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NLEVP: A Collection of Nonlinear Eigenvalue Problems
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VOLKER MEHRMANN, Technische Universität Berlin, Germany
CHRISTIAN SCHRÖDER, Technische Universität Berlin, Germany
FRANÇOISE TISSEUR, The University of Manchester

We present a collection of 52 nonlinear eigenvalue problems in the form of a MATLAB toolbox. The collection
contains problems from models of real-life applications as well as ones constructed specifically to have par-
ticular properties. A classification is given of polynomial eigenvalue problems according to their structural
properties. Identifiers based on these and other properties can be used to extract particular types of prob-
lems from the collection. A brief description of each problem is given. NLEVP serves both to illustrate the
tremendous variety of applications of nonlinear eigenvalue problems and to provide representative problems
for testing, tuning, and benchmarking of algorithms and codes.

Categories and Subject Descriptors: G.4 [Mathematical Software]: Algorithm design and analysis; G.1.3
[Numerical Linear Algebra]: Eigenvalues and eigenvectors (direct and iterative methods)

General Terms: Algorithms, Performance

Additional Key Words and Phrases: test problem, benchmark, nonlinear eigenvalue problem, rational eigen-
value problem, polynomial eigenvalue problem, quadratic eigenvalue problem, even, odd, gyroscopic, sym-
metric, Hermitian, elliptic, hyperbolic, overdamped, palindromic, proportionally-damped, MATLAB, Octave

1. INTRODUCTION
In many areas of scientific computing collections of problems are available that play
an important role in developing algorithms and in testing and benchmarking software.
Among the uses of such collections are

— tuning an algorithm to optimize its performance across a wide and representative
range of problems;

— testing the correctness of a code against some measure of success, where the latter is
typically an error or residual whose nature is suggested by the underlying problem;

— measuring the performance of a code—for example, speed, execution rate, or again
an error or residual;

— measuring the robustness of a code, that is, the behaviour in extreme situations, such
as for very badly scaled and/or ill conditioned data;

— comparing two or more codes with respect to the factors above.
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A collection ideally combines problems artificially constructed to reflect a wide range
of possible properties with problems representative of real applications. Problems for
which something is known about the solution are always particularly attractive.

The practice of reproducible research, whereby research is published in such a way
that the underlying numerical (and other) experiments can be repeated by others, is of
growing interest and visibility [Donoho et al. 2009], [LeVeque 2009], [Mesirov 2010].
Reproducible research is aided by the availability of well documented and maintained
benchmark collections.

Two areas that have historically been well endowed with collections of problems im-
plemented in software are linear algebra and optimization. In linear algebra an early
collection is ACM Algorithm 694 [Higham 1991], which contains parametrized, mainly
dense, test matrices, most of which were later incorporated into the MATLAB gallery
function. The University of Florida Sparse Matrix Collection is a regularly updated
collection of sparse matrices [Davis], [Davis and Hu 2011], with over 2200 matrices
from practical applications. It includes all the matrices from the earlier Matrix Market
repository (although not the matrix generators) [Matrix Market], the Harwell–Boeing
collection [Duff et al. 1989] of sparse matrices, and the NEP collection [Bai et al. 1997]
of standard and generalized eigenvalue problems. The CONTEST toolbox [Taylor and
Higham 2009] produces adjacency matrices describing random networks. In optimiza-
tion we mention just the collections in the widely used Cute and Cuter testing envi-
ronments [Bongartz et al. 1995], [Gould et al. 2003], though various other, sometimes
more specialized, collections are available.

The growing interest in nonlinear eigenvalue problems has created the need for a
collection of problems in this area. The standard form of a nonlinear eigenvalue prob-
lem is F (λ)x = 0, where F : C → Cm×n is a given matrix-valued function and λ ∈ C
and the nonzero vector x ∈ Cn are the sought eigenvalue and eigenvector, respec-
tively. Rational and polynomial functions are of particular interest, the most practi-
cally important case being the quadratic Q(λ) = λ2A + λB + C, which corresponds
to the quadratic eigenvalue problem. For recent surveys on nonlinear eigenproblems
see [Mehrmann and Voss 2004] and [Tisseur and Meerbergen 2001]. Associated with
an n × n matrix quadratic Q(λ) are the matrix equations X2A + XB + C = 0 and
AX2 + BX + C = 0, where the unknown X ∈ Cn×n is called a solvent [Dennis et al.
1976], [Gohberg et al. 2009] [Higham and Kim 2000]. Thus a matrix polynomial P (λ)
defines both an eigenvalue problem and two matrix equations.

We have built a collection of nonlinear eigenvalue problems from a variety of sources.
Some are from models of real-life applications, while others have been constructed
specifically to have particular properties. Many of the matrices have been used in
previous papers to test numerical algorithms. In order to provide focus and keep the
collection to a manageable size we have chosen to exclude linear problems from the
collection. The problems range from the old, such as the wing problem from the classic
1938 book of Frazer, Duncan, and Collar [Frazer et al. 1938], to the very recent, no-
tably several problems from research in 3D vision that are not yet well known in the
numerical analysis community.

Nonlinear eigenvalue problems are often highly structured and it is important to
take account of the structure both in developing the theory and in designing numerical
methods. We therefore provide a thorough classification of our problems that records
the most relevant structural properties.

We have chosen to implement the collection in MATLAB, as a toolbox, recognizing
that it is straightforward to convert the matrices into a format that can be read by
other languages by using either the built-in MATLAB I/O functions or those provided
in Matrix Market. Care has been taken to make the toolbox compatible with GNU Oc-
tave [GNU Octave]. A criterion for inclusion of problems is that the underlying MAT-
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LAB code and data files are not too large, since we want to provide the toolbox as a
single file that can be downloaded in a reasonable time.

The NLEVP toolbox is available, as both a zip file and a tar file, from

http://www.mims.manchester.ac.uk/research/numerical-analysis/nlevp.html

For details of how to install and use the toolbox see [Betcke et al. 2011].
In Section 2 we explain how we classify the problems through identifiers that can

be used to extract specific types of problem from the collection. The main features of
the problems are described in Section 3, while Section 4 describes the design of the
toolbox. Conclusions are given in Section 5.

2. IDENTIFIERS
We give in Table I a list of identifiers for the types of problems available in the collec-
tion and in Table II a list of identifiers that specify the properties of problems in the
collection. These properties can be used to extract specialized subsets of the collection
for use in numerical experiments. All the identifiers are case insensitive. In the next
two subsections we briefly recall some relevant definitions and properties of nonlinear
eigenproblems.

2.1. Nonlinear Eigenproblems
The polynomial eigenvalue problem (PEP) is to find scalars λ and nonzero vectors
x and y satisfying P (λ)x = 0 and y∗P (λ) = 0, where

P (λ) =

k∑
i=0

λiAi, Ai ∈ Cm×n, Ak 6= 0 (1)

is an m×n matrix polynomial of degree k. Here, x and y are right and left eigenvectors
corresponding to the eigenvalue λ. The reversal of the matrix polynomial (1) is defined
by

rev
(
P (λ)

)
= λkP (1/λ) =

k∑
i=0

λk−iAi.

A PEP is said to have an eigenvalue∞ if zero is an eigenvalue of rev(P (λ)).
A quadratic eigenvalue problem (QEP) is a PEP of degree k = 2. For a survey of

QEPs see [Tisseur and Meerbergen 2001]. Polynomial and quadratic eigenproblems
are identified by pep and qep, respectively, in the collection (see Table I), and any
problem of type qep is automatically also of type pep.

