complement S := BF

−1
ν B

T . The resulting
exact preconditioner is then

PE :=

(
PF B

T

0 −PS

)

. (5.1)

As usual, we require the approximations to be robust with respect to the problem
parameters: i.e., the discretization parameters h and k, and the statistical parameters
ν0 and ν1, which control the distribution of Re(ω). Furthermore, solves with PF and PS

must have low complexity. Herein, we add the extra criterion that deterministic solvers
be exploited wherever possible. Balancing these requirements is a tough challenge.

5.1. Approximating the convection-diffusion matrix. The coefficient matrix
Fν in (4.16) is non-symmetric. However, the diffusion part is always symmetric and if
P(ν(ω) > 0) = 1, then it is also positive definite.

Lemma 5.1. If ν is of the form (3.9) with ξ ∼ U(−
√

3,
√

3) and (3.12) holds, the
diffusion matrix D := (ν0I + ν1G1)⊗A is symmetric and positive definite. Moreover, if
Th is shape regular and quasi uniform, the eigenvalues lie in the bounded interval

[
cνminh2, Cνmax

]
, (5.2)

where c and C are constants independent of h, k and ν, and νmin, νmax are as in (3.10).
Proof. Since G1 and A are symmetric by (4.17) and (2.9), we have

D
T = (ν0I + ν1G

T
1 ) ⊗ A

T = D.

The eigenvalues of D are products of eigenvalues of (ν0I + ν1G1) and eigenvalues of A.
Denote the (positive) extremal eigenvalues of the symmetric positive definite matrix A

by σmin(A) and σmax(A). Let w ∈ R
k+1 \ {0} and define w(λ) :=

∑k
ℓ=0 wiϕℓ(λ) ∈ Sk.

We have wTw = E[w2] and wT (ν0I + ν1G1)w = E[νw2]. Using (3.10), the eigenvalues
of (ν0I + ν1G1) belong to the interval [νmin, νmax]. The eigenvalues of D must then lie
in the interval [νminσmin(A), νmaxσmax(A)] . Positive definiteness is assured by (3.12)
and (5.2) follows from the standard bounds for the eigenvalues of the Q2 (or Q1) finite
element matrix A (e.g. see [4, Theorem 5.21]).

In Section 6, we present results for three versions of the preconditioner (5.1), all of
which are based on the same approximation PF to the convection-diffusion matrix Fν .
At first glance, PF = D seems a good candidate. Indeed, since

D
−1 = (ν0I + ν1G1)

−1 ⊗ A
−1,

solves with D can be performed via (k + 1) solves with A (for which fast solvers, e.g.
amg, [1], are available) and 2nu solves with (ν0I+ν1G1) (which is small and tridiagonal).
By adapting [14, Theorem 4.1], we can prove the following result.

Lemma 5.2. The generalized field of values of the matrix Fν associated with the
lagged velocity ~uhk, with respect to the preconditioner D, is contained in the circle

{

z ∈ C : |z − 1| ≤ 2CΩτk

νmin

}

, τk :=‖ E[~uhk] ‖L∞(Ω) + γk

k∑

ℓ=1

‖ ~uhℓ ‖L∞(Ω), (5.3)

where the constant CΩ depends only on the spatial domain, νmin is defined in (3.10), γk

depends only on k, and ~uhℓ is the ℓth PC coefficient of the lagged velocity solution.
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Proof. The field of values of interest is the set of complex numbers

FOV(Fν , D) :=

{
vH

Fνv

vHDv
, v ∈ C

2nu(k+1)\{0}
}

. (5.4)

Defining G := ν0I + ν1G1 and denoting the convection part of Fν by N, we have,

vH
Fνv

vHDv
= 1 +

vH
Nv

vHDv
= 1 +

k∑

ℓ=0

vH (Hℓ ⊗ Nℓ) v

vH (G ⊗ A) v
= 1 +

k∑

ℓ=0

(
uHHℓu

uHGu

) (
wHNℓw

wHAw

)

