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Abstract

In recent work, Belishev and Sharafutdinov show that theegaized Dirichlet to Neumann (DN) operataron a
compact Riemannian manifod with boundarydM determines de Rham cohomology groupdvbf In this paper,
we supposes is a torus acting by isometries dh. GivenX in the Lie algebra ofs and the corresponding vector
field Xy on M, Witten defines an inhomogeneous coboundary opedatpt= d + 1x,, on invariant forms oM. The
main purpose is to adapt Belishev-Sharafutdinov’s boundata to invariant forms in terms of the operadg, in
order to investigate to what extent the equivariant topplafga manifold is determined by the corresponding variant
of the DN map. We define an operatby,, on invariant forms on the boundary which we call g-DN map and
using this we recover th¥y-cohomology groups from the generalized boundary dét, Ay, ). This shows that
for a Zariski-open subset of the Lie algebray, determines the free part of the relative and absolute egaiva
cohomology groups d¥1. In addition, we partially determine the ring structuregf~-cohomology groups fromy,, .
These results explain to what extent the equivariant tapot the manifold in question is determined Ay, .

Keywords: Algebraic Topology, equivariant topology, equivarianhomology, cup product (ring structure ), group
actions, Dirichlet to Neumann operator.
2010 MSC58J32, 57R19, 55N91, 57R91

1. Introduction

The classical Dirichlet-to-Neumann (DN) operafy : C*(dM) — C*(dM) is defined byAy 0 = dw/dv,
wherew is the solution to the Dirichlet problem

Aw =0, a)|aM:9

andv is the unit outer normal to the boundary. In the scope of sw@roblems of reconstructing a manifold from the
boundary measurements, the following question is of ghesiretical and applied interest [Th what extent are the
topology and geometry of M determined by the DN operator?

In this paper we are interested in the equivariant topolagague of this question.

Much effort has been made to address this (non-equivaripré$tion. For instance, in the case of a two-
dimensional manifoldM with a connected boundary, an explicit formula is obtainddciv expresses the Euler
characteristic oM in terms of Ay and the Euler characteristic completely determines thelégy of M in this
case [[6]. In the three-dimensional case [5], some formulasoatained which express the Betti numbgigM)
andB>(M) in terms of Ay andX : C*(T(dM)) — C*(T(dM)). This culminates in recent work of Belishev and
Sharafutdinovi[[7] who prove that the real additive de Rhatmocaology of a compact, connected, oriented smooth
Riemannian manifoltl of dimensiom with boundary is completely determined by its boundary da, A\) where
A QX(dM) — Q" k-1(gM) is a generalization of the classical Dirichlet-to-Neumaperator/\ to the space of
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differential forms. More precisely, they define the DN ogtera\ as follows [7]: givend € Q¥(dM), the boundary
value problem
Aw=0, I"w=06, i"(dw)=0 (1.2)

is solvable and the operatéris given by the formula\@ = i*(xdw), wherei* is the pullback by the inclusion map
i : M — M. Here? is the formal adjoint ofl relative to the_2-inner product

@.B)= [ anep)

which is defined o2%(M), and« : Q¢ — Q'K is the Hodge star operator.
More concretely, there are two distinguished finite dimenal subspaces @#(M) = kerd Nnkerd c QX(M),
whose elements are called Dirichlet and Neumann harmothis fiespectively, namely

HE(M) = {A e HK(M) |i*A =0}, HKE(M) ={A € HX(M) | i*xA =0}.

The dimensions of these spaces are given by:7d§tM) = dim#} ¥(M) = (M), whereB(M) is thekth Betti
number|([11] . They prove the following theorem:

Theorem 1.1 (Belishev-Sharafutdinov [7]) For any0 < k < n— 1, the range of the operator
A+ (=D)AL - QR (OM) — Q" R(aMm)
is MY H(M).

Sincei*HK (M) =2 H{ (M) = HK(M), it follows that (A + (—1)"+1dA~1d) Q"k-1(9M) = HK(M). Using,
Poincaré-Lefschetz dualityy¥(M) = H"K(M, M), the theorem immediately implies that the dé#a,A\) deter-
mines both the absolute and relative de Rham cohomologygrou

In addition, they present the following theorem which gitreslower bound for the Betti numbers of the manifold
M and its boundary through the DN operafar

Theorem 1.2 (Belishev-Sharafutdinov [7]) The kernel ofA contains the spac€(dM) of exact forms and for
eachk,
dimlker/A/£(aM)] < min{B(OM), B(M)}

wherefy(dM) and B(M) are the Betti numbers, amtK is the restriction of\ to QX(dM).

