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a b s t r a c t

In this paper, a hybrid intelligent parameter estimation algorithm is proposed for predicting the strip

temperature during laminar cooling process. The algorithm combines a hybrid genetic algorithm (HGA) with

grey case-based reasoning (GCBR) in order to improve the precision of the strip temperature prediction. In

this context, the hybrid genetic algorithm is formed by combining the genetic algorithm with an annealing

and a local multidimensional search algorithm based on deterministic inverse parabolic interpolation. Firstly,

the weight vectors of retrieval features in case-based reasoning are optimised using hybrid genetic algorithm

in offline mode, and then they are used in grey case-based reasoning to accurately estimate the model

parameters online. The hybrid intelligent parameter estimation algorithm is validated using a set of

operational data gathered from a hot-rolled strip laminar cooling process in a steel plant. Experiment results

show the effectiveness of the proposed method in improving the precision of the strip temperature

prediction. The proposed method can be used in real-time temperature control of hot-rolled strip and has

potential for parameter estimation of different types of cooling process.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

In steel manufacturing industry, the hot-rolled strip laminar
cooling (HSLC) process is used to cool a strip from a finishing
rolling temperature of roughly 820–920 1C down to a coiling
temperature of 400–680 1C. Strips enter laminar cooling section
after the finishing mill, then are cooled in the water cooling
section, and finally are coiled by coiler. When the strip is cooled
down on the run-out table, the mechanical properties of the
corresponding strip are determined by the cooling curve (Tang
et al., 2007; Sha et al., 2007). Therefore the highly flexible and
precise control of the cooling curve and coiling temperature in the
cooling section is extremely important for the product quality.

However, since it is difficult to measure the strip temperature
continuously while in the cooling section, establishing a dynamic
parametric model to estimate the strip temperature plays an impor-
tant role in controlling the hot-rolled strip temperature. A fixed-
parameter model can represent a certain product type (i.e. grade).
However, in strip manufacturing process, many different grades need
to be produced which necessitates using a parameter-varying
dynamic model to predict the temperature. Each grade is identified
using a number of different process settings (e.g. moving speed, strip
temperature, etc.). Then, in order to manufacture the required grade,
the cooling water distribution is adjusted, so that the desired product

attributes are obtained. Consequently, rapidly changing operating
conditions of cooling process lead to the instability of heat transfer
characteristics. The model parameters represent the thermal char-
acteristics of the cooling process, such as heat transfer coefficient
which is influenced by many variables including ambient tempera-
ture, hardness grade of strip, strip thickness, temperature of cooling
water, strip moving speed, strip temperature, and the distribution of
cooling water. Since the resulting dynamic model parameters, e.g. the
heat transfer coefficient are nonlinear and time varying, the mathe-
matical model derivation is extremely difficult. Furthermore, tradi-
tional estimation techniques fail to estimate nonlinear parameters
accurately due to the lack of prior process knowledge. In order to
overcome these difficulties, an estimation technique based on case-
based reasoning (CBR) has been considered in Tan and Chai (2005).
However, the authors have considered to determine the weights of
CBR features based on operator’s expert experience, which incorpo-
rates significant uncertainties from one operator to another, and as a
result, to inaccurate estimation of the parameters. In this paper, a
new algorithm hybrid genetic algorithm (HGA) is developed to
optimise the weights of CBR features.

1.1. CBR background

The CBR is formed of concepts and techniques which relate to
knowledge representation, reasoning, and learning from experience
(Aamodt and Plaza, 1994; Wettschereck and Aha, 1995; Bonzano
et al., 1997; Jarmulak et al., 2000; Coyle and Cunningham,
2004; Xiong and Funk, 2006; Ahn et al., 2006; Sun and Li, 2009;
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Xiong, 2011). Perhaps the most significant advantage of CBR is
similarity of its prediction approach to that of human reasoning
system which makes predictive processes and results easily under-
standable to industrial users. It is known that human beings always
search their memories to find similar experiences when they
encounter a new problem. The human reasoning system can learn
over time, reason in domains with incomplete or non-well-defined
concepts, and provide means for explanation. The CBR is a well
established methodology with broad applications such as medical
science (Ahn and Kim, 2009), finance (Li and Ho, 2009), electronics
(Chang et al., 2008), chemical engineering for quality design (Suh
et al., 1998), intelligent Web-based sales service (Watson and
Gardingen, 1999; Wilke et al., 1998), building and mechanical design
(Nikolaychuk and Yurin, 2008; Rivard and Fenves, 2000; Mileman
et al., 2002), material science (Amen and Vomacka, 2001; Mejasson
et al., 2001), complex fault finding and troubleshooting (Aha et al.,
1999) as well as planning and real-time scheduling tasks
(Cunningham et al., 1997; Coello and dos Santos, 1999).

Generally, the process of CBR consists of four steps: retrieve,
reuse, revise, and retain (Kolodner, 1993). To find a solution to a new
problem case, it is first necessary to search similar cases. After
assessing the similarity of the retrieved cases, the solution is reused.
Alternatively, new knowledge is used to establish a new case,
through the adaptation process. The performance of CBR relies on
the composition of a case base, similarity assessment, and a case
adaptation method, in which similarity assessment plays an impor-
tant role (Aamodt and Plaza, 1994). Many CBR-based systems
represent cases using features and employ a similarity function to
measure the similarities between new and historical cases (Shin and
Han, 1999). The approach commonly used to assess similarity is the
distance function including the Euclidean distance (Cheng et al.,
2008; Elhadi, 2000; Kwong and Tam, 2002) and the Manhattan
distance (Bryant, 1997; Yu and Liu, 2006). Chiu et al. (2003) proposed
GA-based feature weighting together with number of nonlinear
similarity functions based on standard the Euclidean distance metric.

