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We consider a compact, oriented, smooth Riemannian manifold M (with or without bound-
ary) and we suppose G is a torus acting by isometries on M. Given X in the Lie algebra of
G and corresponding vector field XM on M, one defines Witten’s inhomogeneous cobound-
ary operator dXM = d+ ιXM : Ω

±
G → Ω

∓
G (even/odd invariant forms on M) and its adjoint

δXM .
First, Witten [35] showed that the resulting cohomology classes have XM-harmonic rep-

resentatives (forms in the null space of ∆XM = (dXM +δXM)
2), and the cohomology groups

are isomorphic to the ordinary de Rham cohomology groups of the set N(XM) of zeros
of XM. The first principal purpose is to extend Witten’s results to manifolds with bound-
ary. In particular, we define relative (to the boundary) and absolute versions of the XM-
cohomology and show the classes have representative XM-harmonic fields with appropri-
ate boundary conditions. To do this we present the relevant version of the Hodge-Morrey-
Friedrichs decomposition theorem for invariant forms in terms of the operators dXM and
δXM ; the proof involves showing that certain boundary value problems are elliptic. We also
elucidate the connection between the XM-cohomology groups and the relative and absolute
equivariant cohomology, following work of Atiyah and Bott. This connection is then ex-
ploited to show that every harmonic field with appropriate boundary conditions on N(XM)
has a unique corresponding an XM-harmonic field on M to it, with corresponding bound-
ary conditions. Finally, we define the interior and boundary portion of XM-cohomology
and then we define the XM-Poincaré duality angles between the interior subspaces of XM-
harmonic fields on M with appropriate boundary conditions.

Second, In 2008, Belishev and Sharafutdinov [9] showed that the Dirichlet-to-Neumann
(DN) operator Λ inscribes into the list of objects of algebraic topology by proving that the
de Rham cohomology groups are determined by Λ.
In the second part of this thesis, we investigate to what extent is the equivariant topology
of a manifold determined by a variant of the DN map?. Based on the results in the first part
above, we define an operator ΛXM on invariant forms on the boundary ∂M which we call
the XM-DN map and using this we recover the long exact XM-cohomology sequence of the
topological pair (M,∂M) from an isomorphism with the long exact sequence formed from
the generalized boundary data. Consequently, This shows that for a Zariski-open subset
of the Lie algebra, ΛXM determines the free part of the relative and absolute equivariant
cohomology groups of M. In addition, we partially determine the mixed cup product of
XM-cohomology groups from ΛXM . This shows that ΛXM encodes more information about
the equivariant algebraic topology of M than does the operator Λ on ∂M. Finally, we eluci-
date the connection between Belishev-Sharafutdinov’s boundary data on ∂N(XM) and ours
on ∂M.

Third, based on the first part above, we present the (even/odd) XM-harmonic cohomol-
ogy which is the cohomology of certain subcomplex of the complex (Ω∗G,dXM) and we
prove that it is isomorphic to the total absolute and relative XM-cohomology groups.
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Chapter 1

Introduction

Hodge theory which is named after W. V. D. Hodge, is one aspect of the study of the alge-
braic topology of a smooth manifold M without boundary. In the 1950’s, much effort had
been made by Morrey [30] and Friedrichs [18] to extend Hodge theory to a manifold M

with boundary ∂M, leading to the Hodge-Morrey-Friedrichs decompositions theory [31].
These theorems work out the consequences for the cohomology groups of M with real co-
efficients. More concretely, Hodge theory is a fundamental theory which shows how the
de Rham cohomology groups of a manifold M (with or without boundary) can be realized
from the analysis (harmonic forms (or fields)) point of view. This thesis can be thought
of as a continuation of this trend but in the setting of equivariant topology, showing the
analysis can be used as powerful tools to encode more information about the equivariant
algebraic topology of the manifold in question, leading to Witten-Hodge theory and con-
sequently to the generalized boundary data on the boundary of the manifold.

We briefly outline the structure of the thesis. Chapter 2 is devoted to background ma-
terial while the final four to new results. All of the new results found within this thesis can
also be found in the papers [2, 3, 4].

Chapter 2 covers more background material, namely the classical Hodge theory with
some of Witten’s results [35] and Hodge-Morrey-Friedrichs decompositions theory with
the recent modification [15] to this theory. In addition, we briefly outline the relation
between algebraic topology and the Dirichlet-to-Neumann (DN) map Λ [11] and [33].
However, there is some different notation which is explained there and it is not familiar in
the literature.

In chapter 3, the new material begins. When ∂M = /0, Witten, in his well-known paper
[35] which is regarded as the seed to the subject of Topological Quantum Field Theory
(TQFT) [7], deforms the de Rham coboundary operator and shows that the resulting co-
homology classes have K-harmonic representatives and the cohomology groups of M are
isomorphic to the ordinary de Rham cohomology groups of the set of zeros of a killing
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CHAPTER 1. INTRODUCTION 11

vector field K on M. In more general context, in this thesis we suppose G is a torus (un-
less otherwise indicated) acting by isometries on a compact, oriented, smooth Riemannian
manifold M of dimension n (with or without boundary) and in this setting, we reconsider
Witten’s inhomogeneous coboundary operator dXM = d+ ιXM : Ω

±
G→Ω

∓
G (even/odd invari-

ant forms on M) and its adjoint δXM where XM is the corresponding vector field on M to a
vector X which is in the Lie algebra of G. Since d2

XM
= 0, there are corresponding coho-

mology groups which we call XM-cohomology groups. The main new results are these:

1- When ∂M 6= /0, we present the relevant version of the Hodge-Morrey-Friedrichs de-
composition for the square integrable invariant differential forms L2Ω

±
G(M) in terms

of dXM and δXM which we call it within this thesis XM-Hodge-Morrey-Friedrichs de-
composition. The proof is based on the ellipticity of a certain BVP. This gives a new
decomposition to the space of L2Ω

±
G(M) rather than to the space of smooth invariant

differential form Ω
±
G(M).

2- Using the setting above, we extend the Localization Theorem (to the fixed point set)
of Atiyah-Bott of [8] to manifolds with boundary which leads to relate the relative
and absolute XM-cohomology groups with the relative and absolute equivariant co-
homology groups of M.

3- No.(1-2) above gives insight to extend some of Witten’s original results of [35] to
manifolds with boundary as follows:

(i) Based on XM-Hodge-Morrey-Friedrichs decomposition, we show the classes
of the relative and absolute XM-cohomology groups have representative XM-
harmonic fields (invariant forms in kerdXM ∩ kerδXM ) with appropriate bound-
ary conditions. Thus, these spaces are a concrete realization of the relative and
absolute XM-cohomology groups inside Ω

±
G(M).

(ii) Based on No.(2), we prove that the relative and absolute XM-cohomology of
M are isomorphic to the ordinary relative and absolute de Rham cohomology
groups of the set N(XM) of zeros of XM respectively and consequently to the
relative and absolute singular homology groups of N(XM). This reduction of
cohomology on M to cohomology on N(XM) is crucial to make computation
possible in Quantum Fields Theory when ∂M 6= /0 (see, No. (3) in section 3.5).

In addition, all the results above and the other within this chapter show that the
Witten-Hodge theory gives additional equivariant topological insight.

In chapter 4, we extend the recent work of DeTurck and Gluck [15] which is used to
define the interior and boundary portion of the ordinary de Rham cohomology groups to
the context of XM-cohomology and we give here a list of the main new results:
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1- We first prove that the concrete realization of the relative and absolute XM-cohomology
groups meet only at the origin in Ω

±
G(M). We use a different argument in the poof,

based on Hadamard’s lemma and the boundary normal coordinates because the tech-
nique which is used to prove the classical case does not appear to extend to the
present setting and in fact this new argument is also valid in the classical case.

2- The consideration of XM allows to define the long exact sequence in XM-cohomology
of the topological pair (M,∂M) derived from the inclusion i : ∂M ↪→ M. This is
used to define the interior and boundary portion of the absolute and relative XM-
cohomology respectively.

3- We decompose the concrete realization of the relative and absolute XM-cohomology
groups to the direct sum of interior and boundary subspaces with appropriate bound-
ary conditions. We give a direct proof involving only the cohomology theory while
the proof by DeTurck and Gluck of the analogous result uses the duality between
de Rham cohomology and singular homology and we do not have such a result for
XM-cohomology. Moreover, the same argument can be used to prove DeTurck and
Gluck’s original results [15]. This gives the following results:

(i) We refine the results of chapter 3 to the interior and boundary subspaces and
this gives more concrete understanding to the extension results of chapter 3.
In addition, we refine the generalized Localization Theorem (i.e. ∂M 6= /0) of
Atiyah-Bott to the style of interior and boundary portions and it is used to give
an alternative argument to prove the results in No. (3) above.

(ii) The results of this chapter are used to define the XM-Poincaré duality angles be-
tween the interior subspaces of XM-harmonic fields with appropriate boundary
conditions and we prove that they are all acute angles.

Moreover, the results above show that the Witten-Hodge theory gives additional equivariant
geometric insight rather than the topological insight. Finally, at the very end of this chapter
we state a geometric question which follows from the above results.

In Chapter 5, we consider the following open problem which is of great theoretical and
applied interest [11]: “To what extent are the topology and geometry of M determined by

the DN map”?. Recently, Belishev and Sharafutdinov [11] give an answer to the topologi-
cal aspect of this question when they prove that the real additive de Rham cohomology of a
smooth Riemannian manifold M with boundary is completely determined by its boundary
data (∂M,Λ) where Λ : Ωk(∂M)−→Ωn−k−1(∂M) is the DN map.

