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O-MINIMAL STRUCTURES

by A J WILKIE

1. INTRODUCTION AND MOTIVATION

The notion of an o-minimal expansion of the ordered field of real numbers was

invented by L van den Dries [vdD1] as a framework for investigating the model theory

of the real exponential function exp : R → R : x → ex, and thereby settle an old

problem of Tarski. More on this later, but for the moment it is best motivated as being

a candidate for Grothendieck’s idea of “tame topology” as expounded in his Esquisse

d’un Programme [Gr]. It seems to me that such a candidate should satisfy (at least)

the following criteria.

(A) It should be a framework that is flexible enough to carry out many geometrical

and topological constructions on real functions and on subsets of real euclidean spaces.

(B) But at the same time it should have built in restrictions so that we are a priori

guaranteed that pathological phenomena can never arise. In particular, there should

be a meaningful notion of dimension for all sets under consideration and any that can

be constructed from these by use of the operations allowed under (A).

(C) One must be able to prove finiteness theorems that are uniform over fibred collec-

tions.

None of the standard restrictions on functions that arise in elementary real analysis

satisfy both (A) and (B). For example, there exists a continuous function G : (0, 1) →
(0, 1)2 which is surjective, thereby destroying any hope of a dimension theory for a

framework that admits all continuous functions. Restricting to the smooth (i.e. C∞)
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environment fares no better. For every closed subset of any euclidean space, in partic-

ular the subset graph(G) of R3, is the set of zeros of some smooth function. So by the

use of a few simple constructions that we would certainly wish to allow under (A), we

soon arrive at dimension-destroying phenomena. The same is even true (though this is

harder to prove) if we start from just those smooth functions that are everywhere real

analytic (i.e. equal the sum of their Taylor series on a neighbourhood of every point),

although, as we shall see, this class of functions is locally well-behaved and as such can

serve as a model for the three criteria above.

Rather than enumerate analytic conditions on sets and functions sufficient to guar-

antee the criteria (A), (B) and (C) however, we shall give one succinct axiom, the

o-minimality axiom, which implies them. Of course, this is a rather open-ended (and

currently flourishing) project because of the large number of questions that one can ask

under (C). One must also provide concrete examples of collections of sets and functions

that satisfy the axiom and this too is an active area of research. In this talk I shall

survey both aspects of the theory.

Our formulation of the o-minimality axiom makes use of definability theory from

mathematical logic. We begin with a collection F of real valued functions of real

variables (not necessarily all of the same number of arguments). We consider the

ordered field structure on R augmented by the functions in F . This gives us a first-order

structure (or model) RF := 〈R; +, ·,−, <,F〉, and we denote the corresponding first-

order logical language by L(F). We then call the structure RF o-minimal if whenever

φ(x) is an L(F)-formula (with parameters) then the subset of R defined by φ(x) is a

finite union of open intervals and points (i.e. it is the union of finitely many connected

sets). I shall elucidate what is meant by an L(F)-formula and by the subset of R (and,

more generally, of Rn) defined by such a formula in the next two sections. However, I

should emphasize at this stage that such a formula not only defines a subset , denoted

φ(RF), of Rn, but also a subset φ(R) of Rn where R is any ordered ring augmented

by a collection of functions, F∗ say, such that F and F∗ are in correspondence via a

bijection that preserves the number of places (arity) of the functions. One can, and

should, define the notion o-minimality for such structures 〈R;F∗〉 and it was at (rather

more than) this level of generality that the true foundations of the subject were laid by

Pillay and Steinhorn in [P-S], shortly after van den Dries’ work on the real field. Indeed,

it turned out that the solution to Tarski’s problem on the real exponential function (the

case F = {exp} in the above notation) relied heavily on the Pillay-Steinhorn theory of

o-minimality for structures based on ordered fields other than the reals. This having

been said, I shall concentrate in this lecture on the real case, alluding only occasionally

to the more general situation, and leave the reader to adapt the definitions and theorems

to the setting of o-minimal expansions of arbitrary ordered fields.
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2. THE SEMI-ALGEBRAIC CASE

2.1. Formulas and the sets they define

In this section I shall describe the logical formalism for the case F = ∅, i.e. where

the structure is just that of the ordered field of real numbers R̄ := 〈R;<,+, ·,−, 0, 1〉.
The corresponding language L(∅), which we denote from now on by just L, consists

of formal symbols for variables Xi (for i = 1, 2, . . .) together with some formal system

of notation for polynomials in these variables (with integer coefficients). It must also

contain a symbol for the ordering and some logical symbols as will be explained in (v)

and (vi) below.