So far the main stream of the works involving similarity models
has been focused on feature weighting (Kohavi et al., 1997;
Wettschereck and Aha, 1995). Features are assigned with different
weights in accordance with their importance and the global simi-
larity metric is defined as a weighted sum of the local matching
values in single attributes (Xiong, 2011). Different approaches have
been proposed for estimating such weights automatically. Feature
weights are modified by incremental learning according to success/
failure feedback of retrieval results (Bonzano et al., 1997; Ricci and
Avesani, 1995). Probability-based techniques are used to assign
weight values to features utilising conditional probabilities of classes
and the probability of ranking principle (Creecy et al., 1992; Cercone
et al., 1999). For weight adaptation, the case-ranking information
is used as the similarity degree of case retrieval (Branting, 2001;
Coyle and Cunningham, 2004; Stahl and Gabel, 2003). An accuracy
improvement method has been proposed representing an approach
for adapting the set of weights (Jarmulak et al., 2000; Ahn et al.,
2006). Xiong (2011) has also proposed a new method to similarity
assessment based on fuzzy rule-based reasoning and advocate that
the set of fuzzy rules for similarity assessment can be learned from
the case base using genetic algorithms.

1.2. Hybrid genetic algorithm for optimisation

GA has been widely applied to control systems and is one of
the most powerful Artificial Intelligence (AI) techniques (Bedwani
and Ismail, 2001). Compared with gradient-based search algo-
rithms, GA is very suitable for optimisation problems with several
local minima. It is also effective if the search space is either
(partially) non-differentiable or discontinuous (Kargupta and
Smith, 1991; Kristinsson and Dumont, 1992). The GA techniques

have been applied to identify linear and non-linear systems by
many researchers. For instance, Hossain et al. (1995) have used
GA for parameter estimation of a flexible beam to design a
vibration controller where a first order central finite difference
(FD) method was used to study the behaviour of the beam.

The main disadvantages of GA, however, are the slow convergence
to global optimum and the premature convergence. In order to
overcome the convergence speed problem, this paper employs a
truncation-based selection algorithm (Tavakolpour et al., 2010).
The selection strategy involves replacing the weakest member of
the present generation with the strongest member of the previous
generation. This strategy improves the performance of the GA by
ensuring monotonic improvement in the best fitness value of each
generation. The second problem, i.e. premature convergence, is
caused by the loss of diversity in population, especially when the
search is continued for several generations (Gudla and Ganguli,
2005). Hence, an annealing algorithm is employed to overcome the
drawback in the way that each member of a new population is
obtained by the self-recognition crossover and mutation operators
and then is determined whether to enter the next population
according to the Metropolis criteria in annealing algorithm.

1.3. Objectives and contributions

The objective of this paper is to accurately estimate the cooling
temperature model parameters so that the accuracy of predicting
temperature distribution and cooling temperature of strip in the
laminar cooling process are improved. For this purpose, a hybrid
intelligent parameter estimation algorithm formed by a hybrid
genetic algorithm and grey case-based reasoning is proposed. The
HGA is used to optimise the weights of retrieval features in case-
based reasoning which is considered an advantage over the
existing methods in which the weight values are determined by
expert experience. The weight vector is then used by grey case-
based reasoning to accurately estimate the model parameters
online. The proposed method is validated using a set of opera-
tional data gathered from hot-rolled strip laminar cooling process.
Experiment results show significant precision improvement in the
prediction of strip temperature in the laminar cooling process.

The rest of this paper is organised as follows. In Section 2, the
laminar cooling process is presented, and then the problem of
parameter estimation of the thermodynamic model is discussed.
In Section 3, a detailed description of the proposed hybrid
intelligent parameter estimation method is presented. Section 4
presents the implementation and results of the proposed method.
Concluding remarks are made in Section 5.

2. Process description and related work

2.1. Process description

The schematic diagram of a laminar cooling process is illu-
strated in Fig. 1. Strips enter cooling section after the finishing
mill at finishing rolling temperature of 820–920 1C. After being
cooled in the water cooling section, the strips are coiled at coiling
temperature of 400–680 1C. Strips are 200–1100 m in length and
6.30–13.20 mm in thickness. There are 90 top headers and 90
bottom headers on the run-out table. The top headers that are of
U-type are used for laminar cooling and the bottom headers that
are of straight type are used for low pressure spraying. These
cooling water headers are divided into 12 groups. The first nine
groups are considered as the main cooling section and the last
three groups are the fine cooling section. The corresponding
thermodynamic model is presented in Appendix A.

G. Xing et al. / Engineering Applications of Artificial Intelligence 25 (2012) 418–429 419



2.2. Motivation for estimating model parameters

The meaning of thermodynamic model parameters, ak, av, ad,
aT, c and Dv, are fully explained in Appendix A, where

ak proportional coefficient—influence on the accuracy of
the dynamic model;

av velocity parameter—represents the influence of finish
rolling velocity increment on the heat transfer coefficient;

ad thickness parameter—represents the influence of finish
rolling thickness increment on the heat transfer coefficient;

aT temperature parameter—represents the influence of
finish rolling temperature increment on the heat trans-
fer coefficient;

Dv velocity increment—represents the influence of velocity
increment on the thermal conductivity coefficients;

c velocity coefficient—represents the influence of velocity
coefficient on the thermal conductivity coefficients.