In general the de Rham cohomology of M is isomorphic to the de Rham cohomology
of invariant forms when G (or any compact connected Lie group) acts on M. It means in
this case that we can ”forget” the whole de Rham cochain complex of differential forms
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in M and regard only those that are invariant under the group in question. In this light
and if the group action on M is by isometries then Belishev-Sharafutdinov’s boundary
data does not give further information about the equivariant topology (e.g. equivariant
cohomology) of M. Therefore, in this chapter we consider this motivation which leads
us to be interested in the equivariant topology of M analogue of the above interesting
open problem. More precisely, the XM-Hodge-Morrey-Friedrichs decomposition of smooth
invariant differential forms are used to create boundary data which is a generalization of
Belishev-Sharafutdinov’s boundary data on Ω

±
G(∂M). The investigations give the following

new results:

1- We define the XM-DN operator ΛXM : Ω
±
G(∂M) −→ Ω

n−∓
G (∂M) which is a general-

ization to the DN map on Ω
±
G(∂M). The definition of ΛXM is based on the solvability

of certain BVP.

2- Based on ΛXM , we recover the XM-cohomology groups and we partially determine
the ring structure of XM-cohomology groups from the generalized boundary data
(∂M,ΛXM). In addition, it follows that ΛXM determines the free part of the relative
and absolute equivariant cohomology groups of M when the set N(XM) of zeros of
XM is equal to the fixed point set F for the G-action.

3- Under certain condition, we prove the ± relative and absolute de Rham cohomology
groups of N(XM) are also determined by the generalized boundary data (∂M,ΛXM).
This means that the Belishev-Sharafutdinov’s boundary data (∂N(XM),Λ) can be
determined from the generalized boundary data (∂M,ΛXM) and vice versa.

Hence, these results contribute to explain to what extent the equivariant topology of the
manifold in question is determined by the XM-DN map ΛXM . Moreover, following Witten
but for the case when ∂M 6= /0, these results suggest a possible relation between ΛXM and
Quantum Field Theory and possibly to other mathematical and physical interpretations
(see, No. (3) in Section 5.6). Finally, this imposes a topological open problem which asks
about the possibility to determine the torsion part of the absolute and relative equivariant
cohomology groups as well from ΛXM .

Finally, in chapter 6 we prove the (even/odd) cohomology of the subcomplex (ker∆XM ,dXM)

of the complex (Ω∗G(M),dXM) is enough to determine the total absolute and relative XM-
cohomology groups with few other conclusions where we call the operator ∆XM = dXM δXM +

δXMdXM within this thesis the Witten-Hodge-Laplacian operator, extending a result of S.
Cappell et al. [13].

Remark on typesetting: Since the letter H plays three roles in this thesis, we use three
different typefaces: a scriptH for harmonic fields, a sans-serif H for Sobolev spaces and a
normal (italic) H for cohomology. We hope that will prevent any confusion.



Chapter 2

Preliminaries

2.1 Introduction

This chapter covers the background material of this thesis. Much of this material is standard
and can be found in the literature, though, some remarks are different and are specified
here. Section 2.2 discusses basic but necessary concepts of the left group actions on smooth
manifolds. Section 2.3 introduces an overview of the Hodge theory and some of Witten’s
results [35] on a smooth manifold M without boundary and also we review the Hodge-
Morrey-Friedrichs theorem for manifolds with boundary. In addition, we review the recent
modification of this theorem by DeTurck and Gluck [15]. Section 2.4 gives the necessary
background on the Dirichlet-to-Neumann map Λ for differential forms and states the recent
results of [11] and some of the results of [33] which relate Λ to algebraic topology.

2.2 Group actions on smooth manifolds

We start by looking at the definition of group actions on manifolds and some other basic
notions because we will need this in the equivariant algebraic topology of manifolds.

Definition 2.2.1 [14, 20] Let G be a group (it could be a Lie group) with identity element
e and M a smooth manifold. We say that G acts on M if there exists a smooth map F :
G×M −→M (where F(g,x) is denoted by F(g,x) = g.x) such that

(i) g.(h.x) = (gh).x for g,h ∈ G,x ∈M

(ii) e.x = x for x ∈M

Definition 2.2.2 [16, 19] Let G be a Lie group acting on a manifold M, and let x ∈M. The
isotropy (stabilizer) subgroup of a point x ∈M is the Lie subgroup Gx = {g ∈G | g.x = x}.
It has Lie algebra gx = {X ∈ g | XM(x) = 0}, where g is the Lie algebra of G and XM is the

14
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vector field on M corresponding to X . Moreover, Gx is a proper isotropy subgroup of G if
Gx 6= G.

Remark 2.2.3 (1) We can look at F(g,x) as defining a mapping g 7−→ Fg by Fg(x) =

F(g,x). Thus, if Fg is the mapping Fg : M −→M associated with the action of g on
M, it is seen that the left action satisfies the homomorphism property Fg ◦Fh = Fgh.

Since Fg−1 = (Fg)
−1, Fg is a diffeomorphism of M [16].

(2) Now suppose that M is a smooth manifold with boundary ∂M and that G acts on M.
Number (1) above asserts that for each x ∈ ∂M, Fg is the mapping Fg : ∂M −→ ∂M

associated with the action of g on ∂M because Fg is a diffeomorphism of M.

(3) A differential k-form ω in M is said to be invariant if F∗g ω = g∗ω = ω for every
g ∈ G, where F∗g = g∗ denotes the pullback induced by Fg = g. We write Ωk

G(M) for
the space of G-invariant differential k-forms.

2.2.1 Averaging with respect to a compact Lie group action

Let M be a smooth manifold of dimension n. For each 0≤ k≤ n denote by Ωk =Ωk(M) the
space of smooth differential k-forms on M. The exterior differential d : Ωk −→Ωk+1 is the
de Rham coboundary operator (i.e. d2 = 0) and (Ωk(M),d) is de Rham cochain complex
where a differential form ω ∈ Ωk is closed (cocycle) if dω = 0 and is exact (coboundary)
if ω = dη for some η ∈Ωk−1. The de Rham cohomology of M is defined to be Hk(M) =

kerdk/ imdk−1, where dk is the restriction of the exterior differential d to Ωk [12, 14].
We now consider actions of a compact Lie group G on a manifold M. The Haar measure

allows to employ averaging arguments with respect to compact Lie group actions [19].
From each k-form ω ∈ Ωk(M) we can construct an invariant form in Ωk

G(M) by taking on
its “translations”. Following this idea one defines a projection map J : Ωk(M)−→Ωk

G(M)

by
J(ω)(X1, . . . ,Xk) :=

∫
G
(g∗ω)(X1, . . . ,Xk)dg

where X1, . . . ,Xk are vector fields of M. More precisely, we have the following theorem
which follows from Corollary B.13 (The complex of invariant forms) in [19].

Theorem 2.2.4 Let a compact Lie group G act smoothly on a manifold M. For any dif-

ferential k-form ω , its average J(ω)(X1, . . . ,Xk) is a G-invariant differential k-form in

Ωk
G(M), which is in the same de Rham cohomology class as ω if G is connected.

(ΩG(M),d) forms a subcomplex of the de Rham cochain complex because of F∗g d = dF∗g
for all g ∈ G. Let Hk(ΩG(M)) be the cohomology of this subcomplex, the following re-
mark which will be used later, proves that the de Rham cohomology groups are just the
cohomology groups Hk(ΩG(M)) if G is connected.
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Remark 2.2.5 If G is compact, connected Lie Group acts on M then the action Fg in-
duces a trivial action on Hk(M) because in this case Fg and the identity map IM are homo-
topic. This proves that the inclusion map IG : Ωk

G(M) ↪→ Ωk(M) induces an isomorphism
Hk(ΩG(M)) ∼= Hk(M). Thus, any k-differential form and its average are in the same de
Rham cohomology class if G is connected.

2.3 Hodge theory

2.3.1 Hodge theorem for manifolds without boundary

Let M be a compact oriented smooth Riemannian manifold of dimension n without bound-
ary, let Ω(M) =

⊕n
k=0 Ωk(M) be the algebra of all differential forms on M.

Based on the Riemannian structure, there is a natural L2-inner product on each Ωk

defined by
〈α, β 〉=

∫
M

α ∧ (?β ), (2.1)

where ? : Ωk→Ωn−k is the Hodge star operator [1, 31]. One defines δ : Ωk→Ωk−1 by

δω = (−1)n(k+1)+1(?d?)ω. (2.2)

This is seen to be the formal adjoint of d relative to the inner product (2.1): 〈dα, β 〉 =
〈α, δβ 〉. The Hodge Laplacian is defined by ∆ = (d+δ )2 = dδ +δd, and a form ω is said
to be harmonic if ∆ω = 0.

In the 1930s, Hodge [21] proved the fundamental result that each de Rham cohomology
class contains a unique harmonic form, i.e. Hk(M)∼= ker(∆|Ωk) where ∆|Ωk is the restriction
of the Hodge Laplacian ∆ to Ωk. A more precise statement is that the decomposition of the
space of differential form, for each k,

Ω
k(M) = ker(∆|Ωk)⊕dΩ

k−1⊕δΩ
k+1. (2.3)

The direct sums are orthogonal with respect to the inner product (2.1), and the direct sum
of the first two subspaces is equal to the subspace of all closed k-forms (that is, kerdk). A
complete proof is given in [34].

Furthermore, on a manifold without boundary, any harmonic k-form ω ∈ ker(∆|Ωk) is
both closed (dω = 0) and co-closed (δω = 0), as

0 = 〈∆ω, ω〉= 〈dδω, ω〉+〈δdω, ω〉= 〈δω, δω〉+〈dω, dω〉= ‖δω‖2+‖dω‖2. (2.4)
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For manifolds with boundary this is no longer true, and in general we write

Hk =Hk(M) = kerd∩kerδ .

Thus for manifolds without boundaryHk(M) = ker(∆|Ωk), the space of harmonic k-forms,
and it follows that the Hodge star operator realizes Poincaré duality for the de Rham
cohomology of M (i.e. Hk(M) ∼= Hn−k(M)) [34] at the level of harmonic forms (i.e.
Hk ∼=Hn−k).

On the other hand, we conclude with the following remark which explains how the
Hodge Theorem works when we have a group action on M:

Remark 2.3.1 An interesting observation which follows from the theorem of Hodge is the
following. If a group G acts on M then there is an induced action on each Hk(M), and if
this action is trivial on Hk(M), i.e. g∗([w]) = [w], ∀[w] ∈ Hk(M) (for example, if G is
a compact, connected Lie group (see remark 2.2.5)) and the action is by isometries, then
each harmonic form is invariant under this action because each de Rham cohomology class
has a unique harmonic form.