,

where v = u ⊗ w , with u ∈ C
k+1 and w ∈ C

2nu . For normal matrices C, the field of
values is conv(λ(C)), the convex hull of the set of eigenvalues. Following [14, Theorem
4.1] and noting that G and Hℓ are symmetric, leads to

FOV(Fν , D) − 1 ⊂
k∑

ℓ=0

conv (conv (λ (Hℓ, G)) · FOV (N ℓ,A)) . (5.5)

In (5.5), λ (Hℓ, G) is the set of (k +1) (real) values λℓ satisfying Hℓx = λℓGx . Since the
eigenvalues of G belong to the interval [νmin, νmax] and H0 = I,

λ(H0, G) ⊂ [1/νmax, 1/νmin]. (5.6)

Each entry of Hℓ is a weighted integral of a polynomial of maximum degree 2k + ℓ.
For a fixed ℓ, let SN := {η1, . . . , ηN} ⊂

(
−
√

3,
√

3
)

denote the nodes of the N -point

Gauss-Legendre quadrature rule. With N := k + ⌈ ℓ+1
2 ⌉, the rule is exact for all entries

of Hℓ. In [6] it is shown that the eigenvalues of Hℓ must then lie in [αℓ, βℓ] where,

αℓ := minηi∈SN
{ψℓ(ηi)}, βℓ := maxηi∈SN

{ψℓ(ηi)}, ℓ = 1, . . . , k.

Herein, for ξ ∼ U(−
√

3,
√

3), our normalized basis functions for Sk are defined via
ψℓ(λ) :=

√
2ℓ + 1Lℓ(x/

√
3), where {Lℓ(x)} are the standard Legendre polynomials of

degree ℓ on [−1, 1]. Since |Lℓ(x)| ≤ 1 for x ∈ [−1, 1], it follows that

|ψℓ(λ)| ≤
√

2ℓ + 1, ∀λ ∈ [−
√

3,
√

3],

and the eigenvalues of each Hℓ lie in [−γk, γk], where γk :=
√

2k + 1. Hence, λ (Hℓ, G) ⊂
[−γk/νmax, γk/νmin] and any z ∈ conv (λ (Hℓ, G)) satisfies |z| ≤ γk/νmin for ℓ ≥ 1.

It remains to find bounds for the complex values FOV (N ℓ,A) . Extending the
argument in [14, Theorem 4.1] (which is for scalar convection-diffusion matrices and
different convection coefficients), we can show that for every z ∈ FOV(N ℓ,A) ,

|z| ≤ 2CΩ ‖ ~uhℓ ‖L∞(Ω), ℓ = 0, 1, . . . , k, (5.7)

where CΩ is the Poincaré constant for the spatial domain and ~uhl is the ℓth PC coefficient
of the lagged velocity. Combining all these bounds with (5.5) gives the result.

Remark 5.1. The rate of residual reduction of GMRES is bounded by a computable
(asymptotic) convergence factor whenever the field of values is contained in an ellipse in
the right-half plane—that is, whenever the circle in (5.3) excludes the origin. The bound
(5.3) suggests that if Fν is preconditioned using the diffusion matrix D then the rate of
convergence of GMRES will be inversely proportional to νmin. Such a deterioration is
clearly evident in actual computations (see Table 5.1, later).

Remark 5.2. The bound γk =
√

2k + 1, for the eigenvalues of the Hℓ matrices
in the above proof, is somewhat pessimistic. For our specific test problem, the values
‖ ~uhℓ ‖L∞(Ω) also decay rapidly as ℓ (and hence k) increases (e.g. see Figure 4.3) and
so the constant τk in Lemma 5.2 is almost independent of the value of k.