At the end of their paper, they posed the following probleam the multiplicative structure of the cohomologies
be recovered from the dat@M,\)?
To give a partial answer to this question, Shonkwiler [12;. $e3] defines the map

(@.0) — (—D*N@ANTIY), V(@ p) €IHN(M) X i*xHp(M). (1.2)

More precisely, by using the classical wedge product betvike differential forms, he considers the mixed cup
product between the absolute cohomolétyM, R) and the relative conomolody' (M, dM,R), i.e.

U:HYM,R) x H'(M,0M,R) — H*"'(M, M, R)

and then he restricts the second argument to come frotmathedary subspacé his subspace is defined by DeTurck
and Gluck [9] as the subspacelaf(M,dM) consisting of exact forms which satisfy the Dirichlet boandcondi-
tion (i.e.i* of these exact forms are zero). Shonkwiler then presentfotlosving partial answer to Belishev and
Sharafutdinov’s question:

Theorem 1.3 (Shonkwiler [12]) The boundary datddM,A\) completely determines the mixed cup product in
terms of the map_(112) when the relative cohomology classsisicted to belong to the boundary subspace.
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Equivariant setting.We briefly review some notation and results fram [2]. Mtbe a compact, oriented, smooth
Riemannian manifold with boundary and supp@sis a torus acting by isometries &h. Denote byQ'é thek-forms
invariant under th&-action. GivenX in the Lie algebrag of G and corresponding vector fiekyy on M, consider
Witten’s coboundary operat«:lls(M =d+1x,. This operator is no longer homogeneous in the degree ofnloeth
invariant form onM: if w € QK thendx,, w € QK™ @ QL. Note then thatlx, : QF — QF, whereQ{ is the space of
invariant forms of even<) or odd )degree Lety,, be the adjoint oflx,, and define the resulting/itten-Hodge-
Laplacianto beAy,, = (dx, + Iy )? = dxy, Oxy + Oy dxy -

Because the forms are invariant, it is easy to seedﬁ?t: 0 (seel[2] for details). In this setting, we define two
types ofXy-cohomology, the absolutgy- cohomolongx (M) and the relativeiy- cohomolongi (M,0M). The
firstis the cohomology of the compléRg, dx,, ), While the second is the cohomology of the subcompﬁth, dxM)
wherew € QF cp If it satisfiesi*w = 0 (theD is for Dirichlet boundary condition). One also deflr@é =
{a € Qi( )| i*(xa) O} (Neumann boundary condition). Clearly, the Hodge staqurovides an |somorph|sm
QG p = Qgﬁ, where we writen — + for the parity (modulo 2) resulting from subtracting an &eeld number from
n. Furthermore, becausk,, andi* commute, it follows thatly,, preserves the Dirichlet boundary conditions while
Ox, preserves Neumann boundary conditions. Because of boutetars, the null space dy,, does not coincide
with the closed and co-closed forms in Witten’s sense. Efgmef ket\y,, are calledXy-harmonic formswhile
the w which satisfydy,, w = dx, w = 0 areXy-harmonic fieldsit is clear that every<v-harmonic field is arXu-
harmonic form, but the converse is false. The infinite dinmms space oXy-harmonicfieldsis denotedi'-[iM (M),
so we haveHy (M) C kerQy,. Two useful finite dimensional subspaceSLt;fM (M) are the Dirichlet and Neumann
Xm-harmonic fields, respectivelyr‘.-LfM,D(M) and”Hf(M,N(M). There are therefore two different candidatesXg-
harmonic representatives when the boundary is presens. cbinistruction firstly leads us to present ¥yg-Hodge-
Morrey decomposition theorem which states that

QE(M) = &, (M) 5 G5, (M) & 5, (M) 1.3

Whereng(M) ={dxa|aeQfp} andCfM(M) = {0xuB | B € Qf\}. This decomposition is orthogonal with
respect to thé2-inner product given above.
In addition, in [2] we present a¥y-Friedrichs Decomposition Theorem which states that

H):(tM (M) = H)%M,D(M)GBH)%M,CO(M)
,H)j([M (M) = ,H)i(M,N(M) G9,}'{)ﬂ(tw|,ex(|v|)

whereHy o (M) ={& € Hy, (M) | & =dx, 0} andHy, (M) = {n € Hy, (M) | n = &, a}. Together these give
the orthogonaXy-Hodge-Morrey-Friedrichslecompositions [2],

= &,(M)aCy, (M) @My, (M) & Hy, o(M).

The two decompositions are related by the Hodge star opgefidte orthogonality of (113)E(11.5) follows from Green'’s
formula fordy,, anddy,, which states

(1.4)

(1.5)

(A, B) = (0.54,B) + | i"(a ) (16)

forall a,B € Qg.

