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Abstract

In recent work, Belishev and Sharafutdinov show that the generalized Dirichlet to Neumann (DN) operatorΛ on a
compact Riemannian manifoldM with boundary∂M determines de Rham cohomology groups ofM. In this paper,
we supposeG is a torus acting by isometries onM. GivenX in the Lie algebra ofG and the corresponding vector
field XM on M, Witten defines an inhomogeneous coboundary operatordXM = d+ ιXM on invariant forms onM. The
main purpose is to adapt Belishev-Sharafutdinov’s boundary data to invariant forms in terms of the operatordXM in
order to investigate to what extent the equivariant topology of a manifold is determined by the corresponding variant
of the DN map. We define an operatorΛXM on invariant forms on the boundary which we call theXM-DN map and
using this we recover theXM-cohomology groups from the generalized boundary data(∂M,ΛXM ). This shows that
for a Zariski-open subset of the Lie algebra,ΛXM determines the free part of the relative and absolute equivariant
cohomology groups ofM. In addition, we partially determine the ring structure ofXM-cohomology groups fromΛXM .
These results explain to what extent the equivariant topology of the manifold in question is determined byΛXM .

Keywords: Algebraic Topology, equivariant topology, equivariant cohomology, cup product (ring structure ), group
actions, Dirichlet to Neumann operator.
2010 MSC:58J32, 57R19, 55N91, 57R91

1. Introduction

The classical Dirichlet-to-Neumann (DN) operatorΛcl : C∞(∂M) −→ C∞(∂M) is defined byΛclθ = ∂ω/∂ν,
whereω is the solution to the Dirichlet problem

∆ω = 0, ω ∂M
= θ

andν is the unit outer normal to the boundary. In the scope of inverse problems of reconstructing a manifold from the
boundary measurements, the following question is of great theoretical and applied interest [7]:to what extent are the
topology and geometry of M determined by the DN operator?

In this paper we are interested in the equivariant topology analogue of this question.
Much effort has been made to address this (non-equivariant)question. For instance, in the case of a two-

dimensional manifoldM with a connected boundary, an explicit formula is obtained which expresses the Euler
characteristic ofM in terms ofΛcl and the Euler characteristic completely determines the topology of M in this
case [6]. In the three-dimensional case [5], some formulas are obtained which express the Betti numbersβ1(M)
andβ2(M) in terms ofΛcl and

−→Λ : C∞(T(∂M)) −→ C∞(T(∂M)). This culminates in recent work of Belishev and
Sharafutdinov [7] who prove that the real additive de Rham cohomology of a compact, connected, oriented smooth
Riemannian manifoldM of dimensionn with boundary is completely determined by its boundary data(∂M,Λ) where
Λ : Ωk(∂M) −→ Ωn−k−1(∂M) is a generalization of the classical Dirichlet-to-NeumannoperatorΛcl to the space of
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differential forms. More precisely, they define the DN operator Λ as follows [7]: givenθ ∈ Ωk(∂M), the boundary
value problem

∆ω = 0, i∗ω = θ , i∗(δω) = 0 (1.1)

is solvable and the operatorΛ is given by the formulaΛθ = i∗(⋆dω), wherei∗ is the pullback by the inclusion map
i : ∂M →֒ M. Hereδ is the formal adjoint ofd relative to theL2-inner product

〈α, β 〉=
∫

M
α ∧ (⋆β )

which is defined onΩk(M), and⋆ : Ωk → Ωn−k is the Hodge star operator.
More concretely, there are two distinguished finite dimensional subspaces ofHk(M) = kerd∩ kerδ ⊂ Ωk(M),

whose elements are called Dirichlet and Neumann harmonic fields respectively, namely

Hk
D(M) = {λ ∈Hk(M) | i∗λ = 0}, Hk

N(M) = {λ ∈Hk(M) | i∗ ⋆λ = 0}.

The dimensions of these spaces are given by: dimHk
D(M) = dimHn−k

N (M) = βk(M), whereβk(M) is thekth Betti
number [11] . They prove the following theorem:

Theorem 1.1 (Belishev-Sharafutdinov [7]) For any0≤ k≤ n−1, the range of the operator

Λ+(−1)nk+k+n
dΛ−1

d : Ωk(∂M) −→ Ωn−k−1(∂M)

is i∗Hn−k−1
N (M).

Since i∗Hk
N(M) ∼= Hk

N(M) ∼= Hk(M), it follows that
(
Λ+(−1)nk+k+1

dΛ−1
d
)

Ωn−k−1(∂M) ∼= Hk(M). Using,
Poincaré-Lefschetz duality,Hk(M) ∼= Hn−k(M,∂M), the theorem immediately implies that the data(∂M,Λ) deter-
mines both the absolute and relative de Rham cohomology groups.

In addition, they present the following theorem which givesthe lower bound for the Betti numbers of the manifold
M and its boundary through the DN operatorΛ.

Theorem 1.2 (Belishev-Sharafutdinov [7]) The kernel ofΛ contains the spaceE(∂M) of exact forms and for
each k,

dim[kerΛk/Ek(∂M)]≤ min{βk(∂M),βk(M)}

whereβk(∂M) andβk(M) are the Betti numbers, andΛk is the restriction ofΛ to Ωk(∂M).

At the end of their paper, they posed the following problem:can the multiplicative structure of the cohomologies
be recovered from the data(∂M,Λ)?

