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We consider the flow of an incompressible particle-laden fluid through the application
of the so-called ‘dusty-gas’ equations, which treat the fluid/particle suspension as two
continua. The two phases are described by their individual field equations and interact
through a Stokes-drag mechanism. The particular flow we consider is of boundary-
layer type, corresponding to the downstream development of a Glauert-type jet
adjacent to a horizontal boundary (the inclusion of the particulate phase requires
the flow to be non-self-similar). We solve the governing boundary-layer equations
through a numerical spatial marching technique in the three distinct cases of (i) weak
gravitational influence, (ii) a jet ‘above’ a wall under the action of gravity and (iii) a
jet ‘below’ a wall under the action of gravity.

The qualitative and quantitative features of the three cases are quite different and
are presented in detail. Of particular interest is the development of a stagnation
point in the particle velocity field at a critical downstream location in case (i), the
development of fluid/particle flow reversal in case (ii) and the development of ‘shock’
solutions and particle-free regions in case (iii). Asymptotic descriptions are given of
the critical phenomena, which support the numerical results. It is found that inclusion
of a Saffman force has no substantial effect on either the location or structure of the
stagnation-point region.

1. Introduction
The interacting flow of an incompressible Newtonian fluid and a dispersed solid

particulate phase is a key problem of both fundamental and practical significance.
Many flows of environmental and industrial importance involve a fluid within which a
distributed, solid, particulate phase exists. Such flows range from waste water ejection
in industrial processes, recycling of machine oils, erosion of engineering surfaces
by dust and other debris clouds, modification of stability properties in the flows
associated with solid propellant devices and a great many others.

These ‘dusty gases’ have been discussed and examined by a numerous authors over
the past 50 years. Important early work was presented by Liu (1966), Saffman (1965),
Marble (1963) and Michael (1968), with an early summary provided by Marble (1970).
A more recent summary of dusty fluid flows has been given by Osiptsov (1997), in
which he thoroughly reviews the development of boundary-layer work since those
early papers. No attempt will be made here to repeat his discussion, but there are a
few general comments to be made below.

In this paper, we follow a modelling approach that relies on the treatment of the
fluid/particulate combination as two interspersed continua. This approach assumes



386 P. W. Duck, R. E. Hewitt and M. R. Foster

that the particles are sufficiently small and of sufficient number to be treated as
a continuum, with a well-defined local density and velocity field. These equations
may be written down in an ad hoc manner, as in Marble (1970) for example, or for-
mally obtained by a spatial averaging process as in Jackson (1996) and Zhang &
Prosperetti (1997). Closure of the system must involve some hypotheses about the
mechanisms through which the two continua interact. Kinetic theory and other
models (for examples, see McTigue & Jenkins 1992; Gundogdu et al. 2003) assume
particle interaction through collisions or lubrication forces. A constitutive law for
the particle stress tensor, for example, then typically involves a pseudo-temperature,
requiring an ‘energy’ equation to be solved in a coupled way with the other equations.
Such models are not appropriate in this very dilute setting, where collisions are rare.
Here we shall assume that the particles are sufficiently small, with sufficiently dilute
concentration so that inter-phase coupling enters only through a single-particle force
law, generally a Stokes-drag term.

There have been some difficulties with various attempts at more general closure
schemes, some consequences of which have been discussed by Jones & Prosperetti
(1985) and Prosperetti & Jones (1985). However, the model equations that we employ
here have been used successfully to describe a wide number of flows as in Slater &
Young (2001), Hernández (2001), Narayanan & Lakehal (2002), Féraille & Casalis
(2003) and Foster, Duck & Hewitt (2003, referred to hereinafter as FDH).

Particularly relevant to the study at hand are the foundation papers by Singleton
(1965), Soo (1968) and Osiptsov (1980), which provide insight into the correct handling
of this equation set. FDH used these equations to understand the start-up Kármán
problem, discussing some of the subtleties of numerical solutions to these equations,
a matter also detailed in Wang & Glass (1988). As we shall see, these subtleties also
come to the fore in the present study.

In summary, the model equations used here are the Navier–Stokes equations for
an incompressible Newtonian fluid, coupled via a Stokes-drag interaction to a similar
system for the particle phase. However, the particle–‘fluid’ system lacks any stress
tensor. The requirements for the use of these equations has been noted previously,
see for example Osiptsov (1997), and are now widely understood to be:

(i) Dilute mono-disperse non-colloidal particle phase-volume fractions of 10% or
less, to avoid particle–particle interactions.

(ii) Heavy particles that make any possible particle pressure negligible, and also
imply that added mass effects are negligible.

(iii) Particles that are sufficiently small to permit neglect of the Saffman force; the
Stokes force scales with particle radius and the Saffman force with square of the
radius. However, later in this work we shall discuss the consequences of including
the Saffman force.

Although there is much agreement on the use of the equation set discussed above,
there remain some subtleties with regard to the application of boundary conditions
on the particle phase. FDH addressed the influence of gravity in the self-similar
flow induced by the spin up of a rotating disk. Gravity has a profound influence
on the solution structure and on how boundary conditions are to be formulated in
a consistent manner. The direction of the gravitational field, relative to the particle
drag resulting from the axial boundary-layer transport, is crucial. For example, when
the gravitational acceleration is directed towards the rotating boundary, particles
are drawn in from the outer extremes of the boundary layer, by both the Ekman
suction and gravity, and will ultimately ‘collide’ with the bounding plane. Under
these circumstances, the model does not permit the enforcement of any particle
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boundary conditions on the disk (but rather demands far-field boundary conditions)
since the characteristics of the hyperbolic differential operator appearing in the
particle phase are directed towards the boundary. Conversely, when the gravitational
influence is directed contrary to the local fluid transport, this offers a mechanism
whereby particle-free regions can develop with shock-like features in the particle
distribution profile. Indeed, similar particle-free flow features have been observed
before by other investigators, among them Ungarish & Greenspan (1983) in rapidly
rotating flows. Slater & Young (2001) also provide a useful discussion of these
matters.

These particle-free regions and rapid ‘shock’-like transitions in particle
concentration are easy to understand from a qualitative perspective. If we have
a variable velocity profile in the direction of the local gravitational acceleration, then
there is the potential for a balance to exist at a point within the boundary layer
where the buoyancy force exerted on a particle balances exactly with the particle-drag
force exerted by the fluid motion. Such points may then define boundaries of particle-
free regions within the flow and lead to rapid transitions in the particle volume
fraction.

The work of FDH addressed the issue of boundary conditions for the particulate
phase applied in flow regions that are particle free. This may at first appear to be
inappropriate, since we are applying constraints to a phase in a region in which the
volume fraction of that phase is zero, however, it was shown in FDH that arbitrary
boundary conditions can be imposed in a particle-free region without influencing
the solution in regions in which the particle volume fraction is non-zero. This lends
support to the approaches taken in numerical modelling of particle-laden flows, see
for example Slater & Young (2001), in which conditions are applied on boundaries
irrespective of a zero volume fraction.

In this paper, we seek to extend the ideas developed in FDH to a more general
boundary-layer context, making careful use of both numerics and asymptotic methods,
as has also been done in Wang & Glass (1988). The FDH analysis relied upon the
application of a self-similar solution to the boundary-layer induced by a rotating disk
in a stationary fluid. However, here we shall consider the spatial development of a
‘wall-jet’ solution, allowing the development of a general spatial form (rather than
imposing self-similarity). As we shall see, in the presence of a particle phase with
two-way coupling to the fluid, a Glauert similarity solution is no longer appropriate
and a more general spatial evolution must be allowed for.