The consequence fofy-cohomology is that each classl-'r|§<t ) is represented by a uniqug-harmonic field
in H n(M), and each relative classlrmjf M, M) is represented by a uniqd-harmonic field |erx p(M). We
also eluudate in_[2] the connection between Xpecohomology groups and the free part of the relatlve andlateso
equivariant conomology groups.

TheXyu-Hodge-Morrey-Friedrichslecompositiong (115) of smooth invariant differentiaif@rgives us insight to
create boundary data which is a generalization of BelishehSharafutdinov’s boundary data Q@E(aM).

In this paper, we take a topological approach, looking teeine theXy;-cohomology groups and the free part
of the equivariant cohomology groups from the generalizaehidlary data. To this end, in Section 2 we prove that the
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concrete realizationHiM,N (M) andHfM,D(M) of the absolute and relativg,-cohomology groups respectively meet
only at the origin and in Section 3 we define ig-DN operatori\y,, on Qé(aM), the definition involves showing
that certain boundary value problems are solvable. Theitefirof Ay,, represents a generalization of Belishev and
Sharafutdinov’s DN-operatax on QZ (dM) in the sense that whei= 0, we have’\o = A. Finally, in the remaining
sections, we explain how the boundary dé&d,Ax,,) encodes more information about the equivariant algebraic
topology ofM than does the boundary dg@M,A) on dM. Hence, these results contribute to explain to what extent
the equivariant topology of the manifold in question is deii@ed by theXy-DN mapAy,, .

Throughout this paper, when arguments follow closely threasponding arguments in the non-equivariant setting
we refer to the original argument and omit the details. Thiedails can be found in the first author’s thesis [1].

2. Main results

Throughout we leM be a compact, connected, oriented, smooth Riemannian aldmifth boundary and we
SUppOsSES is a torus acting by isometries dh. GivenX in the Lie algebrg and corresponding vector fiely onM,
one defines Witten’s inhomogeneous coboundary opedatps= d + Ix,, Qé — Q& and the resultingiy-harmonic
fields and forms as described in the introduction.

Animportant classical result is that any harmonic fieldsging both Neumann and Dirichlet boundary conditions
(so one vanishing on the boundary) is necessarily zero: keerém 3.4.4in [11] or Lemma 2 in/[8].

Theorem 2.1 If an Xy-harmonic fieldA € Hy (M) vanishes on the boundadM, thenA =0, i.e.
Higun(M) NH5, (M) = {0} (2.1)

The proof consists in showing that a harmonic field which ithbdeumann and Dirichlet has a zero of infinite
order at every boundary point and then applying the StroniglnContinuation Theorem below. However, the proof
that there are zeros of infinite order in[L1, 8] does not apfieaxtend to our present setting, so we give a different
argument, based on Hadamard’s lemma, and which is alsoiudli@ classical case.

First, we state the Strong Unique Continuation Theoremtddgonszajni[3], Aronszajn, Krzywicki and Szarski
[4]. In [10], Kazdan writes this theorem in terms of LaplatizperatoA but he mentions that it is still valid for any
operator having the diagonal forth= Al + lower-order terms, wherkis the identity matrix. Hence, one can state
this theorem in terms of diagonal form operator by the follgyform:

Theorem 2.2 (Strong Unique Continuation Theorem [10]) Let M be a Riemannian manifold with Lipschitz
continuous metric, and leb be a differential form having first derivatives irf that satisfies Pw) = 0 where P is a
diagonal form operator. Ito has a zero of infinite order at some pointvh thenw is identically zero orM.

PROOF OFTHEOREM[ZT:  Suppose € H)%MyN(M) ﬂHfM‘D(M), thenA is smooth by using the results of [2].
Sincei*A =i"xA =0thenA|, = 0and we have thdtx,A)|,, =0 as well.

The proof is local so we can considdrto be the upper half space R' with dM = R"1. Since the metric, the
differential formA and the vector fielKy, are given in the upper half space, we can extend them frore tbaall of
R" by reflection indM = R"~1. The resulting objects are: the extended metric, which vélLipschitz continuous
[8]; we extendA to all of R" by making it odd with respect to reflection R"~1 and extendXy to all of R" by
making it even with respect to reflectionit?—* and the extendeXyy will be a Lipschitz continuous vector field. But
the originalA satisfiesA lom = 0 anddx,, A = dx,A = 0 on the upper half space, hence the extended one will be of

classC! and satisfydx,, A = ox,A = 0 onR", i.e. the extended satisfiesP(A) = Ax, A = 0 on all of R" where the
operator,, has diagonal form, i.eP = Ay,, = Al+ lower-order terms. So far, we have satisfied the first coorliti
of Theoreni Z.P.