To give a partial answer to this question, Shonkwiler [12, Sec. 5.3] defines the map

(φ ,ψ) 7−→ (−1)kΛ(φ ∧Λ−1ψ), ∀(φ ,ψ) ∈ i∗Hk
N(M)× i∗ ⋆Hl

D(M) . (1.2)

More precisely, by using the classical wedge product between the differential forms, he considers the mixed cup
product between the absolute cohomologyHk(M,R) and the relative cohomologyH l (M,∂M,R), i.e.

∪ : Hk(M,R)×H l (M,∂M,R) −→ Hk+l (M,∂M,R)

and then he restricts the second argument to come from theboundary subspace. This subspace is defined by DeTurck
and Gluck [9] as the subspace ofHk(M,∂M) consisting of exact forms which satisfy the Dirichlet boundary condi-
tion (i.e. i∗ of these exact forms are zero). Shonkwiler then presents thefollowing partial answer to Belishev and
Sharafutdinov’s question:

Theorem 1.3 (Shonkwiler [12]) The boundary data(∂M,Λ) completely determines the mixed cup product in
terms of the map (1.2) when the relative cohomology class is restricted to belong to the boundary subspace.
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Equivariant setting.We briefly review some notation and results from [2]. LetM be a compact, oriented, smooth
Riemannian manifold with boundary and supposeG is a torus acting by isometries onM. Denote byΩk

G thek-forms
invariant under theG-action. GivenX in the Lie algebrag of G and corresponding vector fieldXM on M, consider
Witten’s coboundary operatordXM = d+ ιXM . This operator is no longer homogeneous in the degree of the smooth
invariant form onM: if ω ∈ Ωk

G thendXM ω ∈ Ωk+1
G ⊕Ωk−1

G . Note then thatdXM : Ω±
G → Ω∓

G, whereΩ±
G is the space of

invariant forms of even (+) or odd (−) degree. LetδXM be the adjoint ofdXM and define the resultingWitten-Hodge-
Laplacianto be∆XM = (dXM + δXM)

2 = dXM δXM + δXMdXM .
Because the forms are invariant, it is easy to see thatd

2
XM

= 0 (see [2] for details). In this setting, we define two
types ofXM-cohomology, the absoluteXM-cohomologyH±

XM
(M) and the relativeXM-cohomologyH±

XM
(M,∂M). The

first is the cohomology of the complex(ΩG, dXM ), while the second is the cohomology of the subcomplex(ΩG,D, dXM ),
whereω ∈ Ω±

G,D if it satisfies i∗ω = 0 (theD is for Dirichlet boundary condition). One also definesΩ±
G,N(M) ={

α ∈ Ω±
G(M) | i∗(⋆α) = 0

}
(Neumann boundary condition). Clearly, the Hodge star⋆ provides an isomorphism

Ω±
G,D

∼= Ωn−±
G,N , where we writen−± for the parity (modulo 2) resulting from subtracting an even/odd number from

n. Furthermore, becausedXM andi∗ commute, it follows thatdXM preserves the Dirichlet boundary conditions while
δXM preserves Neumann boundary conditions. Because of boundary terms, the null space of∆XM does not coincide
with the closed and co-closed forms in Witten’s sense. Elements of ker∆XM are calledXM-harmonic formswhile
the ω which satisfydXM ω = δXM ω = 0 areXM-harmonic fields; it is clear that everyXM-harmonic field is anXM-
harmonic form, but the converse is false. The infinite dimensional space ofXM-harmonicfieldsis denotedH±

XM
(M),

so we haveH∗
XM

(M)⊂ ker∆XM . Two useful finite dimensional subspaces ofH±
XM

(M) are the Dirichlet and Neumann
XM-harmonic fields, respectively:H±

XM ,D(M) andH±
XM ,N(M). There are therefore two different candidates forXM-

harmonic representatives when the boundary is present. This construction firstly leads us to present theXM-Hodge-
Morrey decomposition theorem which states that

Ω±
G(M) = E±

XM
(M)⊕C±

XM
(M)⊕H±

XM
(M) (1.3)

whereE±
XM

(M) = {dXM α | α ∈ Ω∓
G,D} andC±

XM
(M) = {δXM β | β ∈ Ω∓

G,N}. This decomposition is orthogonal with

respect to theL2-inner product given above.
In addition, in [2] we present anXM-Friedrichs Decomposition Theorem which states that

H±
XM

(M) = H±
XM ,D(M)⊕H±

XM ,co(M)

H±
XM

(M) = H±
XM ,N(M)⊕H±

XM ,ex(M)
(1.4)

whereH±
XM ,ex(M) = {ξ ∈ H±

XM
(M) | ξ = dXM σ} andH±

XM ,co(M) = {η ∈H±
XM

(M) | η = δXM α}. Together these give
the orthogonalXM-Hodge-Morrey-Friedrichsdecompositions [2],

Ω±
G(M) = E±

XM
(M)⊕C±

XM
(M)⊕H±

XM ,D(M)⊕H±
XM ,co(M)

= E±
XM

(M)⊕C±
XM

(M)⊕H±
XM ,N(M)⊕H±

XM ,ex(M).
(1.5)

The two decompositions are related by the Hodge star operator. The orthogonality of (1.3)–(1.5) follows from Green’s
formula fordXM andδXM which states

〈dXM α,β 〉= 〈α,δXM β 〉+
∫

∂M
i∗(α ∧⋆β ) (1.6)

for all α,β ∈ ΩG.
The consequence forXM-cohomology is that each class inH±

XM
(M) is represented by a uniqueXM-harmonic field

in H±
XM ,N(M), and each relative class inH±

XM
(M,∂M) is represented by a uniqueXM-harmonic field inH±

XM ,D(M). We
also elucidate in [2] the connection between theXM-cohomology groups and the free part of the relative and absolute
equivariant cohomology groups.