The matrix function R(λ) ∈ Cm×n whose elements are rational functions

rij(λ) =
pij(λ)

qij(λ)
, 1 ≤ i ≤ m, 1 ≤ j ≤ n,

where pij(λ) and qij(λ) are scalar polynomials of the same variable and qij(λ) 6≡ 0,
defines a rational eigenvalue problem (REP) R(λ)x = 0 [Kublanovskaya 1999].
Unlike for PEPs there is no standard format for specifying REPs. For the collection we
use the form

R(λ) = P (λ)Q(λ)−1,

where P (λ) and Q(λ) are matrix polynomials, or the less general form (often encoun-
tered in practice)

R(λ) = A+ λB +

k−1∑
i=1

λ

σi − λ
Ci, (2)
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Table I. Problems available in the collection and
their identifiers.

qep quadratic eigenvalue problem

pep polynomial eigenvalue problem

rep rational eigenvalue problem

nep other nonlinear eigenvalue problem

Table II. List of identifiers for the problem properties.

nonregular symmetric hyperbolic

real hermitian elliptic

nonsquare T-even overdamped

sparse *-even proportionally-damped

scalable T-odd gyroscopic

parameter-dependent *-odd

solution T-palindromic

random *-palindromic

T-anti-palindromic

*-anti-palindromic

where A, B, and the Ci are m×n matrices, and the σi are the poles. Which form is used
is specified in the help for the M-file defining the problem. Rational eigenproblems are
identified by rep in the collection.

As mentioned in the introduction, PEPs and REPs are special cases of nonlinear
eigenvalue problems (NEPs) F (λ)x = 0, where F : C→ Cm×n. A convenient general
form for expressing an NEP is

F (λ) =

k∑
i=0

fi(λ)Ai, (3)

where the fi : C→ C are nonlinear functions and Ai ∈ Cm×n. Any problem that is not
polynomial, quadratic, or rational is identified by nep in the collection (see Table I).

2.2. Some Definitions and Properties
Nonlinear eigenproblems are said to be regular if m = n and det(F (λ)) 6≡ 0, and non-
regular otherwise. Recall that a regular PEP possesses nk (not necessarily distinct)
eigenvalues [Gohberg et al. 2009], including infinite eigenvalues. As the majority of
problems in the collection are regular we identify only nonregular problems, for which
the identifier is nonregular.

The identifiers real, hermitian, and symmetric are defined in Table III. For PEPs,
the real identifier corresponds to P having real coefficient matrices, while hermitian
corresponds to Hermitian (but not all real) coefficient matrices. Similarly, symmetric
indicates (complex) symmetric coefficient matrices, and the real identifier is added
if the coefficient matrices are real symmetric. For problems that are parameter-
dependent the identifiers real and hermitian are used if the problem is real or Hermi-
tian for real values of the parameter.
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Table III. Some identifiers and the corresponding spectral properties. For parameter-
dependent problems, the problem is classified as real or hermitian if it is so for real values
of the parameter.

Identifier Property of F (λ) ∈ Cm×n Spectral properties

real F (λ) = F (λ̄) eigenvalues real or come in pairs (λ, λ̄)

symmetric m = n,
(
F (λ)

)T
= F (λ) none unless F is real

hermitian m = n, (F (λ))∗ = F (λ̄) eigenvalues real or come in pairs (λ, λ̄)

Table IV. Some identifiers and the corresponding spectral symmetry prop-
erties.

Identifier Property of P (λ) Eigenvalue pairing

T-even PT (−λ) = P (λ) (λ,−λ)

*-even P ∗(−λ) = P (λ) (λ,−λ̄)

T-odd PT (−λ) = −P (λ) (λ,−λ)

*-odd P ∗(−λ) = −P (λ) (λ,−λ̄)

T-palindromic revPT (λ) = P (λ) (λ, 1/λ)

*-palindromic revP ∗(λ) = P (λ) (λ, 1/λ̄)

T-anti-palindromic revPT (λ) = −P (λ) (λ, 1/λ)

*-anti-palindromic revP ∗(λ) = −P (λ) (λ, 1/λ̄)

Definitions of identifiers for odd-even and palindromic-like square matrix polynomi-
als, together with the special symmetry properties of their spectra (see [Mackey et al.
2006]) are given in Table IV.

Gyroscopic systems of the formQ(λ) = λ2M+λG+K withM ,K Hermitian,M > 0,
and G = −G∗ skew-Hermitian are a subset of ∗-even (T -even when the coefficient
matrices are real) QEPs and are identified with gyroscopic. Here, for a Hermitian
matrix A, we write A > 0 to denote that A is positive definite and A ≥ 0 to denote that
A is positive semidefinite. When K > 0 the eigenvalues of Q are purely imaginary and
semisimple [Duffin 1960], [Lancaster 1966] and the quadratic Q(iλ) is hyperbolic.

A Hermitian matrix polynomial P (λ) is hyperbolic if there exists µ ∈ R ∪ {∞}
such that P (µ) is positive definite and for every nonzero x ∈ Cn the scalar equation
x∗P (λ)x = 0 has k distinct zeros in R ∪ {∞}. All the eigenvalues of such a P are real,
semisimple, and grouped in k intervals, each of them containing n eigenvalues [Al-
Ammari and Tisseur 2011], [Higham et al. 2009], [Markus 1988]. These polynomials
are identified in the collection by hyperbolic. Overdamped systems Q(λ) = λ2M +
λC +K are particular hyperbolic QEPs for which M > 0, C > 0, and K ≥ 0; they have
the identifier overdamped. Finally, a QEP is said to be proportionally damped when
M , C, and K are simultaneously diagonalizable by congruence or strict equivalence
[Lancaster and Zaballa 2009] (a sufficient condition for which is that C = αM + βK
with M and K simultaneously diagonalizable, hence the name), and such a QEP is
identified by proportionally-damped.

Hermitian matrix polynomials P (λ) with even degree k that are elliptic, i.e.,
P (λ) > 0 for all λ ∈ R [Markus 1988, §34], are identified by elliptic. Elliptic ma-
trix polynomials have nonreal eigenvalues.

The identifier sparse is used if the defining matrices are stored in the MATLAB
sparse format. Problems that depend on one or more parameters are identified with
parameter-dependent. Problems for which random numbers are used in the construc-
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Table V. Quadratic eigenvalue problems.
acoustic_wave_1d acoustic_wave_2d bicycle bilby

cd_player closed_loop concrete damped_beam
dirac foundation gen_hyper2 gen_tantipal2

gen_tpal2 intersection hospital metal_strip
mobile_manipulator omnicam1 omnicam2 pdde_stability

power_plant qep1 qep2 qep3
qep4 qep5 railtrack railtrack2

relative_pose_6pt schrodinger shaft sign1
sign2 sleeper speaker_box spring

spring_dashpot surveillance wing wiresaw1
wiresaw2

Table VI. Other eigenvalue problems.
Polynomial, degree ≥ 3 butterfly mirror orr_sommerfeld

planar_waveguide plasma_drift relative_pose_5pt
Nonsquare polynomial qep4 surveillance
Nonregular polynomial qep4 qep5 surveillance
Rational loaded_string
Nonlinear fiber gun hadeler

time_delay

tion are identified with random. A separate identifier, scalable, is used to denote that
the problem dimension (or an approximation of it) is a parameter. For parameter-
dependent problems a default value of the parameter is provided, typically being a
value used in previously published experiments.

For some problems a supposed solution is optionally returned, comprising eigen-
values and/or eigenvectors that are exactly known, approximate, or computed. These
problems are identified with solution. The documentation for the problem provides
information on the nature of the supposed solution.

Tables V and VI identify the QEPs, the PEPs that are of degree at least 3, the non-
square PEPs, the REPs, and the nonlinear but non-polynomial and non-rational prob-
lems in the collection.

3. COLLECTION OF PROBLEMS
This section contains a brief description of all the problems in the collection. The iden-
tifiers for the problem properties are listed inside curly brackets after the name of each
problem. The problems are summarized in Table VII.