Now, we need to satisfy the remaining hypotheses of Thebr@ml2tx = (X, x,) be a coordinate chart where
X = (X1,X2,...,%—1) is @ chart on the boundagM andx is the distance to the boundary. In these coordinatesO
in M anddM is locally characterized by, = 0. These coordinates are called boundary normal coordirete the
Riemannian metric in these coordinates has the it ; hmny (X)dx™ ® dx’ + dx" @ dx".
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Now consider a neighborhood pfe dM where the boundary normal coordinates are well defined. \Wavcite
A = a + B Adxy wherea = 31, (X)dx'1, B = Zg,(x)dx2 andly, I, C {1,2,...,n—1}. Our goal is to prove that all the
partial derivatives of the coefficients &f(i.e. of f|, (x) andg;, (X)) vanish atp € M. Now, A lom = 0 which implies that

fi,(x,0) =g1,(X,0) = 0. Hence, we can apply Hadamard’s lemmé}¢x) andg;, (x) and writef, (x) = xnf|1(x) and
91, (X) = xa8y, (x) for some smooth functionf (x) andg;, (x). Moreover, these representations fgr(x) andg;, (x)
imply that all the higher partial derivatives &f, (x) andg;, (x) with respect to each of thé-coordinates (i.e. except
the normal direction coordinai®) at the pointp are zero.

Therefore, we only need to prove that all the higher part@ahatives offj, (x) andg,(x) in the normal direc-
tion are zero to deduce that the Taylor seriedipfx) and g, (x) aroundx, = O are zero. The proof of this is by
contradiction.

Suppose the Taylor series 6f (x) andg;,(x) aroundx, = 0 are not zero ap € M which means that there exist
the largest positive integer numbérand j such thatfy, (x) = xX ﬂl (x) andg, (X) = x4G, (X) WherefAJl (¥,0) #0and
g3, (X,0) # 0 for someJ;,J,. Thus, we can always writ& in the following formA = xﬁr+x},p/\dxn where the
differential formst andp do not contairdx,. Applyingdx,,A = 0, we get

0= dy, A = kX 2dx A T+ XKdT 4+ Xdp A dXn + Xix, T+ Xbix, (0 A dXn).

Now, reducing this equation modulj we conclude that the terndi(dp A dxq + Ix,, (0 A dXn)) # O moduloxk
because the terid1dx, A T # 0 moduloxX and as a consequence, we infer that j.

Similarly, we can calculatéy, A = —(F)"(xd*x A +*Ix, *A) = 0 using the Riemannian metric above. It suffices
to used x A + Ix,, xA = 0, wherexA = xK& A dx, + x4 for differential formsé and{ which do not contairlx, (both
of them will contain many of the coefficienls,, (x)). Hence, we get

0=d*A +Ixy %A = Xd&E Adxn+ 37 2dxa A +X0dZ +Xix, (€ A dXn) +Xhixg, €.

Reducing this equation moduig and for the same reason above but repla&ify j, we can infer thak < j.
But this is a contradiction, so there are no such largestipesntegersk and j. Hence, the Taylor series for the
coefficientsf;, (x) andg;,(x) aroundx, = 0 must be zero ap € M. It means that all the higher partial derivatives
of fi,(x) andgi,(x) vanish at all points of the boundadM. Thus, this facts are enough to show all mixed partial
derivatives including, also vanish at the boundary. Hendehas a zero of infinite order gtc dM.

The remaining possibility of one of the coefficierfifs(x) andg;, (x) having finite order and the other infinite order
in X, follows from the same argument as above.

Thus,A satisfies all the hypotheses of the strong Unique Contiondtheoreni 212, so must be zero on allRt
SinceM is assumed to be connectddmust be identically zero on all &fl. O

As a consequence of Theoréml2.1, we obtain the following.

Corollary 2.3  1- The space of y-harmonic fields can be written as a (not direct) sum:

Hy,, (M) = Hg, ex(M) +Hy, co(M). (2.2)

2- The trace map'i: Hy, (M) — i*Hy, (M) is an isomorphism.
3- The map fi*Hy, y(M) — Hy, (M) defined by fi*An) = [An] for An € Hy, (M) is an isomorphism.
4- The map hi*}y (M) — Hy (M, dM) defined by ti*An) = [xAn] for Ax € 13 (M) is an isomorphism.

PrRooR (1) This follows by applying Theorem 2.1 and tkg -Friedrichs Decompositiof (1.4).

