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Abstract

We describe our current understanding on the phase transition phenomenon of the graph Laplacian
eigenvectors constructed on a certain type of unweighted trees, which we previously observed through
our numerical experiments. The eigenvalue distribution for such a tree is a smooth bell-shaped curve
starting from the eigenvalue 0 up to 4. Then, at the eigenvalue 4, there is a sudden jump. Interestingly, the
eigenvectors corresponding to the eigenvalues below 4 are semi-global oscillations (like Fourier modes)
over the entire tree or one of the branches; on the other hand, those corresponding to the eigenvalues
above 4 are much more localized and concentrated (like wavelets) around junctions/branching vertices.
For a special class of trees called starlike trees, we obtain a complete understanding of such phase transi-
tion phenomenon. For a general graph, we prove the number of the eigenvalues larger than 4 is bounded
from above by the number of vertices whose degrees is strictly larger than 2. Moreover, we also prove
that if a graph contains a branching path, then the magnitudes of the components of any eigenvector
corresponding to the eigenvalue greater than 4 decay exponentially from the branching vertex toward the
leaf of that branch. We have also identified a unique class of trees that can have an eigenvalue exactly
equal to 4.

keywords: graph Laplacian, localization of eigenvectors, phase transition phenomena, starlike trees,
dendritic trees, Gerschgorin’s disks

1 1. Introduction

In our previous report [7], we proposed a method to characterize dendrites of neurons, more specifically
retinal ganglion cells (RGCs) of a mouse, and cluster them into different cell types using their morphological
features, which are derived from the eigenvalues of the graph Laplacians when such dendrites are represented
as graphs (in fact literally as “trees”). For the details on the data acquisition and the conversion of dendrites
to graphs, see [7] and the references therein. While analyzing the eigenvalues and eigenvectors of those
graph Laplacians, we observed a very peculiar phase transition phenomenon as shown in Figure 1.1.

The eigenvalue distribution for each dendritic tree is a smooth bell-shaped curve starting from the eigen-
value 0 up to 4. Then, at the eigenvalue 4, there is a sudden jump as shown in Figure 1.1(c, d). Interest-
ingly, the eigenvectors corresponding to the eigenvalues below 4 are semi-global oscillations (like Fourier
cosines/sines) over the entire dendrites or one of the dendrite arbors (or branches); on the other hand, those
corresponding to the eigenvalues above 4 are much more localized and concentrated (like wavelets) around
junctions/branching vertices, as shown in Figure 1.2.
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(a) RGC #60
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(b) RGC #100
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Figure 1.1: Typical dendrites of Retinal Ganglion Cells (RGCs) of a mouse and the graph Laplacian eigen-
value distributions. (a) 2D projection of dendrites of an RGC of a mouse; (b) that of another RGC revealing
different morphology; (c) the eigenvalue distribution of the RGC shown in (a); (d) that of the RGC shown
in (b). Regardless of their morphological features, a phase transition occurs at the eigenvalue 4.
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(a) RGC #100; λ1141 = 3.9994
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(b) RGC #100; λ1142 = 4.3829

Figure 1.2: The graph Laplacian eigenvectors of RGC #100. (a) The one corresponding to the eigenvalue
λ1141 = 3.9994, immediately below the value 4; (b) the one corresponding to the eigenvalue λ1142 =
4.3829, immediately above the value 4.

We want to answer the following questions:

Q1 Why does such a phase transition phenomenon occur?

Q2 What is the significance of the eigenvalue 4?

Q3 Is there any tree that possesses an eigenvalue exactly equal to 4?

Q4 What about more general graphs that possess eigenvalues exactly equal to 4?

At this point of time, we have a complete answer to Q3, which will be described in Section 5. As for
Q1 and Q2, which are closely related, we have a complete answer for a specific and simple class of trees
called starlike trees as described in Section 3, and a partial answer for more general trees and graphs such
as those representing neuronal dendrites, which we discuss in Section 4. In Section 6, we will prove that
the existence of a long path between two subgraphs implies that the eigenvalues of either of the subgraphs
that are larger than 4 are actually very close to some eigenvalues of the whole graph. Then, in Section 7, we
will give a counterexample to the conjecture that the largest component in the eigenvector corresponding to
the largest eigenvalue (which is larger than 4) lies on the vertex of the largest degree. Finally, we describe
our investigation on Q4 in Section 8. But let us first start by fixing our notation and reviewing the basics of
graph Laplacians in Section 2.