2.3.2 Witten’s deformation of Hodge theorem when ∂M = /0

Now suppose K is a Killing vector field on M (meaning that the Lie derivative of the metric
vanishes). Witten [35] defines, for each s ∈ R, an operator on differential forms by

ds := d+ s ιK ,

where ιK is interior derivative of a form with K. This operator is no longer homogeneous in
the degree of the form: if ω ∈Ωk(M) then dsω ∈Ωk+1⊕Ωk−1. Note then that ds : Ω±→
Ω∓, where Ω± is the space of forms of even (+) or odd (−) degree. Let us write δs = d∗s for
the formal adjoint of ds (so given by δs = δ + s(−1)n(k+1)+1(? ιK?) on each homogenous
form of degree k). By Cartan’s formula, d2

s = sLK (the Lie derivative along sK). On the
space Ω±s = Ω± ∩ kerLK of invariant forms, d2

s = 0 so one can define two cohomology
groups H±s := kerd±s / imd∓s . Witten then defines

∆s := (ds +δs)
2 : Ω

±
s (M)→Ω

±
s (M),

(which he denotes Hs as it represents a Hamiltonian operator, but for us this would cause
confusion), and he observes that using standard Hodge theory arguments, there is an iso-
morphism

H±s := ker∆s ' H±s (M), (2.5)
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although no details of the proof are given nor are they to be found elsewhere in the liter-
ature (in chapter 3 we outline a proof of Witten’s results using classical Hodge Theorem
arguments and then we extend Witten’s results to deal with the case of manifolds with
boundary). Witten also shows, among other things, that for s 6= 0, the dimensions of H±s
are respectively equal to the total even and odd Betti numbers of the subset N(K) of zeros
of K, which in particular implies the finiteness of dimHs. Atiyah and Bott [8] relate this
result of Witten to their Localization Theorem in equivariant cohomology which in the next
chapter, we describe and generalize to the case of manifolds with boundary.

2.3.3 Hodge-Morrey-Friedrichs theorem for manifolds with bound-
ary

In this section, we recall the standard extension of Hodge theory to manifolds with bound-
ary, leading to the Hodge-Morrey-Friedrichs decompositions [1, 31]. So now we let M

be a compact orientable Riemannian manifold with boundary ∂M, and let i : ∂M ↪→M be
the inclusion. In this setting, there are two types of de Rham cohomology, the absolute
cohomology Hk(M) and the relative cohomology Hk(M,∂M). The first is the cohomology
of the de Rham complex (Ωk(M),d), while the second is the cohomology of the subcom-
plex (Ωk

D(M),d), where ω ∈ Ωk
D if it satisfies i∗ω = 0 (the D is for Dirichlet boundary

condition). One also defines Ωk
N(M) =

{
α ∈Ωk(M) | i∗(?α) = 0

}
(Neumann boundary

condition). Here i∗ is the pullback by the inclusion map. Clearly, the Hodge star provides
an isomorphism

? : Ω
k
D
∼−→Ω

n−k
N .

Furthermore, because d and i∗ commute, it follows that d preserves Dirichlet boundary
conditions while δ preserves Neumann boundary conditions.

As alluded to before, because of boundary terms, the null space of ∆ no longer coin-
cides with the closed and co-closed forms. Elements of ker∆ are called harmonic forms,
while ω satisfying dω = δω = 0 are called harmonic fields (following Kodaira); it is clear
that every harmonic field is a harmonic form, but the converse is false. The space of har-
monic k-fields is denoted Hk(M) (so H∗(M)⊂ ker∆). In fact, the space Hk(M) is infinite
dimensional and so is much too big to represent the cohomology, and to recover the Hodge
isomorphism one has to impose boundary conditions. One restricts Hk(M) into each of
two finite dimensional subspaces, namely Hk

D(M) and Hk
N(M) with the obvious meanings

(Dirichlet and Neumann harmonic k-fields, respectively). There are therefore two different
candidates for harmonic representatives when the boundary is present.

The Hodge-Morrey decomposition [30] states that

Ω
k(M) =Hk(M)⊕dΩ

k−1
D ⊕δΩ

k+1
N .
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This decomposition is again orthogonal with respect to the inner product given above.
Friedrichs [18] subsequently showed that

Hk =Hk
D⊕Hk

co; Hk =Hk
N⊕Hk

ex

where Hk
ex are the exact harmonic fields and Hk

co = Hk ∩ δΩk the co-exact ones. These
give the orthogonal Hodge-Morrey-Friedrichs decompositions [31],

Ω
k(M) = dΩ

k−1
D ⊕δΩ

k+1
N ⊕Hk

D⊕Hk
co

= dΩ
k−1
D ⊕δΩ

k+1
N ⊕Hk

N⊕Hk
ex.

The two decompositions are related by the Hodge star operator. The consequence for co-
homology is that each class in Hk(M) is represented by a unique harmonic field inHk

N(M)

(i.e. Hk(M) ∼=Hk
N(M)), and each relative class in Hk(M,∂M) is represented by a unique

harmonic field in Hk
D(M) (i.e. Hk(M,∂M) ∼= Hk

D(M)). Again, the Hodge star operator
acts as Poincaré-Lefschetz duality for the de Rham cohomology of M with boundary (i.e.
Hk(M) ∼= Hn−k(M,∂M)) [31, 14] on the harmonic fields, sending Dirichlet fields to Neu-
mann fields (i.e. Hk

N(M)∼=Hn−k
D (M)). By expanding remark 2.3.1 into the manifold with

boundary case, we can again see how the Hodge-Morrey-Friedrichs Theorem works when
there is a group action. Hence, if a group G acts by isometries on (M,∂M) in a manner
that is trivial on the cohomology, then the harmonic fields are invariant.

Example 2.3.2 Consider M = {(x1,x2,x3) ∈ R3|∑3
i=1 x2

i ≤ 1} (the solid unit ball in R3)
and ∂M = S2 (the unit 2-sphere in R3). The absolute and relative de Rham cohomology of
M (by using Poincaré-Lefschetz duality) are

Hk(M)' H3−k(M,∂M) =

{
R k = 0.
0 k = 1,2,3, . . .

Moreover, the constructions above prove H0(M)'H0
N(M) and H3(M,∂M)'H3

D(M) . In
fact one can sees easily that

H0
N(M) = {constant functions} and H3

D(M) = {cdx1∧dx2∧dx3| c ∈ R}.

Clearly, Hodge star ? provides the isomorphismH0
N(M)'H3

D(M).

2.3.4 Modified Hodge-Morrey-Friedrichs theorem

It is proven in [31] that Hk
D(M)∩Hk

N(M) = {0}, so the sum Hk
D(M)+Hk

N(M) is a di-
rect sum but unfortunately Hk

D(M) and Hk
N(M) are not orthogonal in general and hence
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cannot both appear in the same orthogonal decomposition of Hodge-Morrey-Friedrichs of
Ωk(M). Therefore, DeTurck and Gluck in [15] (cf. [32], Theorem 2.1.1 for details) modify
this decomposition by observing that the best that can be done is the following five-term
decomposition eq. (2.6) which is implied immediately by the Hodge-Morrey-Friedrichs
decomposition of Ωk(M).

Ω
k(M) = dΩ

k−1
D ⊕δΩ

k+1
N ⊕ (Hk

D(M)+Hk
N(M))⊕Hk

ex,co, (2.6)

whereHk
ex,co =Hk

ex∩Hk
co and the symbol + indicates to a direct sum whereas ⊕ indicates

an orthogonal direct sum.
In addition, there is a long exact sequence in de Rham cohomology associated to the

pair (M,∂M), [14, 20]

· · · i∗−→ Hk−1(∂M)
∂ ∗−→ Hk(M,∂M)

ρ∗−→ Hk(M)
i∗−→ Hk(∂M)

∂ ∗−→ Hk+1(M,∂M)−→ ·· ·

and one can use this to define two subspaces of Hk(M) and Hk(M,∂M) as follows:

• the interior subspace IHk(M) of Hk(M) is the kernel of i∗ : Hk(M)→ Hk(∂M)

• the boundary subspace BHk(M,∂M) of Hk(M,∂M) is the image of ∂ ∗ : Hk−1(∂M)→
Hk(M,∂M), where ∂ ∗ is derived from d.

At the level of cohomology there is no ‘natural’ definition for the boundary part of the
absolute cohomology nor the interior part of the relative cohomology. However, DeTurck
and Gluck [15] use the metric and harmonic representatives to provide these. Firstly the
subspaces defined above are realized as

IHk
N = {ω ∈Hk

N(M) | i∗ω = dθ , for some θ ∈Ω
k−1(∂M)}

BHk
D = Hk

D(M)∩Hk
ex

respectively (these are denoted E∂Hk
N(M) and EHk

D(M) respectively in [15, 32]). They
then use the Hodge star operator to define the other spaces:

IHk
D = {ω ∈Hk

D(M) : i∗ ?ω = dκ, for some κ ∈Ω
n−k−1(∂M)}

BHk
N = Hk

N(M)∩Hk
co

(denoted cE∂Hk
D(M) and cEHk

N(M) in [15, 32]).
The main theorems of DeTurck and Gluck on this subject are

Theorem 2.3.3 (DeTurck and Gluck [15]) (i) The boundary subspaceBH±N (M) ofH±N (M)

is orthogonal to all of H±D(M) and the boundary subspace BH±D(M) of H±D(M) is

orthogonal to all ofH±N (M).
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(ii) No larger subspace ofH±N (M) is orthogonal to all ofH±D(M) and no larger subspace

ofH±D(M) is orthogonal to all ofH±N (M).

Theorem 2.3.4 (DeTurck and Gluck [15]) Both Hk
D and Hk

N have orthogonal decomposi-

tions,

Hk
N(M) = IHk

N⊕BHk
N

Hk
D(M) = BHk

D⊕IHk
D.