We use the following notation. A ⊗ B denotes the Kronecker product of A and B,
namely the block matrix (aijB) [Higham 2008, Sec. B.13]. The ith unit vector (that is,
the ith column of the identity matrix) is denoted by ei.
acoustic wave 1d {pep,qep,symmetric,*-even,parameter-dependent,sparse,scalable}.
This quadratic matrix polynomial Q(λ) = λ2M +λC+K arises from the finite element
discretization of the time-harmonic wave equation −∆p − (2πf/c)2p = 0 for the
acoustic pressure p in a bounded domain, where the boundary conditions are partly
Dirichlet (p = 0) and partly impedance ( ∂p∂n + 2πif

ζ p = 0) [Chaitin-Chatelin and van
Gijzen 2006]. Here, f is the frequency, c is the speed of sound in the medium, and ζ
is the (possibly complex) impedance. We take c = 1 as in [Chaitin-Chatelin and van
Gijzen 2006]. The eigenvalues of Q are the resonant frequencies of the system, and
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Table VII. Problems in NLEVP.
acoustic_wave_1d Acoustic wave problem in 1 dimension.
acoustic_wave_2d Acoustic wave problem in 2 dimensions.
bicycle 2-by-2 QEP from the Whipple bicycle model.
bilby 5-by-5 QEP from bilby population model.
butterfly Quartic matrix polynomial with T-even structure.
cd_player QEP from model of CD player.
closed_loop 2-by-2 QEP associated with closed-loop control system.
concrete Sparse QEP from model of a concrete structure.
damped_beam QEP from simply supported beam damped in the middle.
dirac QEP from Dirac operator.
fiber NEP from fiber optic design.
foundation Sparse QEP from model of machine foundations.
gen_hyper2 Hyperbolic QEP constructed from prescribed eigenpairs.
gen_tantipal2 T-anti-palindromic QEP with eigenvalues on the unit circle.
gen_tpal2 T-palindromic QEP with prescribed eigenvalues on the unit circle.
gun NEP from model of a radio-frequency gun cavity.
hadeler NEP due to Hadeler.
intersection 10-by-10 QEP from intersection of three surfaces.
hospital QEP from model of Los Angeles Hospital building.
loaded_string REP from finite element model of a loaded vibrating string.
metal_strip QEP related to stability of electronic model of metal strip.
mirror Quartic PEP from calibration of cadioptric vision system.
mobile_manipulator QEP from model of 2-dimensional 3-link mobile manipulator.
omnicam1 9-by-9 QEP from model of omnidirectional camera.
omnicam2 15-by-15 QEP from model of omnidirectional camera.
orr_sommerfeld Quartic PEP arising from Orr-Sommerfeld equation.
pdde_stability QEP from stability analysis of discretized PDDE.
planar_waveguide Quartic PEP from planar waveguide.
plasma_drift Cubic PEP arising in Tokamak reactor design.
power_plant 8-by-8 QEP from simplified nuclear power plant problem.
qep1 3-by-3 QEP with known eigensystem.
qep2 3-by-3 QEP with known, nontrivial Jordan structure.
qep3 3-by-3 parametrized QEP with known eigensystem.
qep4 3-by-4 QEP with known, nontrivial Jordan structure.
qep5 3-by-3 nonregular QEP with known Smith form.
railtrack QEP from study of vibration of rail tracks.
railtrack2 Palindromic QEP from model of rail tracks.
relative_pose_5pt Cubic PEP from relative pose problem in computer vision.
relative_pose_6pt QEP from relative pose problem in computer vision.
schrodinger QEP from Schrodinger operator.
shaft QEP from model of a shaft on bearing supports with a damper.
sign1 QEP from rank-1 perturbation of sign operator.
sign2 QEP from rank-1 perturbation of 2*sin(x) + sign(x) operator.
sleeper QEP modelling a railtrack resting on sleepers.
speaker_box QEP from model of a speaker box.
spring QEP from finite element model of damped mass-spring system.
spring_dashpot QEP from model of spring/dashpot configuration.
surveillance 21-by-16 QEP from surveillance camera callibration.
time_delay 3-by-3 NEP from time-delay system.
wing 3-by-3 QEP from analysis of oscillations of a wing in an airstream.
wiresaw1 Gyroscopic QEP from vibration analysis of a wiresaw.
wiresaw2 QEP from vibration analysis of wiresaw with viscous damping.
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for the given problem formulation they lie in the upper half of the complex plane. For
more on the discretization of acoustics problems see, for example, [Harari et al. 1996].

On the 1D domain [0, 1] the n× n matrices are defined by

M = −4π2 1

n
(In −

1

2
ene

T
n ), C = 2πi

1

ζ
ene

T
n , K = n


2 −1

−1
. . . . . .
. . . 2 −1

−1 1

 .
acoustic wave 2d {pep,qep,symmetric,*-even,parameter-dependent,sparse,scalable}.
A 2D version of Acoustic wave 1D. On the unit square [0, 1] × [0, 1] with mesh size h
the n× n coefficient matrices of Q(λ) with n = 1

h ( 1
h − 1) are given by

M = −4π2h2Im−1 ⊗ (Im − 1
2eme

T
m), D = 2πihζ Im−1 ⊗ (eme

T
m),

K = Im−1 ⊗Dm + Tm−1 ⊗ (−Im + 1
2eme

T
m),

where ⊗ denotes the Kronecker product, m = 1/h, ζ is the (possibly complex)
impedance, and

Dm =


4 −1

−1
. . . . . .
. . . 4 −1

−1 2

 ∈ Rm×m, Tm−1 =


0 1

1
. . . . . .
. . . . . . 1

1 0

 ∈ R(m−1)×(m−1).

The eigenvalues of Q are the resonant frequencies of the system, and for the given
problem formulation they lie in the upper half of the complex plane.
bicycle {pep,qep,real,parameter-dependent}. This is a 2 × 2 quadratic polynomial
arising in the study of bicycle self-stability [Meijaard et al. 2007]. The linearized equa-
tions of motion for the Whipple bicycle model can be written as

Mq̈ + Cq̇ +Kq = f,

where M is a symmetric mass matrix, the nonsymmetric damping matrix C = vC1 is
linear in the forward speed v, and the stiffness matrix K = gK0 + v2K2 is the sum of
two parts: a velocity independent symmetric part gK0 proportional to the gravitational
acceleration g and a nonsymmetric part v2K2 quadratic in the forward speed.
bilby {pep,qep,real,parameter-dependent}. This 5× 5 quadratic matrix polynomial
arises in a model from [Bean et al. 1997] for the population of the greater bilby (Macro-
tis lagotis), an endangered Australian marsupial. Define the 5× 5 matrix

M(g, x) =


gx1 (1− g)x10 0 0 0
gx2 0 (1− g)x2 0 0
gx3 0 0 (1− g)x3 0
gx4 0 0 0 (1− g)x4
gx5 0 0 0 (1− g)x5

 .
The model is a quasi-birth-death process some of whose key properties are captured
by the elementwise minimal solution of the quadratic matrix equation
R = β(A0 +RA1 +R2A2), A0 = M(g, b), A1 = M(g, e− b− d), A2 = M(g, d),

where b and d are vectors of probabilities and e is the vector of ones. The corresponding
quadratic matrix polynomial is Q(λ) = λ2A+ λB + C, where

A = βAT2 , B = βAT1 − I, C = βAT0 .
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We take g = 0.2, b = [1, 0.4, 0.25, 0.1, 0]T , and d = [0, 0.5, 0.55, 0.8, 1]T , as in [Bean
et al. 1997].
butterfly {pep,real,parameter-dependent,T-even,sparse,scalable}. This is a
quartic matrix polynomial P (λ) = λ4A4 +λ3A3 +λ2A2 +λA1 +A0 of dimension m2 with
T-even structure, depending on a 10 × 1 parameter vector c [Mehrmann and Watkins
2002]. Its spectrum has a butterfly shape. The coefficient matrices are Kronecker prod-
ucts, with A4 and A2 real and symmetric and A3 and A1 real and skew-symmetric,
assuming c is real. The default is m = 8.
cd player {pep,qep,real}. This is a 60 × 60 quadratic matrix polynomial Q(λ) =

λ2M+λC+K, withM = I60 arising in the study of a CD player control task [Chahlaoui
and Van Dooren 2002], [Chahlaoui and Van Dooren 2005], [Draijer et al. 1992], [Wortel-
boer et al. 1996]. The mechanism that is modeled consists of a swing arm on which a
lens is mounted by means of two horizontal leaf springs. This is a small representation
of a larger original rigid body model (which is also quadratic).
closed loop {pep,qep,real,parameter-dependent}. This is a quadratic polynomial

Q(λ) = λ2I + λ

[
0 1 + α
1 0

]
+

[
1/2 0
0 1/4

]
associated with a closed-loop control system with feedback gains 1 and 1 + α, α ≥ 0.
The eigenvalues of Q(λ) lie inside the unit disc if and only if 0 ≤ α < 0.875 [Tisseur
and Higham 2001].
concrete {pep,qep,symmetric,parameter-dependent,sparse}. This is a quadratic
matrix polynomial Q(λ) = λ2M + λC + (1 + iµ)K arising in a model of a concrete
structure supporting a machine assembly [Feriani et al. 2000]. The matrices have di-
mension 2472.M is real diagonal and low rank. C, the viscous damping matrix, is pure
imaginary and diagonal. K is complex symmetric, and the factor 1 + iµ adds uniform
hysteretic damping. The default is µ = 0.04.
damped beam {pep,qep,real,symmetric,sparse,scalable}. This QEP arises in the vi-
bration analysis of a beam simply supported at both ends and damped in the middle
[Higham et al. 2008]. The quadratic Q(λ) = λ2M + λC + K has real symmetric coeffi-
cient matrices with M > 0, K > 0, and C = cene

T
n ≥ 0, where c is a damping parameter.