2 2. Definitions and Notation

Let G = (V,E) be a graph where V = V (G) = {v1, v2, . . . , vn} is a set of vertices in G and E = E(G) =
{e1, e2, . . . , em} is a set of edges where ek connects two vertices vi, vj for some 1 ≤ i, j ≤ n, and we write
ek = (vi, vj). Let dk = d(vk) be the degree of the vertex vk. If a graph G is a tree, i.e., a connected graph
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Figure 2.1: A path graph provides a simple yet important example.

without cycles, then it has m = n − 1 edges. Let L(G) := D(G) − A(G) be the Laplacian matrix where
D(G) := diag(d1, . . . , dn) is called the degree matrix of G, i.e., the diagonal matrix of vertex degrees,
and A(G) = (aij) is the adjacency matrix of G, i.e., aij = 1 if vi and vj are adjacent; otherwise it is 0.
Furthermore, let 0 = λ0(G) ≤ λ1(G) ≤ · · · ≤ λn−1(G) be the eigenvalues of L(G), and mG(λ) be the
multiplicity of the eigenvalue λ. More generally, if I ⊂ R is an interval of the real line, then we define
mG(I) := #{λk(G) ∈ I}.

At this point we would like to give a simple yet important example of a tree and its graph Laplacian: a
path graph consisting of n vertices shown in Figure 2.1. The graph Laplacian of such a path graph can be
easily obtained and is instructive.

1 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 1


︸ ︷︷ ︸

L(G)

=


1

2
. . .

2
1


︸ ︷︷ ︸

D(G)

−


0 1
1 0 1

. . . . . . . . .
1 0 1

1 0


︸ ︷︷ ︸

A(G)

.

The eigenvectors of this matrix are nothing but the DCT Type II basis vectors used for the JPEG image
compression standard; see e.g., [9]. In fact, we have

λk = 4 sin2

(
πk

2n

)
; (1)

φk =

(
cos

(
πk

n

(
j +

1

2

)))T

0≤j<n
, (2)

where k = 0, 1, . . . , n − 1. From these, it is clear that for any finite n ∈ N, λmax = λn−1 � 4, and no
localization/concentration occurs in the eigenvector φn−1 (or any eigenvector), which is simply a global os-
cillation with the highest possible (i.e., the Nyquist) frequency, i.e., φn−1 =

(
(−1)j sin

(
π
n

(
j + 1

2

)))T
0≤j<n.

3 3. Analysis of Starlike Trees

As one can imagine, analyzing this phase transition phenomenon for complicated dendritic trees turns out to
be rather formidable. Hence, we start our analysis on a simpler class of trees called starlike trees. A starlike
tree is a tree that has exactly one vertex of degree greater than 2. Examples are shown in Figure 3.1.

We use the following notation. Let S(n1, n2, . . . , nk) be a starlike tree that has k(≥ 3) paths (i.e.,
branches) emanating from the central vertex v1. Let the ith branch have ni vertices excluding v1. Let

n1 ≥ n2 ≥ · · · ≥ nk. Hence, the total number of vertices is n = 1 +
k∑
i=1

ni.
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(a) S(2, 2, 1, 1, 1, 1) (b) S(n1, 1, 1, 1, 1, 1, 1, 1) a.k.a. comet

Figure 3.1: Typical examples of a starlike tree.
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(a) RGC #100; S`(T ) ≡ 1
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(b) RGC #155; S`(T ) = 0.953 � 1

Figure 3.2: Zoomed-up versions of parts of some dendritic trees.
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Das proved the following results for a starlike tree S(n1, . . . , nk) in [2]:

λmax = λn−1 < k + 1 +
1

k − 1
;

2 + 2 cos

(
2π

2nk + 1

)
≤ λn−2 ≤ 2 + 2 cos

(
2π

2n1 + 1

)
. (3)

On the other hand, Grone and Merris [5] proved the following lower bound for a general graph G with at
least one edge:

λmax ≥ max
1≤j≤n

d(vj) + 1. (4)

Hence we have the following

Corollary 3.1 A starlike tree has exactly one graph Laplacian eigenvalue greater than or equal to 4. The
equality holds if and only if the starlike tree is K1,3 = S(1, 1, 1), which is also known as a claw.