Since boundary conditions and strip temperature have non-
linear characteristics, functional relationship between the model
parameters and the boundary conditions with input is nonlinear.
Therefore, it is difficult to represent the model by mathematical
first principle approach and therefore, an efficient estimation
technique has to be applied. There is no prior knowledge concerning
the functional relationship. Moreover, the model parameters are both
time-varying and nonlinear. Therefore, traditional estimation meth-
ods are not appropriate. In this case, a hybrid intelligent parameter
estimation algorithm based on grey case-based reasoning is used to
estimate the parameters. The flow chart of the proposed estimation
method is presented in Fig. 2. The estimated parameter values are
used to calculate the model coefficients (i.e. the heat transfer
coefficient, the thermal conductivity coefficient and the thermal
diffusivity coefficient), and then the dynamic model is determined
which can be used to calculate the temperature distribution of any
point on the strip at any time. Hence, real-time temperature control
for hot-rolled strip can be conducted.

2.3. Related work

Many models for laminar cooling process have been developed so
far. However, the existing models are often not validated using
practical data and remain as simulation models (Serajzadeh, 2004).
Even in cases where the models are verified using industrial data,

they assume fixed model parameters (Guo, 1997; Chai et al., 2002).
However, neglecting the time-varying nature of the model para-
meters (i.e. heat transfer rate) would result in unstable heat exchange.

Therefore in this paper, the time-varying parameter estimation is
the main focus in system identification of the laminar cooling
process. The dynamic parameter tuning has been investigated so
as to cope with the varying operating conditions in the laminar
cooling process. The model parameters are determined by trial-and-
error and back-calculating methods (Chai et al., 2002; Guo and
Hwang, 1996), in which considerable human time besides computa-
tional effort is needed to select the model parameters. Moreover, the
precision of the parameter estimation using these methods is not
satisfactory. So the existing theoretical methods are difficult to apply
in industrial practice. The nonlinear least-square and the nonlinear
quadratic programming methods are well-developed techniques for
parameter estimation (Fletcher and Xu, 1987; Tjoa and Biegler,
1991). However, if the search space is either (partially) non-
differentiable or discontinuous with respect to the parameters, the
nonlinear least-square and the nonlinear quadratic programming
methods often fail to determine the global optimum (Hossain et al.,
1995). In addition, the laminar cooling is a complex process due to
time-varying, highly nonlinear dynamics, non-existent mathemati-
cal representation of intermediate parameters, and also absence of
online strip temperature measurement. As a result, the nonlinear
least-square and nonlinear quadratic programming methods cannot
be directly used in practice.

In this context, case-based reasoning (Tan and Chai, 2005) is a
more suitable parameter estimation method, due to its speed and
simplicity. However, the approach proposed in Tan and Chai
(2005) has several drawbacks. First, the time-varying nature of
the heat transfer coefficient is neglected. Therefore, since the
control signal is calculated after parameter is determined, this
might incorporate applying the control signal with wrong model
parameters. Second, the weights of the case attributes in case-
based reasoning are fixed by expert experience or by off-line
experiments that cost time and effort. In addition, when historical
case base has a significant change, since the weights of retrieval
features are fixed by expert experience, the accurate estimate of
parameters in the thermodynamic model cannot be realised.

An alternative approach is hybrid intelligent parameter iden-
tification based on Radial Basis Function (RBF) neural networks
(Pian and Chai, 2008). In this approach, the time-varying beha-
viour of the heat transfer coefficient caused by the effect of
the speed and the temperature changes is considered. However,

Fig. 1. Hot-rolled strip laminar cooling process. VT: pulse counter; TT: temperature transducer; DT: thickness transducer.

G. Xing et al. / Engineering Applications of Artificial Intelligence 25 (2012) 418–429420



the procedure to determine the weights using the RBF neural
networks is time consuming. Hence, in a very small control period,
this method is unable to complete the accurate estimation of the
model parameters and the accurate estimate of strip coiling tem-
perature cannot be completed as well.

3. Hybrid intelligent parameter estimation based on grey
case-based reasoning

The basic idea of the proposed estimation method is presented
in Fig. 2, which includes the grey case-based reasoning (CBR) and
HGA. The weight vector of retrieval features in CBR is first
optimised offline using HGA. Then the weight vector is used in
the process of grey case-based reasoning.

3.1. Grey case-based reasoning (GCBR)

The boundary conditions and strip temperature have a non-
linear characteristic, which cause nonlinearity between the model
parameters and the boundary conditions. In addition, the bound-
ary conditions affecting the model parameters contain many
qualitative and quantitative attributes, which are not necessarily
known. In theory, there exists a grey relationship between various
qualitative attributes and model parameters, which makes the
grey decision method suitable for estimating the model para-
meters of laminar cooling process. Therefore, the case retrieval
based on the grey similarity (Sun and Hui, 2006), which can
address the grey relationship is adopted in the proposed GCBR-
based hybrid intelligent parameter estimation algorithm for laminar
cooling process.