Half of the eigenvalues of the problem are purely imaginary and are eigenvalues of the
undamped problem (C = 0).
dirac {pep,qep,real,symmetric,parameter-dependent,scalable}. The spectrum of
this matrix polynomial is the second order spectrum of the radial Dirac operator with
an electric Coulombic potential of strength α,

D =

 1 +
α

r
− d

dr
+
κ

r
d

dr
+
κ

r
−1 +

α

r

 .
For −

√
3/2 < α < 0 and κ ∈ Z, D acts on L2((0,∞),C2) and it corresponds to a spheri-

cally symmetric decomposition of the space into partial wave subspaces [Thaller 1992].
The problem discretization is relative to subspaces generated by the Hermite functions
of odd order. The size of the matrix coefficients of the QEP is n+m, corresponding to n
Hermite functions in the first component of the L2 space and m in the second compo-
nent [Boulton and Boussaid 2010].

For κ = −1, α = −1/2 and n large enough, there is a conjugate pair of isolated points
of the second order spectrum near the ground eigenvalue E0 ≈ 0.866025. The essential
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spectrum, (−∞,−1] ∪ [1,∞), as well as other eigenvalues, also seem to be captured for
large n.
fiber {nep,sparse,solution}. This nonlinear eigenvalue problem arises from a
model in fiber optic design based on the Maxwell equations [Huang et al. 2010], [Kauf-
man 2006]. The problem is of the form

F (λ)x = (A− λI + s(λ)B)x = 0,

where A ∈ R2400×2400 is tridiagonal and B = e2400e
T
2400. The scalar function s(λ) is

defined in terms of Bessel functions. The real, positive eigenvalues are the ones of
interest.
foundation {pep,qep,symmetric,sparse}. This is a quadratic matrix polynomial
Q(λ) = λ2M + λC + K arising in a model of reinforced concrete machine foundations
resting on the ground [Feriani et al. 2000]. The matrices have dimension 3627; M is
real and diagonal, C is complex and diagonal, and K is complex symmetric.
gen hyper2 {pep,qep,real,symmetric,hyperbolic,parameter-dependent,scalable,
solution,random}. This is a hyperbolic quadratic matrix polynomial generated from a
given set of eigenvalues and eigenvectors (λk, vk), k = 1: 2n, such that with

Λ = diag(λ1, . . . , λ2n) =: diag(Λ1, Λ2), Λ1, Λ2 ∈ Rn×n,
V := [ v1, . . . , v2n ] =: [V1 V2 ] , V1, V2 ∈ Rn×n,

λmin(Λ1) > λmax(Λ2), V1 is nonsingular, and V2 = V1U for some orthogonal matrix U .
Then the n× n symmetric quadratic Q(λ) = λ2A+ λB + C with

A = Γ−1, Γ = V1Λ1V
T
1 − V2Λ2V

T
2 ,

B = −A(V1Λ
2
1V

T
1 − V2Λ2

2V
T
2 )A,

C = −A(V1Λ
3
1V

T
1 − V2Λ3

2V
T
2 )A+BΓB,

is hyperbolic and has eigenpairs (λk, vk), k = 1: 2n [Al-Ammari and Tisseur 2011],
[Guo et al. 2009a]. The quadratic Q(λ) has the property that A is positive definite and
−Q(µ) is positive definite for all µ ∈ (λmax(Λ2), λmin(Λ1)). If λmax(Λ) < 0 then B and C
are positive definite and Q(λ) is overdamped.
gen tpal2 {pep,qep,real,T-palindromic,parameter-dependent,scalable,random}.
This is a real T-palindromic quadratic matrix polynomial generated from a given set
of eigenvalues

λ2j−1 = cos tj + i sin tj , λ2j = λ̄2j−1, tj ∈ (0, π), j = 1: n, (4)

lying on the unit circle. Let

J = diag

([
0 β1
−β1 0

]
, . . . ,

[
0 βn
−βn 0

])
, iβj =

λ2j−1 − 1

λ2j−1 + 1
∈ R, (5)

S = diag

([
0 1
−1 0

]
, . . . ,

[
0 1
−1 0

])
∈ R2n×2n, X = [X1 X1H ]Π ∈ Rn×2n,

where X1 ∈ Rn×n is nonsingular, H ∈ Rn×n is a symmetric matrix, and Π is a per-
mutation matrix such that ΠTSΠ =

[
0
−I

I
0

]
. Then the n × n real quadratic Q̃(λ) =

λ2A2 + λA1 +A0 with

A2 = (XJSXT )−1, A1 = −A2XJ
2SXTA2, A0 = −A2(XJ2SXTA1 +XJ3SXTA2) (6)
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is real T -even with eigenvalues ±iβj , j = 1: n. Finally,

Q(λ) = (λ+ 1)2Q̃
(λ− 1

λ+ 1

)
= λ2(A2 +A1 +A0) + λ(−2A2 + 2A0) + (A2 −A1 +A0) (7)

is real T -palindromic with eigenvalues λj , j = 1: 2n (see Al-Ammari [2011]).
gen tantipal2 {pep,qep,real,T-anti-palindromic,parameter-dependent,scalable,
random}. This is a real T-anti-palindromic quadratic matrix polynomial generated
from a given set of eigenvalues lying on the unit circle as in (4). Let J be as in (5) and

S =

[
In 0
0 −In

]
, X = [X1 X1U ] ,

where X1 ∈ Rn×n is nonsingular and U ∈ Rn×n is orthogonal. Then the n × n real
quadratic Q̃(λ) = λ2A2 + λA1 + A0 with matrix coefficients as in (6) is real T -odd
with eigenvalues ±iβj , j = 1: n. Finally, Q(λ) in (7) is real T -anti-palindromic with
eigenvalues λj , j = 1: 2n (see Al-Ammari [2011]).
gun {nep,sparse}. This nonlinear eigenvalue problem models a radio-frequency gun
cavity. The eigenvalue problem is of the form

F (λ)x =
[
K − λM + i(λ− σ2

1)
1
2W1 + i(λ− σ2

2)
1
2W2

]
x = 0,

where M,K,W1,W2 are real symmetric matrices of size 9956 × 9956. K is positive
semidefinite and M is positive definite. In this example σ1 = 0 and σ2 = 108.8774.
The eigenvalues of interest are the λ for which λ1/2 is close to 146.71 [Liao 2007, p. 59].
hadeler {nep,real,symmetric,scalable}. This nonlinear eigenvalue problem has the
form

F (λ)x =
[
(eλ − 1)A2 + λ2A1 − αA0

]
x = 0,

where A2, A1, A0 ∈ Rn×n are symmetric and α is a scalar parameter [Hadeler 1967].
This problem satisfies a generalized form of overdamping condition that ensures the
existence of a complete set of eigenvectors [Ruhe 1973].
hospital {pep,qep,real}. This is a 24×24 quadratic polynomialQ(λ) = λ2M+λC+K,
with M = I24, arising in the study of the Los Angeles University Hospital building
[Chahlaoui and Van Dooren 2002], [Chahlaoui and Van Dooren 2005]. There are 8
floors, each with 3 degrees of freedom.
intersection {pep,qep,real}. This 10×10 quadratic polynomial arises in the problem
of finding the intersection between a cylinder, a sphere, and a plane described by the
equations

f1(x, y, z) = 1.6e-3x2 + 1.6e-3 y2 − 1 = 0,
f2(x, y, z) = 5.3e-4x2 + 5.3e-4 y2 + 5.3e-4 z2 + 2.7e-2x− 1 = 0,
f3(x, y, z) = −1.4e-4x+ 1.0e-4 y + z − 3.4e-3 = 0.