Proof. The first statement is easy to show. The lower bound in (4) is larger than or equal to 4 for any
starlike tree since max1≤j≤n d(vj) = d(v1) ≥ 3. On the other hand, the second largest eigenvalue λn−2
clearly cannot exceed 4 due to (3). The second statement about the necessary and sufficient condition on the
equality requires the argument in Section 5, in particular, Corollary 5.1. From this, we can easily see that
the only starlike tree having an eigenvalue exactly equal to 4 is K1,3. �

As for the concentration/localization of the eigenvector φn−1 corresponding to the largest eigenvalue
λn−1, we have the following

Theorem 1 Letφn−1 = (φ1,n−1, · · · , φn,n−1)T, where φj,n−1 is the value of the eigenvector corresponding
to the largest eigenvalue λn−1 at the vertex vj , j = 1, . . . , n. Then, the absolute value of this eigenvector at
the central vertex v1 cannot be exceeded by those at the other vertices, i.e.,

|φ1,n−1| > |φj,n−1|, j = 2, . . . , n.

To prove this theorem, we use the following lemma, which is simply a corollary of Gerschgorin’s theo-
rem [10, Theorem 1.1]:

Lemma 1 LetA be a square matrix of size n×n, λk(A) be any eigenvalue ofA, andφk = (φ1,k, . . . , φn,k)
T

be the corresponding eigenvector. Let k∗ denote the index of the largest eigenvector component in φk,
i.e., |φk∗,k| = maxj∈N |φj,k| where N := {1, . . . , n}. Then, we must have λk(A) ∈ Γk∗(A), where

Γi(A) :=
{
z ∈ C : |z − aii| ≤

∑
j∈N\{i} |aij |

}
is the ith Gerschgorin disk of A. In other words, for the

index of the largest eigenvector component, the corresponding Gerschgorin disk must contain the eigen-
value.

Proof. Recall the proof of Gerschgorin’s theorem. The k∗th row of Aφk = λkφk yields

|λk − ak∗k∗ | ≤
∑

j∈N\{k∗}

|ak∗j |
|φj,k|
|φk∗,k|

≤
∑

j∈N\{k∗}

|ak∗j | .

This implies λk ∈ Γk∗(A), which proves the lemma. �
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Proof of Theorem 1. First of all, by Corollary 3.1 we have λn−1 ≥ 4. However, λn−1 = 4 happens
only for K1,3. In that case, it is easy to see that this theorem holds by directly examining the eigenvector
φn−1 = φ3 ∝ (3,−1,−1,−1)T. Hence, let us examine the case λn−1 > 4. In this case, Lemma 1 indicates
4 < λn−1 ∈ Γ(n−1)∗(L) where (n− 1)∗ ∈ N is the index of the largest component in φn−1. Now, note that
the disk Γi(L) for any vertex vi that has degree 2 is {z ∈ C : |z − 2| ≤ 2} (and {z ∈ C : |z − 1| ≤ 1} for a
degree 1 vertex). This means that the Gerschgorin disk Γ(n−1)∗ containing the eigenvalue λn−1 > 4 cannot
be in the union of the Gerschgorin disks corresponding to the vertices whose degrees are 2 or less. Hence
the index of the largest eigenvector component in φn−1 must correspond to an index for which the vertex
has degree 3 or larger. In our starlike-tree case, there is only one such vertex, v1, i.e., (n− 1)∗ = 1. �

For different proofs without using Gerschgorin’s theorem, see Das [2, Lemma 4.2] and E. Woei’s dis-
sertation [11]. We note that our proof using Gerschgorin’s disks is more powerful than those other proofs
and can be used for more general situations than the starlike trees as we will see in Section 4.