Furthermore, the two boundary subspaces are mutually L2-orthogonal inside Ωk.

However the interior subspaces are not orthogonal, and they prove

Theorem 2.3.5 (DeTurck-Gluck [15]) The principal angles between the interior subspaces

IHk
N and IHk

D are all acute.

Part of the motivation for considering these principal angles, called Poincaré duality

angles, is that they should measure in some sense how far the Riemannian manifold M is
from being closed.

In his thesis [32], Shonkwiler measures these Poincaré duality angles in interesting ex-
amples of manifolds with boundary derived from complex projective spaces and Grassman-
nians and shows that in these examples the angles do indeed tend to zero as the boundary
shrinks to zero.

2.4 The Dirichlet-to-Neumann (DN) operator for differ-
ential forms

The classical Dirichlet-to-Neumann (DN) operator Λcl : C∞(∂M) −→C∞(∂M) is defined
by Λclθ = ∂ω

∂ν
, where ω is the solution to the Dirichlet problem

∆ω = 0, ω |∂M= θ (2.7)

and ν is the unit outer normal to the boundary. The classical DN operator arises in
connection with the problem of Electrical Impedance Tomography which is also of interest
in medical imaging application [22].

In the scope of inverse problems of reconstructing a manifold from the boundary mea-
surements, the following question is of great theoretical and applied interest [11]:

To what extent are the topology and geometry of M determined by the Dirichlet-to-

Neumann map?
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The geometry aspect of the above question has been studied in [25] and [27]. Much
effort has been made to answer the topology aspect of this question. For instance, in the
case of a two-dimensional manifold M with a connected boundary, an explicit formula is
obtained which expresses the Euler characteristic of M in terms of Λcl where the Euler
characteristic completely determines the topology of M in this case [10]. In the three-
dimensional case [9], some formulas are obtained which express the Betti numbers β1(M)

and β2(M) in terms of Λcl and the vector DN map −→Λ : C∞(T (∂M)) −→ C∞(T (∂M)) is
defined on the space of vector fields in [9].

For more topological aspects, Belishev and Sharafutdinov [11] prove that the real addi-
tive de Rham cohomology of a compact, connected, oriented smooth Riemannian man-
ifold M of dimension n with boundary is completely determined by its boundary data
(∂M,Λ) where Λ : Ωk(∂M)−→Ωn−k−1(∂M) is a generalization of the classical Dirichlet-
to-Neumann operator Λcl to the space of differential forms. More precisely, they define the
DN- operator Λ as follows [11]: given θ ∈Ωk(∂M), the boundary value problem

∆ω = 0, i∗ω = θ , i∗(δω) = 0 (2.8)

is solvable and the operator Λ is given by the formula

Λθ = i∗(?dω).

In the case of k = 0, Λ is equivalent to Λcl . Indeed, suppose f ∈Ω0(M) is a harmonic
function which restricts to θ on the boundary. Since f ∈ Ω0(M) satisfies δ f = 0 then the
BVP (2.8) coincides with the BVP (2.7) and the definition of Λ gives

Λθ = i∗(?d f ) =
∂ f
∂ν

µ∂ = Λcl(θ)µ∂ ,

where µ∂ ∈ Ωn−1(∂M) is the boundary volume form. So, the operator Λ differs from the
classical operator Λcl by the presence of the factor µ∂ .

Their main results are these.

Theorem 2.4.1 (Belishev-Sharafutdinov [11]) For any 0 ≤ k ≤ n− 1, the range of the

operator

Λ+(−1)nk+k+ndΛ
−1d : Ω

k(∂M)−→Ω
n−k−1(∂M)

is i∗Hn−k−1
N (M).

But, a Neumann harmonic field λN is uniquely determined by its trace i∗λN . Hence,

(Λ+(−1)nk+k+1dΛ
−1d)Ωn−k−1(∂M)∼= Hk(M)∼=Hk

N(M).
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Using, Poincaré-Lefscetz duality, Hk(M) ∼= Hn−k(M,∂M). So the above theorem imme-
diately implies that the data (∂M,Λ) determines the absolute and relative de Rham coho-
mology groups.

Moreover, in section 5 of [11], they present one of the equivalent definitions of the
classical Hilbert transform T on the unit circle S1 which is as follows. Let f = ε + iω

be a holomorphic function on the disc {reiθ |0 ≤ θ ≤ 1} so that ω and ε are conjugate
by Cauchy-Riemann: dω = ?dε . If ϕ = ω |S1 and ψ = ε |S1 are the boundary trace, then
T dϕ

dθ
= dψ

dθ
.

In addition, they define the generalized Hilbert transform T as T = dΛ−1 : i∗Hk(M)−→
i∗Hn−k(M). In particular, T is defined on exact boundary forms Ek(∂M) as well.

Let ω ∈Ωk(M) and ε ∈Ωn−k−2(M) (0≤ k≤ n−2) be two co-closed forms (i.e. δω =

δε = 0). The form ε is named the conjugate of ω if dω = ?dε (for details, see section 5 of
[11]). Their main results about Hilbert transform T is the following theorem.

Theorem 2.4.2 (Belishev-Sharafutdinov [11]) A form ω ∈Ωk(M) satisfying ∆ω = 0 and

δω = 0 has conjugate form if and only if the trace θ = i∗ω satisfies

(Λ+(−1)nk+k+ndΛ
−1d)θ = 0.

In the case, if ε is the conjugate form of ω and ψ = i∗ε , then Tdθ = dψ .

In addition, they present the following theorem which gives the lower bound for the
Betti numbers βk(M) (i.e. dimHk

D(M) = dimHn−k
N (M) = βk(M)) of the manifold M

through the DN-operator Λ.

Theorem 2.4.3 (Belishev-Sharafutdinov [11]) The kernel kerΛk contains the space Ek(∂M)

of exact forms and

dim[kerΛ
k/Ek(∂M)]≤min{βk(∂M),βk(M)}

where βk(∂M) and βk(M) are the Betti numbers, and Λk is the restriction of Λ to Ωk(∂M).

2.4.1 DN-operator Λ and cohomology ring structure

At the end of their paper [11], Belishev and Sharafutdinov posed the following topological
open problem:

Can the multiplicative structure of cohomologies be recovered from our data (∂M,Λ)?.
In 2009, Shonkwiler in [33] gave a partial answer to the above question. He presents a

well-defined map which is

(φ ,ψ) 7−→ Λ((−1)k
φ ∧Λ

−1
ψ), ∀(φ ,ψ) ∈ i∗Hk

N(M)× i∗ ?Hl
D(M) (2.9)
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and then uses it to give a partial answer to that question. More precisely, by using the
classical wedge product between the differential forms, he considers the mixed cup product
between the absolute cohomology Hk(M) and the relative cohomology H l(M,∂M), i.e.

∪ : Hk(M)×H l(M,∂M)−→ Hk+l(M,∂M)

and then he restricts H l(M,∂M) to come from the boundary subspace described above and
then he presents the following theorem as a partial answer to Belishev and Sharafutdinov’s
question:

Theorem 2.4.4 (Shonkwiler [33]) The boundary data (∂M,Λ) completely determines the

mixed cup product in terms of the map (2.9) when the relative cohomology class is re-

stricted to come from the boundary subspace.



Chapter 3

Witten-Hodge theory and equivariant
cohomology

3.1 Introduction

The immediate purpose of this chapter is to extend Witten’s results which are given in
chapter 2 to manifolds with boundary. In order to do this, in section 3.2 we outline a proof
of Witten’s results (but in terms of the setting below) using classical Hodge theory argu-
ments and also we add more topological properties to XM-cohomology, which in section
3.3 we extend to deal with the case of manifolds with boundary. In Section 3.4 we describe
Atiyah and Bott’s localization and its conclusions in the case of manifolds with boundary,
and its relation to XM-cohomology. Finally, Section 3.5 provides a few conclusions.

Henceforth we have the following setting: Recalling Witten’s results and as it is well-
known that the group of isometries of a Riemannian manifold (with or without boundary)
is compact, so that a Killing vector field K generates an action of a torus. In this light, and
because of Remark 2.3.1 (and its extension to Witten’s setting), Witten’s analysis can be
cast in a slightly more general context.

Let G be a torus acting by isometries on M, with Lie algebra g, and denote by ΩG =

ΩG(M) the space of smooth G-invariant forms on M: ω ∈ ΩG if g∗ω = ω for all g ∈ G.
Note that because the action preserves the metric and the orientation it follows that, for
each g ∈ G, ?(g∗ω) = g∗(?ω), so if ω ∈ΩG then ?ω ∈ΩG.

Given any X ∈ g we denote the corresponding vector field on M by XM. Note that,
if M has a boundary then the G-action necessarily restricts to an action on the boundary
and XM must therefore be tangent to the boundary. Following Witten we define dXM =

d+ ιXM . Then dXM defines an operator dXM : Ω
±
G → Ω

∓
G , with the Lie derivative LXM ω =

d2
XM

ω = 0. For each X ∈ g there are therefore two corresponding cohomology groups

25
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H±XM
= kerd±XM

/ imd∓XM
, which we call XM-cohomology groups, and a corresponding oper-

ator we call the Witten-Hodge-Laplacian

∆XM = (dXM +δXM)
2 : Ω

±
G →Ω

±
G.

According to Witten (see, subsection 2.3.4) there is an isomorphism H±XM
∼= H±XM

(M),
where H±XM

is the space of XM-harmonic forms, that is those forms annihilated by ∆XM .
Of course, Witten’s presentation is no less general than this, and is obtained by putting
XM = sK; the only difference is we are thinking of X as a variable element of g, while for
Witten varying s only gives a 1-dimensional subspace of g (although one may change K as
well). The results of this chapter are given in [2].

3.2 Witten-Hodge theory for manifolds without boundary

In this section we prove some of the results of Witten [35], providing details we will need
in the next section for manifolds with boundary. We will use the notation from the intro-
duction.