(2) Itis clear that* is surjective and it follows from Theorem 2.1 that it is irjee.

(3) f is a well-defined map because Kere {0}. Furthermoref is a bijection because there exists a unique
NeumanmXy-harmonic field in any absolutéy-cohomology class (Corollary 3.17 of [2]) hence part (3)d%ol

(4) This follows from part (3) by usingu-Poincaré-Lefschetz duality of|[2] (i.lei)%M (M) = HQ“f(M, oM)). O
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3. Xm-DN operator

Before defining this operator, we first need to prove the dilityaof a certain boundary value problem(B.1). The
proof depends on the main results lin [2] and there is not amesponding statement of it in_[11]. Whet= 0,
this gives an independent proof of the solvability of Bedigland Sharafutdinovisve (I.1). Theorerh 311 represents
the keystone to defining théy-DN operator and then to exploiting a connection betweesXfi-DN operator and
Xm-cohomology via the NeumarXy-trace spacé*HiM,N(M).

Theorem 3.1 Givenf € QF(dM) andn € Q(M), then thesvp

i*wo = 6 on oM (3.1)

Axyw = n on M
i*(oxyw) = 0 on JM.

is solvable forw € QF (M) if and only if
(n, ko) =0, Vkp € Hy, p(M) (3.2)
The solution ofsvp 3.3) is unique up to an arbitrary Dirichletp-harmonic fieldH;fM,D(M).

PrRooOF ~ SupposeVvp (3.1) has a solution. Then one can easily show that condffd) holds by using Green'’s

formula [1.6).
Now suppose) € Q5 (dM) satisfies(n, kp) =0, Vkp € Hy, p(M) (i.e.n € Hy, H(M)*). Sinced € Q5 (aM),

we can construct an extensian € Qg (M) of the differential formd € Q& (dM) such that
"o =0, w1 = 8 Buy +Aw € Cx,, (M) B Hy,, (M).

But Axy, @1 = Sy, dxy Oy Beoy» SO [L6) implies thaby, an € My, 5 (M) as well. Hencen — Ay, wn € Hy,, p(M)*.
We now apply Proposition 3.8 of|[2] which for smooth invatifiorms states that for eadh ’HiM,D(M)i there
is a unique smooth differential formm € Qéo ﬁHfM,D(M)i satisfying thesvp (@) but withn =1 and6 = 0.
Sincen — Ay, w1 € ”H)%M’D(M)i is smooth, it follows from this that there is a unique smodffecential formaw, €
Q5 pNHy, p(M)* which satisfies theve

Ax,02 = nN—D0x,m on M
i*wp = 0 on JdM (3.3)
i*(Oxya2) = 0 on JM.
Now, let wy, = w — wy, then theBvp B.3) turns into thesvp ([3.J). Hence, there exists a solution to ther (3.1)
which isw = w; + wp, where the uniqueness afis up to an arbitrary DirichleXy-harmonic field. O

Definition 3.2 (Xu-DN operator Ax,,) We consider oM thesvp (3.1) withn =0, i.e.

i*w = 6 on JdM (3.4)

Myy,w = 0 on M
i*(oxyw) = 0 on oM

then by Theoreri 3l&vpr (3.4) is solvable and the solution is unique up to an arhitEirichlet Xy-harmonic field
Kp € H)%M’D(M). We can therefore define thé-DN operatom\y,, : Q5 (IM) — Q% T (IM) by

/\)(M 0= i*(*dxM (L)).

Note that takingix,, w eliminates the ambiguity in the choice of the solutnvhich meang\y,, 6 is well-defined.
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The results above and thoselin [2] provide the basic ingngsligeeded to extend by analogy the resultslin [7] and
some of the results in_[12] on the ring structure to the cantéy-cohomology and th&yu-DN map. However,
some results in Sectiob$ 4 dnd 6 are different and are spgkebiie. We therefore omit the proof of the results below;
full details are given in the first author’s thesis [1].

Proposition 3.3 1- i"Hy (M) = & (OM)+i*Hy (M), whereEy (M) = {dx, a | a € QE(IM)}.

2- The operatori\y,, is nonnegative in the sense that the integfgl; 6 A Ax, 8 is nonnegative for any <
QE(OM).
G

3- Letw € Q5(M) be a solution to thesve (B.4) whered € Q;(dM) is given. Thendy, w € # (M) and
Oy w = 0.

4- kerAy, = Ran\y, =i"Hx, (M), wheretx, = Hy & Hy,,.
5- The operator\y,, satisfies the following relations:
Axwdxy =0, dxyAxy =0, A%, =0.