TheXM-Hodge-Morrey-Friedrichsdecompositions (1.5) of smooth invariant differential forms gives us insight to
create boundary data which is a generalization of Belishev and Sharafutdinov’s boundary data onΩ±

G(∂M).
In this paper, we take a topological approach, looking to determine theXM-cohomology groups and the free part

of the equivariant cohomology groups from the generalized boundary data. To this end, in Section 2 we prove that the
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concrete realizationsH±
XM ,N(M) andH±

XM ,D(M) of the absolute and relativeXM-cohomology groups respectively meet
only at the origin and in Section 3 we define theXM-DN operatorΛXM on Ω±

G(∂M), the definition involves showing
that certain boundary value problems are solvable. The definition of ΛXM represents a generalization of Belishev and
Sharafutdinov’s DN-operatorΛ onΩ±

G(∂M) in the sense that whenX = 0, we haveΛ0 = Λ. Finally, in the remaining
sections, we explain how the boundary data(∂M,ΛXM ) encodes more information about the equivariant algebraic
topology ofM than does the boundary data(∂M,Λ) on ∂M. Hence, these results contribute to explain to what extent
the equivariant topology of the manifold in question is determined by theXM-DN mapΛXM .

Throughout this paper, when arguments follow closely the corresponding arguments in the non-equivariant setting
we refer to the original argument and omit the details. Thesedetails can be found in the first author’s thesis [1].

2. Main results

Throughout we letM be a compact, connected, oriented, smooth Riemannian manifold with boundary and we
supposeG is a torus acting by isometries onM. GivenX in the Lie algebrag and corresponding vector fieldXM onM,
one defines Witten’s inhomogeneous coboundary operatordXM = d+ ιXM : Ω±

G → Ω∓
G and the resultingXM-harmonic

fields and forms as described in the introduction.
An important classical result is that any harmonic field satisfying both Neumann and Dirichlet boundary conditions

(so one vanishing on the boundary) is necessarily zero: see Theorem 3.4.4 in [11] or Lemma 2 in [8].

Theorem 2.1 If an XM-harmonic fieldλ ∈H±
XM

(M) vanishes on the boundary∂M, thenλ ≡ 0, i.e.

H±
XM ,N(M)∩H±

XM ,D(M) = {0} (2.1)

The proof consists in showing that a harmonic field which is both Neumann and Dirichlet has a zero of infinite
order at every boundary point and then applying the Strong Unique Continuation Theorem below. However, the proof
that there are zeros of infinite order in [11, 8] does not appear to extend to our present setting, so we give a different
argument, based on Hadamard’s lemma, and which is also validin the classical case.

First, we state the Strong Unique Continuation Theorem, dueto Aronszajn [3], Aronszajn, Krzywicki and Szarski
[4]. In [10], Kazdan writes this theorem in terms of Laplacian operator∆ but he mentions that it is still valid for any
operator having the diagonal formP= ∆I+ lower-order terms, whereI is the identity matrix. Hence, one can state
this theorem in terms of diagonal form operator by the following form:

Theorem 2.2 (Strong Unique Continuation Theorem [10]) Let M be a Riemannian manifold with Lipschitz
continuous metric, and letω be a differential form having first derivatives in L2 that satisfies P(ω) = 0 where P is a
diagonal form operator. Ifω has a zero of infinite order at some point inM, thenω is identically zero onM.

PROOF OF THEOREM 2.1: Supposeλ ∈ H±
XM ,N(M)∩H±

XM ,D(M), thenλ is smooth by using the results of [2].
Sincei∗λ = i∗ ⋆λ = 0 thenλ ∂M

≡ 0 and we have that(ιXM λ ) ∂M
= 0 as well.

The proof is local so we can considerM to be the upper half space inRn with ∂M = R
n−1. Since the metric, the

differential formλ and the vector fieldXM are given in the upper half space, we can extend them from there to all of
R

n by reflection in∂M = R
n−1. The resulting objects are: the extended metric, which will be Lipschitz continuous

[8]; we extendλ to all of Rn by making it odd with respect to reflection inRn−1 and extendXM to all of Rn by
making it even with respect to reflection inRn−1 and the extendedXM will be a Lipschitz continuous vector field. But
the originalλ satisfiesλ ∂M

≡ 0 anddXM λ = δXM λ = 0 on the upper half space, hence the extended one will be of

classC1 and satisfydXM λ = δXM λ = 0 onRn, i.e. the extendedλ satisfiesP(λ ) = ∆XM λ = 0 on all ofRn where the
operator∆XM has diagonal form, i.e.P= ∆XM = ∆I+ lower-order terms. So far, we have satisfied the first condition
of Theorem 2.2.