We have an oriented boundaryless compact Riemannian manifold M with an action of a
torus G which acts by isometries on M, and we fix an element X ∈ g. The associated vector
field on M is XM, and using this one defines Witten’s inhomogeneous coboundary operator
dXM : Ω

±
G →Ω

∓
G, dXM ω = dω + ιXM ω , and the corresponding operator (cf. eq. (2.2))

δXM = (−1)n(k+1)+1 ?dXM?= δ +(−1)n(k+1)+1 ? ιXM?

(which is the operator adjoint to dXM by Proposition 3.2.2 below). The resulting Witten-

Hodge-Laplacian is ∆XM : Ω
±
G→Ω

±
G defined by ∆XM = (dXM +δXM)

2 = dXM δXM +δXMdXM .
We write the space of XM-harmonic fields

HXM = kerdXM ∩kerδXM ,

which (for manifolds without boundary) satisfiesHXM = ker∆XM . The last equality follows
for the same reason as for ordinary Hodge theory, namely the argument in (2.4), with ∆

replaced by ∆XM etc.
The Sobolev space W s,pΩ(M) is the vector space of differential forms equipped with a

norm that is a sum of Lp-norms of the differential forms itself as well as its derivatives up
to a given order s ∈ N. The space W 0,pΩ(M) and W s,2Ω(M) are also denoted by LpΩ(M)

and HsΩ(M), respectively. In fact, the L2-norm is already given in chapter 2 (eq. (2.1)).
Moreover, Schwarz in [31] (Proposition 2.1.1 ) proves that Stokes’ theorem is still

true for all differential forms of Sobolev class W 1,1Ω(M). His argument uses the fact that
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for any ω ∈W 1,1Ω(M) there exists an approximation sequence of smooth forms which is
convergent to ω in the W 1,1-norm and then he uses the classical Stokes’ theorem for these
smooth forms.

In this light, we can recast Stokes’ theorem in terms of the operators dXM by defining∫
M ω = 0 if ω ∈W 1,1Ωk(M) with k 6= n. For any form ω ∈W 1,1Ω(M) one has

∫
M ιXM ω = 0

as ιXM ω has no term of degree n, and the following version of Stokes’ theorem follows from
the ordinary Stokes’ theorem of Sobolev class W 1,1Ω(M). For future use, we allow M to
have a boundary.

Theorem 3.2.1 (Stokes’ theorem for dXM ) Let M be a compact manifold with boundary

∂M (possibly empty) for all differential forms ω ∈W 1,1ΩG(M) then∫
M
dXM ω =

∫
∂M

i∗ω ,

where i : ∂M ↪→M is the inclusion, and where the right-hand-side is taken to be zero if M

has no boundary.

Using this, we can present the following Green’s formula in terms of the operators dXM

and δXM .

Proposition 3.2.2 (Green’s formula for dXM and δXM ) Let α,β ∈H1ΩG be invariant dif-

ferential forms on the compact manifold M with boundary ∂M (possibly empty) , then

〈dXM α,β 〉= 〈α,δXM β 〉+
∫

∂M
i∗(α ∧?β ) , (3.1)

where as always i : ∂M ↪→M is the inclusion.

PROOF: For technical reasons we write α and β as:

α = α
++α

−, β = β
++β

− ∈ H1
ΩG

then

dXM(α ∧ (?β )) = dXM(α
++α

−)∧?(β++β
−)+

α
+∧dXM(?(β

++β
−))−α

−∧dXM(?(β
++β

−)).

Since, α,β ∈ H1ΩG then the term α ∧ ?β belongs in Sobolev class W 1,1ΩG(M), [31].
Moreover, all the terms of right hand side above belong in L1ΩG(M). Hence, we can apply
theorem 3.2.1. Now, integrating both sides over M and using ?δXM =±dXM? on H1Ω

±
G(M)

and then by using the linearity and orthogonality of H1ΩG(M) = H1Ω
+
G(M)⊕H1Ω

−
G(M)

we obtain eq. (3.1). r
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Returning now to the case of a manifold without boundary, we obtain the following.

Theorem 3.2.3 The Witten-Hodge-Laplacian ∆XM is a self-adjoint elliptic operator.

PROOF: The self-adjoint property follows from the same argument as for the classical
Hodge Laplacian, namely that δXM is the adjoint of dXM . For the ellipticity, we can expand
∆XM from its definition as,

∆XM =∆+(−1)n(k+1)+1(d?ιXM ?+ιXM ?ιXM?)+(−1)nk+1(?ιXM ?d+?ιXM ?ιXM)+ιXM δ +διXM .

(3.2)
It follows that ∆XM and ∆ have the same principal symbol (indeed ∆XM −∆ is a first order
differential operator). Since ∆ is elliptic [23, 31], it follows that so too is ∆XM . r

Every elliptic operator on a compact manifold is Fredholm [23], in the sense that for
each s ∈ N,

∆XM : Hs
Ω
±
G → Hs−2

Ω
±
G

is a Fredholm operator, so has finite dimensional kernel and cokernel, and closed range.
The regularity and Fredholm properties of elliptic operators [23, 31] imply the follow-

ing.

Corollary 3.2.4 The set of XM-harmonic (even/odd) forms H±XM
is finite dimensional and

consists of smooth C∞ forms.

The following result is the analogue of the Hodge decomposition theorem, and is a
standard consequence of the fact that ∆XM is self-adjoint.

Theorem 3.2.5 The following is an orthogonal decomposition

Ω
±
G =H±XM

⊕dXM Ω
∓
G⊕δXM Ω

∓
G,

and in terms of Sobolev spaces (∀s ∈ N)

Hs
Ω
±
G =H±XM

⊕dXMH
s+1

Ω
∓
G⊕δXMH

s+1
Ω
∓
G.

The orthogonality is with respect to the L2-inner product, given in (2.1).

PROOF: Since, ∆XM is elliptic and self adjoint operator then the decomposition above
follows immediately from Elliptic Splitting Theorem (cf. Theorem 7.5.6 [1]). r

As consequences for our decomposition above to the invariant differential forms Ω
±
G , we

have the following topological properties for XM-cohomology.
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Proposition 3.2.6 Every XM-cohomology class has a unique XM-harmonic form (=field)

representative (i.e H±XM
(M)∼=H±XM

).

PROOF: We define a map P :H±XM
−→ H±XM

(M) by P(ω) = [ω]XM for ω ∈ H±XM
, where

we denote [ ]XM for XM-cohomology classes. Clearly, P is well-defined and [ω]XM ∈
H±XM

(M) for all ω ∈H±XM
.

Now, we need first to prove P is injective. Suppose ω ∈ kerP then P(ω) = [ω]XM = 0.
But [ω]XM = 0 means that ω is an XM-exact form; ω = dXM α . But δXM ω = 0 and ω is
orthogonal to dXM α . Hence, the orthogonality of theorem 3.2.5 asserts that ω is orthogonal
to itself, so ω = 0. Thus, kerP = {0} which proves that P is injective.

Next, let [ω]XM ∈ H±XM
(M), then Theorem 3.2.5 shows that ω can be decomposed as

ω = λ +dXM α+δXM β where dXM ω = dXM δXM β = 0. So, 0= 〈β ,dXM δXM β 〉= 〈δXM β ,δXM β 〉,
so δXM β = 0. Thus [ω]XM = [λ ]XM where λ ∈ H±XM

. So, P is surjective. Hence, P is bijec-
tion.

Now, suppose we have two XM-harmonic forms λ1 and λ2 differ by an XM-exact form
dXM µ then we get

0 = (λ1−λ2)+dXM µ.

Again the orthogonality of theorem 3.2.5 and the injectivity of P prove that dXM µ = 0 and
thus λ1 = λ2. Hence, there is a unique XM-harmonic form in each XM-cohomology class.

r

Corollary 3.2.7 The XM-cohomology groups H±XM
(M) for a compact, oriented differen-

tiable manifold M with an action of a torus G are all finite dimensional.

PROOF: Any differentiable manifold can be equipped with a Riemannian metric and by
averaging, there exists a G-invariant Riemannian metric [19]. The corollary then follows
immediately from proposition 3.2.6 and corollary 3.2.4. r

We infer the following form of Poincaré duality but in terms of XM-cohomology. Here and
elsewhere we write n−± for the parity (modulo 2) resulting from subtracting an even/odd
number from n.

Theorem 3.2.8 (Poincaré duality for H±XM
) Let M be a compact, oriented smooth Rieman-

nian manifold of dimension n and with an action of a torus G. The bilinear function

( , ) : H±XM
×Hn−±

XM
−→ R
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defined by setting

([α]XM , [β ]XM) =
∫

M
α ∧β (3.3)

is a well-defined, non-singular pairing and consequently gives isomorphisms of Hn−±
XM

with

the dual space of H±XM
. i.e.

Hn−±
XM
∼= (H±XM

)∗.

PROOF: It is easy to prove that the bilinear map (3.3) is well-defined while the non-
singularity follows from Proposition 3.2.6 as follows: given a non-zero XM-cohomology
class [ω]XM ∈H±XM

, we must find a non-zero XM-cohomology class [ξ ]XM ∈Hn−±
XM

such that
([ω]XM , [ξ ]XM) 6= 0. According to Proposition 3.2.6, that ω is the XM-harmonic form rep-
resentative of the non zero XM-cohomology class [ω]XM , it follows that ω is not identically
zero. Applying the fact that ?∆XM = ∆XM?, it gives that ?ω is also XM-harmonic form and
represents an XM-cohomology class [?ω]XM ∈ Hn−±

XM
. Thus the pairing (3.3)

([ω]XM , [?ω]XM) =
∫

M
ω ∧?ω = ‖ω‖2 6= 0

is non-singular while the isomorphisms Hn−±
XM
∼= (H±XM

)∗ follow from the finite dimension-
ality of XM-cohomology (cf. Corollary 3.2.4 and Proposition 3.2.6) and the non-singularity
above. r

Remark 3.2.9 Theorem 3.2.8 shows that the Hodge star operator provides the isomor-
phism Hn−±

XM
∼= (H±XM

)∗. In addition, a finite dimensional vector space has the same di-
mension as its dual space. Thus, Hn−±

XM
∼= H±XM

.