In this corollary, we introduce th¥y-Hilbert transformTy,, which is of course the analogue of the usual Hilbert
transform (see Section 5 in [7]) and it will be used in SecBon

Corollary 3.4 The operator X, := dx, A :i*Hx, (M) — i*Hx, (M) is well-defined ; i.e. the equatiap= Ax,, 6
has a solution@ for any ¢ € i*Hx, (M), and dx, 0 is uniquely determined by = Ax, 0. In particular, T, :
" Hy, n(M) — *HY_ (M) and the operatotix, Ay dx, : Qc(IM) — Qg(dM) is well-defined.

The above construction and the results.in [2] provide therds ingredients needed to extend Theorem 4.2 of
[7] (our Theoreni 1]1) to the present context:

Theorem 3.5 The Neumann pf-trace spaces*iHﬁM,N(M) can be completely determined from the boundary data
(OM, Ay, ). In particular,

(/\XM - (¢1)”+1dxM/\>§deM) QE(OM) = i"HY R (M). (3.5)

4. Ny, operator, Xy-cohomology and equivariant conomology

The following result is an extension of TheoreEml1.X{g-cohomology. We relate the dimensionH;fM (M) with
the kernel ofAy,, as follows:

Theorem 4.1 Let/Ay  be the restriction of ¥-DN operator toQg(dM). Theny (M) C kerAy and
dimlker/Ay /Ex (OM)] < min{dim(Hy (9M)),dim(Hy (M))}. (4.1)
Moreover, if every component of E N(Xv) has a boundary then
max{dimfkerAy /€ (OM)], dim[kerA™/£*(9F')]} < min{dim(Hy (dM)),dim(Hy (M))}.

The proof of the first part follows the proof of Theoreml1.2 smamit it (details are given in[1]). The second part
follows by applying Theorem 1.2 t6'. It moreover refers implicitly to a possible relation beamethe dimensions of
ker/\iM /EfM (dM) and ke\* /£ (AF’) which needs to be discovered. This idea and others are umeistigation
in [2] which will help to extend many of the results of [12] teet style ofXy-cohomology.

To relate these inequalities to equivariant cohomologg oses a result inl[2] (essentially due to Atiyah and
Bott), which asserts that iF’ = F := Fix(G,M), then din{H%M(M)) = rankHg (M)—see, Theorerfi 6.1 below.
Hence we conclude that under this assumption, the right lsaded of the inequalities above can be replaced by
min{rankHg (M), rankHg (M)}.



5. Recovering Xy-cohomology from the boundary data (M, Ax,, )

In this section, we continue extending the results of BelisBharafutdinov and Shonkwiler's TheorEm] 1.3 on
recovering the de Rham cohomology groups and ring strué¢tare the boundary datédM,A\), to the context of
absolute and relativy-cohomology and their concrete realizatidlﬁ%MyN(M) andH;fMyD(M).

5.1. Recovering the long exaay>cohomology sequence @¥1,0M)

We show that the dat@’M, \y,,) determines the long exakt;-cohomology sequence of the péit,dM).

Since the vector fiely which we are considering is always tangent to the boundaty we can also define
Xm-cohomology ordM, that isH)%M (dM). Hence, from the definitions of the absolute and relaXiecohomology,
we have the following exacfy-cohomology sequence of the péil, dM) as follows:

a* p* x a* p*
.5 Hg (M, 0M) ——— Hg (M) —— Hx (OM) —=— HJ (M, oM) —— ... (5.1)
However, Theoreiin 315 proves that we can determine the $’Fﬂi§3 ) from the boundary data and Corollary

23 g|veS|*”HXM‘N( ) = HXM( ) andi*Hy (M) = HXM(M JdM). This says that the additive absolute and relative
Xm-cohomology are completely determinédW,AxM ).
So, if the boundary dat@M, Ay,, ) is given, we can construct the sequence

T A M) P i (M) —— HE (M) —C— g M) 2 . (62

where we define the operators of sequehcé (5.2) by the folpfairmulas:

1. 776 = [6](xy.0m) : if B € 1"}y, \ thenB is Xu-closed becausé anddy, commute.
2. Using Corollary 3} we sefi*6 = —(+£1)"Tx, 6, VO € i*Hy .

3. Letf € Qc(dM) be Xu-closed. Based on Theordm B/, 6 = (Ax, — (F1)"dx, Ay dx,)6. Hence, we
set
9 0] xy.om) = (FD"™ A% 0, V[6](x.0m) € Hi, (OM).

More concretely, our goal is then to recover sequencé (Bob) Bequencé (5.2). It means that we should prove
that the following diagrani(5l3) is commutative.