3.1.1. Case description

The experiential knowledge of operating condition is expressed
by a structured description in HSLC (Tan and Chai, 2005). Therefore
the case representation based on frame structure is applied to
represent the cases. The case in case base is composed of retrieval
features and solution features. A series of qualitative or quantita-
tive attributes are served as retrieval features of each case, which
are denoted as X ¼ fx1,x2, � � � ,xng. In this paper, the solution feature
is quantitative attribute, which is denoted as Y. Namely, a case can
be expressed as a tuple consisting of retrieval feature X and solution
feature Y. Thus, case model can be denoted as ui¼Case (X, Y).
Case base composed of all cases can be denoted as U¼{ui}
(i¼1,2,y,m), where ui represents a case.

3.1.2. Establishment of case base

In practice, since the model parameters, i.e. ak, av, ad, aT, c and

Dv (see Appendix A) cannot be measured online, we need to find
the optimal parameters satisfying certain conditions to establish
the case base. Since grid-search method can traverse variable
space, it is inevitable for the optimal model parameters to be
obtained by computing index function of each point in variable
space. Moreover, equal step grid-search method is simple and
feasible to determine the optimal model parametersak, av, ad, aT,
c, Dv by minimising the following performance index:

J¼
1

I

XI

i ¼ 1

9Ti
c�yi9 ð1Þ

where I is the number of strip segments. In fact, (1) indicates
the mean absolute deviation between measured coiling temperature
Ti

c and the coiling temperature yi computed by the thermodynamic
model of the top surface. Also in (1), i indicates the ith segment

Fig. 2. Scheme of proposed hybrid intelligent parameter estimation algorithm.
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strip. The optimal values of the model parameters are computed by
minimising J in variable space. The resulting optimal parameters are
then used alongside hardness grade G, strip thickness Fd, strip
temperature FT and strip head velocity Fv to form a case.

3.1.3. K-nearest neighbour case retrieval based on the

grey similarity

In the present work, the retrieval strategy combining para-
meter optimisation method of hybrid genetic algorithm with
K-nearest neighbour case retrieval is applied. There exists a kind
of grey relation between various qualitative attributes and model
parameters, which makes the traditional similarity difficult to deal
with. However, it makes the grey similarity suitable for computing
the similarity between two cases. Moreover, the calculation accu-
racy of grey similarity method is higher than the traditional
similarity (Sun and Li, 2009). Therefore, grey correlation analysis
(Sun and Hui, 2006) is applied for model parameter estimation.

The case base is expressed as U¼{ui}(i¼1,2,y,m), and the set
of retrieval features consist of practical operating conditions
expressed as X ¼ fx1,x2, � � � ,xng. Also, factor matrix consists of
retrieval feature values of all cases denoted as F

F ¼

f 11 f 12 � � � f 1n

f 21 f 22 � � � f 2n

^ ^ & ^

f m1 f m2 � � � f mn

2
66664

3
77775¼ ðf ijÞm�n ð2Þ

where fij is the value of the ith case at jth retrieval feature.
In the practical operating condition of HSLC, the retrieval features

have different dimensions and orders of magnitude (e.g. strip
hardness grade G, finishing rolling thickness Fd, finishing rolling
temperature FT and finishing rolling velocity Fv). Therefore, it is
necessary to normalise the primitive factor matrix to make the
retrieval features with different dimension and order of magnitude
comparable. Relative membership grade (RMG) of every retrieval
feature is obtained as follows. The RMG matrix F0 of retrieval
features is obtained by normalisation. That is, each element is
divided by the maximum of the corresponding column.

F 0 ¼

f 011 f 012 � � � f 01n

f 021 f 022 � � � f 02n

^ ^ & ^

f 0m1 f 0m2 � � � f 0mn

2
66664

3
77775¼ ðf 0ijÞm�n ð3Þ

f 0ij ¼
f ij

max
j

f ij

ð4Þ

where maxj f ij is the maximum of jth column.
It must be noted that the problem case is represented as u0,

and f0j represents RMG obtained by normalising the jth retrieval
feature of u0.

3.1.3.1. Grey relational degree of attribute. According to formulation
of grey relational degree, the relational degree gij between case u0

and case ui at retrieval feature is defined as

gij ¼

min
j

9f 00j�f 0ij9þbmaxj9f
0

0j�f 0ij9

9f 00j�f 0ij9þbmaxj9f
0

0j�f 0ij9
ð5Þ

where maxj9f
0

0j�f 0ij9 and minj9f
0

0j�f 0ij9 are the maximum and
minimum of membership grade distance between the problem
case and every case in U at jth retrieval feature, respectively.
Furthermore, 9f 00j�f 0ij9 is the membership grade distance between
the problem case and case ui in U at jth retrieval feature. b is

environment parameter, and bA[0,1]. Obviously, gijA[0,1] so that the
grey relational degree matrix between the problem case and the
case in case base is R¼{gij} with the dimension m�n.

Similarity calculation method based on distance is employed
in this paper. Grey similarity sim0i (Sun and Li, 2009) between
problem case and historical case ui is defined as

sim0i ¼ 1�
Xn

j ¼ 1

½ojð1�gijÞ�
h

8<
:

9=
;

1=h

ð6Þ

where h is a distance parameter, which is the Manhattan distance
when h¼1 and the Euclidean distance when h¼2. Also, oj is the
weight of ith retrieval feature. The weights of n retrieval features
form feature weight vector W ¼ fo1,o2, � � � ,ong, the value of
which is optimised by the proposed HGA. Greater the value of
sim0i, greater the similarity between problem case u0 and histor-
ical case ui. In the present work, the Euclidean distance (i.e. h¼2)
is applied.