Remark 1 Let φ = (φ1, φ2, . . . , φn)T be an eigenvector of a starlike tree S(n1, . . . , nk) corresponding to
the eigenvalue λ. Without loss of generality, let v2, . . . , vn1+1 be the n1 vertices along a branch emanating
from the central vertex v1 with vn1+1 being the leaf (or pendant) vertex. Then, along this branch, the
eigenvector components satisfy the following equations:

λφn1+1 = φn1+1 − φn1 (5)

λφj = 2φj − φj−1 − φj+1 2 ≤ j ≤ n1. (6)

From Eq. (6), we have the following recursion relation:

φj+1 + (λ− 2)φj + φj−1 = 0, j = 2, . . . , n1.

This recursion can be explicitly solved using the roots of the characteristic equation

r2 + (λ− 2)r + 1 = 0, (7)

and the general solution can be written as

φj = Arj−21 +Brj−22 , j = 2, . . . , n1 + 1, (8)

where r1, r2 are the roots of (7), and A,B are appropriate constants derived from the boundary condition
(5). Now, let us consider these roots of (7) in detail. The determinant of (7) is

D(λ) := (λ− 2)2 − 4 = λ(λ− 4).

Since we know that λ ≥ 0, this determinant changes its sign depending on λ < 4 or λ > 4. (Note that λ = 4
occurs only for the claw K1,3 on which we explicitly know everything; hence we will not discuss this case
further in this remark.) If λ < 4, then D(λ) < 0 and it is easy to show that the roots are complex valued
with magnitude 1. This implies that (8) becomes

φj = A′ cos(ω(j − 2)) +B′ sin(ω(j − 2)), j = 2, . . . , n1 + 1,

where ω satisfies tanω =
√
λ(4− λ)/(2 − λ), and A′, B′ are appropriate constants. In other words, if

λ < 4, the eigenvector along this branch is of oscillatory nature. On the other hand, if λ > 4, thenD(λ) > 0

and it is easy to show that both r1 and r2 are real valued with −1 < r1 =
(

2− λ+
√
λ(λ− 4)

)
/2 < 0

while r2 =
(

2− λ−
√
λ(λ− 4)

)
/2 < −1. It is clear that the dominating part in (8) is the term Brj−22 ,

which grows exponentially with j. The siuation is the same for the other branches. In summary, for a starlike
tree, the phase transition phenomenon with the eigenvalue 4 is hence completely understood.
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4 4. The Localization Phenomena on General Graphs

Unfortunately, actual dendritic trees are not exactly starlike. However, our numerical computations and data
analysis indicate that:

0 ≤ #{j ∈ N | d(vj) 	 2} −mG([4,∞))

n
≤ 0.047

for each RGC we examined. Hence, we can define the starlikeliness S`(T ) of a given tree T as

S`(T ) := 1− #{j ∈ N | d(vj) 	 2} −mT ([4,∞))

n

We note that S`(T ) ≡ 1 for a certain class of RGCs whose dendrites are sparsely spread (see [7] for the
characterization). This means that dendrites in that class are all close to a starlike tree or a concatenation of
several starlike trees. We show some examples of dendritic trees with S`(T ) ≡ 1 and those with S`(T ) � 1
in Figure 3.2.

The above observation has led us to prove the following

Theorem 2 For any graph G of finite volume, we have

0 ≤ mG([4,∞)) ≤ #{j ∈ N | d(vj) 	 2}

and each eigenvector corresponding to λ ≥ 4 has its largest component (in absolute value) on the vertex
whose degree is larger than 2.

Proof. The second statement follows from Lemma 1, because the Gerschgorin disks corresponding to
vertices of degree 1 or 2 do not include λ > 4.

We next prove the first statement. Let L be a Laplacian matrix of G. We can apply a permutation P
such that

PTLP =

[
L1 ET

E L2

]
, (9)

where the diagonals of L1 are 3 or larger (correspond to vertices of degree > 2), and the diagonals of L2 are
2 or 1. By Gerschgorin’s theorem all the eigenvalues of L2 must be below 4.