Motivation for this work is centred around the generation of a theoretically
self-consistent model of a boundary-layer particle-laden flow, which can then be
used to make stringent comparisons with experimental results in a configuration
that is feasible to construct in a laboratory. In particular, the lack of interaction
between the particulate matter and the boundary, and the importance of additional
forces acting on the particles in the presence of a shear flow can potentially be
assessed through qualitative/quantitative comparisons and subsequent extensions of
the solution method applied here. (We may also note that the deposition characteristics
of jet out-falls of particle-laden fluids are a general area of interest in industrial
waste water expulsion, although typically a somewhat more complex issue than
the problem described here in which both jet and the environment are particle
laden.)

We conclude our introduction by noting that, as in the self-similar solution found
by Glauert (1956), it is possible to define the flux of the momentum flux. This quantity
is invariant in the ‘clean’ wall jet. If the jet is on the wall y∗ = 0 and flowing in the
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x∗-direction†, then this quantity is given by

M ≡
∫ ∞

0

u∗(y∗)

∫ ∞

y∗
[u∗(s)]2 ds dy∗, (1.1)

where u∗(y∗) is the velocity profile of the jet at/very near the jet source. We introduce
this concept here, since the conservation of this quantity (and the analogue in
particle-laden flows) will be shown to play a role in the numerical solution and the
non-dimensionalization.

The format of this paper is as follows. In § 2, we formulate the problem in the
context of the dusty-gas equations, giving details of the numerical scheme and some
physical interpretation. In the subsequent sections, we examine three distinct regimes
to the problem. In § 3, the zero ‘buoyancy’ case is investigated, for which gravitational
effects are negligible. In § 4, the negative ‘buoyancy’ case is examined, for which
gravitational effects on the particles act towards the plate (which may be regarded as
the case of the jet flow above a boundary). In § 5, the regime where gravitational effects
act away from the plate is considered (which may be regarded as the case of the jet
flow below a boundary). Each of these three regimes exhibits distinct characteristics.
In § 6, we provide some discussion on the influence of the Saffman force in our model.
Finally, in § 7, our conclusions are presented.

2. Formulation
The dimensional equations of motion for the dusty-gas model are conservation of

mass,

∇∗ · u∗ = 0, ∇∗ · (αu∗
p) = 0, (2.1)

and the equations of conservation of momentum

ρf (u∗ · ∇∗)u∗ + ∇∗p∗ = µ∇∗2u∗ − F∗ − ρf g, (2.2)

ρpα(u∗
p · ∇∗)u∗

p = F∗ − ρpαg + ρf αg. (2.3)

The quantity u∗ is the velocity vector of the fluid component, u∗
p is the velocity

vector of the particle phase and α is the particle concentration (assumed small). Note
that buoyancy and gravitational terms are present.

Everywhere in the equations where α occurs in an expression (1 − α), the α has
been neglected. Clearly, when it multiplies other terms (as in the drag term) it must
be retained even though small. This is reminiscent of the Boussinesq approximation,
but is also asymptotically correct in a formal limit α → 0 for finite particle loading
αγ = O(1), where γ ≡ ρp/ρf . The quantities g and µ are the acceleration due to local
gravity and the fluid coefficient of viscosity. The equations seem to be robust in the
sense that, when used properly, they give self-consistent answers in a wide variety of
problems. We have referenced (in § 1) some of this previous work.

Closure of these volume-averaged equations requires that the drag forces per unit
volume, F∗, be specified for the two species. In our case, following a number of
previous studies of this type, we shall assume small spherical particles of fixed size,

† Here the asterisk notation ( )∗ indicates dimensional quantities.
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and so we apply the Stokes-drag formula

F∗ =
9µ

2a2
α(u∗ − u∗

p). (2.4)

This formula assumes that α is sufficiently small for the particles to be non-interacting.
Wang & Glass (1988) used both a Stokes-drag term and a different finite-Reynolds-
number drag law in their Blasius computations, and found no substantial qualitative
difference in their results.

We consider a jet flow above the plane y∗ =0, assuming the origin of the jet is
located at x∗ = 0. Let U∞ be a representative streamwise velocity scale and L be
a representative streamwise lengthscale. The streamwise and transverse coordinates
are taken to be Lx, Ly, respectively, with the associated fluid u∗ =U∞(U, V ), and
the associated dispersed-phase velocity vector u∗

p =U∞(Up, Vp). Crucially, throughout
this paper it is assumed that the boundary-layer approximation to (2.1)–(2.3) is
appropriate, leading to

∂U

∂x
+

∂V

∂y
= 0, (2.5a)

U
∂U

∂x
+ V

∂U

∂y
=

∂2U

∂y2
− αβ(U − Up), (2.5b)

Up

∂Up

∂x
+ Vp

∂Up

∂y
=

β

γ
(U − Up), (2.5c)

Up

∂Vp

∂x
+ Vp

∂Vp

∂y
=

β

γ
(V − Vp) − K, (2.5d )

∂(αUp)

∂x
+

∂(αVp)

∂y
= 0. (2.5e)

The scales L and U∞ are derived later in terms of the flux of the momentum flux and
the kinematic viscosity; they are such that U∞L = ν.

In this system, three dimensionless parameters appear. Two of these are the fluid-
particle density ratio γ and a dimensionless measure of the importance of the
Stokes-drag force, β ≡ 9L2/2a2. Here, a is the particle radius, which must be very
small compared to the boundary-layer thickness; we return to this matter later in the
paper. The third quantity is K = g(γ − 1)L/(U 2

∞γ ) whose magnitude measures the
net buoyancy, which can be ignored if this dimensionless number is sufficiently small.
(Note that neutral particles make this term zero as well, but the assumptions involved
in this model preclude consideration of γ = 1 cases.)

The boundary conditions to be imposed on this system in the case of the fluid are
straightforward, namely

U = V = 0 on y = 0, (2.6a)

U → 0 as y → ∞. (2.6b)

The boundary conditions for the particle quantities (α, Up, Vp) are somewhat more
subtle (as suggested in the previous section), but in the first instance are taken to be

α → α∞, Up → 0 as y → ∞. (2.7)

One implication of (2.7) is that ∂Vp/∂y → 0 as y → ∞. That only one condition is
imposed on Up and α (and Vp) is indicative of the first-order nature of the equations
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governing the particle quantities. Certain exceptions to (2.7) will be encountered
during the course of the paper, and will be explained as and when appropriate.

The classical (‘clean’) problem of Glauert (1956) may be retrieved in a variety of
ways, most simply by setting α∞ = 0, and this leads to the similarity structure

(U, V ) =
(
x−1/2Û 0(η), x−3/4V̂ 0(η)

)
, (2.8)

where η = y/x3/4, and then (2.5a) and (2.5b) yield

− 1
2
Û 0 − 3

4
ηÛ 0η + V̂ 0η = 0, (2.9a)

− 1
2
Û 2

0 − 3
4
ηÛ 0Û 0η + V̂ 0Û 0η = Û 0ηη, (2.9b)

subject to U0(0) = V0(0) = 0, U0 → 0 as η → 0. As it stands, this system is effectively
homogeneous, but Glauert (1956) showed that the flux of the momentum flux, denoted
by M in (1.1), is constant across the jet.† For the purposes of this study, the following
normalization procedure (one involving the flux of the momentum flux) was invoked.
In these variables, condition (1.1) becomes∫ ∞

0

Û 0

(∫ ∞

η

Û 2
0(η̄) dη̄

)
dη = 1, (2.10)

provided we require that the velocity and length scales, U∞ and L, are related by
M = U 3

∞L2. Although Glauert (1956) showed how an (implicit) solution for (Û 0, V̂ 0)
is possible, for our purposes, this system was embedded in our overall numerical
scheme.