The fact that we are concentrating on one particular structure here allows us to

make several shortcuts in the description of logical concepts. In particular one can, in

fact, dispense with the formal language and the notion of L-formula altogether and

simply specify the definable sets by the following inductive procedure:

(i) For p(X1, . . . , Xn) ∈ Z[X1, . . . Xn], the sets {a ∈ Rn : p(a) = 0} and {a ∈ Rn :

p(a) > 0} are both definable subsets of Rn;

(ii) If A and B are definable subsets of Rn then so are A ∩B, A ∪B and Rn \ A;

(iii) If A is a definable subset of Rn, then πn[A] is a definable subset of Rn−1, where

πn : Rn → Rn−1 : 〈x1, . . . , xn〉 7→ 〈x1, . . . , xn−1〉 is the projection map onto the first n-1

coordinates.

It is, however, very difficult, even in our present limited situation, to do any model

theory without the notion of L-formula, and almost impossible to give examples. So I

give the definition. An L-formula is a formal string of symbols that codes the inductive

construction of a definable set as follows:

(iv) Expressions of the form p(X1, . . . , Xn) = 0 and p(X1, . . . , Xn) > 0 (for

p(X1, . . . , Xn) ∈ Z[X1, . . . Xn]) are L-formulas. These are known as atomic L-

formulas. If φ is such a formula then φ(R̄) denotes the corresponding subset of Rn as

given in (i). We say that φ(R̄) is the subset of Rn defined by the L-formula φ.

(v) If φ, ψ are L-formulas, with φ(R̄) = A ⊆ Rn and ψ(R̄) = B ⊆ Rn, then the

expressions (φ ∧ ψ), (φ ∨ ψ) and ¬φ are also L-formulas. Then (φ ∧ ψ)(R̄) := A ∩ B,

(φ ∨ ψ)(R̄) := A ∪B and ¬φ(R̄) := Rn \ A.

(vi) If φ is an L-formula, with φ(R̄) = A ⊆ Rn, then the expression ∃Xnφ is also

an L-formula and we set ∃Xnφ(R̄) := πn[A] ⊆ Rn−1. (The symbol “∃” is called the

existential quantifier.)
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2.2. Examples

(1) Let α be the expression ∃X3(X
2
3 +X1 ·X3 +X2 = 0). Then α is an L-formula and

α(R̄) consists of all pairs 〈b, c〉 ∈ R2 such that the quadratic equation x2 + bx + c = 0

has a real solution. (Actually, to be perfectly precise, α is not an L-formula because

the parentheses should not be there. But I prefer to err on the side of clarity.)

(2) Let β be the expression ∃X5∃X6∃X7∃X8(((X1 · X5 + X2 · X7 − 1 = 0 ∧ X1 ·
X6 +X2 ·X8 = 0) ∧ X3 ·X5 +X4 ·X7 = 0) ∧ X3 ·X6 +X4 ·X8 − 1 = 0). Then β is

an L-formula and β(R̄) consists of all quadruples 〈a, b, c, d〉 ∈ R4 such that the matrix(
a b

c d

)
has an inverse.

The idea behind the notion of L-formula should now be clear. Let φ be an L-formula

with φ(R̄) ⊆ Rn and let a1, . . . , an ∈ Rn. Then “reading” φ using the dictionary ∧
=”and”, ∨ = “or”, ¬ =”not”, ∃Xi = “there exists Xi ∈ R such that” and replacing the

variables X1, . . . , Xn by a1, . . . , an, we arrive at a statement of (mathematical) English

expressing “〈a1, . . . , an〉 ∈ φ(R̄)”. We therefore often write φ as φ(X1, . . . , Xn) to

emphasize the fact that it should be read as “the n-tuple 〈X1, . . . , Xn〉 has the property

expressed by φ”.

It is in this way that the formula φ also defines a subset φ(R) of Rn for any ordered

ring R. More rigourously, just follow those construction steps 2.1(i)-2.1(iii) coded by φ,

but replace R everywhere by (the underlying set of the) ring R and interpret the formal

polynomials p(X1, . . . , Xn) in 2.1(i) by using the addition and multiplication of the ring

R. The careful reader might now question whether such a set φ(R) is well defined,

that is, whether a given formula φ uniquely determines such a construction procedure.