15



The radius of the circle containing the generalized field of values in Lemma 5.2 is
bounded independently of the parameter h. For ν0 = O(1), we have νmin = O(1) and in
that case, the preconditioner PF = D is likely to be effective. On the other hand, if we
want to solve flow problems with small viscosity values (i.e., high Reynolds numbers)
then we need to look at the convection-diffusion matrix again. Noting that G0 = H0 = I,
and G1 = H1 (since ψ0 = 1 and ψ1 = λ), we can rearrange Fν as follows

Fν = I ⊗ (ν0A + N0)
︸ ︷︷ ︸

F0

+G1 ⊗ (ν1A + N1)
︸ ︷︷ ︸

F1

+
∑k

ℓ=2 Hℓ ⊗ N ℓ. (5.8)

The leading term is now

F0 := I ⊗ (ν0A + N0) := I ⊗ F 0, (5.9)

where F 0 is the spatial convection-diffusion operator, with diffusion coefficient ν0, and
convection coefficient given by ~uh0, the mean lagged velocity field. The second term in
(5.8) is also associated with a spatial convection-diffusion operator F1, with coefficients
ν1 and ~uh1. In the sequel, we call F0 the mean convection-diffusion matrix and since it
is a block-diagonal version of the deterministic scalar convection-diffusion operator F0,
it is natural to consider PF = F0. This new approximation is non-symmetric. The next
result gives the analogue of Lemma 5.2 and follows the proof of [14, Theorem 4.3].

Lemma 5.3. The generalized (complex) eigenvalues of the matrix Fν associated with
the lagged velocity ~uhk, with respect to the matrix F0, are contained in the circle

{z ∈ C : |z − 1| ≤ 2CΩδk} , δk :=
ν1

√
3

ν0
+

γk

ν0

k∑

ℓ=1

‖ ~uhℓ(~x) ‖L∞(Ω),

where the constant CΩ depends only on the spatial domain, ν0 and ν1 are the mean
and standard deviation of the viscosity, respectively, δk depends only on the polynomial
degree k, and ~uhℓ is the ℓth PC coefficient of the lagged velocity solution.

Proof. As in Lemma 5.2, let v = u ⊗w , with u ∈ C
k+1 and w ∈ C

2nu . This time,

vH
Fνv

vHF0v
= 1 + ν1

vH (G1 ⊗ A) v

vH (I ⊗ F0) v
+

k∑

ℓ=1

vH (Hℓ ⊗ Nℓ) v

vH (I ⊗ F0) v
(5.10)

= 1 + ν1

(
uHG1u

uHu

)(
wH

Aw

wHF0w

)

+
k∑

ℓ=1

(
uHHℓu

uHu

) (
wHNℓw

wHF0w

)

. (5.11)

The (real) eigenvalues of G1 belong to [−
√

3,
√

3] and the (real) eigenvalues of each Hℓ

are contained in [−γk, γk]. From Lemma 5.2, we further deduce that

|wHNℓw | ≤ 2CD ‖ ~uhℓ ‖L∞(Ω) wH
Aw = 2CDν−1

0 ‖ ~uhℓ ‖L∞(Ω) wH (ν0A)w .

Noting that the (block-diagonal) matrix N0 is positive semi-definite, gives the bound,

|wHF0w | = |wH (ν0A + N0)w | ≥ ν0w
H

Aw .

Combining these two results yields

|wHNℓw | ≤ 2CDν−1
0 ‖ ~uhℓ ‖L∞(Ω) |wHF0w |,

and the result immediately follows.
Remark 5.3. The asymptotic rate of convergence of GMRES is bounded whenever

the eigenvalues lie in a circle in the right-half plane. In Lemma 5.3, the bound for the
radius of the circle depends on the ratio ν1/ν0, as opposed to the minimum possible value
of the viscosity, νmin. Hence, we anticipate that F0 provides a better preconditioner than
D for the convection-diffusion matrix when ν0 << 1.
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We now have a choice of two preconditioners for Fν . Lemmas 5.2 and 5.3 suggest
that the mean convection-diffusion approximation F0 is more robust with respect to
the viscosity than the diffusion approximation D. To corroborate this theory, we now
present some results using right-preconditioned GMRES to solve a system of equations
with coefficient matrix Fν (corresponding to the final, Picard step) for varying h, k, ν0

and ν1. The stopping tolerance for the relative residual error is set to 10−6 and iteration
counts are recorded in Table 5.1. As predicted, both approximations are robust with
respect to the discretization parameters h and k and the diffusion preconditioner D is
the best when ν0 = 1. Iteration counts increase as νmin → 0, in both cases, but the
degradation is far less for the mean convection-diffusion preconditioner, F0.