Now, we need to satisfy the remaining hypotheses of Theorem 2.2. Letx = (x′,xn) be a coordinate chart where
x′ = (x1,x2, ...,xn−1) is a chart on the boundary∂M andxn is the distance to the boundary. In these coordinatesxn > 0
in M and∂M is locally characterized byxn = 0. These coordinates are called boundary normal coordinates and the
Riemannian metric in these coordinates has the form∑n−1

m,r=1hm,r(x)dxm⊗dxr +dxn⊗dxn.
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Now consider a neighborhood ofp∈ ∂M where the boundary normal coordinates are well defined. We can write
λ = α +β ∧dxn whereα = Σ fI1(x)dxI1, β = ΣgI2(x)dxI2 andI1, I2 ⊂ {1,2, ...,n−1}. Our goal is to prove that all the
partial derivatives of the coefficients ofλ (i.e. of fI1(x) andgI2(x)) vanish atp∈ ∂M. Now,λ ∂M

≡ 0 which implies that

fI1(x
′,0) = gI2(x

′,0) = 0. Hence, we can apply Hadamard’s lemma tofI1(x) andgI2(x) and writefI1(x) = xn f I1(x) and
gI2(x) = xngI2(x) for some smooth functionsf I1(x) andgI2(x). Moreover, these representations forfI1(x) andgI2(x)
imply that all the higher partial derivatives offI1(x) andgI2(x) with respect to each of thex′-coordinates (i.e. except
the normal direction coordinatexn) at the pointp are zero.

Therefore, we only need to prove that all the higher partial derivatives of fI1(x) andgI2(x) in the normal direc-
tion are zero to deduce that the Taylor series offI1(x) andgI2(x) aroundxn = 0 are zero. The proof of this is by
contradiction.

Suppose the Taylor series offI1(x) andgI2(x) aroundxn = 0 are not zero atp∈ ∂M which means that there exist
the largest positive integer numbersk and j such thatfI1(x) = xk

n f̂J1(x) andgI2(x) = x j
nĝJ2(x) where f̂J1(x

′,0) 6= 0 and
ĝJ2(x

′,0) 6= 0 for someJ1,J2. Thus, we can always writeλ in the following formλ = xk
nτ + x j

nρ ∧ dxn where the
differential formsτ andρ do not containdxn. ApplyingdXM λ = 0, we get

0= dXM λ = kxk−1
n dxn∧ τ + xk

ndτ + x j
ndρ ∧dxn+ xk

nιXM τ + x j
nιXM (ρ ∧dxn).

Now, reducing this equation moduloxk
n we conclude that the termx j

n(dρ ∧ dxn + ιXM (ρ ∧ dxn)) 6≡ 0 moduloxk
n

because the termkxk−1
n dxn∧ τ 6≡ 0 moduloxk

n and as a consequence, we infer thatk> j.
Similarly, we can calculateδXM λ =−(∓)n(⋆d⋆λ +⋆ιXM ⋆λ ) = 0 using the Riemannian metric above. It suffices

to used⋆λ + ιXM ⋆λ = 0, where⋆λ = xk
nξ ∧dxn+x j

nζ for differential formsξ andζ which do not containdxn (both
of them will contain many of the coefficientshm,r(x)). Hence, we get

0= d⋆λ + ιXM ⋆λ = xk
ndξ ∧dxn+ jx j−1

n dxn∧ζ + x j
ndζ + xk

nιXM (ξ ∧dxn)+ x j
nιXM ζ .

Reducing this equation modulox j
n and for the same reason above but replacingk by j, we can infer thatk < j.

But this is a contradiction, so there are no such largest positive integersk and j. Hence, the Taylor series for the
coefficientsfI1(x) andgI2(x) aroundxn = 0 must be zero atp ∈ ∂M. It means that all the higher partial derivatives
of fI1(x) andgI2(x) vanish at all points of the boundary∂M. Thus, this facts are enough to show all mixed partial
derivatives includingxn also vanish at the boundary. Hence,λ has a zero of infinite order atp∈ ∂M.

The remaining possibility of one of the coefficientsfI1(x) andgI2(x) having finite order and the other infinite order
in xn follows from the same argument as above.

Thus,λ satisfies all the hypotheses of the strong Unique Continuation Theorem 2.2, so must be zero on all ofR
n.

SinceM is assumed to be connected,λ must be identically zero on all ofM. ❒

As a consequence of Theorem 2.1, we obtain the following.

Corollary 2.3 1- The space of XM-harmonic fields can be written as a (not direct) sum:

H±
XM

(M) =H±
XM ,ex(M)+H±

XM ,co(M). (2.2)

2- The trace map i∗ : H±
XM ,N(M)−→ i∗H±

XM ,N(M) is an isomorphism.

3- The map f: i∗H±
XM ,N(M) −→ H±

XM
(M) defined by f(i∗λN) = [λN] for λN ∈H±

XM ,N(M) is an isomorphism.

4- The map h: i∗Hn−±
XM ,N(M)−→ H±

XM
(M, ∂M) defined by h(i∗λN) = [⋆λN] for λN ∈Hn−±

XM ,N(M) is an isomorphism.

PROOF: (1) This follows by applying Theorem 2.1 and theXM-Friedrichs Decomposition (1.4).
(2) It is clear thati∗ is surjective and it follows from Theorem 2.1 that it is injective.
(3) f is a well-defined map because keri∗ = {0}. Furthermore,f is a bijection because there exists a unique

NeumannXM-harmonic field in any absoluteXM-cohomology class (Corollary 3.17 of [2]) hence part (3) holds.
(4) This follows from part (3) by usingXM-Poincaré-Lefschetz duality of [2] (i.e.H±

XM
(M)∼= Hn−±

XM
(M, ∂M)). ❒
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3. XM-DN operator

Before defining this operator, we first need to prove the solvability of a certain boundary value problem (3.1). The
proof depends on the main results in [2] and there is not any corresponding statement of it in [11]. WhenX = 0,
this gives an independent proof of the solvability of Belishev and Sharafutdinov’sBVP (1.1). Theorem 3.1 represents
the keystone to defining theXM-DN operator and then to exploiting a connection between this XM-DN operator and
XM-cohomology via the NeumannXM-trace spacei∗H±

XM ,N(M).