It does, and the proof of this result (known as the Unique Readability Theorem) and

of many other syntactic properties of formulas (such as the conditions under which

variables may be permuted or expressions substituted for variables ) occupy endless

pages in many introductory texts on logic. The student encountering such texts for the

first time needs to be patient: very little happens for a long time. In this lecture I am, of

course, neglecting such tiresome details. My aim is to convey, as quickly and efficiently

as possible, the role played by logical definablility in the foundations of o-minimality

and especially in how the three criteria for a tame topology set out in section 1 are

justified. So I proceed by presenting more examples. They are intended to familiarise

the reader with the flexibility of logical definability and thereby justify criterion (A) for

the class of L-definable sets and functions.

2.3. More examples (and exercises)

(1) Fix n ≥ 1. Then the set of 〈a1, . . . , an〉 ∈ Rn such that the polynomial

xn + a1x
n−1 + · · · + an is positive definite, is L-definable. The defining formula is

∀Xn+1(X
n
n+1 + X1 · Xn−1

n+1 + · · · + Xn > 0), where the universal quantifier “∀Xn+1” is

an abbreviation for “¬∃¬Xn+1” and therefore may be read as “for all Xn+1”. Another
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abbreviation that will prove useful in the sequel is the symbol → (read as “implies”):

(φ→ ψ) is an abbreviation for (¬φ ∨ ψ).

(2) The class of L-definable sets is closed under many standard topological operations.

For example, if S ⊆ Rn is L-definable then so is S̄, the closure of S in the ambient

space Rn. To see this, let φ be an L-formula defining the set S, i.e. S = φ(R). We

must find an L-formula ψ(X1, . . . , Xn) so that ψ(R̄) = S̄. To do this we simply use the

naive definition of closure: a ∈ S̄ if and only if ∀ε(ε > 0 → ∃y(y ∈ S ∧ ||y− a||2 < ε).

To turn this into an L-formula we must perform some of the syntactic operations re-

ferred to above. We increase the subscripts of all the variables in φ by n+1. The result

of doing this may be written, by the convention described above, as φ(Xn+2, . . . , X2n+1).

(So this formula expresses “〈Xn+2, . . . , X2n+1〉 ∈ S”.) The required formula ψ is:

∀Xn+1(Xn+1 > 0 → ∃Xn+2, . . . ,∃X2n+1(φ(Xn+2, . . . , X2n+1) ∧ (X1 −Xn+2)
2 < Xn+1 ∧

. . . ∧ (Xn −X2n+1)
2 < Xn+1)). (For polynomials p,q we often prefer to write p < q for

q− p > 0.) I leave it to the reader to translate the usual definitions of, say, the interior

of S and of the boundary of S by use of the L-dictionary and hence show that these

sets are also L-definable.

(3) We say that a function F : S → R, where S is a non-empty subset of Rn, is

L-definable if its graph {〈x, y〉 ∈ S × R : F (x) = y} is an L-definable subset of Rn+1.

Suppose that S is open in Rn. Then by translating the usual ε − δ definition one sees

that the set X of points in S at which F is differentiable is an L-definable set and

that each partial derivative of F is an L-definable function on X. We may repeat this

process (on F restricted to the interior of X) to see that all partial derivatives of F , of

all orders, are L-definable functions (on their appropriate domains which, as we shall

see later, are always non-empty).

2.4. The o-minimality of R̄

So far we have only introduced the parameter-free concept of an L-formula and of

the sets and functions that they define. Now consider a definable subset, A say, of

Rn+m. For each a ∈ Rm let Aa denote the fibre {b ∈ Rn : 〈b, a〉 ∈ A}. We say that

the subset Aa of Rn is definable with parameters (or, with parameters a if we need

to be precise). We shall also call the collection {Aa : a ∈ Rm} a definable collection

of subsets of Rn. It is rather easy to see that if we change, in 2.1(i) and 2.1(iv), the

polynomial ring Z[X1, . . . , Xn] to R[X1, . . . , Xn], then the resulting class of formulas

(called L-formulas with parameters) define exactly those sets definable with parameters

in the sense described above. We have now made precise the definition of o-minimality

(for the structure R̄) stated in section 1: every subset of R definable by an L-formula

with parameters is a finite union of open intervals and points. The fact that this is

indeed the case follows from Tarski’s famous quantifier elimination theorem [T] (also

known as the Tarski-Seidenberg algorithm).
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Theorem 2.1. — Every L-formula is equivalent (over R̄) to one containing no occur-

rences of quantifiers. That is, for each n, every definable subset of Rn can be obtained

from sets of type 2.1(i) by applications of the boolean operations 2.1(ii).