Returning now to the full problem, any singular behaviour to the solution (in
particular close to the origin of the jet, x =0) is probably best treated in the numerical
work by properly taking this Glauert structure into account. Asymptotic balancing
of terms in (2.5a)–(2.5e) indicates that the following ‘caret’ variables are appropriate,
which should lead to regular behaviour at the origin of the jet, i.e. as x → 0, whilst
at the same time mirror the form of the ‘clean’ jet (which is expected to be relevant
as x → 0). Thus, building in the similarity form suggested by Glauert, whilst allowing
the flow to develop spatially downstream, suggests we write

V = x−3/4V̂ (η, ξ ), (2.11a)

U = x−1/2Û (η, ξ ), (2.11b)

Vp = x−3/4V̂ p(η, ξ ), (2.11c)

Up =

(
β

γ

)
xÛp(η, ξ ), (2.11d)

α = α̂(η, ξ ). (2.11e)

The new variable here is ξ ≡ (β/γ )1/2x3/4, and since there is no independent length
scale in this problem (as is the case generally with self-similar flows), if we take
the length scale to be the viscous length scale L = ν3/M , then U∞ = M/ν2. However,
arguments based on other, secondary or artificial length scales, such as the size of the
orifice from which the jet emerges, lead ultimately to the same equation set. Therefore,

† Another means is to regard the problem as a (nonlinear) eigenvalue problem for the power of
the streamwise decay.
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the non-dimensional coordinates introduced above may be written as follows

x =
Mx∗

ν3
, ξ = x3/4

(
9

2γ

)1/2

(Rep)−3, η =

(
M

ν3x∗3

)1/4

y∗, (2.12)

where the particle Reynolds number Rep = (Ma)1/3/ν. Note that since we shall
(formally) be assuming that ξ = O(1), then this implies that the streamwise length
scale (scaled on the jet thickness) is such that x � 1, i.e. the streamwise scale is
slowly varying compared to the jet thickness. Note that since x may be regarded
as the cube of a Reynolds number, it is this requirement that permits the formal
use of the boundary-layer approximation. In terms of the caret variables, the system
(2.5a)–(2.5e) becomes

− 1
2
Û − 3

4
ηÛη + 3

4
ξÛ ξ + V̂ η = 0, (2.13a)

− 1
2
Û 2 − 3

4
ηÛÛη + 3

4
ξÛÛ ξ + V̂ Û η = Û ηη − α̂γ ξ 2(Û − ξ 2Ûp), (2.13b)

ξ 2Û 2
p − 3

4
ξ 2ηÛpÛpη + 3

4
ξ 3ÛpÛpξ + V̂ pŨpη = Û − ξ 2Ûp, (2.13c)

V̂ pV̂ pη + 3
4
ξ 2Ûp[−V̂ p − ηV̂ pη + ξ V̂ pξ ] = ξ 2[V̂ − V̂ p] − K(γ /β)3/2ξ 3, (2.13d )

V̂ pα̂η + α̂V̂ pη + ξ 2α̂
[
Ûp − 3

4
ηÛpη + 3

4
ξÛpξ

]
+ 3

4
Ûp[−ηα̂η + ξ α̂ξ ]ξ

2 = 0. (2.13e)

Thus, the quantity β , which under the required choice of L is now given by 9Re−6
p /2,

is entirely scaled out of the problem apart from its presence in the buoyancy term,
which is now given by

K′ ≡
(

γ

β

)3/2

K =
ga3

ν2

(
2γ

9

)3/2(
1 − 1

γ

)
. (2.14)

This quantity is often called a ‘Galileo number’ in the particle-flow literature. Note,
too, that the volume fraction occurs in the combination αγ , that is, the ‘particle
loading’.

The ‘dusty’ counterpart to (2.10) is the following integral condition∫ ∞

0

Û

∫ ∞

η

Û 2 dη̄ dη −
∫ ξ

0

∫ ∞

0

ξÛ

∫ ∞

η

γ α̂(Û − ξ 2Ûp) dη̄ dη dξ = 1. (2.15)

Near the source of the jet (that is, as ξ → 0), we recover the Glauert similarity
equations for the fluid (2.9) and the corrections to the fluid velocity field due to the
influence of the suspended particle phase are O(ξ 2). In this regard, from a numerical
point of view, it is convenient to seek a form of solution that (even) more precisely
builds in the correct near-origin behaviour of the singular jet, namely,

V̂ (η, ξ ) = V̂ 0(η) + ξ 2Ṽ (η, ξ ), (2.16a)

Û (η, ξ ) = Û 0(η) + ξ 2Ũ (η, ξ ), (2.16b)

V̂ p(η, ξ ) = V̂ 0(∞) − K′ξ + ξ 2Ṽp(η, ξ ), (2.16c)

Ûp(η, ξ ) = Ũp(η, ξ ), (2.16d )

α̂(η, ξ ) = α∞ + ξ 2α̃(η, ξ ). (2.16e)

Substitution of (2.16) into (2.13) yields alternative governing equations; it is these
equations that are employed in our numerical work.
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The key points to note in the above formulation are that: (i) as ξ → 0, all caret and
tilde quantities are regular and bounded (indeed, these limiting values were generally
used as initial conditions in our calculations); (ii) as η → ∞, Ũ , Û , Ũp, Ûp → 0, α̂ → α∞
(implying α̃ → 0), V̂ p → V̂ − K′ξ (implying Ṽp → Ṽ ); (iii) at the origin of the jet, the
normal particle velocity (to leading order) is just that of the outer-edge transpiration
velocity of the fluid (V̂ 0(∞) ≈ −0.628 < 0), and the next order, correction term to this
is just the buoyancy influenced component, −K′ξ ; the comments in the previous
section regarding the potential balance between transpiration and buoyancy effects
are likely, therefore, to be an issue if K′ < 0.

Some calculations were performed in which the flow was treated as ‘clean’ up to
ξ = 1, at which location distributions of Ûp(η, ξ = 1), V̂ p(η, ξ = 1), α̂(η, ξ = 1) were
imposed on this flow; the motivation in this case was to mimic the injection of
particles at a finite downstream location. A calculation of this type is presented in
Appendix.

Parametric restrictions

Before proceeding, we note that the requirement that the particle size be small
relative to the boundary-layer thickness

a 

(

ν3x∗3

M

)1/4

, (2.17)

can be written as

Mx∗

ν3
� Re4

p. (2.18)

Since Rep must be small to guarantee validity of the Stokes-drag formula, this
restriction is less severe than the requirement for the validity of boundary-layer
theory itself, namely, Mx∗/ν3 � 1 (the latter merely presupposing that the streamwise
scale is considerably larger than the boundary-layer thickness).