Theorem 3.1 Givenθ ∈ Ω±
G(∂M) andη ∈ Ω±

G(M), then theBVP





∆XM ω = η on M
i∗ω = θ on ∂M

i∗(δXM ω) = 0 on ∂M.
(3.1)

is solvable forω ∈ Ω±
G(M) if and only if

〈η , κD〉= 0, ∀κD ∈H±
XM ,D(M) (3.2)

The solution ofBVP (3.1) is unique up to an arbitrary Dirichlet XM-harmonic fieldH±
XM ,D(M).

PROOF: SupposeBVP (3.1) has a solution. Then one can easily show that condition(3.2) holds by using Green’s
formula (1.6).

Now supposeη ∈ Ω±
G(∂M) satisfies〈η , κD〉= 0, ∀κD ∈H±

XM ,D(M) (i.e. η ∈H±
XM ,D(M)⊥). Sinceθ ∈ Ω±

G(∂M),
we can construct an extensionω1 ∈ Ω±

G(M) of the differential formθ ∈ Ω±
G(∂M) such that

i∗ω1 = θ , ω1 = δXM βω1 +λω1 ∈ C±
XM

(M)⊕H±
XM

(M).

But ∆XM ω1 = δXMdXM δXM βω1, so (1.6) implies that∆XM ω1 ∈H±
XM ,D(M)⊥ as well. Hence,η −∆XM ω1 ∈H±

XM ,D(M)⊥.

We now apply Proposition 3.8 of [2] which for smooth invariant forms states that for eachη ∈ H±
XM ,D(M)⊥ there

is a unique smooth differential formω ∈ Ω±
G,D ∩H±

XM ,D(M)⊥ satisfying theBVP (3.1) but withη = η andθ = 0.

Sinceη −∆XM ω1 ∈ H±
XM ,D(M)⊥ is smooth, it follows from this that there is a unique smooth differential formω2 ∈

Ω±
G,D ∩H±

XM ,D(M)⊥ which satisfies theBVP





∆XM ω2 = η −∆XM ω1 on M
i∗ω2 = 0 on ∂M

i∗(δXM ω2) = 0 on ∂M.
(3.3)

Now, let ω2 = ω −ω1, then theBVP (3.3) turns into theBVP (3.1). Hence, there exists a solution to theBVP (3.1)
which isω = ω1+ω2, where the uniqueness ofω is up to an arbitrary DirichletXM-harmonic field. ❒

Definition 3.2 (XM-DN operator ΛXM) We consider onM theBVP (3.1) withη = 0, i.e.




∆XM ω = 0 on M
i∗ω = θ on ∂M

i∗(δXM ω) = 0 on ∂M
(3.4)

then by Theorem 3.1BVP (3.4) is solvable and the solution is unique up to an arbitrary Dirichlet XM-harmonic field
κD ∈H±

XM ,D(M). We can therefore define theXM-DN operatorΛXM : Ω±
G(∂M)−→ Ωn−∓

G (∂M) by

ΛXM θ = i∗(⋆dXM ω).

Note that takingdXM ω eliminates the ambiguity in the choice of the solutionω which meansΛXM θ is well-defined.
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The results above and those in [2] provide the basic ingredients needed to extend by analogy the results in [7] and
some of the results in [12] on the ring structure to the context of XM-cohomology and theXM-DN map. However,
some results in Sections 4 and 6 are different and are specified here. We therefore omit the proof of the results below;
full details are given in the first author’s thesis [1].

Proposition 3.3 1- i∗H±
XM

(M) = E±
XM

(∂M)+ i∗H±
XM ,N(M), whereE±

XM
(∂M) = {dXM α | α ∈ Ω∓

G(∂M)}.

2- The operatorΛXM is nonnegative in the sense that the integral
∫

∂M θ ∧ ΛXM θ is nonnegative for anyθ ∈
Ω±

G(∂M).

3- Let ω ∈ Ω±
G(M) be a solution to theBVP (3.4) whereθ ∈ Ω±

G(∂M) is given. ThendXM ω ∈ H∓
XM

(M) and
δXM ω = 0.

4- kerΛXM = RanΛXM = i∗HXM (M), whereHXM =H+
XM

⊕H−
XM

.

5- The operatorΛXM satisfies the following relations:

ΛXMdXM = 0, dXM ΛXM = 0, Λ2
XM

= 0.

In this corollary, we introduce theXM-Hilbert transformTXM which is of course the analogue of the usual Hilbert
transform (see Section 5 in [7]) and it will be used in Section6.

Corollary 3.4 The operator TXM := dXM Λ−1
XM

: i∗HXM (M)−→ i∗HXM (M) is well-defined ; i.e. the equationφ = ΛXM θ
has a solutionθ for any φ ∈ i∗HXM (M), and dXM θ is uniquely determined byφ = ΛXM θ . In particular, TXM :
i∗H±

XM ,N(M)−→ i∗Hn−±
XM ,N(M) and the operatordXM Λ−1

XM
dXM : ΩG(∂M)−→ ΩG(∂M) is well-defined.