3.1.3.2. K-nearest neighbour case retrieval. Similarity threshold T is
set according to k-nearest neighbour. K-nearest neighbour case set
U * of the problem case u0 is composed of all historical cases whose
similarities are equal to or greater than T and U* is defined as

Un
¼ fuin 9sim0in ZTgðin ¼ 1,2, � � � ,LÞ ð7Þ

The value of the threshold T can be calculated using

T ¼ rmaxðsim0iÞ ð8Þ

where maxðsim0iÞ is the maximum of similarity and r is the
percentage.

In cases where the sub-historical case base in the historical
case base have the same hardness grade and thickness (main
indices) with the problem case, the weight vector of the problem
case is known. That is, one of the sub-historical case bases and
then the case retrieval can be conducted. When there are no cases
in the historical case base having the same hardness grade and
thickness (main indices) with the new problem case, the weight
vector of the new problem case is unknown, which makes the
case retrieval impossible. Thus, in the latter cases, the following
calculation procedure is carried out.

First, establish the case structure of the weight vector
W ¼ fo1,o2, � � � ,ong, in which the retrieval features are G, Fd, FT,
Fv and the solution is the weight vector W. The case structure of
the weight vector W is shown in Table 1.

Then, the retrieval features of the sub-historical case base and
the weight values of retrieval features corresponding to the sub-
historical case base form a case. In this way, the case base of the
weights can be established. When a new type of steel (a new
problem case) is required to be cooled, which has never been
produced in a steel industry, the weight vector of the new problem
case is obtained using CBR for the case base of the weight vector.

With the weight vector of the new problem case obtained by
above method, the whole historical case base serves as the retrieval
case base and the model parameter values corresponding to the new
problem case can be obtained by CBR. Since there are no similar

Table 1
Case structure of the weight vector W.

Retrieval feature Solution

x1 x2 x3 x4 Y

G Fd FT Fv W
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cases in case base for a new type of steel, the resulting model
parameter values are only provisional model parameter values.

3.1.4. Case re-use based on replacement method

Using the similarities between the problem case and retrieved
cases as weight values, the solution of the problem case can be
obtained with the weighed sum of all retrieved similar cases.
Greater the similarity between the problem case and retrieved
case, greater the weight value of the corresponding case solution.
In other words, the corresponding case solution is in large
proportion in the solution of the problem case. Once the re-use
solution is obtained, it is used for appropriate case solution.

3.2. Local search method

Since the fitness function is not differentiable, we have to use
methods that do not use gradients. Therefore the multidimen-
sional minimisation method based on inverse parabolic interpo-
lation was employed as a Local Search (LS) method in the Hybrid
Genetic Algorithm (HGA).

Almost all multidimensional minimisation methods use one-
dimensional minimisation (Makeyev et al., 2010). One-dimensional
minimisation methods include inverse parabolic interpolation,
golden section search, and their combinations (e.g. Brent’s method
Press et al., 2007). Here it is assumed that GA stops at the solution
nearest to the global extreme of the fitness function and that in each
direction in the neighbourhood of the global extreme of the
fitness function is approximately parabolic. The smoothness
of the fitness function suggests that in the neighbourhood of the
global extreme the first three terms of Taylor’s series can
approximate the fitness function. Indeed, it is approximately
parabolic in this neighbourhood. Then the abscissa value corre-
sponding to the extreme of the parabola which can be fitted
through any three different points should lie at least very close to
the abscissa value of the global minimum (Makeyev et al., 2010).
Thus, the inverse parabolic interpolation should be suitable under
given assumptions in this research.

3.3. Hybrid genetic algorithm

Since hardness grade and thickness have a greater influence on
model parameters, they can be used as main indices in case
retrieval, while speed and temperature which have a less influ-
ence on model parameters can be used for secondary indices.
Historical case base can be sub-divided into sub-historical case
bases according to the main indices. In each sub-historical case
base, the hardness grade and thickness of all the cases are same.
The weight values of retrieval features corresponding to the sub-
historical case base are calculated by the hybrid genetic algo-
rithm. When the problem case is formed, a search is carried out in
the historical case base to retrieve the sub-historical case base
with the same hardness grade and thickness as the problem case.
In the next step, the search is performed within the sub-historical
case base retrieved from the first step above. The goal for this
search is to obtain the solution of the problem case. If the sub-
historical case base having the same hardness grade and thickness
with the problem case is not found by searching, the whole case
base is served as the retrieval case base and the weight values of
retrieval features are calculated by the hybrid genetic algorithm.
Then the solution of the problem case can be retrieved using the
optimised weight vector. The retrieval accuracy can be improved
by above mentioned method. When the historical case base
changes significantly (equivalent to an increase of more than
30% over the number of cases) or a case having new hardness
grade and thickness joins the historical case base, the weight

vector of retrieval features corresponding to sub-historical case base
having significant change and new type of steel should be recounted
to improve the retrieval accuracy of problem case solution. The
drawback that the weight values of retrieval features are fixed
through engineering experience can be overcome by the above
process. When the case base changes significantly, recounting of
retrieval feature weight vector can improve the retrieval accuracy
using hybrid genetic algorithm.