2.1. The Saffman force

Some investigators, for example Lee & Chan (1972) and Asmolov (1992), include
a ‘Saffman force’ (Saffman 1965) in the governing equations. Though such a force
does not typically result from the formal processes employed by Jackson (1996) or
Zhang & Prosperetti (1997), H. H. Shen (personal communication, 2003) argues that
this is because the force summation on the dispersed phase is simply set equal to
the Stokes drag, rather than a vector sum of the Stokes drag and the Saffman force.
Incorporating this modifies only equation (2.13d), adding to the right-hand side of
this equation the expression

c
(

2
9

)3/4
γ −1/4ξ 3/2[Û − ξ 2Ûp]|Û η|1/2Re3/2

p s, (2.19)

where c is a numerical constant, and s is a sign adjustment depending on the flow
direction. Note that the assumed smallness of Rep makes this term always smaller
than the Stokes-drag term, with potential importance arising only if the gradient of
the fluid velocity becomes very large. We return to this question later, to enquire into
whether or not this force alters the non-uniformities that arise at a finite location
downstream.
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The numerical marching procedure

The governing equations together with the integral constraint (2.15) then form the
basis of our numerical investigation, which involves a standard (Crank–Nicolson)
marching procedure in ξ (together with second-order differencing in η); consequently,
the scheme is overall of second-order accuracy. Poor quality treatment of the governing
equations near ξ = 0 invariably leads to spurious growing oscillations in the computed
solution downstream. Therefore, in developing the numerical results presented herein,
great care has been taken to ensure numerical accuracy. In particular, the use of the
tilde variables in (2.16) (together with their appropriate limiting values as ξ → 0) is
crucial in this respect. Further, any artificial parameters associated with the numerical
scheme, such as the grid size across the boundary layer, the spatial step size in the
streamwise marching process and the position at which the ‘far field’ conditions are
applied, have no influence on the results (as graphically presented) when refined
further. Systematic studies of the convergence of the solutions with respect to the
domain size and spatial resolution were performed for a range of physical parameters,
but are not presented here. Typical grid parameters chosen consist of a transverse grid
of ∆η = 0.02 (extending out to η =20), and a streamwise stepsize of ∆ξ = 2.5 × 10−4.
All flow quantities at a given streamwise location were simultaneously calculated
(using Newton iteration), with the banded structure of the resulting algebraic system
being fully exploited. Typical computation times were a few minutes on a 2.5 GHz
Pentium 4 processor.

The results obtained in this way are described in the subsequent sections. As usual,
if either of Û or Ûp changes sign, corresponding to a change of streamwise direction
of the fluid or the particles, respectively, then the nature of the governing equations
profoundly changes and the concept of streamwise marching is no longer appro-
priate.

Finally, although the main focus of our attention in this paper is on the ‘full’ system
(2.13a)–(2.13e), later in the paper it will be useful to refer to a dilute limit – this refers
to the limit α → 0, i.e. vanishingly small particle concentration levels so that the fluid
affects the particle motion, but the particles do not affect the fluid motion. We must
note that this is distinct from the ‘flow visualization’ limit, which is formerly achieved
for vanishingly small particle size, that is, β → ∞. Quite simply, the ‘dilute limit’ is
achieved by setting α̂ =0 in (2.13a), which in turn implies (generally) that Ũ = Ṽ = 0,
and so the fluid motion is merely that corresponding to a particle-free jet. As a
consequence, the similarity form (for the fluid motion) is maintained throughout the
streamwise extent of the flow, although the corresponding problem for the particle
motion (obtained by solving (2.13c)–(2.13e)) is non-self-similar.

2.2. The physical interpretation

The flow we are describing here is the spatial development of a two-dimensional
jet in an incompressible fluid issuing near a wall at some prescribed location x = 0.
If we ignore the role of the suspended particles for a moment, then the behaviour
is the classical Glauert similarity solution, an exact reduction of the Navier–Stokes
equations. For a flow that evolves according to the Glauert self-similarity, we find
a jet that broadens as it evolves along the bounding wall (thickening like x3/4) and
algebraically decaying with x−1/2 and x−3/4 factors for the streamwise and transverse
velocity components, respectively. We must note that the inclusion of a particle phase
suspension removes any possibility of a self-similar flow (this is immediately apparent
by inspection of (2.13a)–(2.13e)).
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Mass transport

Mass transport

(a) (b)

gg

Figure 1. The two cases of (a) K′ < 0 (local gravitational acceleration is directed in the
opposite sense as the far-field fluid transport induced by the layer) and (b) K′ > 0 (local
gravitational forcing is in the same direction to the far-field mass transport induced by the
boundary layer). The case K′ 
 1 corresponds to problems in which the gravitational influence
is weak.

It is key to the interpretation of the results presented in this work that, as the
‘Glauert’-type wall jet develops, there is a spatially decaying mass flux into the
boundary layer from the external flow; this is induced by the lateral transport
inside the layer. Near the singular source of the jet, this transpiration is dominant
and the Stokes-drag forcing induced in the particle phase results in a concomitant
net transport in the suspension in the same direction, that is, the particles are dragged
by the fluid towards the wall.

We shall consider three cases in this paper, namely K′ = 0, K′ > 0 and K′ < 0 (in
§ § 3, 4 and 5, respectively). These are shown schematically in figure 1, with the two
different signs of K′ corresponding to the wall jet being above or below the boundary
(we assume throughout this work that the particles are significantly heavier than the
surrounding fluid in which they are embedded).

We can now see why one might anticipate these cases to be qualitatively different,
since for K′ > 0 both the Stokes-drag forcing of the particles (due to the net vertical
fluid transport induced in the wall jet) and the gravitational forcing act towards
the wall. However, for K′ < 0, these two forcing mechanisms compete, with the
transpiration induced by the boundary layer lifting particles towards the wall, whilst
gravity acts to oppose this motion.

For K′ < 0, near the origin the singular nature of the wall jet is the dominant
mechanism, transporting particles in the opposing direction to the local gravitational
acceleration. Nevertheless, the streamwise decay of the wall jet requires that the mass
transport into the boundary layer must decrease, eventually leading to a point at
which the interplay of the Stokes drag and gravitational forcing can become more
subtle. The competition between these two forcing mechanisms is addressed in some
detail in this paper.

In terms of the mathematical viewpoint, the hyperbolic nature of the equations
governing the particle phase means that a change in the sign of V̂ p leads to a change
in the direction of the characteristics in the (η, ξ )-plane (here ξ , the streamwise
coordinate, plays a time-like role). The direction of the characteristics is crucial
to the choice of boundary conditions on the particle phase and also the potential
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Figure 2. Downstream development of surface quantities, K′ = 0, α∞γ = 0.1.

development of particle-free regions in the flow (or equivalently, regions of high
particle concentration).

3. The case |K′| 
 1: weak gravitational forcing
We first consider flows for which |K′| 
 1, that is gravitational effects are negligible.

Figure 2 shows the downstream flow and particle development for the case α∞γ = 0.1
(note that the structure of the flow in (η, ξ ) space is dependent on a single parameter
K′). Shown are the four key surface quantities, namely the wall shear stress of the
fluid Û η(0, ξ ), the particle slip (ξ -wise) velocity at the wall Ûp(0, ξ ), the particle normal
(η-wise) velocity component at the wall V̂ p(0, ξ ), and the particle concentration on the
surface α(0, ξ ). In this case, the response of the fluid is relatively benign, with Û η(0, ξ )
varying only slightly on the scale shown, however, there is a significant response
observed in the particle quantities. At a critical streamwise location (denoted by ξs ,
in this case ≈ 0.94), the particle concentration increases significantly and it was not
possible to continue calculations beyond this point. It should be emphasized that
this violates one of our initial assumptions, namely that α 
 1, but nonetheless, given
the extremely rapid build-up in the surface value of α, we may surmise there is
indeed some physical significance to this observation. Furthermore, all the indications
are that the two components of the particle surface velocity, Ûp(0, ξ ) and V̂ p(0, ξ )
both become zero simultaneously at this critical event (see figure 3). A number of
very careful numerical experiments were performed, on a variety of grids, and these
all confirmed this assertion. Physically, the simultaneous development of (effectively)
a stagnation point in the particle flow with the development of a build up of
fluid particles (described by a rapid growth in particle concentration) seems entirely
plausible. We will consider this important point next.