(8)

Use of the Macaulay resultant leads to the QEP Q(x)v = 0, where

Q(x)v = [ yf1 zf1 f1 yf2 zf2 f2 yzf3 yf3 zf3 f3 ]
T

= (x2A2 + xA1 +A0)v,

v = [ y3 y2z y2 yz2 z3 z2 yz y z 1 ]
T
.

The matrix A2 is singular and the QEP has only four finite eigenvalues: two real and
two complex. Let (λi, vi), i = 1, 2 be the two real eigenpairs. With the normalization
vi(10) = 1, i = 1, 2, (xi, yi, zi) = (λi, vi(8), vi(9)) are solutions of (8) [Manocha 1994].
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loaded string {rep,real,symmetric,parameter-dependent,sparse,scalable}. This
rational eigenvalue problem arises in the finite element discretization of a boundary
problem describing the eigenvibration of a string with a load of mass m attached by an
elastic spring of stiffness k. It has the form

R(λ)x =

(
A− λB +

λ

λ− σ
C

)
x = 0,

where the pole σ = k/m, and A > 0 and B > 0 are n × n tridiagonal matrices defined
by

A =
1

h


2 −1

−1
. . . . . .
. . . 2 −1

−1 1

 , B =
h

6


4 1

1
. . . . . .
. . . 4 1

1 2

 ,
and C = kene

T
n with h = 1/n [Solov′ëv 2006].

metal strip {pep,qep,real}. Modelling the electronic behaviour of a metal strip us-
ing partial element equivalent circuits (PEEC’s) results in the delay differential equa-
tion [Bellen et al. 1999]{

D1ẋ(t− h) +D0ẋ(t)= A0x(t) +A1x(t− h) , t ≥ 0,

x(t)= ϕ(t) , t ∈ [−h, 0),

where

A0 = 100

[ −7 1 2
3 −9 0
1 2 −6

]
, A1 = 100

[
1 0 −3

−0.5 −0.5 −1
−0.5 −1.5 0

]
,

D1 = − 1

72

[ −1 5 2
4 0 3
−2 4 1

]
, D0 = I, ϕ(t) =

[
sin(t), sin(2t), sin(3t)

]T
.

Assessing the stability of this delay differential equation by the method in [Faßbender
et al. 2008], [Jarlebring 2008] leads to the quadratic eigenproblem (λ2E+λF+G)u = 0
with

E = (D0 ⊗A1) + (A0 ⊗D1), G = (D1 ⊗A0) + (A1 ⊗D0),

F = (D0 ⊗A0) + (A0 ⊗D0) + (D1 ⊗A1) + (A1 ⊗D1).

This problem is PCP-palindromic [Faßbender et al. 2008], i.e., there is an involutory
matrix P such that E = PGP and F = PFP .
mirror {pep,real,random}. The 9×9 quartic matrix polynomial λ4A4 +λ3A3 +λ2A2 +
λA1 + A0 is obtained from a homography-based method for calibrating a central ca-
dioptric vision system, which can be built from a perspective camera with a hyperbolic
mirror or an orthographic camera with a parabolic mirror [Zhang and Li 2008]. A0 and
A4 have only two nonzero columns, so there are at least 7 infinite eigenvalues and 7
zero eigenvalues.
mobile manipulator {pep,qep,real}. This is a 5 × 5 quadratic matrix polynomial
arising from modelling a two-dimensional three-link mobile manipulator as a time-
invariant descriptor control system [Byers et al. 1998, Ex. 14], [Bunse-Gerstner et al.
1999]. The system in its second-order form is

Mẍ(t) +Dẋ(t) +Kx(t) = Bu(t),

y(t) = Cx(t),
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where the coefficient matrices are 5× 5 and of the form

M =

[
M0 0
0 0

]
, D =

[
D0 0
0 0

]
, K =

[
K0 −FT0
F0 0

]
,

with

M0 =

[
18.7532 −7.94493 7.94494
−7.94493 31.8182 −26.8182
7.94494 −26.8182 26.8182

]
, D0 =

[−1.52143 −1.55168 1.55168
3.22064 3.28467 −3.28467
−3.22064 −3.28467 3.28467

]
,

K0 =

[
67.4894 69.2393 −69.2393
69.8124 1.68624 −1.68617
−69.8123 −1.68617 −68.2707

]
, F0 =

[
1 0 0
0 0 1

]
.

The quadratic Q(λ) = λ2M + λD + K is close to being nonregular [Byers et al. 1998],
[Higham and Tisseur 2002].

omnicam1 {pep,qep,real}. This is a 9× 9 quadratic matrix polynomial Q(λ) = λ2A2 +
λA1 + A0 arising from a model of an omnidirectional camera (one with angle of view
greater than 180 degrees) [Mičušı́k and Pajdla 2003]. The matrix A0 has one nonzero
column, A1 has 5 nonzero columns and rank 5, while A2 has full rank. The eigenvalues
of interest are the real eigenvalues of order 1.

omnicam2 {pep,qep,real}. The description of ominicam1 applies to this problem, too,
except that the quadratic is 15× 15.

orr-sommerfeld {pep,parameter-dependent,scalable}. This example is a quartic
polynomial eigenvalue problem arising in the spatial stability analysis of the
Orr Sommerfeld equation [Tisseur and Higham 2001]. The Orr Sommerfeld equation
is a linearization of the incompressible Navier–Stokes equations in which the pertur-
bations in velocity and pressure are assumed to take the form Φ(x, y, t) = φ(y)ei(λx−ωt),
where λ is a wavenumber and ω is a radian frequency. For a given Reynolds number
R, the Orr Sommerfeld equation may be written[(

d2

dy2
− λ2

)2

− iR
{

(λU − ω)

(
d2

dy2
− λ2

)
− λU ′′

}]
φ = 0. (9)

In spatial stability analysis the parameter is λ, which appears to the fourth power in
(9), so we obtain a quartic polynomial eigenvalue problem. The quartic is constructed
using a Chebyshev spectral discretization. The eigenvalues λ of interest are those clos-
est to the real axis and Im(λ) > 0 is needed for stability. The default values R = 5772
and ω = 0.26943 correspond to the critical neutral point corresponding to λ and ω both
real for minimum R [Bridges and Morris 1984], [Orszag 1971].

pdde stability {qep,pep,scalable,parameter-dependent,sparse,symmetric}. This
problem arises from the stability analysis of a partial delay-differential equation
(PDDE) [Faßbender et al. 2008], [Jarlebring 2008, Ex. 3.22]. Discretization gives rise
to a time-delay system

ẋ(t) = A0x(t) +A1x(t− h1) +A2x(t− h2),



A:14 T. Betcke at all.

where A0 ∈ Rn×n is tridiagonal and A1, A2 ∈ Rn×n are diagonal with

(A0)kj =

{
−2(n+ 1)2/π2 + a0 + b0 sin

(
jπ/(n+ 1)

)
if k = j,

(n+ 1)2/π2 if |k − j| = 1 ,

(A1)jj = a1 + b1
jπ

n+ 1

(
1− e−π(1−j/(n+1))

)
,

(A2)jj = a2 + b2
jπ2

n+ 1

(
1− j/(n+ 1)

)
.

Here, the ak and bk are real scalar parameters and n ∈ N is the number of uniformly
spaced interior grid points in the discretization of the PDDE. Asking for the delays
h1, h2 such that the delay system is stable leads to the quadratic eigenvalue problem
(λ2E + λF +G) v = 0 of dimension n2 × n2 with

E = I ⊗A2 , F =
(
I ⊗ (A0 + e−iϕ1A1)

)
+
(
(A0 + eiϕ1A1)⊗ I

)
, G = A2 ⊗ I,

where i is the imaginary unit and ϕ1 ∈ [−π, π] is a parameter. (To answer the stability
question, the QEP has to be solved for many values of ϕ1.)