The GA can converge to a near-optimal solution quickly, but the
accuracy in reaching the optimum solution is poor. Local search
algorithms are likely to stop at a solution which is the closest
solution to the starting point. It would reach a solution which is very
close to optimal solution if the local search method starts near the
global optimum.

In this paper, a multidimensional minimisation method, which
is based on the inverse parabolic interpolation (Goldberg, 1989)
is used as a local search method. The LS method is applied for
post-hybridisation of GA. The flow chart of the proposed HGA is
presented in Fig. 3.

The proposed HGA is performed to realise the parameter
optimisation in the following two consecutive steps. Firstly, in
order to find an area with low fitness values in the search space,
GA algorithm is executed and then the local search method is
applied to the best set of weights found by GA. In contrast to LS
method, a precise initial guess is not required for such HGA which
can find good solutions faster than the standard GA. To overcome
the drawback of genetic algorithm and improve the local search
performance of GA, diversity of evolution population should be
enhanced. The optimum can be found in the neighbourhood of
optimal solution with low fitness values and the optimum can be
found as well in the neighbourhood of poor solution with high
fitness values. Accordingly, in order to improve the local search
performance of GA, an annealing algorithm is adopted in this
paper. Initial population is optimised by the genetic operations of
GA, namely, crossover and mutation are performed on the initial
population at self-recognition crossover and mutation probabil-
ities to obtain a new population. Each member is determined
whether to enter the next population according to Metropolis
criteria in the annealing algorithm and GA proceeds using the
population as parental generation (Liu et al., 2009). The whole
process is repeated until the termination conditions meet.

3.3.1. Generation of initial population

It has been known that real-coded GAs are more suitable for
large dimensional search spaces than binary-coded GAs since
they are more precise, consistent and they lead to faster conver-
gence (Baskar et al., 2003, 2004). Moreover, a real-parameter GA
does not require the knowledge of bounds on parameter values
and can be applied in problems where such information is not
available (Subbaraj et al., 2011). Thus real-coded GA is employed
in this paper.

In HGA, each chromosome is encoded as a vector of floating-
point numbers, with the same length as the vector of weights in
GCBR. For convenience, [o1,o2,y,oi,y,oN] is represented as a
vector of chromosomes to the solution of the weight vector in
case retrieval of GCBR. Initialisation of M individual population is
carried out using

oi ¼ol
iþsiðou

i �o
l
iÞ ð9Þ

where ou
i and ol

i are the domain of oi, where ou
i ¼ 1 and ol

i ¼ 0.
Also, si is a random number uniformly distributed over [0,1]. The
tuning law (9) is repeated N times to produce the vector
[o1,o2,y,oi,y,oN]. By repeating the above procedure M times,
M uniformly distributed initial feasible solutions in the search
space are obtained.
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3.3.2. Fitness function of GA

The estimation error ei between the optimal value Ri and the
estimated value Yi of model parameter is

ei ¼ Ri�Yi ð10Þ

The mean square error e is defined as

e¼ 1

N

XN

i ¼ 1

ðRi�YiÞ
2

ð11Þ

where N is the number of cases in historical case base.
An obvious approach is then to estimate the parameters of

strip coiling temperature model so as to fit the estimated value Yi

as closely as possible to the optimal value Ri as determined in
Section 3.1.2. In fact, the parameters of strip coiling temperature
model should be estimated so that the mean square error (e) of
the estimated parameter converges to zero. Therefore, the mean
square error (e) of the estimated parameter is used as fitness
function of GA.

3.3.3. Selection strategy

In this study, the selection strategy as in Tavakolpour et al.
(2010) is applied for the GA’s selection criteria. Since parameter
estimation is a minimisation problem, it is natural to assume that
the weakest feasible solution is the one which has the highest
mean square errors. At the other extreme end, the strongest
individuals are associated with smallest values of mean square
error. The individuals with smaller mean square error values will
replace those with higher mean square error values. Consequently,
the new population is found by the selection operator so that the
mean square error of the fitness function is minimised. The

probability values, which are used in the selection strategy are
determined through trial-and-error to find the best performance.

3.3.4. Self-recognition crossover and mutation

Premature convergence which is the main disadvantage of GA
is caused by the loss of diversity in population, especially when
the search is continued for several generations (Gudla and
Ganguli, 2005). It has been shown by Liu et al. (2009) that the
self-recognition crossover and mutation operators have the cap-
ability to overcome the mentioned drawback, which is employed
in this paper. Crossover probability pc and mutation probability
pm change with fitness values. That is, the individuals with higher
fitness (mean square error) are associated with greater crossover
and mutation probability values. When the GA is stuck in a local
optima, the individuals with smaller fitness (mean square error)
are associated with greater crossover and mutation probability
values as well, which can contribute to inhibit the premature
convergence of GA.

4. Implementation and results

4.1. Training

In this section, the experiment results conducted on a laminar
cooling process are presented. In this example, the number of the
thickness grade range of low-carbon steel produced by a steel
plant is 500. Thickness range of strip cooled by laminar cooling
system is 1.1–28 mm, which is divided into 15 grades. In this study,
179 strip data (8117 sampling points) are used for experiment,
in which the thickness grade is 9 (i.e. the thickness is between

Fig. 3. Flow chart of proposed hybrid genetic algorithm (HGA).
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10.6 mm and 12.6 mm). The temperature modelling is conducted on
11 points along the thickness direction. Also, 139 strip data (6469
sampling points) are used to optimise the weight values of retrieval
features offline and to establish the initial case base. Furthermore,
40 strip data (1648 sampling points) are used to illustrate the
validity of the proposed method. Since the temperature of strip on
the head and the tail varies with changing operating conditions, in
order to guarantee the generality of the experiment, the middle
segment of every strip is used as test case for the experiment.