Note that the actual distance in terms of x is dependent on the actual value of
Rep , but in these coordinates, the location is universal. The results detailed above,
together with other numerical results performed by the authors, and dominant
asymptotic balancing of terms, point to the following flow development as ξ → ξs
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Figure 3. Downstream development of particle velocity vector, K′ = 0, α∞γ =0.1.

near the wall:

Ûp = 4
3

(ξs − ξ )

ξs

Ûp0(η̂) + · · · , (3.1a)

V̂ p = 4
3
(ξs − ξ )ξ 3

s V̂ p0(η̂) + · · · , (3.1b)

α = (ξs − ξ )−1α0(η̂) + · · · , (3.1c)

where η̂ = 3
4
η/[(ξs − ξ )ξs] = O(1).

It is our conjecture that at/near this point, the fluid behaviour is benign, and the
streamwise component of the flow, in the η̂ =O(1) region can be represented merely
by (

4
3
ξs(ξs − ξ )Û η(0, ξs)η̂, 8

9
ξ 2
s (ξs − ξ )2V̂ηη(0, ξs)η̂

2
)
.

Substitution of (3.1a)–(3.1c) into (2.13c)–(2.13e) leads to the system

−Û 2
p0 + η̂Û p0Ûp0η̂ + V̂ p0Ûp0η̂ = Û η(η = 0, ξs)η̂ − Ûp0, (3.2a)

−V̂ p0Ûp0 + η̂Û p0V̂ p0η̂ + V̂ p0V̂ p0η̂ = −V̂ p0, (3.2b)

η̂Û p0η̂α0 + η̂α̂0η̂Û p0 + V̂ p0α0η̂ + V̂ p0η̂α0 = 0. (3.2c)

In order to match with the flow above this sublayer (i.e. in the η = O(1) zone, wherein
all quantities are O(1) themselves), we require as η̂ → ∞ that Ûp0, V̂ p0 =O(η̂), whilst
α0 = O(η̂−1). Consequently, it appears that the critical value ξs is a function of α∞γ ,
but the structure near ξ = ξs is universal for K′ ≡ 0.

4. The case K′ > 0: flow above a boundary
In this case, gravitational effects act in the same (downwards) direction as the

initial jet entrainment (remembering V̂ 0(∞) < 0). Figure 4 shows the downstream
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Figure 4. Downstream development of surface quantities, K′ = 5, α∞γ = 0.1.
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Figure 5. Downstream development of surface quantities, K′ = 1, α∞γ = 0.1.

development of surface fluid and particle quantities for the case K′ = 5, α∞γ =0.1.
What is observed from these distributions is the apparent simultaneous vanishing of
the streamwise component of the particle velocity Ûp(0, ξ ) and the fluid wall shear

stress Û η(0, ξ ) at a critical downstream location ξ ≈ 7.16. A similar calculation is
shown for the case K′ = 1 (all other parameters unchanged) in figure 5 and this
replicates the qualitative features of figure 4. The computations confirm that in this
case,

ξs = ξs(α∞γ, K′). (4.1)

Again, the value of β serves only to fix the location in x∗.
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Figure 6. Flow and particle profiles, K′ = 1, α∞γ = 0.1.

Figures 6(a)–6(d) show the corresponding profiles for the flow and particles, and
intriguingly indicate that the streamwise fluid velocity, Û and the streamwise particle
velocity Ûp are both becoming identically zero across the entire jet at the same
critical downstream location (in this case at ξ = ξs ≈ 25.6). This is in contrast with
the results of the preceding section in which both Ûp and V̂ p vanished (just on the
wall). Thus, in the absence of gravitational forcing, a stagnation point develops in the
particle velocity field on the wall, whereas here the results point to a simultaneous
flow reversal of both the particle and fluid velocity fields.

In the many computations performed by the authors to substantiate the results
given above, a further point became apparent, namely that the approach to zero of Û

and Ûp appears to be entirely regular, suggesting the following solution development
as the critical downstream location, ξs is approached:

Û = 4
3
ξs(ξs − ξ )U ∗(η̄) + · · · , (4.2a)

V̂ = 4
3
ξsV

∗(η̄) + · · · , (4.2b)

Ûp = 4
3
ξ −1
s (ξs − ξ )U ∗

p(η̄) + · · · , (4.2c)

V̂ p = ξsV
∗
p (η̄) + . . . , (4.2d )

α = α∗(η̄) + · · · , (4.2e)

with η̄ = ξsη. Substitution into (2.13a)–(2.13e) leads to the system

−U ∗ + V ∗
η̄ = 0, (4.3a)

−U ∗2 + V ∗U ∗
η̄ = U ∗

η̄η̄ − α∗γ (U ∗ − U ∗
p), (4.3b)
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−U ∗2
p + V ∗

p U ∗
pη̄ = U ∗ − U ∗

p, (4.3c)

V ∗
p V ∗

pη̄ = V ∗ − V ∗
p − K′, (4.3d )

V ∗
p α∗

η̄ + α∗V ∗
pη̄ − α∗U ∗

p = 0. (4.3e)

That the flow stagnation seemingly occurs in a regular fashion is somewhat novel,
given the singularities that are so often encountered in classical (‘clean’) boundary-
layer flows around separation. Certainly, it is clear in this regime (K′ > 0) that there
is significant fluid/particle interaction. We note that the structure of this region is
dependent on the values of two parameters: α∞γ and K′. We further note that this
structure can be valid only for K of sufficient size to make K′ = O(1). Should this
quantity be very small, then the structure of this zone reverts to that described in § 3.
Note also that the implication of the above from (2.15) is that∫ ξs

0

∫ ∞

0

ξÛ

∫ ∞

η

γ α̂(Û − ξ 2Ûp) dη̄ dη dξ = −1. (4.4)

The dilute limit (i.e. α → 0) is also of some interest in this (co-gravitationally forced)
regime. As noted already, this limit is retrieved easily by setting α̂ ≡ 0 in (2.13b),
and as noted earlier leads us to the conclusion that (Û (η, ξ ), V̂ (η, ξ )) = (Û 0(η), V̂ 0(η)),
and so the fluid velocity is simply the Glauert similarity solution as the jet evolves
downstream.

Figure 7 shows some results for the particulate phase in the case K′ = 1 and
α∞γ = 0.1; for ease of comparison with the previous results, the particle concentration
normalization was taken to be as before, although in line with our comments above,
the Stokes-drag term was omitted from the streamwise fluid momentum equation. As
such, these results are the dilute analogy to those shown in figure 5. In this case, the
computation proceeded downstream, with no sign of any breakdowns/singularities or
any hint of the streamwise particle velocity becoming zero at any finite downstream
location. More particularly, in this limit it is easy to see from (2.13a)–(2.13e) that we
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Figure 8. Downstream development of surface quantities, K′ = −1, α∞γ = 0.1.

must have that

Ûp(η, ξ ) → Û 0(η), V̂ p(η, ξ ) → −K′ξ + V̂ 0(η), α̂ → α∞, (4.5)

and so far downstream the particle concentration becomes uniform (and equal to the
free-stream value), the streamwise particle velocity becomes equal to the streamwise
fluid velocity and the transverse particle velocity becomes equal to the gravitational
‘settling’ velocity (with a correction equal to that of the normal velocity of the fluid).
In the non-dilute case, asymptotic inspection of (2.13b) and (2.13c) reveals this is
not possible as ξ → ∞, primarily because of inconsistencies caused by the presence of
the Stokes-drag term in (2.13b). Thus, the mutual interaction between both phases is
crucial in the development of the breakdown in this instance.