Following [Jarlebring 2008], [Faßbender et al. 2008] the default values are

n = 20, a0 = 2, b0 = 0.3, a1 = −2, b1 = 0.2, a2 = −2, b2 = −0.3, ϕ1 = −π/2.
This problem is PCP-palindromic [Faßbender et al. 2008], i.e., there is an involutory
matrix P such that E = PGP and F = PFP . Moreover, only the four eigenvalues on
the unit circle are of interest in the application. The exact corresponding eigenvectors
can be written as xj = uj ⊗ vj for j = 1: 4.
planar waveguide {pep,real,symmetric,scalable}. This 129 × 129 quartic matrix
polynomial P (λ) = λ4A4 + λ3A3 + λ2A2 + λA1 + A0 arises from a finite element so-
lution of the equation for the modes of a planar waveguide using piecewise linear basis
functions φi, i = 0: 128. The coefficient matrices are defined by

A1 =
δ2

4
diag(−1, 0, 0, . . . , 0, 0, 1), A3 = diag(1, 0, 0, . . . , 0, 0, 1),

A0(i, j) =
δ4

16
(φi, φj) A2(i, j) = (φ′i, φ

′
j)− (qφi, φj) A4(i, j) = (φi, φj).

Thus A1 and A3 are diagonal, while A0, A2, and A4 are tridiagonal. The parameter δ
describes the difference in refractive index between the cover and the substrate of the
waveguide; q is a function used in the derivation of the variational formulation and
is constant in each layer [Stowell 2010], [Stowell and Tausch 2010]. This particular
waveguide has been studied in the literature in connection with other solution methods
[Chilwell and Hodgkinson 1984], [Petrác̆ek and Singh 2002].
plasma drift {pep}. This cubic matrix polynomial of dimension 128 or 512 results
from the modeling of drift instabilities in the plasma edge inside a Tokamak reactor
[Tokar et al. 2005]. It is of the form P (λ) = λ3A3 + λ2A2 + λA1 + A0, where A0 and A1

are complex, A2 is complex symmetric, and A3 is real symmetric. The desired eigenpair
is the one whose eigenvalue has the largest imaginary part.
power plant {pep,qep,symmetric,parameter-dependent}. This is a QEP Q(λ)x =

(λ2M + λD + K)x = 0 describing the dynamic behaviour of a nuclear power plant
simplified into an eight-degrees-of-freedom system [Itoh 1973], [Tisseur and Meerber-
gen 2001]. The mass matrix M and damping matrix D are real symmetric and the
stiffness matrix has the form K = (1 + iµ)K0, where K0 is real symmetric (hence
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K = KT is complex symmetric). The parameter µ describes the hysteretic damping of
the problem. The matrices are badly scaled.
qep1 {pep,qep,real,solution}. This is a 3 × 3 quadratic matrix polynomial Q(λ) =

λ2A2 + λA1 +A0 from Tisseur and Meerbergen [2001, p. 250] with

A2 =

[
0 6 0
0 6 0
0 0 1

]
, A1 =

[
1 −6 0
2 −7 0
0 0 0

]
, A0 = I.

The six eigenpairs (λk, xk), k = 1: 6, are given by

k 1 2 3 4 5 6

λk 1/3 1/2 1 i −i ∞

xk

[
1
1
0

] [
1
1
0

] [
0
1
0

] [
0
0
1

] [
0
0
1

] [
1
0
0

]
Note that x1 is an eigenvector for both of the distinct eigenvalues λ1 and λ2.
qep2 {pep,qep,real,solution}. This is the 3×3 quadratic matrix polynomial [Tisseur
and Meerbergen 2001, p. 256]

Q(λ) = λ2

[
1 0 0
0 1 0
0 0 0

]
+ λ

[−2 0 1
0 0 0
0 0 0

]
+

[
1 0 0
0 −1 0
0 0 1

]
.

The eigenvalues are λ1 = −1, λ2 = λ3 = λ4 = 1, and λ5 = λ6 =∞. The Jordan structure
is given by

XF =

[
0 0 1 0
1 1 0 1
0 0 0 0

]
, JF = diag

(
−1, 1,

[
1 1
0 1

])
for the finite eigenvalues and and

X∞ =

[
0 −1
0 0
1 1

]
, J∞ =

[
0 1
0 0

]
for the infinite eigenvalues (see Gohberg et al. [2009] or Tisseur and Meerbergen [2001,
Sec. 3.6] for definitions of Jordan structure).
qep3 {pep,qep,real,parameter-dependent,solution}. This is a 3×3 quadratic matrix
polynomial Q(λ) = λ2A2 + λA1 +A0 from Dedieu and Tisseur [2003, p. 89] with

A2 =

[
1 −1 −1
0 1 0
0 0 0

]
, A1 =

[−3 1 0
0 −1− ε 0
0 0 1

]
, A0 =

[
2 0 9
0 0 0
0 0 −3

]
.

The eigenpairs (λk, xk), k = 1: 6, are given by

k 1 2 3 4 5 6
λk 0 1 1 + ε 2 3 ∞

xk

[
0
1
0

] [
1
0
0

] [
1
ε−1
ε+1
0

] [
1
0
0

] [
0
0
1

] [
1
0
1

]
For the default value of the parameter, ε = −1 + 2−53/2, the first and third eigenvalues
are ill conditioned.
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qep4 {pep,qep,nonregular,nonsquare,real,solution}. This is the 3 × 4 quadratic
matrix polynomial [Byers et al. 2008, Ex. 2.5]

Q(λ) = λ2

[
1 0 0 0
0 1 0 0
0 0 0 0

]
+ λ

[
0 1 1 0
1 0 0 1
1 0 0 0

]
+

[
0 0 0 0
0 0 1 0
0 1 0 1

]
.

The eigensystem includes an eigenvalue λ1 = 0 with right eigenvectors [2 1 0 − 1]T

and e1 and an eigenvalue λ = ∞ with right eigenvector [0 0 1 0]T . The Jordan and
Kronecker structure is fully described in Byers et al. [2008, Ex. 2.5].
qep5 {pep,qep,nonregular,real}. This is the 3 × 3 quadratic matrix polynomial
[Van Dooren and Dewilde 1983, Ex. 1]

Q(λ) = λ2

[
1 4 2
0 0 0
1 4 2

]
+ λ

[
1 3 0
1 4 2
0 −1 −2

]
+

[
1 2 −2
0 −1 −2
0 0 0

]
.

Its Smith form [Gantmacher 1959] is given by

D(λ) =

[
1 −1 −1
−λ 1 + λ λ
0 −λ 1

]
Q(λ)

[
1 −3 6
0 1 −2
0 0 1

]
=

[
1 0 0
0 λ− 1 0
0 0 0

]
,

and since det(Q(λ)) = det(D(λ)) ≡ 0 this problem is nonregular.
railtrack {pep,qep,t-palindromic,sparse}. This is a T-palindromic quadratic ma-
trix polynomial of size 1005: Q(λ) = λ2AT + λB + A with B = BT . It stems from a
model of the vibration of rail tracks under the excitation of high speed trains, dis-
cretized by classical mechanical finite elements [Hilliges 2004], [Hilliges et al. 2004],
[Ipsen 2004], [Mackey et al. 2006]. This problem has the property that the matrix A is
of the form

A =

[
0 0
A21 0

]
∈ C1005×1005,

where A21 ∈ C201×67, that is, A has low rank (rank(A) = 67). Hence this eigenvalue
problem has many eigenvalues at zero and infinity.
railtrack2 {pep,qep,t-palindromic,sparse,scalable,parameter-dependent}. This
is a T-palindromic quadratic matrix polynomial of size 705m × 705m: Q(λ) = λ2AT +
λB +A with

A =


0 · · · 0 H1

0 · · · 0 0
...

...
...

0 . . . 0 0

 , B =


H0 HT

1 0

H1 H0
. . .

. . . . . . HT
1

0 H1 H0

 = BT ,

where H0, H1 ∈ C705×705 depend quadratically on a parameter ω, whose default value
is ω = 1000. The default for the number of block rows and columns ofA andB ism = 51.
The structure of A implies that there are many eigenvalues at zero and infinity.