=% —x =% =% —x

C s A s i (M) HE (0M) 2 M) s

lh lf l: lh (5.3)
L HE M OM) —2 s HE (M) — s HE (0M) —Z s HE, (M, 0M) —2

wherel is the identity operator whilé andh are given in Corollar{Z2]3. Indeed, one can prove the comtitteof
the diagram by a method similar to that givenlin [7] but in terohthe operatordy,, anddy,,, seel[1] for details.

Actually, the above construction proves that the datsl, Ax,,) recovers sequende (5.1) of the p@it, M) up
to an isomorphism (i.e. up to the mapandh) from the sequencé (§.2).

5.2. Recovering the ring structure of the reajXXohomology.

We consider the following questiortan the multiplicative ring structure of the real absolutedarelative X;-
cohomology be recovered from the boundary datsl, Ax,, )?

First of all, we consider the mixed cup produtbetween the absolute and relatXig-cohomology as follows:
U:HfM(M)x_HfM(M,dM) —  Hy,(M,0Mm)
(@] m) OBlxumamy = [0 AB]xM,0M)>
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It is easy to check thal is a well-defined map. In addition, inl[2] we prove that anyabte or relativeXy-
cohomology classes contain a uniqgue Neumann or Dirickleharmonic field respectively. Hence, we can re-
gard any absolute (relativédu-cohomology class as a Neumann (Dirichl¥f)-harmonic field. Buta]x,, m) U
[BlxMam) = [ A Blxy.m,om) IS @ relativeXy-conomology class, so there exists a unique DiricKigtharmonic

fieldn e H;‘ZM,D(M) such thafa A B]x, m.om) = [N xu.M.0m) 1-€-

aAB=n+dx& € Hy, p(M) DE, (M). (5.4)
for someé € QF ,(M). However, it follows from Corollar 213 that

Higy (M, OM) == HEL= (M) 2 H3 7 (M)

According to our illustrations above we know that an abssat-cohomology clasir]x,, m) € HXM( ) and relative
Xu-cohomology classes] x,, m,am), [0 A Bl xyMam) € HXM (M, M) are represented by the Neumafip-harmonic

field a € ’;'-{i n (M) and the DirichlefXy-harmonic fieldg8,n ”HXM o(M) respectively, such that they correspond,
respectlvely, to forms on the boundary by setting

p=i"a iy, (M), W=i"*Bei"Hy (M), I =i"xnei*Hy (M)

Following [12], our answer to the above question will onlyeatial, in the sense that we will not consider all
the classes of the relativgy-cohomology, but will just consider thegoundary portion denotecBH)%M(M,dM), of
H)%M (M, dM). This boundary subspace is defined tolbe [2],

BHy,, (M,0M) =im[9* : H{ (OM) — Hy (M,OM)].

Hered* is the standard construction in the long exact sequéncl @iven anXy-closed formA on dM, letA be
an extension form oiv. ThendxM/\ defines a well-defined element blfgw (M,dM) denotedd*A. This boundary

portion is therefore the image bt;‘(EM (oM) |nS|deHxM(M JdM) in this long exact sequence.

In [2], we prove thaH)%M(M, oM) =~ ”HiM‘D(M). Hence, on translation into the language<gi-harmonic fields,
we can identify '
BHy. (M,0M) = BHy o

whereBHy = Hx, p(M) NHx, ois called the boundary subspaceisf ,(M). Clearly, Hodge sta gives
BHXM N( ) :*BH)j([M,D

whereB”H (M) = ”H (M )QHXM < Is the boundary subspace ’M“ N(M). Using this fact together with
Corollarm we concludethﬁll—ii (M,0M) ="« BHy,
The above constructions aIIow us to extend Shonkwners fdapto the context of\y,, in order to define the
following map with notation as above:
Ui Hy, n(M) X PHE (M) — Hy (M, M)

_ 1 (5.5)
®Uxy ¥ = N (EQANGY),

By using the same method as [12] together with definifioh 3e2deduce thally,, is well-defined. Now, we can
extend Shonkwiler's Theorelm 1.3 to the style above.