Results for the scenario where the particles are injected into the stream at some
downstream location are given in the Appendix.

5. The case K′ < 0: flow under a boundary
We have indicated already that when the direction of gravitational acceleration is

counter to that of the transpiration induced by the jet, i.e. when the former acts in the
direction away from the boundary, there exists the possibility of a balance existing
between these two effects, leading to some interesting particle dynamics (cf. FDH).

In figure 8, we present results for the case K′ = −1 and α∞γ = 0.1 (results which
turn out to be representative for this regime). A critical streamwise position also exists
in this case; here it is at ξ ≈ 0.46, at which point the normal particle velocity at the
wall becomes zero (V̂ p(η =0) = 0). Calculations on a variety of grids led to entirely
repeatable results up to this point; thereafter, although in most cases the calculations
would continue for varying distances downstream, results were very sensitive to
choices of the numerical grid. On the other hand, the streamwise wall shear stress of
the fluid phase (Û η(η = 0)) is seen to vary little downstream. It is of some interest to
inspect the flow and particle profiles at ξ = ξs , and a selection of these are shown in
figure 9. At this location, there is no indication of any singular behaviour in any of
the profiles shown. The implications of these results are examined next, first close to
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the location ξ = ξs , which gives some clues regarding the development of the solution
further downstream.

5.1. The solution around ξ = ξs

There seems little doubt that the subtleties related to the computation of this flow
are linked to the vanishing of V̂ p at the wall, all other flow quantities behaving in a
regular fashion close to ξ = ξs . A number of corresponding dilute computations (i.e.
with the decoupling of the particle velocities from the fluid momentum equations)
were also performed, and yielded quantitatively similar results, reinforcing this view.

We now seek a local description of the flow just downstream of ξ = ξs by first
assuming that V̂ p(η = 0) varies linearly around ξ = ξs , as strongly indicated in our
numerical results. A balancing of terms in the V̂ p equation leads us to conclude that
we should pursue a solution of the form

V̂ p =
ξ − ξs

ξ 3
s

V ∗
p (η∗) + · · · , α̂ = α∗(η∗) + · · · , (5.1)

where η∗ = ξ 6
s η/(ξ − ξs)

2. Now supposing in the zone η∗ = O(1), as ξ → ξs that
Ûp = Ûp0 + · · · , where Ûp0 is a constant, then we conclude that to leading order,
(2.13d) becomes

V ∗
pη∗

(
V ∗

p − 3
2
η∗Ûp0

)
+ 3

4
Ûp0V

∗
p = −K′. (5.2)

Equation (5.2) indicates the likelihood of difficulties if V ∗
p = 3η∗Ûp0/2, which will

occur (only) if ξ > ξs . In order to match with the flow above the η∗ = O(1) zone (and
by implication the flow ahead of ξ = ξs), it is necessary to impose the condition

V ∗
p → − 4K′

3Ûp0

as η∗ → ∞; (5.3)
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indeed, this solution identically satisfies (5.2). Helpfully, (5.2) can also be integrated
to yield

K1 =

(
V ∗

p +
4K′

3Ûp0

)2

V ∗
p − 3

4
Ûp0η∗ +

2K′

3Ûp0

, (5.4)

where K1 is a constant of integration.
Consequently,

V ∗
p = 1

2

{(
K1 − 8K′

3Ûp0

)
±

[(
K1 − 8K′

3Ûp0

)2

− 4

(
16K′2

9Û 2
p0

+ 3
4
K1Ûp0η

∗ − 2K′K1

3Ûp0

)]1/2
}

.

(5.5)

Equation (5.3) corresponds to the choice K1 = 0.
Sequentially, the particle volume fraction term may be determined (from the limiting

form of (2.13e)), namely

(V ∗
p − 3

2
Ûp0η

∗)α∗
η∗ + α∗V ∗

pη∗ = 0, (5.6)

which may be routinely integrated to yield the general solution

α∗ = K2 exp

{
−

∫
V ∗

pη∗

V ∗
p − 3

2
Ûp0η∗

dη∗

}
, (5.7)

where K2 is a further constant of integration. It is not obviously apparent which
are the correct/appropriate choices for the constants of integration K1 and K2. In
order to obtain some guidance on this important detail, it is appropriate to consider
a model version of the system (5.2) and (5.6), in which artificial viscosities are
introduced into the system; although this technique is well known to be heuristic
in many respects, nonetheless it can (and does here) yield valuable information
regarding the system of interest here. Specifically, we modify (5.2) and (5.6) as
follows:

V ∗
pη∗(V ∗

p − 2η∗) + V ∗
p = −K̂′ + µ̃V ∗

pη∗η∗, (5.8)

(V ∗
p − 2)α∗

η∗ + α∗V ∗
pη∗ = µ̃α∗

η∗η∗, (5.9)

(here, V ∗
p has been normalized with respect to 3Ûp0ξs/4 and K̂′ denotes a suitably

scaled K′). The quantity µ̃ is the artificial viscosity, which we emphasize is aphysical,
but nonetheless does give us useful guidance with regard to the nature of the solution
to (5.2) and (5.6) as µ̃ → 0.

The inclusion of the two artificial viscosity terms clearly necessitates the need for
the prescription of a value of both V ∗

p and α∗ at the wall. The choice of these, thus far,
has not been appropriate, but rather these wall values have themselves been part of
the solution. With the inclusion of viscous terms, these choices are entirely arbitrary
within our model (although both must be greater than or equal to zero). The exact
microscale phenomenology of the particle–wall interaction may be regarded as being
outside the (preliminary) scope of the ‘dusty-gas’ continuum model, and will only be
elucidated by careful experimentation and comparison with the predictions derived
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both here and elsewhere. However, here we are merely introducing the small artificial
viscosity and arbitrary wall conditions as a numerical mechanism to study the range
of likely non-smooth solutions to the dusty-gas model in the limit of vanishing particle
viscosity, our conjecture being that the global flow features are essentially independent
of the particular ad hoc wall conditions that we choose to apply, as we shall verify
below.

Equation (5.8) is then solved as a two-point boundary-value problem, using
second-order finite differences, coupled with Newton iteration. Other parameter
choices were that K̂′ = −1 and µ̃ = 10−6. Figure 10 shows distributions of V ∗

p for
selected imposed values of V ∗

p (η∗ = 0), together with V ∗
p → −K̂′ as η∗ → ∞. In spite

of the smallness of µ̃, some finite value was necessary for the success for these
calculations, but equally the results shown in figure 10 may be regarded as converged
with respect to the smallness of µ̃. The striking feature of all the distributions shown
is that beyond η∗ = 0.5, the value of V ∗

p is constant (and takes on the outer-limit value,
−K̂′); this value is attained at a (universal) value of η∗ = 0.5. The generic picture is
therefore that the solution (for V ∗

p ) is dependent upon V ∗
p (η∗ =0) for 0 � η∗ < −K̂′/2;

beyond η∗ = −K̂′/2, V ∗
p = −K̂′. It is especially gratifying to note that the solution

above η∗ = −K̂′/2 is entirely independent of our (arbitrary) choice of wall boundary
condition.