Let N(XM) be the set of zeros of XM, and j : N(XM) ↪→M the inclusion. As observed
by Witten, on N(XM) one has XM = 0, so that j∗dXM ω = d( j∗ω), and in particular if ω

is XM-closed then its pullback to N(XM) is closed in the usual (de Rham) sense. And
XM-exact forms pull back to exact forms. Consequently, pullback defines a natural map
H±XM

(M)→ H±(N(XM)), where H±(N(XM)) is the direct sum of the even/odd de Rham
cohomology groups of N(XM).

Theorem 3.2.10 (Witten [35]) The pullback to N(XM) induces an isomorphism between

the XM-cohomology groups H±XM
(M) and the cohomology groups H±(N(XM)).

Witten gave a fairly explicit proof of this theorem by extending closed forms on N(XM)

to XM-closed forms on M. Atiyah and Bott [8] give a proof using their localization theorem
in equivariant cohomology which we discuss, and adapt to the case of manifolds with
boundary, in Section 3.4.
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Example 3.2.11 Consider M = S2 (the unit 2-sphere in R3), and use cylindrical polar co-
ordinates z ∈ [−1,1] and φ ∈ [0,2π]. Let the group G = S1 act on S2 by rotations about
the z-axis, with infinitesimal generator ∂/∂φ . Let X ∈ g, so XM = s∂/∂φ , for some s ∈R.
Invariant even and odd forms are of the form

ω+ = f0(z)+ f2(z)dφ ∧dz ∈Ω
+
G, ω− = f1(z)dz+g1(z)dφ ∈Ω

−
G.

In order that ω− is smooth, g1 must vanish at the poles z = ±1. The invariant volume
form is dφ ∧ dz, with total volume 4π , and the metric is (1− z2)−1dz2 + (1− z2)dφ 2.
Consequently, ?(dz) =−(1− z2)dφ and ?(dφ) = (1− z2)−1 dz, so

dXM ω+ = ( f ′0(z)+ s f2(z))dz, δXM ω+ =−(1− z)2( f ′2(z)+ s f0(z))dφ .

One finds ω+ is XM-harmonic if and only if

ω+ = Aesz(1−dφ ∧dz)+Be−sz(1+dφ ∧dz), (3.4)

for A,B ∈ R, and one finds that there are no non-zero odd XM-harmonic forms. Further-
more, the pullback of ω+ to N(XM) (which here is the two poles at z =±1) is A(es, e−s)+

B(e−s, es) which for s 6= 0 are linearly independent, as predicted by Theorem 3.2.10.

Remark 3.2.12 Extending remark 2.3.1, suppose X generates the torus G(X), and G is a
larger torus containing G(X) and acting on M by isometries. Then the action of G pre-
serves XM because G is an abelian Lie group. It follows that G acts trivially on the de
Rham cohomology of N(XM), and hence on the XM-cohomology of M, and consequently
on the space of XM-harmonic forms. Now, replacing d by dXM and Ωk(M) by Ω

±
G(X)

(M) in
remark 2.2.5, this proves that H±XM

(M) ∼= H±XM ,G(X)
(M) and more concretely, Proposition

3.2.6 implies that H±XM
= H±XM ,G(X)

where H±XM ,G(X)
(M) and H±XM ,G(X)

are defined using
G(X)-invariant forms. There is therefore no loss in considering just forms invariant un-
der the action of the larger torus in that the XM-cohomology, or the space of XM-harmonic
forms, is independent of the choice of torus, provided it contains G(X).

3.3 Witten-Hodge theory for manifolds with boundary

In this section we adapt the results and methods of Hodge theory for manifolds with bound-
ary to study the XM-cohomology and the space of XM-harmonic forms and fields for man-
ifolds with boundary. As for ordinary (singular) cohomology, there are both absolute and
relative XM-cohomology groups. So from now on our manifold will be with boundary and
with torus action which acts by isometry on this manifold unless otherwise indicated, and
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as before i : ∂M ↪→M denotes the inclusion of the boundary.

3.3.1 The difficulties if the boundary is present

Firstly, dXM and δXM are no longer adjoint because the boundary terms arise when we
integrate by parts and then ∆XM will not be self-adjoint. In addition, the space of all har-
monic fields is infinite dimensional and there is no reason to expect the XM-harmonic fields
HXM(M) to be any different. To overcome these difficulties, at the beginning we follow the
method which is used to solve this problem in the classical case, i.e. with d and δ [1, 31],
and impose certain boundary conditions on the invariant forms ΩG(M). Hence we make
the following definitions.

Definition 3.3.1 (1) We define the following two sets of smooth invariant forms on the
manifold M with boundary and with torus action

ΩG,D = ΩG∩ΩD = {ω ∈ΩG | i∗ω = 0} (3.5)

ΩG,N = ΩG∩ΩN = {ω ∈ΩG | i∗(?ω) = 0} (3.6)

and the spaces HsΩG,D and HsΩG,N are the corresponding closures with respect to suitable
Sobolev norms, for s > 1

2 . This can be refined to take into account the parity of the forms,
so defining Ω

±
G,D etc. Since ω ∈Ωk implies ?ω ∈Ωn−k we write that for ω ∈Ω

±
G we have

?ω ∈Ω
n−±
G .

(2) We define the two subspaces ofHXM(M)

HXM ,D(M) = {ω ∈ H1
ΩG,D | dXM ω = 0, δXM ω = 0} (3.7)

HXM ,N(M) = {ω ∈ H1
ΩG,N | dXM ω = 0, δXM ω = 0} (3.8)

which we call Dirichlet and Neumann XM-harmonic fields, respectively. We will show
below that these forms are smooth. Clearly, the Hodge star operator ? defines an isomor-
phismHXM ,D(M)∼=HXM ,N(M). Again, these can be refined to take the parity into account,
definingH±XM ,D(M) etc.

As for ordinary Hodge theory, on a manifold with boundary one has to distinguish be-
tween XM-harmonic forms (i.e. ker∆XM ) and XM-harmonic fields (i.e. HXM(M)) because
they are not equal: one has HXM(M) ⊆ ker∆XM but not conversely. The following propo-
sition shows the conditions on ω to be fulfilled in order to ensure ω ∈ ker∆XM =⇒ ω ∈
HXM(M) when ∂M 6= /0.

Proposition 3.3.2 If ω ∈ΩG(M) is an XM-harmonic form (i.e. ∆XM ω = 0) and in addition



CHAPTER 3. WITTEN-HODGE THEORY 33

any one of the following four pairs of boundary conditions is satisfied then ω ∈HXM(M).

(1) i∗ω = 0, i∗(?ω) = 0; (2) i∗ω = 0, i∗(δXM ω) = 0;

(3) i∗(?ω) = 0, i∗(?dXM ω) = 0; (4) i∗(δXM ω) = 0, i∗(?dXM ω) = 0.

PROOF: Because ∆XM ω = 0, one has 〈∆XM ω,ω〉 = 0. Now applying Proposition 3.2.2
to this, so we get that:

0 = 〈∆XM ω,ω〉= 〈dXM ω,dXM ω〉+ 〈δXM ω,δXM ω〉−
∫

∂M
i∗ω ∧ i∗ ?dXM ω +

∫
∂M

i∗δXM ω ∧ i∗ ?ω.

Using any of these conditions (1)–(4) ensures that the integrals above are zero and then ω

is an XM-harmonic field. r

Remark 3.3.3 Using Theorem 2.2.4, an averaging argument shows that H1ΩG,D and H1ΩG,N

are dense in L2ΩG, because the corresponding statements hold for the spaces of all (not
only invariant) forms [31].

3.3.2 Elliptic boundary value problem

The essential ingredients that Schwarz [31] needs to prove the classical Hodge-Morrey-

Friedrichs decomposition are his Theorem 2.1.5 and Gaffney’s inequality. However, these
results do not appear to extend to the context of dXM and δXM . Therefore, we use a different
approach to overcome this problem, based on the ellipticity of a certain boundary value
problem (BVP), namely (3.9) below. This theorem represents the keystone to extending the
Hodge-Morrey and Friedrichs decomposition theorems to the present setting and then to
extending Witten’s results to manifolds with boundary.

Consider the BVP 
∆XM ω = η on M

i∗ω = 0 on ∂M

i∗(δXM ω) = 0 on ∂M.

(3.9)

where η ∈ΩG(M).

Remark 3.3.4 It is well-known that the ellipticity of the BVP on compact manifolds is
often defined by the Lopatinskiı̌-Šapiro condition. Moreover, the most characteristic prop-
erties of an elliptic operator on compact manifolds are the regularity of the solutions of
the corresponding equations and the Fredholm property of elliptic operators. In this thesis,
we do not give description to Lopatinskiı̌-Šapiro condition because we are not interested
in its own right and we therefore refer to the well established literature on the theory of
elliptic operators, in particular to the book of Hörmander [23] for those who are interested
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in this condition. So, in the proof of theorem 3.3.5, we will use the ellipticity in the sense
of Lopatinskiı̌-Šapiro condition as a tool to obtain information about the regularity and
Fredholm property of the certain BVP (3.9).

Theorem 3.3.5

1. The BVP (3.9) is elliptic in the sense of Lopatinskiı̌-Šapiro, where ∆XM : ΩG(M)−→
ΩG(M).

2. The BVP (3.9) is Fredholm of index 0.

3. All ω ∈HXM ,D∪HXM ,N are smooth.

PROOF:
(1) Firstly, as in the proof of Theorem 3.2.3, we can see that ∆ and ∆XM have the same
principal symbol. Similarly, expanding the second boundary condition gives

δXM = δ +(−1)n(k+1)+1 ? ιXM?

so δXM and δ have the same first-order part. Hence our BVP (3.9) has the same principal
symbol as the following BVP 

∆ε = ξ on M

i∗ε = 0 on ∂M

i∗(δε) = 0 on ∂M

(3.10)

for ε, ξ ∈Ω(M), because the principal symbol does not change when terms of lower order
are added to the operator. However the BVP (3.10) is elliptic in the sense of Lopatinskiı̌-
Šapiro conditions [23, 31], and thus so is (3.9).