The above construction and the results in [2] provide the essential ingredients needed to extend Theorem 4.2 of
[7] (our Theorem 1.1) to the present context:

Theorem 3.5 The Neumann XM-trace spaces i∗H±
XM ,N(M) can be completely determined from the boundary data

(∂M,ΛXM ). In particular,
(

ΛXM − (∓1)n+1
dXM Λ−1

XM
dXM

)
Ω±

G(∂M) = i∗Hn−∓
XM ,N(M). (3.5)

4. ΛXM operator, XM-cohomology and equivariant cohomology

The following result is an extension of Theorem 1.2 toXM-cohomology. We relate the dimension ofH±
XM

(M) with
the kernel ofΛXM as follows:

Theorem 4.1 LetΛ±
XM

be the restriction of XM-DN operator toΩ±
G(∂M). ThenE±

XM
(∂M)⊆ kerΛ±

XM
and

dim[kerΛ±
XM

/E±
XM

(∂M)]≤ min{dim(H±
XM

(∂M)),dim(H±
XM

(M))}. (4.1)

Moreover, if every component of F′ = N(XM) has a boundary then

max{dim[kerΛ±
XM

/E±
XM

(∂M)], dim[kerΛ±/E±(∂F ′)]} ≤ min{dim(H±
XM

(∂M)),dim(H±
XM

(M))}.

The proof of the first part follows the proof of Theorem 1.2 so we omit it (details are given in [1]). The second part
follows by applying Theorem 1.2 toF ′. It moreover refers implicitly to a possible relation between the dimensions of
kerΛ±

XM
/E±

XM
(∂M) and kerΛ±/E±(∂F ′) which needs to be discovered. This idea and others are under investigation

in [1] which will help to extend many of the results of [12] to the style ofXM-cohomology.
To relate these inequalities to equivariant cohomology, one uses a result in [2] (essentially due to Atiyah and

Bott), which asserts that ifF ′ = F := Fix(G,M), then dim(H±
XM

(M)) = rankH±
G (M)—see, Theorem 6.1 below.

Hence we conclude that under this assumption, the right handside of the inequalities above can be replaced by
min{rankH±

G (∂M), rankH±
G (M)}.
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5. Recovering XM-cohomology from the boundary data (∂M,ΛXM )

In this section, we continue extending the results of Belishev-Sharafutdinov and Shonkwiler’s Theorem 1.3 on
recovering the de Rham cohomology groups and ring structurefrom the boundary data(∂M,Λ), to the context of
absolute and relativeXM-cohomology and their concrete realizationsH±

XM ,N(M) andH±
XM ,D(M).

5.1. Recovering the long exact XM-cohomology sequence of(M,∂M)

We show that the data(∂M,ΛXM ) determines the long exactXM-cohomology sequence of the pair(M,∂M).
Since the vector fieldXM which we are considering is always tangent to the boundary∂M, we can also define

XM-cohomology on∂M, that isH±
XM

(∂M). Hence, from the definitions of the absolute and relativeXM-cohomology,
we have the following exactXM-cohomology sequence of the pair(M,∂M) as follows:

. . .
∂ ∗

−−−−→ H±
XM

(M, ∂M)
ρ∗

−−−−→ H±
XM

(M)
i∗

−−−−→ H±
XM

(∂M)
∂ ∗

−−−−→ H∓
XM

(M, ∂M)
ρ∗

−−−−→ . . . (5.1)

However, Theorem 3.5 proves that we can determine the spacei∗H±
XM ,N(M) from the boundary data and Corollary

2.3 givesi∗H±
XM ,N(M) ∼= H±

XM
(M) andi∗Hn−±

XM ,N(M) ∼= H±
XM

(M,∂M). This says that the additive absolute and relative
XM-cohomology are completely determined by(∂M,ΛXM ).

So, if the boundary data(∂M,ΛXM ) is given, we can construct the sequence

. . .
∂∗

−−−−→ i∗Hn−±
XM ,N(M)

ρ∗

−−−−→ i∗H±
XM ,N(M)

i∗
−−−−→ H±

XM
(∂M)

∂∗

−−−−→ i∗Hn−∓
XM ,N(M)

ρ∗

−−−−→ . . . (5.2)

where we define the operators of sequence (5.2) by the following formulas:

1. i
∗θ = [θ ](XM ,∂M) ; if θ ∈ i∗H±

XM ,N thenθ is XM-closed becausei∗ anddXM commute.

2. Using Corollary 3.4 we set,ρ∗θ =−(±1)n+1TXM θ , ∀θ ∈ i∗Hn−±
XM ,N.

3. Let θ ∈ ΩG(∂M) beXM-closed. Based on Theorem 3.5,ΛXM θ = (ΛXM − (∓1)n+1
dXM Λ−1

XM
dXM )θ . Hence, we

set
∂
∗
[θ ](XM ,∂M) = (∓1)n+1ΛXM θ , ∀ [θ ](XM ,∂M) ∈ H±

XM
(∂M).

More concretely, our goal is then to recover sequence (5.1) from sequence (5.2). It means that we should prove
that the following diagram (5.3) is commutative.

. . .
∂ ∗

−−−−→ i∗Hn−±
XM ,N(M)

ρ∗

−−−−→ i∗H±
XM ,N(M)

i∗
−−−−→ H±

XM
(∂M)

∂ ∗

−−−−→ i∗Hn−∓
XM ,N(M)

ρ∗

−−−−→ . . .
yh

y f

yι
yh

. . .
∂ ∗

−−−−→ H±
XM

(M, ∂M)
ρ∗

−−−−→ H±
XM

(M)
i∗

−−−−→ H±
XM

(∂M)
∂ ∗

−−−−→ H∓
XM

(M, ∂M)
ρ∗

−−−−→ . . .

(5.3)

whereι is the identity operator whilef andh are given in Corollary 2.3. Indeed, one can prove the commutativity of
the diagram by a method similar to that given in [7] but in terms of the operatorsdXM andδXM , see [1] for details.