Suppose L2 is `-by-`. Now by the Courant-Fischer min-max characterization of eigenvalues [4, Theo-
rem 8.1.2] of PTLP , denoting by λ`(PTLP ) the `th smallest eigenvalue, we have

λ`(P
TLP ) = min

dimS=`
max

y∈S,‖y‖2=1
yT(PTLP )y.

Hence letting S0 be the last ` column vectors of the identity In and noting ST
0 P

TLPS0 = L2, we have

λ`(P
TLP ) ≤ max

y∈S0,‖y‖2=1
yT(PTLP )y = λmax(ST

0 P
TLPS0)

= λmax(L2).

Since λmax(L2) < 4, we conclude that PTLP (and hence L) has at least ` eigenvalues smaller than 4, i.e.,
mG([0, 4)) ≥ `. Hence, mG([4,∞)) = n −mG([0, 4)) ≤ n − ` = #{j ∈ N | d(vj) 	 2}, which proves
the first statement. �

To give a further explanation for the eigenvector localization behavior observed in Introduction, we next
show that eigenvector components of λ > 4 must decay exponentially along a branching path.
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Theorem 3 Suppose that a graph G has a branch that consists of a path of length k, whose indices are
{i1, i2, . . . , ik} where i1 is connected to the rest of the graph and ik is the leaf of that branch. Then for any
eigenvalue greater than 4, the corresponding eigenvector φ = (φ1, · · · , φn)T satisfies

|φij+1 | ≤ γ|φij | for j = 1, 2, . . . , k − 1, (10)

where
γ :=

2

λ− 2
< 1. (11)

Hence |φij | ≤ γj−1|φi1 | for j = 1, . . . , k, that is, the magnitude of the components of an eigenvector
corresponding to any λ > 4 along such a branch decays exponentially toward its leaf with rate at least γ.

Proof. There exists a permutation P such that

L̂ := PTLP =

[
L1 ET

E L2

]
,

where

L2 =



2 −1
−1 2 −1

−1 2 −1
. . . . . . . . .

−1 2 −1
−1 1


∈ Rk×k

and E has a -1 in the top-right corner and 0 elsewhere. The diagonals of L2 correspond to the vertices
vi1 , . . . , vik of the branch under consideration.

Let Lφ = λφ with λ > 4. We have L̂y = λy where y = (y1, y2, · · · , yn)T = PTφ. Note that
(yn−k+1, yn−k+2, · · · , yn) = (φi1 , φi2 , . . . , φik). The last row of L̂y = λy gives

−yn−1 + yn = λyn,

hence
|yn| =

1

λ− 1
|yn−1| ≤ γ|yn−1|. (12)

The (n− 1)st row of L̂y = λy gives

−yn−2 + 2yn−1 − yn = λyn−1.

Using |yn| ≤ |yn−1| we get

|yn−1| =
|yn−2 + yn|
λ− 2

≤ |yn−2|+ |yn−1|
λ− 2

, (13)

from which we get |yn−1| ≤ |yn−2|. Therefore |yn| ≤ |yn−1| ≤ |yn−2|, and so

|yn−1| =
|yn−2 + yn|
λ− 2

≤ 2|yn−2|
λ− 2

= γ|yn−2|.

Repeating this argument k − 1 times we obtain (10). �
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We note that the inequalities (12) and (13) include considerable overestimates, and tighter bounds can
be obtained at the cost of simplicity. Hence in practice the decay rate is much smaller than γ defined in
(11). We also note that the larger the eigenvalue λ > 4, the smaller the decay rate γ is, i.e., the faster the
amplitude decays along the branching path.

Also note that the above result holds for any branching path of a tree. In particular, if a tree has k
branches consisting of paths, they must all have the exponential decay in eigenvector components if λ > 4.
This gives a partial explanation for the eigenvector localization behavior observed in Introduction. How-
ever, the theorem cannot compare the eigenvector components corresponding to branches emanating from
different vertices of degrees greater than 2, so a complete explanation remains an open problem.