(2) From part (1), since the BVP (3.9) is elliptic, by using Theorem 1.6.2 in [31] or Theorem
20.1.2 in [23] we conclude that the BVP (3.9) is a Fredholm operator and the regularity the-
orem holds. In addition, we observe that the only differences between BVP (3.10) and the
BVP (3.9) are all lower order operators and it is proved in [31] that the index of BVP (3.10)
is zero but Theorem 20.1.8 in [23] asserts generally that if the difference between two
BVP’S are just lower order operators then they must have the same index. Hence, the index
of the BVP (3.9) must be zero.

(3) Let ω ∈HXM ,D∪HXM ,N . If ω ∈HXM ,D then it satisfies the BVP (3.9) with η = 0, so by
the regularity properties of elliptic BVPs, the smoothness of ω follows. If on the other hand
ω ∈HXM ,N then ?ω ∈HXM ,D which is therefore smooth and consequently ω =±? (?ω) is
smooth as well. r
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We consider the resulting operator obtained by restricting ∆XM to the subspace of
smooth invariant forms satisfying the boundary conditions

ΩG(M) = {ω ∈ΩG(M) | i∗ω = 0, i∗(δXM ω) = 0} (3.11)

Since the trace map i∗ is well-defined on HsΩG for s> 1/2 it follows that it makes sense
to consider H2ΩG(M), which is a closed subspace of H2ΩG(M) and hence a Hilbert space.
For simplicity, we rewrite the BVP (3.9) as follows: consider the restriction/extension of
∆XM to this space:

A = ∆XM H2ΩG(M)
: H2

ΩG(M)−→ L2
ΩG(M).

and consider the BVP,
Aω = η (3.12)

for ω ∈H2ΩG(M) and η ∈ L2ΩG(M) instead of BVP (3.9) which are in fact compatible. In
addition, from Theorem 3.3.5 we deduce that A is an elliptic and Fredholm operator and

index(A) = dim(kerA)−dim(kerA∗) = 0 (3.13)

where A∗ is the adjoint operator of A.
From Green’s formula (Proposition 3.2.2) we deduce the following property.

Lemma 3.3.6 A is L2-self-adjoint on H2ΩG(M), meaning that for all α,β ∈ H2ΩG(M) we

have

〈Aα, β 〉= 〈α, Aβ 〉 ,

where 〈−,−〉 is the L2-pairing.

PROOF: Clearly, because for all α,β ∈ H2ΩG(M) we have that α and β satisfy No.(2)
of proposition 3.3.2. Now, using this fact together with proposition 3.2.2, we can prove
that 〈Aα, β 〉= 〈α, Aβ 〉. r

Theorem 3.3.7 Let M be a compact, oriented smooth Riemannian manifold of dimension

n with boundary and with an action (by isometries) of a torus G. The space HXM ,D(M) is

finite dimensional and

L2
ΩG(M) =HXM ,D(M)⊕HXM ,D(M)⊥. (3.14)

PROOF: We begin by showing that kerA=HXM ,D(M). It is clear thatHXM ,D(M)⊆ kerA,
so we need only prove that kerA⊆HXM ,D(M).
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Let ω ∈ kerA. Then ω satisfies the BVP (3.9). Therefore, by condition (2) of Proposi-
tion 3.3.2, it follows that ω ∈HXM ,D(M), as required.

Now, kerA =HXM ,D(M) but dimkerA is finite, it follows that so too is dimHXM ,D(M).
This implies that HXM ,D(M) is a closed subspace of the Hilbert space L2ΩG(M), hence
eq. (3.14) holds. r

Theorem 3.3.8

Range(A) =HXM ,D(M)⊥ (3.15)

where ⊥ denotes the orthogonal complement in L2ΩG(M).

PROOF: Firstly, we should observe that eq. (3.13) asserts that kerA∼= kerA∗ but Theorem
3.3.7 shows that kerA =HXM ,D(M), thus

kerA∗ ∼=HXM ,D(M) (3.16)

Since Range(A) is closed in L2ΩG(M) because A is Fredholm operator, it follows from
the closed range theorem in Hilbert spaces that

Range(A) = (kerA∗)⊥ ⇐⇒ Range(A)⊥ = kerA∗. (3.17)

Hence, we just need to prove that kerA∗ = HXM ,D(M), and to show that we need first to
prove

Range(A)⊆HXM ,D(M)⊥. (3.18)

So, if α ∈ H2ΩG(M) and β ∈HXM ,D(M) then applying Lemma 3.3.6 gives

〈Aα, β 〉= 0

hence, eq. (3.18) holds. Moreover, equations (3.17) and (3.18) and the closedness of
HXM ,D(M) imply

HXM ,D(M)⊆ kerA∗ (3.19)

but eq. (3.16) and eq. (3.19) force kerA∗ =HXM ,D(M). Hence, Range(A) =HXM ,D(M)⊥.
r

Following [31], we denote the L2-orthogonal complement of HXM ,D(M) in the space
H2ΩG,D by

HXM ,D(M)©⊥ = H2
ΩG,D∩HXM ,D(M)⊥ (3.20)

(although in [31] it denotes H1-forms rather than H2).
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Proposition 3.3.9 For each η ∈HXM ,D(M)⊥ there is a unique differential form

ω ∈HXM ,D(M)©⊥ satisfying the BVP (3.9).

PROOF: Let η ∈ HXM ,D(M)⊥. Because of Theorem (3.3.8) there is a differential form
γ ∈ H2ΩG(M) such that γ satisfies the BVP (3.9). Since γ ∈ H2ΩG(M) ⊆ L2ΩG(M) then
there are unique differential forms α ∈ HXM ,D(M) and ω ∈ HXM ,D(M)⊥ such that γ =

α +ω because of eq. (3.14).
Since γ satisfies the BVP (3.9) it follows that ω satisfies the BVP (3.9) as well because

α ∈ HXM ,D(M) = ker(∆XM H2ΩG(M)
). Since ω = γ−α , it follows that ω ∈ H2ΩG,D , hence

ω ∈HXM ,D(M)©⊥ and it is unique r

Remark 3.3.10

(1) ω satisfying the BVP (3.9) in Proposition 3.3.9 can be recast to the condition

〈dXM ω, dXM ξ 〉+ 〈δXM ω, δXM ξ 〉= 〈η ,ξ 〉, ∀ξ ∈ H1
ΩG,D (3.21)

(2) All the results above can be recovered but in terms ofHXM ,N(M) because the Hodge
star operator ? defines an isomorphism L2ΩG∼= L2ΩG which restricts toHXM ,D(M)∼=
HXM ,N(M). In addition, ? takes orthogonal direct sum to orthogonal direct sum be-
cause it is an L2-isometry of ΩG.

3.3.3 Decomposition theorems

The results above provide the basic ingredients needed to extend the Hodge-Morrey and
Freidrichs decompositions arising for Hodge theory on manifolds with boundary, to the
present setting with dXM and δXM . Depending on these results, the proofs in this subsection
rely heavily on the analogues of the corresponding statements for the usual Laplacian ∆ on
a manifold with boundary, as described in the book of Schwarz [31].

Definition 3.3.11 Define the following two sets of XM-exact and XM-coexact forms on the
manifold M with boundary and with an action of the torus G:

EXM(M) = {dXM α | α ∈ H1
ΩG,D} ⊆ L2

ΩG(M), (3.22)

CXM(M) = {δXM β | β ∈ H1
ΩG,N} ⊆ L2

ΩG(M). (3.23)

Clearly, EXM(M) ⊥ CXM(M) because of Proposition 3.2.2. We denote by L2HXM(M) =

HXM(M) the L2-closure of the spaceHXM(M).

Proposition 3.3.12 (Algebraic decomposition and L2-closedness)
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(a) Each ω ∈ L2ΩG(M) can be split uniquely into

ω = dXM αω +δXM βω +κω

where dXM αω ∈ EXM(M) , δXM βω ∈ CXM(M) and κω ∈ (EXM(M)⊕CXM(M))⊥.

(b) The spaces EXM(M)and CXM(M) are closed subspaces of L2ΩG(M).

(a) and (b) mean that there is the following orthogonal decomposition

L2
ΩG(M) = EXM(M)⊕CXM(M)⊕ (EXM(M)⊕CXM(M))⊥ (3.24)

PROOF: (a) We have shown that

L2
ΩG(M) = HXM ,D(M)⊕HXM ,D(M)⊥ = HXM ,N(M)⊕HXM ,N(M)⊥.

Let ω ∈ L2ΩG(M) then corresponding to these decompositions we can split it uniquely
into

ω = λD +(ω−λD), ω = λN +(ω−λN)

where (ω −λD) ∈ HXM ,D(M)⊥ and (ω −λN) ∈ HXM ,N(M)⊥. By Proposition 3.3.9 there
are unique elements θD ∈HXM ,D(M)©⊥ and θN ∈HXM ,N(M)©⊥ satisfying the BVP (3.9) with
η replaced by (ω−λD) and (ω−λN) respectively.

From Proposition (3.3.9) we infer that θD and θN are of Sobolev class H2, so define

αω = δXM θD ∈ H1
ΩG,D and βω = dXM θN ∈ H1

ΩG,N (3.25)

Now let
κω = ω−dXM αω −δXM βω ∈ L2

ΩG(M)

The next step is to show that κω is orthogonal to EXM(M) but from proposition 3.2.2 we
can prove that λD,δXM β ∈ EXM(M)⊥, in addition, (ω−λD) = ∆XM θD then

〈κω , dXM α〉 = 〈∆XM θD, dXM α〉 − 〈dXM δXM θD+δXMdXM θD, dXM α〉 = 0, ∀dXM α ∈EXM(M)

Analogously we can show that 〈κω , δXM β 〉= 0, ∀δXM β ∈CXM(M). Therefore κω ∈ (EXM(M)⊕
CXM(M))⊥.