Subsets of Rn that can be expressed as boolean combinations of zero-sets and posi-

tivity sets of real polynomials are called semi-algebraic and their study, semi-algebraic

geometry. The essential point of Tarski’s theorem is that the class of all semi-algebraic

sets is closed under projection maps. The theorem can, in some cases be seen as a

manifestation of facts of elementary algebra. For example, the formulas α, β of 2.2 are

equivalent to (X2
1 − 4 ·X2 > 0 ∨ X2

1 − 4 ·X2 = 0) and ¬(X1 ·X3−X2 ·X4 = 0) respec-

tively. To see that the sets of examples 2.3(ii) are semi-algebraic (for semi-algebraic

S ) is, however, more challenging. (One should perhaps mention here that there ex-

ist polynomials p(X), irreducible ones even, such that the closure of the positivity set

{a ∈ Rn : p(a) > 0} of p(X) is definitely not the set {a ∈ Rn : p(a) ≥ 0}.) How-

ever, such considerations are not relevant to our present concerns. Our only interest

here in Tarski’s theorem is that it implies the o-minimality of the structure R̄. For

clearly the zero-set and the positivity set of any univariate, real polynomial are both

finite unions of open intervals and points, and the class of such sets is closed under the

boolean operations. Hence all L-definable subsets of R have this form. (Tarski himself

explicitly observed this consequence of his theorem but he did not pursue it.) Van den

Dries’ key insight was that the most fruitful way to generalize semi-algebraic geometry

to transcendental analytic situations was not to focus on quantifier elimination theo-

rems (which, he observed, rarely hold), but rather on the o-minimality axiom for sets

definable by arbitrary formulas.

3. THE GENERAL CASE

We return to the situation of section 1: F is some collection of real functions, RF de-

notes the structure 〈R; +, ·,−, <,F〉 and L(F) its language. The definition of an L(F)-

definable subset of Rn follows the same inductive procedure as in the semi-algebraic

case, the only difference being that in 2.1(i) we replace Z[X1, . . . , Xn] by the compo-

sitional closure of the collection of functions {+, ·,−, 0, 1, X1, . . . , Xn,F}. We proceed

similarly for the definition of an L(F)-formula. (Strictly speaking we should introduce a

fixed symbol Ff (of specified number of places) for each function f ∈ F and a system of

notation for the compositional closure.) Also, the notion of a set being L(F)-definable

with parameters, and of a definable collection of sets, is just as in 2.4 except that we

replace R[X1, . . . , Xn] by the compositional closure of {+, ·,−,R, X1, . . . , Xn,F}, where

R is here being regarded as the set of all constant functions. We have thus made precise

the formulation of the o-minimality axiom given in section 1. The claim of this talk is

that if F is such that RF is o-minimal, then the collection of L(F)-definable sets and



985–07

functions (with or without parameters) satisfies the three criteria for a framework for

tame topology.

Regarding (A), let us just observe for the moment that examples 2.3(2) and (3) apply

with “L(F)-definable” in place of “L-definable”: one simply constructs the formula for,

say, S̄ out of one for S. In the next section I shall present more of the general theory of

o-minimality as justification for the claim above, but first let me present one of the most

important examples of an o-minimal structure. It was (re)discovered in this context by

van den Dries [vdD2] as a consequence of a theorem of Gabrielov [Ga].

3.1. The globally subanalytic sets

We consider the collection Fan of all those functions f : [−1, 1]n → R (for all n ≥ 1)

that are the restrictions to [−1, 1]n of a real analytic function with domain some open

subset U ⊆ Rn with [−1, 1]n ⊆ U . The structure RFan is usually denoted just Ran.

(Strictly speaking the functions should be total in order to fit in with our previous

account, so we set f(a) = 0 if a ∈ Rn \ [−1, 1]n.) Then Ran is o-minimal ([D-vdD],

[Ga]). The L(Fan)-definable sets are closely related to the much studied and widely

used subanalytic sets. In fact the bounded L(Fan)-definable sets are precisely the

bounded subanalytic sets. However, the set of integers, for example, is a subanalytic

(in fact, semi-analytic) subset of R which is obviously not definable in any o-minimal

structure. The precise characterization is this: a subset A of Rn is L(Fan)-definable if

and only if θ[A] is a subanalytic subset of Rn for some semi-algebraic homeomorphism

θ : Rn → (−1, 1)n.