Theorem 5.1 The boundary datddM,Ax,, ) completely determines the mixed cup product structure @l
cohomology when the relativesXcohomology classes come from the boundary subspacé.(oefd) € HiM’N(M) X

BHy, p(M) such thatar A B = +dx, & € Hy, (M) & Ex, (M) then

51 = Axy (FQANGY)
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wherep =i*a andy = i* % 3. In fact one shows the commutativity of the following diagra

M, (M) x i % BHE, o(M) —2s i % BHS, 5(M)
l(f,h) lh (5.6)
Hy, (M) x BHE (M,0M)  —2— BH; (M,dM),
where f and h are given in Corollafy 2.3.
PROOF  Our goal is to show that(@, ) = (i*a,i* xdx,B1) € i*Hy, n(M) x i* x BHy, (M) one has
(hoUx, )(i*a,i* *dx, B1) = (To (f,h)(i*a1,i* x dx, ). (5.7)
The left-hand side gives
h(Ox ("0, % dx, Br)) = h(Ax (F@AAGY)) (5.8)

while the right-hand side together with elg. {5.4) and Cargl2.3 give

U((F(i"a),h(i* xdxyB1))) = O[] xym)s [x* dx Bal (0 M.0m) )
=[x (aAdxyB)]xumom)

= [xN]xmom)
= h(i*xn). (5.9)

We now need to prove that the right-hand sides of equatiaB$ #5d [5.D) are equal. This will be the case if

5N = Axy (FOAN ). (5.10)
The method of Shonkwiler [12] used to prove Theofem 1.3 eldéa our setting by combining with results in [2],
such as théy-Hodge-Morrey decomposition theorem (full details aresgiin [1]). O
6. Conclusions

(1) The key point used to recover the free part of the relaive absolute equivariant cohomology groups from the
boundary datddM, Ay, ) is the following theorem which is essentially Atiyah and Bolbcalization theorem.

Theorem 6.1 (|2]) Let X € g (the Lie algebra of G) and let’/= N(Xw). The inclusion j : F’ — M induces the
following isomorphisms

1- Hy (M) = HE(F"),
2- Hy, (M,0M) = H*(F/,0F").

Moreover, if NXu) = F := Fix(G,M) thendimH*(F,dF) = rankHg (M, M) anddimH* (F) = rankHg (M).
Now, combining the above theorem with Theoifleni 3.5 and Cangl.3, we deduce

Theorem 6.2
Hye, (M, OM) = (A, — (1) g, Ax bl ) QE(OM) = HE (F', 0F )

and
Hy: (M) = (/\XM - (il)”ﬂdxM/\;“}dxM) QLF (M) = HE(F).
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Since the Neumaniy-harmonic fields are uniquely determined by their NeumXpnrtrace (Corollanyf2]3)
which is in turn determined by the boundary dé&#V, Ax,, ) (Theoreni3.b), this means we can conclude, by using
Xw-Poincaré-Lefschetz duality of [2], that we can realize thlative and absoludé,-cohomology groups (and hence
in some sense the free part of the relative and absolute amipriv cohomology groups) as particular subspaces of
invariant differential forms o@M and they are not just determined abstractly from the gemethboundary data.

(2) We can apply Theorem 1.1 to the manifolefs= N(Xu) with boundarydF’. SinceG acts onF’ the induced
action on eactH*(F’) is trivial. Now, we can use Theoreln 6.2 to exploit the conioecbetween Belishev and
Sharafutdinov’s boundary data o’ (i.e. (9F’,A\)) and ours oM (i.e. (M, Ax,, )). More concretely, we have the
following.

Theorem 6.3 If every component of Fhas a boundary, then
(/\xM - (:Fl)”“dxM/\;h}dxM) QE(IM) = (A — (¥1)™1dAd) QF (9F).

This means that the boundary d&#’, \) can be determined from the boundary dat#, Ax,, ) and vice versa.
In this setting, it follows that since the de Rham cohomolgmups of(F’, dF’) are determined b§gF’, A) (Theorem
[1.7), then thet de Rham cohomology groups (', dF’) are also determined (YM, Ax,, ).

(3) WhenM has no boundary, Witten proves in [13] thdf (M) = H*(F’) whereK is a Killing vector field (outXy)
onM and he shows how th€-cohomology and the isomorphism above are useful in quafigidtheory and other
mathematical and physical applications. However, wikh£ 0, the extended isomorphism is provided by Theorem
above which gives insight that the extension for othsulte of Witten|[13] are possible. In this light, Theorlem 6.2
suggests thahy,, may also be relevant to quantum field theory and following&\¥it possibly to other mathematical
and physical interpretations. This shows thgf, may be interesting in its own right.

Finally, itis worth considering the following topologigatoblem:Can the torsion part of the absolute and relative
equivariant cohomology groups be completely recoveret fite boundary datédM, Ax,,)? (Here torsion is meant
as a module over the ring of polynomials gr-the standard Cartan model: some torsion information idahla
from Theoremdg_6]1 and 6.2 whéhis in an isotropy subalgebra, but not all.) Answering thigsgtion will indeed
complete the picture of the role the boundary da@i, Ax,, ) plays in the story of the equivariant cohomology of
manifolds.
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