PF ν0 k = 2 4 6 k = 2 4 6
ν1 = ν0/10 6 6 6 6 6 6

D 1 ν1 = 2ν0/10 6 7 7 6 7 7
ν1 = 3ν0/10 7 7 7 7 7 7
ν1 = ν0/10 22 23 23 22 22 23

D 1/10 ν1 = 2ν0/10 23 26 27 24 26 27
ν1 = 3ν0/10 26 30 32 26 30 33
ν1 = ν0/10 79 91 98 79 92 98

D 1/50 ν1 = 2ν0/10 85 98 108 85 97 108
ν1 = 3ν0/10 92 110 122 94 112 123

ν1 = ν0/10 5 6 6 6 6 6
F0 1 ν1 = 2ν0/10 7 9 9 7 8 9

ν1 = 3ν0/10 9 11 12 9 11 12
ν1 = ν0/10 6 7 7 6 7 7

F0 1/10 ν1 = 2ν0/10 9 10 10 9 10 10
ν1 = 3ν0/10 12 14 14 12 14 14
ν1 = ν0/10 7 7 8 7 8 8

F0 1/50 ν1 = 2ν0/10 11 12 13 11 12 13
ν1 = 3ν0/10 16 19 21 16 20 21

Table 5.1

Right-preconditioned gmres iterations with preconditioners PF = F0 and PF = D for two consec-
utive levels of spatial grid refinement (coarser grid (left columns) and finer grid (right columns))

5.2. Approximating the Schur complement. Our strategy for approximating
the Schur complement, S := BF

−1
ν B

T , is to replace F by the approximation F0. That is,

S = [I ⊗ Bx, I ⊗ By] F−1
ν [I ⊗ Bx, I ⊗ By]T

≈ [I ⊗ Bx, I ⊗ By] (I ⊗ F 0)
−1 [I ⊗ Bx, I ⊗ By]T

= (I ⊗ Bx)(I ⊗ F−1
0 )(I ⊗ BT

x ) + (I ⊗ By)(I ⊗ F−1
0 )(I ⊗ BT

y )

= I ⊗ (BF
−1
0 BT ) =: I ⊗ S0 =: PS . (5.12)

The advantage of this is obvious. At each nonlinear iteration, the resulting approxima-
tion PS is a block-diagonal version of the pressure Schur complement S0 associated with
the deterministic saddle-point matrix (2.6) whose (1, 1) block is given by

Fν = ν0A + N(E[~uhk]). (5.13)

Combining the convection-diffusion approximation (5.9) with the Schur complement
approximation (5.12), we now have a specific exact preconditioner for (4.13),

PE :=

(
PF B

T

0 −S0

)

=

(
I ⊗ F 0 B

T

0 −I ⊗ S0

)

. (5.14)
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Note that each solve with PF requires (k + 1) solves with the deterministic matrix F 0

and each solve with S0 involves (k + 1) solves with the deterministic Schur complement
S0 = BF

−1
0 BT . Although we don’t anticipate to have to choose k larger than say, six

(see Section 4.2), this preconditioner is not practical as S0 is dense. However, it does
provide us with a starting point for evaluating performance, and we can immediately take
advantage of existing deterministic algorithms to perform the solves with S0 inexactly.
Specifically, we apply the PCD and LSC approximations described in Section 2.2.