Like the problem railtrack this problem is from a model of the vibration of rail
tracks, but here triangular finite elements are used for the discretization [Chu et al.
2008], [Guo and Lin 2010], [Huang et al. 2008]. The parameter ω denotes the frequency
of the external excitation force.
relative pose 5pt {pep,real}. The cubic matrix polynomial P (λ) = λ3A3 + λ2A2 +

λA1 + A0, Ai ∈ R10×10, comes from the five point relative pose problem in computer
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vision [Kukelova et al. 2008], [Kukelova et al. 2011]. In this problem the images of
five unknown scene points taken with a camera with a known focal length from two
distinct unknown viewpoints are given and it is required to determine the possible
solutions for the relative configuration of the points and cameras. The matrix A3 has
one nonzero column, A2 has 3 nonzero columns and rank 3, A1 has 6 nonzero columns
and rank 6, while A0 is of full rank. The solutions to the problem are obtained from
the last three components of the finite eigenvectors of P .
relative pose 6pt {pep,qep,real}. The quadratic matrix polynomial P (λ) = λ2A2 +

λA1 + A0, where Ai ∈ R10×10, comes from the six point relative pose problem in com-
puter vision [Kukelova et al. 2008], [Kukelova et al. 2011]. In this problem the images
of six unknown scene points taken with a camera of unknown focal length from two
distinct unknown camera viewpoints are given and it is required to determine the pos-
sible solutions for the relative configuration of the points and cameras. The solutions
to the problem are obtained from the last three components of the finite eigenvectors
of P .
schrodinger {pep,qep,real,symmetric,sparse}. The spectrum of this matrix polyno-
mial is the second order spectrum, relative to a subspace L ⊂ H2(R), of the Schrödinger
operator Hf(x) = f ′′(x) + (cos(x) − e−x

2

)f(x) acting on L2(R) [Boulton and Levitin
2007]. The subspace L has been generated using fourth order Hermite elements on a
uniform mesh on the interval [−49, 49], subject to clamped boundary conditions. The
corresponding quadratic matrix polynomial is given by K − 2λC + λ2B where

Kjk = 〈Hbj , Hbk〉, Cjk = 〈Hbj , bk〉 and Bjk = 〈bj , bk〉.
Here {bk} is a basis of L. The matrices are of size 1998.

The essential spectrum of H consists of a set of bands separated by gaps. The end
points of these bands are the Mathieu characteristic values. The presence of the short-
range potential gives rise to isolated eigenvalues of finite multiplicity. The portion of
the second order spectrum that lies in the box [−1/2, 2]× [−10−1, 10−1] is very close to
the spectrum of H.
shaft {pep,qep,real,symmetric,sparse}. The quadratic matrix polynomial Q(λ) =
λ2M + λC + K, with M,C,K ∈ R400×400, comes from a finite element model of a shaft
on bearing supports with a damper [Kowalski 2000, Ex. 5.6]. The matrix M has rank
199 and so contributes a large number of infinite eigenvalues. C has a single nonzero
element, in the (20, 20) position. The coefficients M , C, and K are very sparse.
sign1 {pep,qep,hermitian,parameter-dependent,scalable}. The spectrum of this
quadratic matrix polynomial is the second order spectrum of the linear operator
Mf(x) = sign(x)f(x) + af̂(0) acting on L2(−π, π) with respect to the Fourier basis
Bn = {e−inx, . . . , 1, . . . , einx}, where f̂(0) = (1/2π)

∫ π
−π f(x) dx [Boulton 2007]. The cor-

responding QEP is given by Kn − 2λCn + λ2In where

Kn = ΠnM
2Πn, Cn = ΠnMΠn

and In is the identity matrix of size 2n + 1. Here Πn is the orthogonal projector onto
span(Bn).

As n increases, the limit set of the second order spectrum is the unit circle, together
with two real points: λ±. The intersection of this limit set with the real line is the
spectrum of M . The points λ± comprise the discrete spectrum of M .
sign2 {pep,qep,hermitian,parameter-dependent,scalable}. This problem is anal-
ogous to problem sign1, the only difference being that the operator is Mf(x) =

(2 sin(x) + sign(x))f(x) + af̂(0).
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Near the real line, the second order spectrum accumulates at [−3,−1] ∪ [1, 3] ∪ {λ±}
as n increases. The two accumulation points λ± ≈ {−0.7674, 3.5796} are the discrete
spectrum of M .

sleeper {pep,qep,real,symmetric,sparse,scalable,proportionally-damped,solution}.
This QEP describes the oscillations of a rail track resting on sleepers [Lancaster and
Rózsa 1996]. The QEP has the form

Q(λ) = λ2I + λ(I +A2) +A2 +A+ I,

where A is the circulant matrix with first row [−2, 1, 0, . . . , 0, 1]. The eigenvalues of
A and corresponding eigenvectors are explicitly given as

µk = −4 sin2

(
(k − 1)π

n

)
, xk(j) =

1√
n

exp

(
−2iπ(j − 1)(k − 1)

n

)
, k = 1: n.

The eigenvalues of Q can be determined from the scalar equations

λ2 + λ(1 + µ2
k) + (1 + µk + µ2

k) = 0.

Due to the symmetry, manifested in sin(π − θ) = sin(θ), there are several multiple
eigenvalues.

speaker box {pep,qep,real,symmetric}. The quadratic matrix polynomial Q(λ) =

λ2M + λC + K, with M,C,K ∈ R107×107, is from a finite element model of a speaker
box that includes both structural finite elements, representing the box, and fluid ele-
ments, representing the air contained in the box [Kowalski 2000, Ex. 5.5]. The matrix
coefficients are highly structured and sparse. There is a large variation in the norms:
‖M‖2 = 1, ‖C‖2 = 5.7× 10−2, ‖K‖2 = 1.0× 107.

spring {pep,qep,real,symmetric,proportionally-damped,parameter-dependent,
sparse,scalable}. This is a QEP Q(λ)x = (λ2M + λC + K)x = 0 arising from a
linearly damped mass-spring system [Tisseur 2000]. The damping constants for the
dampers and springs connecting the masses to the ground, and those for the dampers
and springs connecting adjacent masses, are parameters. For the default choice of the
parameters, the n× n matrices K, C, and M are

M = I, C = 10T, K = 5T, T =


3 −1

−1
. . . . . .
. . . . . . −1
−1 3

 .

spring dashpot {pep,qep,real,parameter-dependent,sparse,scalable,random}.
Gotts [Gotts 2005] describes a QEP arising from a finite element model of a linear
spring in parallel with Maxwell elements (a Maxwell element is a spring in series with
a dashpot). The quadratic matrix polynomial is Q(λ) = λ2M +λD+K, where the mass
matrix M is rank deficient and symmetric, the damping matrix D is rank deficient
and block diagonal, and the stiffness matrix K is symmetric and has arrowhead
structure. This example reflects the structure only, since the matrices themselves are
not from a finite element model but randomly generated to have the desired properties
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of symmetry etc. The matrices have the form

M = diag(ρM̃11, 0), D = diag(0, η1K̃11, . . . , ηmK̃m+1,m+1),

K =


αρK̃11 −ξ1K̃12, . . . −ξmK̃1,m+1

−ξ1K̃12 e1K̃22 0 0
... 0

. . . 0

−ξmK̃1,m+1 0 0 emK̃m+1,m+1

 ,
where M̃ij and K̃ij are element mass and stiffness matrices, ξi and ei measure the
spring stiffnesses, and ρ is the material density.
surveillance {pep,qep,real,nonsquare,nonregular}. This is a 21×16 quadratic ma-
trix polynomial Q(λ) = λ2A2 + λA1 + A0 arising from calibration of a surveillance
camera using a human body as a calibration target [Mičušı́k and Pajdla 2010]. The
eigenvalue represents the focal length of the camera. This particular data set is syn-
thetic and corresponds to a 600× 400 pixel camera.
time delay {nep,real}. This 3 × 3 nonlinear matrix function has the form R(λ) =