A further feature of interest is that there are three choices of V ∗
p (η∗ = 0),

which lead to especially simple solutions for V ∗
p for 0 � η∗ < −K̂′/2. The first

of these, V ∗
p (η∗ = 0) = −K̂′ leads merely to V ∗

p ≡ −K̂′ (this is illustrated by the
choice V ∗

p (η∗ = 0) = 1 in figure 10). If V ∗
p (η∗ =0) = 0, then it is straightforward to

show that V ∗
p = (−2K̂′η∗)1/2 for 0 � η∗ < −K̂′/2. The final (special) case is when

V ∗
p (η∗ = 0) = −K̂′/2, which permits a simple linear form, namely V ∗

p = −K̂′/2 + η∗.
Now that we have a clear picture of the behaviour of the normal particle

velocity V ∗
p , let us turn our attention to the particle distribution, α∗, which may

subsequently be determined. Consider first cases for which V ∗
p (η∗) = 0, which leads to

the simple V ∗
p form as discussed above. The two-point boundary-value problem was

then solved using second-order finite differences. Figure 11 shows the corresponding
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distributions for α∗(η∗)/α∗(∞) for selected imposed wall values. These results point to
the striking result that below the critical location η∗ = −K̂′/2, α∗ shows a strong
tendency to take on a value of zero; at this critical point, all the indications
are of the formation of a shock, at which point the distribution jumps to the
upper (η∗ → ∞) value. This important observation points to the conclusion that
α∗(η = 0) = 0 is the appropriate choice, and indeed this value is maintained up to
the critical (shock) location η∗ = −K̂′/2, indicating the flow to be particle-free below
the shock. Decreasing the artificial viscosity led to confirmation of this observation.
(Indeed an analogous phenomenon was found by FDH.) Taking the particular choice
α∗(η∗ = 0) = 0, the authors computed the α∗ distributions corresponding to the V ∗

p

distributions shown in figure 10 and these confirmed the conclusion that α∗ = 0 for
0 � η∗ < −K̂′/2, α∗/α∗(η∗ = ∞) = 1 for η∗ > −K̂′/2. Finally, it is worth pointing out
that the fluid velocity is little affected by all the subtleties encountered in the particle
phase.

5.2. The solution beyond ξ = ξs

Since the concept of the inclusion of artificial viscosity has proved to be a useful
technique in the localized problem around ξ = ξs , we now move on to incorporate
this into our treatment of the full system. Specifically, this was achieved by adding in
additional ‘viscous’ terms into the governing system.

The inclusion of these additional second-order terms obviously necessitates the
prescription of additional boundary conditions (on η =0), which are entirely arbitrary.
A sensible choice to model these, however, appears to be to choose values downstream
of the critical location ξs to take on the values found at ξ = ξs , i.e.

V̂ p(η = 0, ξ > ξs) = 0, i.e. Ṽp(η = 0, ξ > ξs) =
γ K′ξ

β
− V̂ 0(∞), (5.10a)
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Figure 12. Near-wall particle distribution and velocity profiles, K′ = −1, γα∞ = 0.1,
µ∗ =10−8.

Ûp(η = 0, ξ > ξs) = Ûp(η = 0, ξ = ξs), i.e. Ũp(η =0, ξ > ξs) =
ξ 2
s

ξ 2
Ũp(η = 0, ξ = ξs),

(5.10b)

α̂(η = 0, ξ > ξs) = α̂(η = 0, ξ = ξs), i.e. α̃(η = 0, ξ > ξs) =
ξ 2
s

ξ 2
α̃(η = 0, ξ = ξs). (5.10c)

Solution profiles for the particle phase for β = γ = 1, K′ = −1 (cf. figure 8) are
shown in figures 12(a)–12(c) at downstream locations ξ = 0.45 (immediately upstream
of ξs in this case), 0.4625, 0.475, . . . , 0.5625. For these calculations, the value of the
artificial viscosity parameter µ∗ was taken to be 10−8; results are presented close to
the wall, close to the location of the shock. From the α̂ distributions (figure 12a)
there is clear evidence of the formation of a shock progressively downstream, and
these results (crucially) reinforce the view that the region below the shock is becoming
particle-free. The computation was suspended downstream of ξ = 0.5625 to avoid
aphysical negative values of α̂. The Ûp distributions (figure 12b) indicate that
this quantity remains continuous across the shock, a feature replicated in the V̂ p

distributions (figure 12c). Just beyond the final downstream location presented, the
calculations ceased to converge. One likely cause of this is that it is inevitable that
in the outer edges of the jet the direction of V̂ p will also ultimately change, a detail
highlighted by figure 13, which again shows the V̂ p distributions of figure 12(c),
but across the entire jet profile. Indeed, since V̂ 0(∞) ≈ −0.628, for this particular
choice of parameters the dilute-limit problem will ultimately encounter this difficulty
at ξ ≈ 0.628. This (further) change in direction in V̂ p at the outer edge of the jet
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Figure 13. Distribution of V̂ p across jet (parameters as for figure 12c).

(in addition to the earlier change at the wall) presents a significant difficulty in
extending these computations further downstream, and it was decided to halt the
computations prior to this point. Finally, it should be noted that the fluid (again)
behaves in a relatively benign fashion in this region.

6. Effects of the Saffman force
The singularity that occurs at ξ = ξs , at least for the K′ = 0 case, calls into question

the validity of this ‘dusty-gas’ model in the vicinity of the singularity since the volume
fraction takes unphysically large values. The natural question that arises is how this
singularity is to be resolved in the broader context of more general field equations.
Possibilities include extensions that incorporate finite particle volume-fraction effects,
or the (neglected) Saffman force, in order to resolve the singularity within the confines
of the dilute-limit equations.

Some authors have found that inclusion of the Saffman force acts to remove
these unphysical singularities from the particle fluid. Osiptsov (1988) found that the
singularity at the wall in the Blasius flow is strongly modified by the inclusion of the
Saffman force. We have given the appropriate form for the force in this problem in
(2.19); so we can now assess its influence in the singularity structure.

In the K′ = 0 case of § 3, (3.2b) is modified by the presence of the Saffman force to
be

−V̂ 0Ûp0 + η̂Û p0V̂ p0η̂ + V̂ 0V̂ p0η̂ = −V̂ p0 + ε[Û η(η = 0, ξs)η̂ − Ûp0], (6.1)

where the multiplier of the new term is given by

ε = c
(

2
9

)3/4 Re3/2
p

γ 1/4ξ
1/2
s

|Û η̂(η̂ = 0, ξs)|1/2. (6.2)

Thus, the Saffman force does indeed modify the equation for V̂ p0, but it does not alter
the structure itself, since the local similarity is preserved, and therefore the stagnation
point for Ûp , and most importantly the singularity in α remain.
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In § 4, the equations that describe the flow near the singularity are not modified at
all by the Saffman force. The reason is that it vanishes at the wall, but the gravitational
force does not. Hence, there is no effect to leading order.

Finally, in § 5, the equation obtained for V ∗
p is modified by the Saffman force, so

that (5.2) becomes

V ∗
pη∗

(
V ∗

p − 3
2
η∗Ûp0

)
+ 3

4
Ûp0V

∗
p = −K′ − ε ′Ûp0, (6.3)

ε ′ = c
(

2
9

)3/4
γ −1/4Re3/2

p ξ 7/2
s |Û η(η = 0, ξs)|1/2. (6.4)

In this case, the only effect seems to be to modify the apparent value of K′, making
|K′| smaller than it would have been with no Saffman force.