We follow the suggestion in [5] and implement PCD preconditioning (for S0) via

S−1
0 = (BF

−1
0 BT )−1 ≈ Q−1

∗
F p

0 A−1
∗

. (5.15)

Q∗ is the diagonal of the pressure mass matrix Qp and A∗ := BM
−1
∗

BT , where M∗ is
the diagonal of the velocity mass matrix M , with scalar components M, defined by

Qp := [Qp]ij= (ψi, ψj) , i, j,= 1, . . . , np, (5.16)

M := [M ]ij = (φi, φj) , i, j = 1, . . . , nu. (5.17)

The key new ingredient is the np × np mean pressure convection-diffusion matrix

F p
0 := [F p

0 ]ij = ν0 (∇ψi,∇ψj) + (E[~uhk] · ∇ψi,∇ψj) , i, j = 1, . . . , np. (5.18)

From deterministic studies, we know that the PCD approximation for S0 is robust with
respect to the discretization parameter h but performance deteriorates slowly as the
Reynolds number is increased. Replacing S0 with the PCD approximation in (5.14)
yields an alternative preconditioner which we denote by PPCD.

Similarly, we implement LSC preconditioning for S0 via

S−1
0 = (BF

−1
0 BT )−1 ≈ A−1

∗
(BM

−1
∗

F 0M
−1
∗

BT )A−1
∗

, (5.19)

where M∗ and A∗ are defined as for the PCD approximation. Using this approximation
in (5.14) yields a third preconditioner, PLSC . From deterministic studies, we anticipate
that the performance of this scheme will deteriorate slightly with mesh refinement (at
least when ν0 = O(1)) and for a fixed spatial refinement there will be a slight deteriora-
tion in performance as the Reynolds number is increased.

5.3. Initial saddle-point system. Before testing the preconditioners, we discuss
the choice of initial guess for the Picard iteration. Each GMRES iteration, in each
Picard step, requires a matrix-vector product with the coefficient matrix in (4.13). The
cost of this rises from O(nu + np) (in the deterministic case) to O(k + 1)2nu + knp).
Although this is acceptable for small values of k, a smart choice of initial guess can
reduce the number of Picard steps and thus the total number of matrix-vector products.

A natural starting point is the simpler symmetric saddle-point system,

(
(ν0I + ν1G1) ⊗A B

T

B 0

)(
u0

p0

)

=

(
f u

f p

)

, (5.20)

which corresponds to the stochastic Galerkin approximation, in X h
E ⊗Sk and Mh ⊗Sk,

for the linear Stokes problem (3.13)–(3.16). Once the discrete solution to (5.20) is
obtained, we possess the coefficients needed to represent the initial approximations ~u0

hk

and p0
hk to the stochastic Galerkin Navier–Stokes solutions, in the same spaces, and we

can proceed with the Picard iteration (4.7)–(4.8).
Observe that the Schur complement matrix associated with (5.20) is

Sstokes = (ν0I + ν1G1)
−1 ⊗ BA

−1BT := (ν0I + ν1G1)
−1 ⊗ Sstokes,

where Sstokes is the Schur complement matrix of the deterministic Stokes problem (with
ν = 1). The pressure mass matrix Qp is an excellent approximation for Sstokes (see
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e.g., [4, Ch.5]) and we can solve (5.20) efficiently using MINRES with the preconditioner,

PE,stokes :=

(
(ν0I + ν1G1) ⊗A 0

0 (ν0I + ν1G1)
−1 ⊗ Qp

)

. (5.21)

Indeed, the next result guaranteees that preconditioned MINRES converges for (5.20),
in a number of iterations that is independent of h, k, ν0 and ν1.

Lemma 5.4. For Q2 –Q1 finite element spatial discretisations, the eigenvalues of
the stochastic Galerkin Stokes matrix in (5.20), preconditioned by PE,stokes in (5.21),
lie in the bounded intervals [−1,−a] ∪ {1} ∪ [1 + a, 2], where

a := −1

2
+

1

2

√

1 + 4γ2
h, (5.22)

and γh > 0 is the Q2 –Q1 Stokes inf-sup constant, which is independent of h.
Proof. See e.g., [4, p.293], and note that the eigenvalues of the preconditioned

stochastic Schur complement matrix
(
(ν0I + ν1G1) ⊗ Q−1

p

)
Sstokes coincide with those

of Q−1
p Sstokes (the preconditioned deterministic Schur complement matrix).
Following the discussion in Section 3.2, the stochastic Stokes velocity is