Thus o-minimality is a common generalization of both semi-algebraic and subanalytic

geometry and, indeed, most of the topological and geometrical finiteness theorems that

were originally established separately have now been proved for o-minimal structures in

general. I shall now discuss such theorems and then present more examples of o-minimal

structures in section 5.

4. SOME GENERAL THEORY FOR O-MINIMAL STRUCTURES

Let us fix an o-minimal structure RF . The proofs of all the results listed below may

be found in [vdD2]. They exemplify criterion (A) and, especially, criterion (C) for tame

topology.

4.1. Connectivity

For each n ≥ 1, every L(F)-definable subset of Rn is a finite union of connected

sets (each of which is also L(F)-definable). For n = 1 this is just the definition of

o-minimality. In fact, there is also a generalization of ’points’ and ’open intervals’ to

higher dimensions, giving rise to a cylindrical cell-decomposition theorem for L(F)-

definable subsets of Rn. This in turn implies a uniformity, as required for criterion (C),
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in fibred collections: if S is a definable collection of subsets of Rn, then there exists a

positive integer N such that each set in S is the union of at most N connected sets.

4.2. Dimension

Indeed, for each p ≥ 1, any L(F)-definable subset A of Rn is a finite union of

connected Cp submanifolds of Rn and this leads to a well behaved notion dim(A),

the dimension of A. Once more, there is a uniform bound on the number of such

submanifolds required for sets in a definable collection. Further, the (integer valued)

function a 7→ dim(Aa) is L(F)-definable, whenever {Aa : a ∈ Rm} is a definable

collection of subsets of Rn.

4.3. Differentiability

Let f : U → R be an L(F)-definable function, where U is a non-empty, open subset

of Rn. Then for each p ≥ 1, there exists an L(F)-definable, open set V ⊆ U with

dim(U \ V ) < n such that f |V is of class C(p) (cf 2.3(3)). In all known o-minimal

structures we may even take p = ∞ here, but this seems unlikely to be true in general.

4.4. Homeomorphism types

Let S := {Aa : a ∈ Rm} be a definable collection of subsets of Rn. Then there exists

a finite subset ∆ of Rm such that every set Aa is homeomorphic to some Ac with c ∈ ∆

(and the homeomorphisms are themselves also (uniformly) L(F)-definable).

Thus, for example, with F = ∅ and fixed n, d ≥ 1, we may take S to be the collection

of all zero sets (or positivity sets) of polynomials in n variables and of total degree at

most d (so we take m to be the number of monomials of degree at most d in n variables).

The conclusion is that there exists a positive integer N = N(n, d) such there are at

most N homeomorphism types of such sets.

5. MORE EXAMPLES OF O-MINIMAL STRUCTURES

5.1. Quasi-analytic classes

Let M̄ = 〈M0,M1, . . .〉 be an increasing sequence of real numbers with M0 ≥ 1. For

n ≥ 1, let Cn(M̄) denote the collection of all C∞ functions f : [−1, 1]n → R satisfying

|f (α)(x)| ≤ c|α| ·M|α| for all x ∈ [−1, 1]n and for all multi-indices α ∈ Nn, where c > 0

is a constant that may depend on f , but not on α or x. (For α = 〈α1, . . . , αn〉 ∈ Nn,

|α| := α1 + . . .+αn and f (α) denotes the α’th partial derivative of f with respect to x.)

We now say that the sequence M̄ determines a quasi-analytic class if for all n ≥ 1, all

f ∈ Cn(M̄) and all a ∈ [−1, 1]n, either f is identically zero or else there exists α ∈ Nn

such that f (α)(ā) 6= 0. In other words, the map sending a function in Cn(M̄) to its

formal Taylor series at a point a ∈ [−1, 1]n is injective.
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Theorem 5.1. — (Rolin-Speissegger-Wilkie [RSW]) Suppose that the sequence M̄ de-

termines a quasi-analytic class and set F =
⋃
{f ∈ Cn(M̄) : n ≥ 1} (with functions

being set to 0 outside the unit box). Then RF is o-minimal.

In the case Mp = p! each Cn(M̄) consists of precisely the functions that have real

analytic continuations to some open set containing the box [−1, 1]n, and then RF =

Ran. However, there are larger quasianalytic classes. For by a theorem of Denjoy

and Carleman, M̄ determines a quasianalytic class if and only if the series Σp=∞
p=0

Mp

Mp+1

diverges, and this can be used in conjunction with theorem 5.1 to construct new o-

minimal structures. However, such structures are more for theoretical interest than

practical use in that they can illustrate the limitations of the general theory. For

example, one can construct a sequence M̄ satisfying the Denjoy-Carleman condition

such that there exists a function f ∈ C1(M̄) which is nowhere analytic. (Every example

of an o-minimal structures constructed prior to [RSW] had the property that every

definable function was piecewise analytic.) Also, there exist two sequences M̄ and K̄,

both satisfying the Denjoy Carleman condition, such that the structure RC1(M̄)∪C1(K̄) is

not o-minimal. So there is no maximum o-minimal structure.