Actually, the above construction proves that the data(∂M,ΛXM ) recovers sequence (5.1) of the pair(M,∂M) up
to an isomorphism (i.e. up to the mapsf andh) from the sequence (5.2).

5.2. Recovering the ring structure of the real XM-cohomology.

We consider the following question:can the multiplicative ring structure of the real absolute and relative XM-
cohomology be recovered from the boundary data(∂M,ΛXM )?

First of all, we consider the mixed cup product∪ between the absolute and relativeXM-cohomology as follows:

∪ : H±
XM

(M)×H±
XM

(M,∂M) −→ H±
XM

(M,∂M)

[α](XM ,M) ∪ [β ](XM ,M,∂M) = [α ∧β ](XM ,M,∂M),
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It is easy to check that∪ is a well-defined map. In addition, in [2] we prove that any absolute or relativeXM-
cohomology classes contain a unique Neumann or DirichletXM-harmonic field respectively. Hence, we can re-
gard any absolute (relative)XM-cohomology class as a Neumann (Dirichlet)XM-harmonic field. But[α](XM ,M) ∪
[β ](XM ,M,∂M) = [α ∧β ](XM ,M,∂M) is a relativeXM-cohomology class, so there exists a unique DirichletXM-harmonic
field η ∈H±

XM ,D(M) such that[α ∧β ](XM ,M,∂M) = [η ](XM ,M,∂M), i.e.

α ∧β = η +dXM ξ ∈H±
XM ,D(M)⊕E±

XM
(M). (5.4)

for someξ ∈ Ω∓
G,D(M). However, it follows from Corollary 2.3 that

H±
XM

(M,∂M) ∼= Hn−±
XM

(M)∼= i∗Hn−±
XM ,N(M)

According to our illustrations above we know that an absoluteXM-cohomology class[α](XM ,M) ∈H±
XM

(M) and relative
XM-cohomology classes[β ](XM ,M,∂M), [α ∧β ](XM ,M,∂M) ∈H±

XM
(M,∂M) are represented by the NeumannXM-harmonic

field α ∈ H±
XM ,N(M) and the DirichletXM-harmonic fieldsβ ,η ∈ H±

XM ,D(M) respectively, such that they correspond,
respectively, to forms on the boundary by setting

φ = i∗α ∈ i∗H±
XM ,N(M), ψ = i∗ ⋆β ∈ i∗Hn−±

XM ,N(M), ϑ = i∗ ⋆η ∈ i∗Hn−±
XM ,N(M)

Following [12], our answer to the above question will only bepartial, in the sense that we will not consider all
the classes of the relativeXM-cohomology, but will just consider theboundary portion, denotedBH±

XM
(M,∂M), of

H±
XM

(M,∂M). This boundary subspace is defined to be [2],

BH±
XM

(M,∂M) = im[∂ ∗ : H∓
XM

(∂M)→ H±
XM

(M,∂M)].

Here∂ ∗ is the standard construction in the long exact sequence (5.1): given anXM-closed formλ on ∂M, let λ̃ be
an extension form onM. ThendXM λ̃ defines a well-defined element ofH±

XM
(M,∂M) denoted∂ ∗λ . This boundary

portion is therefore the image ofH±
XM

(∂M) insideH∓
XM

(M, ∂M) in this long exact sequence.
In [2], we prove thatH±

XM
(M, ∂M) ∼=H±

XM ,D(M). Hence, on translation into the language ofXM-harmonic fields,
we can identify

BH±
XM

(M,∂M) ∼= BH±
XM ,D

whereBH±
XM ,D =H±

XM ,D(M)∩H±
XM ,ex is called the boundary subspace ofH±

XM ,D(M). Clearly, Hodge star⋆ gives

BHn−±
XM ,N(M) := ⋆BH±

XM ,D

whereBHn−±
XM ,N(M) = Hn−±

XM ,N(M)∩Hn−±
XM ,co is the boundary subspace ofHn−±

XM ,N(M). Using this fact together with
Corollary 2.3 we conclude thatBH±

XM
(M,∂M) ∼= i∗ ⋆BH±

XM ,D.
The above constructions allow us to extend Shonkwiler’s map[12] to the context ofΛXM in order to define the

following map with notation as above:

∪ : i∗H±
XM ,N(M)× i∗Hn−±

XM ,N(M) −→ H±
XM

(M,∂M)

φ ∪XM ψ = ΛXM (±φ ∧Λ−1
XM

ψ),
(5.5)

By using the same method as [12] together with definition 3.2 we deduce that∪XM is well-defined. Now, we can
extend Shonkwiler’s Theorem 1.3 to the style above.

Theorem 5.1 The boundary data(∂M,ΛXM ) completely determines the mixed cup product structure of the XM-
cohomology when the relative XM-cohomology classes come from the boundary subspace. i.e. if (α,β )∈H±

XM ,N(M)×

BH±
XM ,D(M) such thatα ∧β = η +dXM ξ ∈H±

XM ,D(M)⊕E±
XM

(M) then

i∗ ⋆η = ΛXM (±φ ∧Λ−1
XM

ψ)
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whereφ = i∗α andψ = i∗ ⋆β . In fact one shows the commutativity of the following diagram,

i∗H±
XM ,N(M)× i∗ ⋆BH±

XM ,D(M)
∪XM−−−−→ i∗ ⋆BH±

XM ,D(M)
y( f ,h)

yh

H±
XM

(M)×BH±
XM

(M,∂M)
∪

−−−−→ BH±
XM

(M,∂M) ,

(5.6)

where f and h are given in Corollary 2.3.