~u(~x, λ) = ~udet(~x)ϕ0(λ) =: ~u0(~x)ϕ0(λ), (5.23)

where ~udet is the deterministic Stokes velocity solution. In addition, ν(λ) = ν0 + ν1λ =
ν0ϕ0(λ) + ν1ϕ1(λ) for the choice (3.9), and since p(~x, λ) = ν(λ)pdet(~x),

p(~x, λ) = ν0pdet(~x)ϕ0(λ) + ν1pdet(~x)ϕ1(λ) =: p0(~x)ϕ0(λ) + p1(~x)ϕ1(λ). (5.24)

The exact Stokes solution has linear dependence on the image coordinate λ. There is no
need then to approximate it with a stochastic Galerkin method with k > 1. Otherwise,
the discrete solution of (5.20) has redundant zero blocks, which approximate the zero
PC coefficients of the polynomials ψ2, . . . , ψk. That is,

u0 =










u0
0

0

0
...
0










, p0 =










p0
0

p0
1

0
...
0










, (5.25)

(in exact arithmetic). We can therefore construct the initial guess for the Navier–Stokes
problem by solving the smaller stochastic Galerkin Stokes system (5.20) corresponding
to the polynomial space S1. This yields discrete components u0

0 , u1
0 ≈ 0 , p0

0 , and p0
1 ,

which can then be used to populate the non-zero blocks of u0 and p0 in (5.25).
If the Stokes solution is used as the initial guess, the initial velocity is deterministic

and the convection-diffusion matrix at the first Picard step is simply,

F
1
ν := (ν0I + ν1G1) ⊗ A + H0 ⊗ N0 = I ⊗ (ν0A + N0) + ν1G1 ⊗ A. (5.26)

This resembles a block-diagonal version of the deterministic Navier–Stokes convection-
diffusion matrix, with viscosity ν0 and convection coefficient given by the Stokes velocity.

6. Numerical results. We applied the exact preconditioner PE from Section 5.2,
and the practical variants PPCD and PLSC , to the saddle-point systems arising in the
Picard iteration for the stochastic Galerkin discretisation of the backward-facing step
problem. Below, we report the number of preconditioned GMRES iterations required
to solve the saddle-point system corresponding to the final Picard step, for a range of
discretisation and statistical parameters. The stopping tolerance for the residual error
in both the nonlinear iteration, and the inner GMRES iterations, was set to 10−6. The
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total number of Picard steps required depends on the problem parameters, which we
vary, but is less than twenty-five in all the reported experiments. The initial guess for the
nonlinear iteration was obtained by solving the Stokes problem, as discussed in Section
5.3, using MINRES with the preconditioner (5.21).

We report results for two different values of ν0. Recall that when ν0 decreases, E[Re]
increases (see Table 3.1). To accurately capture the dynamics of the flow we need to
increase the channel length, L (i.e., change the spatial domain). For each choice of ν0

we consider two successively refined spatial grids. The stretch factor was set to 1.2 and
the dimensions of the resulting finite element spaces are summarized in Table 6.1. For
ν0 = 1/50, L = 5 suffices and in that case, the fine grid is the same as in Figure 2.3.

Coarse grid Fine grid
ν0 1/50 1/100 1/50 1/100
L 5 10 5 10

nu 2,183 3,803 6,321 10,221
np 565 990 1,625 2,615

2nu + np 4,871 8,596 14,267 23,057

Table 6.1

Number of deterministic degrees of freedom associated with two successive refinements of the Q2–
Q1 finite element mesh and varying length of channel domain, L.

The number of MINRES iterations required to solve the system (5.20) for the initial
guess was observed to be independent of all the problem parameters (see Table 6.2). Note
that for a fixed spatial domain, the iteration counts are actually independent of ν0 and
ν1. However, when we decrease ν0, we increase L, and the inf-sup constant appearing in
the eigenvalue bounds in Lemma 5.4 decreases. This explains the slight rise in iterations
as L increases from five (when ν0 = 1/50) to ten (when ν0 = 1/100).