−λI3 +A0 +A1 exp(−λ) with

A0 =

[
0 1 0
0 0 1
−a3 −a2 −a1

]
, A1 =

[
0 0 0
0 0 0
−b3 −b2 −b1

]
,

and is the characteristic equation of a time-delay system with a single delay and con-
stant coefficents [Jarlebring 2011], [Jarlebring and Michiels 2010], [Jarlebring and
Michiels 2011]. The problem has a double non-semisimple eigenvalue λ = 3πi.
wing {pep,qep,real}. This example is a 3 × 3 quadratic matrix polynomial Q(λ) =

λ2A2 + λA1 + A0 from Frazer et al. [1938, Sec. 10.11], with numerical values modified
as in Lancaster [1966, Sec. 5.3]. The eigenproblem for Q(λ) arose from the analysis of
the oscillations of a wing in an airstream. The matrices are

A2 =

[
17.6 1.28 2.89
1.28 0.824 0.413
2.89 0.413 0.725

]
, A1 =

[
7.66 2.45 2.1
0.23 1.04 0.223
0.6 0.756 0.658

]
,

A0 =

[
121 18.9 15.9
0 2.7 0.145

11.9 3.64 15.5

]
.

wiresaw1 {pep,qep,real,t-even,gyroscopic,parameter-dependent,scalable}. This
gyroscopic QEP arises in the vibration analysis of a wiresaw [Wei and Kao 2000]. It
takes the form Q(λ)x = (λ2M + λC +K)x = 0, where the n× n coefficient matrices are
defined by

M = In/2, K = diag
1≤j≤n

(
j2π2(1− v2)/2

)
,

and

C = −CT = (cjk), with cjk =


4jk

j2 − k2
v, if j + k is odd,

0, otherwise.

Here, v is a real nonnegative parameter corresponding to the speed of the wire. Note
that for 0 < v < 1, K is positive definite and the quadratic

G(λ) := −Q(−ıλ) = λ2M + λ(ıC)−K
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is hyperbolic (but not overdamped).
wiresaw2 {pep,qep,real,parameter-dependent,scalable}. When the effect of viscous
damping is added to the problem in wiresaw1, the corresponding quadratic has the
form [Wei and Kao 2000]

Q̃(λ) = λ2M + λ(C + ηI) +K + ηC,

where M , C, and K are the same as in wiresaw1 and the damping parameter η is real
and nonnegative.

4. DESIGN OF THE TOOLBOX
The problems in the NLEVP collection are accessed via a single MATLAB function
nlevp, which is modelled on the MATLAB gallery function. This function calls those
that actually generate the problems, which reside in a private directory located within
the nlevp directory. This approach avoids the problem of name clashes with existing
MATLAB functions and also provides an elegant interface to the collection.

All problems have input parameters comprising the problem name followed by
(where applicable) the dimension and other parameters, and the coefficient matrices
defining the problem (as specified in Section 2.1) are returned in a cell array. To illus-
trate, the following example sets up the omnicam2 problem, finds its eigenvalues and
eigenvectors with polyeig, and then prints the largest modulus of the eigenvalues:

>> coeffs = nlevp(’omnicam2’)
coeffs =

[15x15 double] [15x15 double] [15x15 double]
>> [X,e] = polyeig(coeffs{:}); max(abs(e))
ans =
3.6351e-001

The nonlinear function F (λ) in (3) can be evaluated by calling nlevp with eval as its
first argument. This is useful for evaluating the residual of an approximate eigenpair,
for example:

>> lam = e(end); x = X(:,end); Fx = nlevp(’eval’,’omnicam2’,lam)*x; norm(Fx)
ans =
5.8137e-032

The second output argument from nlevp is a function handle that enables the non-
linear scalar functions fi(λ) in (3) and their derivatives to be evaluated. This facili-
tates the use of numerical methods that require derivatives, especially for the non-
polynomial problems, for which obtaining the derivatives can be nontrivial. For exam-
ple, the following code evaluates fi(0.5), i = 1: 3, and the first two derivatives (denoted
fp, fpp), for the fiber problem:

>> [coeffs,fun] = nlevp(’fiber’);
>> [f,fp,fpp] = fun(0.5)
f =
1.0000e+000 -5.0000e-001 -7.0746e-001

fp =
0 -1.0000e+000 -7.0725e-001

fpp =
0 0 7.0696e-001

Problems and their properties are stored in a simple database made from cell ar-
rays. The database is accessed with the nlevp_query function in the private directory,
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which is invoked using the query argument to nlevp. For example, the properties for
the butterfly problem are returned in a cell array by the following call (whose syn-
tax illustrates the command/function duality of MATLAB [Higham and Higham 2005,
Sec. 7.5]):

>> nlevp query butterfly
ans =

’pep’
’real’
’parameter-dependent’
’T-even’
’scalable’

A more sophisticated example finds the names of all PEPs of degree 3 or higher:

>> pep = nlevp(’query’,’pep’); qep = nlevp(’query’,’qep’);
>> pep_cubic_plus = setdiff(pep,qep)
pep_cubic_plus =

’butterfly’
’mirror’
’orr_sommerfeld’
’planar_waveguide’
’plasma_drift’
’relative_pose_5pt’

The cell array pep_cubic_plus can then easily be used to extract these problems. For
example, the first problem in pep_cubic_plus can be solved using

coeffs = nlevp(pep_cubic_plus{1}); [X,e] = polyeig(coeffs{:});

Table V and VI were generated automatically in MATLAB using appropriate
nlevp(’query’,...) calls.

The toolbox function nlevp_example provides a test that the toolbox is correctly in-
stalled. It solves all the PEPs in the collection of dimension less than 500 using MAT-
LAB’s polyeig and then plots the eigenvalues. It produces Figure 1 and output to the
command window that begins as follows:

NLEVP contains 52 problems in total,
of which 47 are polynomial eigenvalue problems (PEPs).
Run POLYEIG on the PEP problems of dimension at most 500:

Problem Dim Max and min magnitude of eigenvalues
------- --- ------------------------------------

acoustic_wave_1d 10 3.14e+000, 4.59e-001
acoustic_wave_2d 30 2.61e+000, 6.83e-001

bicycle 2 1.41e+001, 3.23e-001
bilby 5 Inf, 4.84e-016

butterfly 64 2.01e+000, 3.59e-001
cd_player 60 1.87e+006, 2.23e-004

closed_loop 2 1.07e+000, 3.31e-001
concrete 2472 is a PEP but is too large for this test.

...

The nlevp_example.m function can be used as a template by the user wishing to test a
given solver on subsets of the NLEVP problems.
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Fig. 1. Eigenvalue plots for PEP problems produced by nlevp example.m.
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The toolbox function nlevp_test.m automatically tests that the problems in the col-
lection have the claimed properties. It is primarily intended for use by the developers
as new problems are added, but it can also be used as a test for correctness of the in-
stallation. While many of the tests are straightforward, some are less so. For example,
we test for hyperbolicity of a Hermitian matrix polynomial by computing the eigensys-
tem and checking the types of the eigenvalues, using a characterization in [Al-Ammari
and Tisseur 2011, Thm. 3.4, P1]. To test for proportional damping we use necessary
and sufficient conditions from Lancaster and Zaballa [2009, Thms. 2, 4]. We reproduce
part of the output:

>> nlevp_test
Testing the NLEVP collection
Testing generation of all problems
Testing T-palindromicity
Testing *-palindromicity
...
Testing proportionally damping
Testing given solutions
NLEVP collection tests completed.
*** Errors: 0

5. CONCLUSIONS
The NLEVP collection demonstrates the tremendous variety of applications of nonlin-
ear eigenvalue problems and provides representative problems for testing in the form
of a MATLAB toolbox. Version 1.0 of the toolbox was released in 2008 and the current
version is 3.0. The toolbox has already proved useful in our own work and that of oth-
ers [Asakura et al. 2010], [Betcke 2008], [Betcke and Kressner 2011], [Grammont et al.
2011], [Guo et al. 2009b], [Hammarling et al. 2011], [Jarlebring et al. 2010], [Su and
Bai 2011], [Tisseur et al. 2011] and we hope it will find broad use in developing, test-
ing, and comparing new algorithms. By classifying important structural properties of
nonlinear eigenvalue problems, and providing examples of these structures, this work
should also be useful in guiding theoretical developments.
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