5.2. Tarski’s problem on the real exponential function

Tarski asked whether his work on the ordered field of real numbers could be extended

to the structure R{exp}. (Of course, exp : R → R is real analytic, but it is not definable

in the structure Ran because its graph is not globally analytic.) In fact, he was interested

in questions of effectivity in the sense that his own procedure for producing a quantifier-

free formula equivalent to a given arbitrary formula of L was completely effective. We

still do not have any complete answers in this direction for the structure R{exp}, although

we do now know enough about the L({exp})-definable sets to reduce the problem to a

purely number-theoretic one (see [MW]). This arose out of the work in my paper [W]

where I showed that any L({exp})-definable set is a projection of a set definable by a

quantifier-free formula. Since Khovanski had already shown ([K]) that that such sets

have only finitely many connected components, we also obtain the following result.

Theorem 5.2. — The structure R{exp} is o-minimal.

Soon after this, van den Dries, Macintyre and Marker ([vdD-M-M]), by rather differ-

ent methods, managed to add the full exponential function to Ran. That is, they showed

that the structure RF∗ is o-minimal (and much more besides), where F∗ := Fan∪{exp},
and this is probably the most useful tame topology for the working mathematician. (See

for example [S-V], where functions of the form f(x1, . . . , xn, logx1, . . . , logxn) (where f

is globally analytic) arise. Schmid and Vilonen must control the behaviour of the zero

set, Z say, of such a function near a positive coordinate plane, P say. This may be

studied by analysing the intersection Z̄ ∩ P̄ of their closures, which is L(RF∗)-definable

(cf the remarks concerning 2.3(2) in section 3), and hence the representations described

in 4.1 and 4.2 apply.)
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6. NEW FIBRED COLLECTIONS OF POLYNOMIALS

In this short final section I present a result (due to Coste and van den Dries, and

motivated by work of Risler) that concerns a uniformity in certain collections of semi-

algebraic sets but does not seem to be provable by considering the real ordered field

R̄ alone. Further, unlike the result discussed in 4.4, which may be formulated, and is

in fact true, for the complex field (just split a complex polynomial into its real and

imaginary parts and apply the real result to the sum of their squares) this result is

definitely false there.

Fix positive integers n, d and consider the collection Pn,d of zero sets of polynomials

in n variables that can be written as the sum of at most d monomials (of any degree).

The result states that there is a bound l = l(n, d) on the number of homeomorphism

types of sets in Pn,d. (For n = 1 this is a consequence of Descartes’ Rule of Signs: one

may take l = 2d+ 1.)

Now of course, each set in Pn,d is an L-definable subset of Rn. However, it follows

easily from quantifier elimination that for n > 1, Pn,d is not contained in any definable

collection of subsets of Rn relative to the structure R̄. So the argument of 4.4 seems

not to apply. The idea of Coste and van den Dries is based on the observation that a

monomial function becomes a definable function of both the n given variables and their

exponents if we pass to the structure R{exp}.

To simplify the argument, I consider the collection {Z ∩Q+ : Z ∈ Pn,d}, where Q+

denotes the positive quadrant of Rn, rather than Pn,d. We introduce d + 1 n-tuples of

variables t, y(1), . . . ,y(d) and a d-tuple of variables u and consider the function

g(u,y, t) := Σd
i=1ui exp(y

(i) · t)
of the d+ nd+ n variables displayed. (The · denotes scalar product.)

If P (x1, . . . , xn) is the sum of d monomials with real coefficients, then we may clearly

find α ∈ Rd and k ∈ Nnd (⊆ Rnd) such that P (exp(t1), . . . , exp(tn)) = g(α,k, t) for all

t ∈ Rn.

But note that {{〈exp(t1), . . . , exp(tn)〉 ∈ Q+:g(u,y, t) = 0}:〈u,y〉 ∈ Rd+nd} is a de-

finable collection of subsets of Rn over the structure R{exp}. The result now follows as in

4.4 after noting that the exponential map on each coordinate induces a homeomorphism

from Rn to Q+.
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