Remark 2 Let us briefly consider the case λ = 4. In this case we have γ = 2
λ−2 = 1, suggesting the

corresponding eigenvector components along a branching path may not decay. However, we can still prove
that unless φi1 = φi2 = · · · = φik = 0, we must have

|φik | < |φik−1
| < · · · < |φi1 |. (14)

In other words, the eigenvector components must decay along the branch, although not necessarily expo-
nentially. To see this, we first note that if yn = 0, then the last row of L̂y = λy forces yn−1 = 0. Then,
yn = yn−1 = 0 together with the (n− 1)st row gives yn−2 = 0. Repeating this argument we conclude that
yj must be zero for all j = n − k + 1, . . . , n. Now suppose that |yn| > 0. Following the above arguments
we see that the inequality in (12) with γ = 1 must be strict, that is, |yn| < |yn−1|. Using this we see that the
inequality in (13) must also be strict, hence |yn−1| < |yn−2|. Repeating this argument proves (14).

5 5. A Class of Trees Having the Eigenvalue 4

As raised in Introduction, we are interested in answering Q3: Is there any tree that possesses an eigenvalue
exactly equal to 4? To answer this question, we use the following result of Guo [6] (written in our own
notation):

Theorem 4 (Guo 2006) Let T be a tree with n vertices. Then,

λj(T ) ≤
⌈

n

n− j

⌉
, j = 0, . . . , n− 1,

and the equality holds iff a) j 6= 0; b) n− j divides n; and c) T is spanned by n− j vertex disjoint copies
of K1, j

n−j
.

This implies the following

Corollary 5.1 A tree has an eigenvalue exactly equal to 4 iff it consists of m copies of K1,3 ≡ S(1, 1, 1)
connected via their central vertices as shown in Figure 5.1(a) where m ∈ N.

Proof. Setting n/(n− j) = 4 implies 3n = 4j. Since 3 and 4 are relatively prime, there exists m ∈ N such
that n = 4m and j = 3m. Hence Guo’s theorem with n = 4m and j = 3m guarantees that the eigenvalue
exactly equal to 4 occurs at j = 3m, i.e., λ3m = 4, iff the tree consists of m vertex disjoint copies of K1,3.
�

Figure 5.1(b) shows the eigenvalue distribution of a tree consisting of m = 5 copies of K1,3. Regardless
of m, the eigenvector corresponding to the eigenvalue 4 has only two values: one constant value at the

10
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Figure 5.1: (a) A tree consisting of multiple copies of K1,3 connected via their central vertices. This tree
has an eigenvalue equal to 4 with multiplicity 1. (b) The eigenvalue distribution of such a tree consisting of
5 copies of K1,3. We note that S`(T ) = 1 for this tree.

central vertices, and the other constant value of the opposite sign at the leaves, as shown in Figure 5.2(a).
By contrast, the eigenvector corresponding to the largest eigenvalue is again concentrated around the central
vertex as shown in Figure 5.2(b).

6 6. Implication of a long path on eigenvalues

In Section 4 we saw that for a graph that has a branch consisting of a long path, its Laplacian eigenvalue
greater than 4 has the property that the corresponding eigenvector components along the branch must decay
exponentially.

Here we discuss a consequence of such a structure in terms of the eigenvalues. We consider a graph G
formed by connecting two graphs G1 and G3 with a path G2. Note that this is a more general graph than
in Section 4 (which can be regarded as the case without G3). We show that if G2 is a long path then any
eigenvalue greater than 4 of the Laplacian of either of the two subgraphs G1 ∪ G2 and G2 ∪ G3 must be
nearly the same as an eigenvalue of the Laplacian of the whole graph G.

Theorem 5 Let G be a graph obtained by connecting two graphs with a path, whose Laplacian L can be
expressed as

L =

L1 ET1 0
E1 L2 ET2
0 E2 L3

 ,
where E1 and E2 have -1 in the top-right corner and 0 elsewhere. Li is `i × `i for i = 1, 2, 3 and L2

represents the path G2, that is, a tridiagonal matrix with 2 on the diagonals and -1 on the off-diagonals.
Let λ̃ > 4 be any eigenvalue of the top-left (`1 + `2)× (`1 + `2) (or bottom-right (`2 + `3)× (`2 + `3))

submatrix of L. Then there exists an eigenvalue λ of L such that

|λ− λ̃| ≤ γ̃`2 , (15)

11
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Figure 5.2: (a) The eigenvector φ15 corresponding to λ15 = 4 in the 3D perspective view. (b) The eigen-
vector φ19 corresponding to the maximum eigenvalue λ19 = 7.1091, which concentrates around the central
vertex.

where γ̃ = 2

λ̃−2
< 1.