PROOF: Our goal is to show that∀(φ ,ψ) = (i∗α, i∗ ⋆dXMβ1) ∈ i∗H±
XM ,N(M)× i∗ ⋆BH±

XM ,D(M) one has

(h◦∪XM )(i
∗α, i∗ ⋆dXM β1) = (∪◦ ( f ,h))(i∗α, i∗ ⋆dXM β1). (5.7)

The left-hand side gives

h(∪XM (i
∗α, i∗ ⋆dXM β1)) = h(ΛXM (±φ ∧Λ−1

XM
ψ)) (5.8)

while the right-hand side together with eq. (5.4) and Corollary 2.3 give

∪(( f (i∗α),h(i∗ ⋆dXM β1))) = ∪([α](XM ,M), [⋆ ⋆dXMβ1](XM ,M,∂M))

= [⋆ ⋆ (α ∧dXM β1)](XM ,M,∂M)

= [⋆ ⋆η ](XM,M,∂M)

= h(i∗ ⋆η). (5.9)

We now need to prove that the right-hand sides of equations (5.8) and (5.9) are equal. This will be the case if

i∗ ⋆η = ΛXM(±φ ∧Λ−1
XM

ψ). (5.10)

The method of Shonkwiler [12] used to prove Theorem 1.3 extends to our setting by combining with results in [2],
such as theXM-Hodge-Morrey decomposition theorem (full details are given in [1]). ❒

6. Conclusions

(1) The key point used to recover the free part of the relativeand absolute equivariant cohomology groups from the
boundary data(∂M,ΛXM ) is the following theorem which is essentially Atiyah and Bott’s localization theorem.

Theorem 6.1 ([2]) Let X∈ g (the Lie algebra of G) and let F′ = N(XM). The inclusion jX : F ′ →֒ M induces the
following isomorphisms

1- H±
XM

(M)∼= H±(F ′),

2- H±
XM

(M,∂M) ∼= H±(F ′,∂F ′).

Moreover, if N(XM) = F := Fix(G,M) thendimH±(F,∂F) = rankH±
G (M,∂M) anddimH±(F) = rankH±

G (M).

Now, combining the above theorem with Theorem 3.5 and Corollary 2.3, we deduce

Theorem 6.2
H±

XM
(M, ∂M) ∼=

(
ΛXM − (±1)n+1

dXM Λ−1
XM

dXM

)
Ω∓

G(∂M) ∼= H±(F ′,∂F ′)

and
H±

XM
(M) ∼=

(
ΛXM − (±1)n+1

dXM Λ−1
XM

dXM

)
Ωn−∓

G (∂M)∼= H±(F ′).
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Since the NeumannXM-harmonic fields are uniquely determined by their NeumannXM-trace (Corollary 2.3)
which is in turn determined by the boundary data(∂M,ΛXM ) (Theorem 3.5), this means we can conclude, by using
XM-Poincaré-Lefschetz duality of [2], that we can realize the relative and absoluteXM-cohomology groups (and hence
in some sense the free part of the relative and absolute equivariant cohomology groups) as particular subspaces of
invariant differential forms on∂M and they are not just determined abstractly from the generalized boundary data.

(2) We can apply Theorem 1.1 to the manifoldsF ′ = N(XM) with boundary∂F ′. SinceG acts onF ′ the induced
action on eachH±(F ′) is trivial. Now, we can use Theorem 6.2 to exploit the connection between Belishev and
Sharafutdinov’s boundary data on∂F ′ (i.e. (∂F ′,Λ)) and ours on∂M (i.e. (∂M,ΛXM )). More concretely, we have the
following.

Theorem 6.3 If every component of F′ has a boundary, then
(

ΛXM − (∓1)n+1
dXM Λ−1

XM
dXM

)
Ω±

G(∂M)∼=
(
Λ− (∓1)n+1

dΛ−1
d
)

Ω±(∂F ′).

This means that the boundary data(∂F ′,Λ) can be determined from the boundary data(∂M,ΛXM ) and vice versa.
In this setting, it follows that since the de Rham cohomologygroups of(F ′,∂F ′) are determined by(∂F ′,Λ) (Theorem
1.1), then the± de Rham cohomology groups of(F ′,∂F ′) are also determined by(∂M,ΛXM ).

(3) WhenM has no boundary, Witten proves in [13] thatH±
K (M)∼= H±(F ′) whereK is a Killing vector field (ourXM)

on M and he shows how theK-cohomology and the isomorphism above are useful in quantumfield theory and other
mathematical and physical applications. However, when∂M 6= /0, the extended isomorphism is provided by Theorem
6.1 above which gives insight that the extension for other results of Witten [13] are possible. In this light, Theorem 6.2
suggests thatΛXM may also be relevant to quantum field theory and following Witten, possibly to other mathematical
and physical interpretations. This shows thatΛXM may be interesting in its own right.

Finally, it is worth considering the following topologicalproblem:Can the torsion part of the absolute and relative
equivariant cohomology groups be completely recovered from the boundary data(∂M,ΛXM )? (Here torsion is meant
as a module over the ring of polynomials ong—the standard Cartan model: some torsion information is available
from Theorems 6.1 and 6.2 whenX is in an isotropy subalgebra, but not all.) Answering this question will indeed
complete the picture of the role the boundary data(∂M,ΛXM ) plays in the story of the equivariant cohomology of
manifolds.
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