The Saffman force is clearly very small for all order-one ξ since Re3/2
p 
 1. Since

the term is entirely regular, it can have no effect over the range of the numerical
integration. However, because it depends on the shear of the fluid velocity, there is
always a possibility that even at asymptotically small Rep the term might become
important near the singularity, thus modifying the structure. Nonetheless, the above
analysis indicates that the near-singularity structure is preserved in all three cases, and
that for K � 0, a small modification in the solutions in those regions arises, but in
both cases the alterations do not affect the structure of the solutions in those zones.

7. Conclusions
In this paper, we have described the spatial development of a wall-jet flow in a

particle-laden incompressible viscous fluid. The modelling approach we have adopted
is the ‘dusty-gas’ equations, which treat the flow as two continua that interact through
a Stokes-drag mechanism. In the absence of any particle suspension, there is a well-
known similarity solution to this problem due to Glauert (1956). However, there is
no such self-similar solution available in the fully coupled particle–fluid interaction
problem.

There are three distinct cases described herein: (i) insignificant gravitational forcing
(|K′| 
 1); (ii) a jet flow above a boundary (K′ > 0); and (iii) a jet flow below
a boundary (K′ < 0). The distinction between K′ > 0 and K′ < 0 is that in the
former, gravitational effects act in conjunction with the fluid entrainment into the jet,
whereas in the latter case these two mechanisms compete. Having derived the
governing equations, it is necessary to take great care to build in the correct near-
origin asymptotic behaviour and solve the resulting system via a spatial marching
technique to determine the downstream evolution accurately.

In case (i), |K′| 
 1, we have seen that the downstream evolution of the flow
terminates with the generation of a stagnation point in the particle phase on the wall.
This stagnation point leads to a singularity in the particle concentration violating the
assumption of the model that the particles are non-colloidal. Therefore, beyond this
critical location we must return to a more general set of field equations to determine
the evolution of the flow.

In case (ii), K′ > 0, gravitational effects act in conjunction with the transverse flow
induced by the jet to drive particles towards the bounding wall. In this case, the spatial
development (in the context of the ‘dusty-gas’ model) again breaks down through the
simultaneous reversal (across the entire jet) of both the fluid and particle flow at a
critical downstream location. This evolution depends crucially on the interaction of
the particle and fluid phases, being absent if the two systems of equations decouple.
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In case (iii), K′ < 0, gravitational effects act to force particles away from the
boundary whilst the entrainment of fluid by the jet acts to force particles towards the
boundary. Since the jet entrainment decays spatially as the flow evolves downstream,
this also leads to some interesting behaviour. The physical picture in this case is more
straightforward than the mathematical subtleties of § 5 might suggest. A particle-
free region near the wall develops at a critical downstream location, caused by the
gravitational forcing of particles away from the boundary. This particle vacuum is
separated from the outer particle-filled flow by a shock in the particle concentration
distribution. Although we can solve ‘below’ the shock with arbitrary wall values
imposed in the model, the influence of these arbitrary conditions appears to be felt
neither in the fluid phase nor in the exterior particle-filled region of the flow and act
only to adjust the velocity field within the vacuum region. This makes intuitive sense,
since the governing ‘dusty-gas’ equations, when cast in their conservative form (see
below), are entirely trivial in regions for which the particle concentration is zero, α =0,
and remain decoupled from the fluid phase. This analysis lends strong support to
the geometrically more complex numerical engineering studies of particle-laden flows
that allow boundary conditions to be imposed on a particle phase in flow regions
where no such particles exist, effectively solving for ‘virtual particles’. Summarizing,
the breakdown is located at

x∗
s =

ν

M

(
9ξ 2

s

9

)2/3

Re−4/9
p , ξs = F (K′, α∞γ ), (7.1)

where the function of the two parameters, F , has been computed for several cases,
with qualitatively different behaviours near ξs depending on the sign of K′.

Arguments based on characteristics are also useful in this context, and further
reinforce the conclusions detailed above. In particular, the three ‘particle’ equations
(2.5c)–(2.5e) are hyperbolic, all with characteristics given by

dY

dx
=

Vp

Up

. (7.2)

Ahead of the critical downstream location ξs , the particle velocity in the
neighbourhood of the wall is clearly directed vertically downwards (see figure 8), the
implication being (and confirmed by figure 12c) that beyond this point, the particle
velocity becomes directed vertically upwards, which in turn leads to characteristics
intersecting, with the possibility of shocks forming. It is possible (and straightforward)
to write (2.5c)–(2.5e) in conservation form, and the presumption that the zone below
the shock is particle free, leads to the conclusion (from all of (2.5c)–(2.5e)) that the
shock location is determined from

dYs

dx
=

V s
p

Us
p

, (7.3)

where (Us
p, V s

p ) is the particle velocity at the shock (it is our assertion that this is
continuous). The results of our local analysis around ξ = ξs are entirely consistent
with these observations. One final point, in this respect, is that an analogous event
happens further downstream, where there is a change in direction of the normal
component of the particle velocity, Vp , at the outer edge of the jet, which in turn
leads to the intersection of characteristics in that region also.

In each of the above cases, asymptotic descriptions are provided in the
neighbourhood of the stagnation point, the flow reversal and the particle-free region,
respectively. We have described a simple boundary-layer flow in a straightforward
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Figure 14. Downstream development of surface quantities, K′ = 1,
α(η, ξ = 1) = αprofile(η).

and experimentally realizable configuration, making definite quantitative and
qualitative predictions regarding the flow evolution. It is hoped that future careful
experimentation will interact with the theoretical predictions described above to drive
further development of the model equations and validation of the ‘dusty-gas’ approach
over a broad parameter range.
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Appendix. Injection of particles at ξ = 1

As an example of a case in which the particles are introduced into the jet at a finite
downstream location (i.e. rather than being introduced into the jet ab initio), we now
consider a (full non-dilute) case for which we specify

α̂(η, ξ = 1) = αprofile(η) = 0.1e−η, (A 1)

together with α∞ = 0, β = γ = 1. With regard to the treatment of Ûp and V̂ p ,
there are obviously many (arbitrary) choices here, but we chose to continuously
compute these quantities from ξ =0, downstream, treating the location ξ = 1 just
like any other. Clearly, between ξ = 0 and ξ =1, Ûp and V̂ p may be regarded as
‘virtual velocities’, although they do represent the particle velocity components in
the dilute limit. The flow development observed is quite different (but nonetheless
physically reasonable) from the previous examples presented, as shown in figure 14. In
particular, neither the flow nor particle motion show any signs of stagnation, and the
calculation proceeded downstream, unabated, with a progressive dilution of the fluid
particles, as would be very much expected. In particular, inspection of the governing
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equations (2.13a)–(2.13e) in the far downstream limit indicates that

Ûp(η, ξ ) → Û (η, ξ ) → Û 0(η), V̂ (η, ξ ) → V̂ 0(η), (A 2a)

V̂ p(η, ξ ) → V̂ 0(η) − K′ξ, α̂ → 0, (A 2b)

and so far downstream the fluid reverts to the Glauert form, the particle distribution
becomes progressively more dilute, with a streamwise velocity equalling that of
the fluid, and a normal velocity equalling the buoyancy/settling velocity (with a
correction term equal to the normal velocity of the fluid). There is therefore a clear,
qualitative difference with the flow and particle behaviour in this case (when compared
with the earlier corresponding nonlinear calculations shown in this section, which led
to the formation of a stagnation point). The cause of this key difference appears to be
the fluid/particle interaction term in (2.13b) (in particular, if α takes a finite value
at the outer edge of the jet), which prohibits an asymptotic form along the lines
of (A 2a).
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