Proof. We treat the case where λ̃ is an eigenvalue of the top-left (`1 + `2) × (`1 + `2) part of L, which we
denote by L12. The other case is analogous.

As in Theorem 3, we can show that any eigenvalue λ̃ > 4 of L12 has its corresponding eigenvector
components decay exponentially along the path G2. This means that the bottom eigenvector component is
smaller than γ̃`2 in absolute value (we normalize the eigenvector so that it has unit norm) where γ̃ = 2

λ̃−2
<

1 as in (11).
Let L12 = QΛQT be an eigendecomposition where QTQ = I and the eigenvalues are arranged so that

λ̃ appears in the top diagonal of Λ. For notational convenience let `12 := `1 + `2. Then, consider the matrix

L̂ =

[
QT 0
0 I

]
L

[
Q 0
0 I

]
=

[
Λ veT1
e1v

T L3

]
, (16)

where e1 = (1, 0, . . . , 0)T ∈ R`3 and v = (v1, . . . , v`12)T ∈ R`12 . Direct calculations show that vi =
−q`12,i where q`12,i is the bottom component of the eigenvector qi ofL12 corresponding to the ith eigenvalue.
In particular, by the above argument we have |q`12,1| = |v1| ≤ γ̃`2(� 1).

Note that in the first row and column of L̂, the only nonzeros are the diagonal (which is λ̃), and the
(1, `12 + 1) and (`12 + 1, 1) entries, both of which are equal to v1. Now, viewing the (1, `12 + 1) and
(`12 +1, 1) entries of L̂ as perturbations (write L̂ = L̂1 + L̂2 where L̂1 is obtained by setting the (1, `12 +1)
and (`12 + 1, 1) entries of L̂ to 0) and using Weyl’s theorem [4, Theorem 8.1.5] we see that there exists an
eigenvalue λ of L̂ (and hence of L) that lies in the interval [λ̃ − ‖L̂2‖2, λ̃ + ‖L̂2‖2] = [λ̃ − |v1|, λ̃ + |v1|].
Together with |v1| ≤ γ̃`2 we obtain (15). �

Recall that γ̃`2 decays exponentially with `2, and it can be negligibly small for moderate `2; for example,
for (λ, `2) = (5, 30) we have γ̃`2 = 5.2× 10−6. We conclude that the existence of a subgraph consisting of
a long path implies that the eigenvalues λ > 4 of a subgraph must match those of the whole graph to high
accuracy.
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Figure 7.1: Counterexample graph for the conjecture.

7 7. On the eigenvector of the largest eigenvalue

In view of the results in Section 4 it is natural to ask whether it is always true that the largest component of
the eigenvector corresponding to the largest eigenvalue of a Laplacian matrix of a graph lies on the vertex
of the largest degree. Here we show by a counterexample that this is not necessarily true.

Consider for example a tree as in Figure 7.1, which is generated as follows: first we connect m copies
of K1,3 as shown in Figure 5.2; then add to the right a comet S(`, 1, 1, 1, 1) as in Figure 3.1(b).

Now for sufficiently large m and ` (m, ` ≥ 4 is sufficient), the largest component in the eigenvector φ
corresponding to the largest eigenvalue of the resulting Laplacian L occurs at one of the central vertices of
K1,3, not at the vertex of degree 5 belonging to the comet.