The estimated value of the parameters ak, av, ad, aT, c and Dv

are used to validate the proposed method. It is worth mentioning
that estimation of ak is continued within each control period and
the rest are estimated before the control starts.

The estimation strategy explained earlier is implemented within
MATLAB

TM

environment. The goal is to evaluate the effectiveness of
proposed method and compare it against existing estimation meth-
ods. The proposed algorithm yields the model parameter weights
summarised in Table 2.

Fig. 4. shows the convergence of the HGA. The minimum mean
square error of 10.29 was determined after 70 generations. The value
of parameter ak estimated by the proposed method is illustrated in
Fig. 5. It is noted that the proposed method has effectively estimated
the model parameters. Fig. 6 represents the error variations between
the estimated values using the proposed method and the optimal
value from the simulation.

In this research a new parameter estimation method was
proposed for the estimation of the model parameters. Table 3
summarises the HGA parameters employed in the estimation
scheme.

4.2. Validation

Once a parameter estimation method is proposed, it is required
to validate whether the method is good enough to estimate the
parameters accurately. There are two ways to investigate the
validity of an estimation method (Soderstrom and Stoica, 1984).

� Using plots, visual exploration, and experience;
� Performing statistical tests on the prediction error.

While visual exploration of the predictions and comparing
them against the measured data provide convenient means for
model validation, statistical residual analysis (e.g. independence
or whiteness tests) provides more concrete means to assess the
performance of an estimation algorithm.

4.2.1. Plots and visual exploration

In order to evaluate the proposed method, different types of
strips should be employed. As in this paper, four strips of different
types are employed for the experiment. Then the results are

compared with the measured coiling temperature of the strip
points.

Fig. 7 reveals the method capability to predict the coiling
temperature for different types of strips. As can be seen, the
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Fig. 4. Convergence of the HGA.
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Fig. 5. Estimation of parameter ak using the proposed method.

Table 2
Estimated weights of model parameters via HGA.

Parameter ak0 Dak

Weight o1(G) o2(d) o3(T) o4(v) o1(DT0) o2(Dv)

Value 0.63 0.51 0.45 0.26 0.57 0.43

Parameter c Dv av aT

Weight o1(G) o2(T) o3(d) o(v) o(v) o(T)

Value 0.67 0.12 0.39 0.59 0.74 0.23
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Fig. 6. Error between optimal and estimated values of the parameter ak.
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proposed method has predicted the coiling temperature of dif-
ferent types of strips accurately in Fig. 7(a)–(d).

4.2.2. Statistical tests

It is known that the auto-correlation and cross-correlation
tests are the most useful statistical methods for model validation
(Tavakolpour et al., 2010). The auto-correlation and cross-correla-
tion tests are carried out to determine the effectiveness of the
proposed method. The results of the auto-correlation and cross-
correlation tests are shown in Fig. 8(a) and (b), respectively.

4.3. Comparison and analysis

A question may arise about the performance of the proposed
method compared to other existing estimation methods. To
address this, a comparative study was carried out between the
existing methods and the proposed method. The existing methods
(Tan and Chai, 2005; Pian and Chai, 2008) and the proposed
method were executed 10 times. The maximum of generations
was restricted to 120. The estimation scheme was run until the
mean square error became less than 10.5.

Table 4 shows the comparative results obtained from the pro-
posed method and the existing methods. It can be clearly seen that
the proposed method has estimated the model parameters more
effectively than the existing methods. The method addressed in
(Tan and Chai, 2005) has not achieved the desirable mean square
error of 10.5, which may be attributed to the drawback that the
weight values are fixed by the expert experience. Fig. 9 shows the
estimation error of the parameter ak using the existing methods and
the proposed method. The RMS error and maximum absolute error of
the three methods in the estimation of parameter ak are shown in
Table 4. As shown in Fig. 9 and Table 4, it is can be seen that the
proposed method contributes significant accuracy improvement in
the parameter estimation. Moreover, it is fast and effective and may
be used in real-time control of strip temperature in the laminar
cooling process.

The RMS error and maximum absolute error are defined as
follows:

RMSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

I

XI

i ¼ 1

½Ri�Yi�
2

vuut ð12Þ

MAXE¼maxf:R1�Y1:,:R2�Y2:, � � � ,:RI�YI:g ð13Þ

where I stands for the number of the cases in test case base.
In order to evaluate the effectiveness of the proposed method,

196 samples of four strips under different operating conditions
are used. Fig. 10 shows the comparison of the estimation error of
the coiling temperature among the existing methods and the
proposed one. The forecasting results of coiling temperature using
the three methods are shown in Table 5. As shown in Fig. 10 and

Table 5, it can be seen that the average error is 17.28 and 10.53 1C
in Tan and Chai (2005) and Pian and Chai (2008), respectively,
and 118 and 154 segments are controlled in the range of 720 1C
with hit rate of 60.2% and 78.6%, respectively. However, with the
proposed method, the average prediction error is 4.69 1C and the
coiling temperatures of 190 segments are controlled in the range
of 75 1C with the hit rate of 96.9%. Therefore, experiment results
show that the proposed method is effective in the parameter
estimation.