Coarse grid Fine grid
ν0 1/50 1/100 1/50 1/100

ν1 = ν0/10 42 50 42 50
ν1 = 2ν0/10 42 50 42 50
ν1 = 3ν0/10 42 50 42 50

Table 6.2

Preconditioned MINRES iterations for the initial Stokes system (with k = 1).

GMRES iteration counts for the Picard systems are recorded in Tables 6.3 and 6.4
and convergence curves for the relative residual errors, in the case ν0 = 1/50, are shown
in Figure 6.1. As anticipated, the exact preconditioner PE is perfectly robust: both
with respect to the spatial approximation and with respect to the degree of spectral
approximation, k. Recall that all versions of the preconditioner are based on the mean
convection-diffusion approximation PF = F0 and we know (from Lemma 5.3 and Table
5.1) that the quality of this approximation deteriorates slightly as ν1/ν0 increases. This
is of course reflected in the GMRES iteration counts for the saddle-point problems.

The LSC preconditioning results are less encouraging and the deterioration in the
convergence rate is apparent when the spatial grid is refined. This is not a surprise as
the grid dependence of LSC is known from the deterministic case. In contrast, the PCD
preconditioner results are very promising—the convergence rate stays within a factor
of two or three of the exact preconditioner PE and the approximation is perfectly
robust with respect to the discretisation parameters h and k. For the range of Reynolds
numbers considered, the dependence on the ratio ν1/ν0 is also acceptable.
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Coarse grid Fine grid
E[Re] k = 2 4 6 k = 2 4 6

ν1 = ν0/10 67 14 14 14 14 14 15
PE ν1 = 2ν0/10 70 18 20 21 14 20 21

ν1 = 3ν0/10 74 25 28 29 25 28 29
ν1 = ν0/10 67 37 38 39 37 39 39

PPCD ν1 = 2ν0/10 70 43 44 50 44 48 50
ν1 = 3ν0/10 74 53 56 61 54 58 62
ν1 = ν0/10 67 25 26 27 43 49 52

PLSC ν1 = 2ν0/10 70 31 34 36 48 58 63
ν1 = 3ν0/10 74 35 45 48 51 68 77

Table 6.3

Right-preconditioned GMRES iterations for the final Picard system for the case ν0 = 1/50, L = 5.

Coarse grid Fine grid
E[Re] k = 2 4 6 k = 2 4 6

ν1 = ν0/10 135 16 16 17 16 17 17
PE ν1 = 2ν0/10 139 22 23 24 22 24 24

ν1 = 3ν0/10 148 29 36 38 29 36 37
ν1 = ν0/10 135 44 46 48 44 47 48

PPCD ν1 = 2ν0/10 139 53 59 64 51 58 64
ν1 = 3ν0/10 148 73 87 97 74 81 84
ν1 = ν0/10 135 44 46 51 62 74 81

PLSC ν1 = 2ν0/10 139 55 60 63 70 83 92
ν1 = 3ν0/10 148 67 78 83 79 97 109

Table 6.4

Right-preconditioned GMRES iterations for the final Picard system for the case ν0 = 1/100, L = 10.
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Fig. 6.1. GMRES convergence when solving the discretized stochastic flow problem (4.13) for
ν0 = 1/50, ν1 = 1/500 and k = 3, on a coarse grid (left) and a fine grid (right), with L = 5.

7. Summary. In this study we have developed a mean-based preconditioner for
linear algebra systems that arise from a stochastic Galerkin mixed formulation of the
nonlinear steady-state Navier–Stokes equations with stochastically linear random data.
If stochastic Galerkin methods are to be competitive with traditional deterministic
methodologies based on sampling techniques, then we need fast and robust precon-
ditioning techniques to solve the large linear algebra systems that arise. The strategy
that is developed herein builds on state-of-the-art preconditioners developed for deter-
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ministic flow problems — so we can immediately implement it using existing software.
Computational results confirm that our strategy gives an effective way of solving the
coupled systems that arise, especially when the fluctuations in the data are not too
large relative to their mean values. We intend to look at more complex unsteady flow
problems, as well as extending our methodology to cover stochastically nonlinear data
models in the future.
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