Let us explain how we came up with this counterexample. The idea is based on two facts. The first
is the discussion in Section 6, where we noted that a long path G2 implies any eigenvalue larger than 4
must be close to an eigenvalue of a subgraph G1 ∪G2 or G2 ∪G3. Therefore, in the notation of Section 6,
by connecting two graphs (G1 = mK1,3 and G3 = K1,5, a star) with a path G2 such that the largest
eigenvalue λ̃ of L12 is larger than that of L23, we ensure that the largest eigenvalue λ of L is very close to
λ̃. The second is the Davis-Kahan sin θ theorem [3], which states that a small perturbation of size γ̃`2 in
the matrix L̂1 (recall the proof of Theorem 5) can only induce small perturbation also in the eigenvector: its
angular perturbation is bounded by γ̃`2/δ, where δ is the distance between λ and the eigenvalues of L̂ after
removing its first row and column. Furthermore, the eigenpair (λ̃, φ̃) of L̂1 satisfies φ̃ = (1, 0, . . . , 0)T, and
the eigenvectors φ̂ (' φ̃ by Davis-Kahan) of L̂ and φ of L corresponding to λ are related by φ =

[
Q 0
0 I

]
φ̂,

which follows from (16). Therefore, φ has its large components at the vertices belonging to G1. In view of
these our approach was to find two graphs G1 and G3 such that the maximum degrees of the vertices of G1

and G3 are 4 and 5 respectively, and the largest eigenvalue of the Laplacian of G1 is larger than that of G3.

8 8. Discussion

In this paper, we obtained precise understanding of the phase transition phenomenon of the combinatorial
graph Laplacian eigenvalues and eigenvectors for starlike trees. For a more complicated class of graphs
including those representing dendritic trees of RGCs, we proved in Theorem 2 that the number of the eigen-
values greater than or equal to 4 is bounded from above by the number of vertices whose degrees are strictly
larger than 2. In Theorem 3, we proved that if a graph has a branching path, the magnitude of the compo-
nents of an eigenvector corresponding to any eigenvalue greater than 4 along such a branching path decays
exponentially toward its leaf. In Remark 2, we also extended Theorem 3 for the case of λ = 4 although the
decay may not be exponential. We also answered Q3 raised in Introduction by proving Corollary 5.1. In
other words, we identified a special class of trees consisting of copies of the claw K1,3, which is the only
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class of trees that can have an eigenvalue exactly equal to 4.
Another quite interesting question is Q4 raised in Introduction: Can a simple and connected graph,

not necessarily a tree, have eigenvalues equal to 4? The answer is a clear “Yes.” For example, a regular
finite lattice graph in Rd, d > 1 has repeated eigenvalue 4. In fact, each eigenvalue and the corresponding
eigenvector of such a lattice graph of size n× n× · · · × n = nd can be written as

λj1,...,jd = 4

d∑
i=1

sin2

(
jiπ

2n

)
(17)

φj1,...,jd(x1, . . . , xd) =
d∏
i=1

cos

(
jiπ(xi + 1

2)

n

)
, (18)

where ji, xi ∈ Z/nZ for each i, as shown by Burden and Hedstrom [1]. Note that (17) and (18) are also
valid for d = 1. In that case these reduce to (2) and (2) that we already examined in Section 2.

Now, determining mG(4), i.e., the multiplicity of the eigenvalue 4 of this lattice graph, is equivalent to
finding the number of the integer solutions (j1, . . . , jd) ∈ (Z/nZ)d to the following equation:

d∑
i=1

sin2

(
jiπ

2n

)
= 1. (19)

For d = 1, there is no solution as we mentioned in Section 2. For d = 2, it is easy to show thatmG(4) = n−1
by direct examination of (19) using some trigonometric identities. For d = 3, mG(4) behaves in a much
more complicated manner, which is deeply related to number theory. We expect that more complicated
situations occur for d > 3. We are currently investigating this interesting problem on regular finite lattices.
On the other hand, it is clear from (18) that the eigenvectors corresponding to the eigenvalues greater than
or equal to 4 on such lattice graphs cannot be localized or concentrated on those vertices whose degree is
larger than 2 unlike the tree case. Theorem 3 and Remark 2 do not apply either since such a finite lattice
graph do not have branching paths.

Finally, we would like to note that even a simple path, such as the one shown in Figure 2.1, exhibits
the eigenfunction localization phenomena if it has nonuniform edge weights, which we recently observed
numerically. We will report our progress on investigation of localization phenomena on such weighted
graphs at a later date.
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