Table 3
The HGA parameters.

Parameters Type/value

Population size 120

Parameter range [0,1]

Selection strategy Truncation-based selection

Mutation Uniform

Mutation probability 0.01

Crossover Double points

Crossover probability 0.6

LS method Inverse parabolic minimisation

Number of runs of LS method 10

(°
C

)
(°

C
)

(°
C

)
(°

C
)

Fig. 7. Predicting precision of coiling temperature to different types of strips.

Hardness grades: (a) 195; (b) 226; (c) 192; and (d) 501.
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5. Conclusions

A hybrid intelligent method based on grey case-based reason-
ing is proposed to estimate the parameters of strip thermody-
namic model in HSLC. The problem is formulated as a non-linear
optimisation problem. To verify the feasibility, the proposed
method was tested on a set of industrial data from HSLC and
the results were compared with the existing parameter estimation
methods (Tan and Chai, 2005; Pian and Chai, 2008). The proposed
method has been found to be more accurate as it gives minimum
RMSE and MAXE than the existing methods. By analysing the
results, it can be observed that the proposed parameter estimation
method gives better results than other methods. The future work
will be focused on the practical application study of the proposed
method. Moreover, the computational burden of the weight vectors

of retrieval features in grey case-based reasoning optimised using
the proposed hybrid genetic algorithm offline is considerable.
Therefore, the fast hybrid genetic algorithm is still a problem to be
solved in future work.

Fig. 8. Correlation tests of the proposed method. (a) Auto-correlation of the

residuals and (b) cross-correlation.

Table 4
The performance comparison of in parameter estimation of ak among the proposed method and the existing methods (Tan and Chai, 2005; Pian and Chai, 2008).

Parameter estimation with the

method (Tan and Chai, 2005)

Parameter estimation with the

method (Pian and Chai, 2008)

Parameter estimation With

the proposed method

RMSE rate of improvement (%) The proposed

method vs. the methods (Tan and Chai, 2005;

Pian and Chai, 2008)

RMSE MAXE RMSE MAXE RMSE MAXE

72.58 163.25 53.81 112.41 10.29 21.83 41.5%, 25.4%
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Fig. 9. Comparison of the estimation precision of parameter ak among the three

methods.
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Fig. 10. Comparison of forecasting precision of coiling temperature among the

three methods.

Table 5
Forecasting results of coiling temperature.

Adopted method Method of Tan
and Chai (2005)

Method of Pian
and Chai (2008)

The proposed
method

Number of segments 196 196 196

Mean forecasting error 17.28 10.53 4.69

RMSE 15.36 10.80 4.21

MAXE 32.25 25.14 6.58

Number of segments

(DT in 730 1C)

136 171 196

Number of segments

(DT in 720 1C)

118 154 196

Number of segments

(DT in 75 1C)

3 5 190
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Appendix A

Using temperature-dependent thermal property (Pehlke et al.,
1982), the latent heat is considered and the thermodynamic
model (Zheng et al., 2009) is presented as

_T ¼
�l
rcp

@2T

@z2
�_l
@T

@l
ðA1Þ

with the boundary conditions on its top and bottom surfaces

7l
@T

@z
¼ hðT�T1Þ ðA2Þ

where the right hand side of above formula stands for h times
(T�TN) and

h¼ hw
T�Tw

T�T1
þs0e

T4
�T4
1

T�T1
ðA3Þ

and (z,l) strip temperature at position T(z,l,t), where z and l are
thickness coordinate and length coordinate, respectively. l is the
heat conductivity, r the density of strip steel, cp the specific heat
capacity, e the emission coefficient, TN the ambient temperature,
s0 the Stefan–Boltzmann constant, and hw the convection heat
transfer coefficient on the surface of strip.

The radiation boundary condition is only applicable in the air
cooling section. The transfer coefficient hw is applicable only in
the water cooling section and is calculated as follows:

hw ¼ 2�
Ncur�Nt

10:0þ1

� �0:12
" #

ak

100

v

v0

� �av d

d0

� �ad T

T0

� �aT

ðA4Þ

where Ncur stands for the current valve position where the moving
strip segment arrives. T, d and v are the strip temperature, the
thickness and the moving speed, respectively. v0, d0 and T0 are the
values of operating points. ak, av, ad and aT are proportional
coefficient, velocity parameter, thickness parameter and tempera-
ture parameter, respectively, which are time-varying parameters.

The thermal conductivity coefficients of the top surface and
the bottom surface are defined as

lðkÞ ¼ 56:43�f0:0363�c½vðkÞ�ðvðthÞþDvÞ�gTðkÞ ðA5Þ

where th is the finish rolling time, v(k) the speed of segment, and
v(th) the strip speed after the finishing mill. Dv and c are velocity
increment and velocity coefficient, respectively, which are time-
varying parameters.

The thermal diffusivities are defined as

sj ¼

8:65þð5:0�8:65ÞðTj�400Þ=250 TjA ½400,650Þ

5:0þð2:75�5:0ÞðTj�650Þ=50 TjA ½650,700Þ

2:75þð5:25�2:75ÞðTj�700Þ=100 TjA ½700,800Þ

5:25þ0:00225ðTj�800Þ TjA ½800,1000�

ðj¼ 0,1,. . .,MÞ

8>>>><
>>>>:

ðA6Þ
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