(b) Let {dXM α j} j∈N be an L2-Cauchy sequence in EXM(M) then dXM α j −→ γ ∈ L2ΩG(M).
Hence we get from part (a) above that

γ = dXM αγ +δXM βγ +κγ
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where dXM αγ ∈ EXM(M) , δXM βγ ∈ CXM(M) and κγ ∈ (EXM(M)⊕ CXM(M))⊥. Because
EXM(M) ⊥ CXM(M) ⊥ (EXM(M)⊕CXM(M))⊥ and 〈γ − dXM α j,γ − dXM α j〉 −→ 0 it follows
that δXM βγ = 0 and κγ = 0, thus γ = dXM αγ ∈ EXM(M). Hence EXM(M) is closed. The
corresponding argument applies to CXM(M). r

Now we can present the main theorems for this section.

Theorem 3.3.13 (XM-Hodge-Morrey decomposition theorem) Let M be a compact, ori-

ented, smooth Riemannian manifold of dimension n with boundary and with an action of a

torus G. Then

L2
ΩG(M) = EXM(M)⊕CXM(M)⊕L2HXM(M) (3.26)

PROOF: We use the decomposition (3.24) from Proposition 3.3.12 and observe that the
spaces EXM(M), CXM(M) and L2HXM(M) are mutually orthogonal with respect to the L2-
inner product which is an immediate consequence of Green’s formula (Proposition 3.2.2),
and hence

L2HXM(M)⊆ (EXM(M)⊕CXM(M))⊥.

So we need only to prove the converse and then using eq. (3.24) we will get the decompo-
sition (3.26). Let ω ∈ (EXM(M)⊕CXM(M))⊥, so

〈ω, dXM α〉 = 〈δXM ω, α〉 = 0 ∀α ∈ H1ΩG,D

〈ω, δXM β 〉 = 〈dXM ω, β 〉 = 0 ∀β ∈ H1ΩG,N .
(3.27)

From Remark 3.3.3 we know that H1ΩG,D and H1ΩG,N are dense in L2ΩG(M), hence
eq. (3.27) implies that dXM ω = 0 and δXM ω = 0 which shows that ω ∈ L2HXM(M). Hence
L2HXM(M) = (EXM(M)⊕CXM(M))⊥. r

Theorem 3.3.14 (XM-Friedrichs Decomposition Theorem) Let M be a compact, oriented

smooth Riemannian manifold with boundary of dimension n and with an action of a torus

G. Then the space HXM(M) ⊆ H1ΩG(M) of XM- harmonic fields can respectively be de-

composed into

HXM(M) = HXM ,D(M)⊕HXM ,co(M) (3.28)

HXM(M) = HXM ,N(M)⊕HXM ,ex(M) (3.29)

where the right hand terms are the XM-coexact and XM-exact harmonic fields respectively:

HXM ,co(M) = {η ∈HXM(M) | η = δXM α} (3.30)

HXM ,ex(M) = {ξ ∈HXM(M) | ξ = dXM σ} (3.31)
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For L2HXM(M) these decompositions are valid accordingly.

PROOF: We prove eq. (3.28); the argument for the dual eq. (3.29) is analogous. Propo-
sition 3.2.2 shows the orthogonality of the decomposition (3.28), i.e.

〈δXM α, λD〉= 0 ∀λD ∈HXM ,D(M). (3.32)

The space HXM(M) ⊆ L2ΩG(M), hence equation (3.14) asserts that HXM(M) can be de-
composed into:

HXM(M) =HXM ,D(M)⊕HXM ,D(M)⊥∩HXM(M) (3.33)

whereHXM ,D(M)⊥∩HXM(M) is the orthogonal complement ofHXM ,D(M) inside the space
HXM(M). So, we need only prove that

HXM ,co(M) =HXM ,D(M)⊥∩HXM(M).

But, it is clear thatHXM ,co(M)⊆HXM ,D(M)⊥∩HXM(M) so, we just need to prove that

HXM ,D(M)⊥∩HXM(M)⊆HXM ,co(M).

Now, let ω ∈ HXM(M) ∩HXM ,D(M)⊥ then Proposition 3.3.9 asserts that there is a
unique element θD ∈ HXM ,D(M)©⊥ such that θD satisfies the BVP (3.9). One can infer
from eq. (3.32) that also ω−δXMdXM θD ∈HXM ,D(M)⊥. Hence,

ω−δXMdXM θD = ∆XM θD−δXMdXM θD = dXM δXM θD.

The above equation gives that

i∗(ω−δXMdXM θD) = 0, dXM(ω−δXMdXM θD) = 0, and δXM(ω−δXMdXM θD) = 0

which mean that ω−δXMdXM θD ∈HXM ,D(M). However, ω−δXMdXM θD ∈HXM ,D(M)⊥, so
ω = δXMdXM θD ∈HXM ,co(M) as required. Thus, equation (3.28) holds.

For ω ∈ L2HXM(M) all the arguments up to ω−δXMdXM θD apply similarly. r

The following remark will be used later in chapter 5.

Remark 3.3.15 The definition of H±XM ,co(M) and H±XM ,ex(M) and the proof of Theorem
3.3.14 show that the differential forms α can be chosen to satisfy dXM α = ∆XM α = 0 while
σ can be chosen to satisfy δXM σ = ∆XM σ = 0.

Now, combining Theorems 3.3.13 and 3.3.14 gives the following.
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Corollary 3.3.16 (The XM-Hodge-Morrey-Friedrichs decompositions) The space L2ΩG(M)

can be decomposed into L2-orthogonal direct sums as follows:

L2
ΩG(M) = EXM(M)⊕CXM(M)⊕HXM ,D(M)⊕L2HXM ,co(M) (3.34)

L2
ΩG(M) = EXM(M)⊕CXM(M)⊕HXM ,N(M)⊕L2HXM ,ex(M) (3.35)

Remark 3.3.17 All the results above can be recovered but in terms of ±-spaces, for in-
stance,

H±XM ,D(M)∼=Hn−±
XM ,N(M), L2

Ω
±
G(M) = E±XM

(M)⊕C±XM
(M)⊕H±XM ,D(M)⊕L2H±XM ,co(M)

. . . etc.

3.3.4 Relative and absolute XM-cohomology

Using dXM and δXM we can form a number of Z2-graded complexes. A Z2-graded complex
is a pair of Abelian groups C± with homomorphisms between them:

C+
d+ //

C−
d−
oo

satisfying d+ ◦ d− = 0 = d− ◦ d+. The two (co)homology groups of such a complex are
defined in the obvious way: H± = kerd±/ imd∓.

The complexes we have in mind are,

(Ω±G,dXM) (Ω±G,δXM)

(Ω±G,D,dXM) (Ω±G,N ,δXM).

The two on the lower line are subcomplexes of the corresponding upper ones. These are
subcomplexes because i∗ commutes with dXM . By analogy with the de Rham groups, we
denote

H±XM
(M) := H±(ΩG, dXM),

H±XM
(M, ∂M) := H±(ΩG,D, dXM).

The theorem of Hodge is often quoted as saying that every (de Rham) cohomology
class on a compact Riemannian manifold without boundary contains a unique harmonic
form. The corresponding statement for XM-cohomology on a manifold with boundary is,

Theorem 3.3.18 (XM-Hodge Isomorphism ) Let M be a compact, oriented smooth Rie-

mannian manifold of dimension n with boundary and with an action of a torus G which
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acts by isometries on M. Let X ∈ g. We have

(a) Each relative XM-cohomology class contains a unique Dirichlet XM-harmonic field,

i.e. H±XM
(M, ∂M)∼=H±XM ,D(M).

(b) Each absolute XM-cohomology class contains a unique Neumann XM-harmonic field,

i.e. H±XM
(M)∼=H±XM ,N(M).

(c) (XM-Poincaré-Lefschetz duality): The Hodge star operator ? on ΩG(M) induces an

isomorphism

H±XM
(M)∼= Hn−±

XM
(M, ∂M).

PROOF: We use the various decomposition theorems to prove (a). Part (b) is proved
similarly, and part (c) follows from (a), (b) and the fact that the Hodge star operator defines
an isomorphismH±XM ,D(M)∼=Hn−±

XM ,N(M).
For the first isomorphism in (a), Theorem 3.3.13 (the XM-Hodge-Morrey decomposi-

tion theorem) implies a unique splitting of any γ ∈Ω
±
G,D into,

γ = dXM αγ +δXM βγ +κγ

where dXM αγ ∈ E±XM
(M), δXM βγ ∈ C±XM

(M) and κγ ∈ L2H±XM
(M). If dXM γ = 0 then δXM βγ =

0, but i∗γ = 0 implies i∗(κγ) = 0 so that κγ ∈H±XM ,D(M). Thus,

γ ∈ kerdXM ΩG,D
⇐⇒ γ = dXM αγ +κγ .

This establishes the isomorphism H±XM
(M, ∂M)∼=H±XM ,D(M).

Now, to prove the uniqueness, suppose we have two Dirichlet XM-harmonic field κγ

and κγ belong in the same relative XM-cohomology class [γ](XM ,M,∂M). This means that

κγ −κγ = dXM αγ

where dXM αγ ∈ E±XM
(M). Proposition 3.2.2 (Green’s formula for dXM and δXM ) asserts that

dXM αγ = 0 and thus κγ = κγ as desired. r

The decomposition theorems above lead to the following result.

Corollary 3.3.19 Let M be a compact, oriented smooth Riemannian manifold of dimension

n with boundary and with an action of a torus G which acts by isometries on M. Let X ∈ g.

There are the following isomorphisms of vector spaces:

(a) H±XM ,D(M)∼= H±(Ω±G,δXM)
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(b) H±XM ,N(M)∼= H±(Ω±G,N ,δXM)

PROOF: We prove part (a) while part (b) is proved similarly.
For the isomorphism in (a), the XM-Hodge-Morrey-Friedrichs decomposition (Corol-

lary 3.3.16) eq. (3.34) implies a unique splitting of any γ ∈Ω
±
G(M) into,

γ = dXM ξγ +δXM ηγ +λγ +δXM ζγ

where dXM ξγ ∈ E±XM
(M) , δXM ηγ ∈ C±XM

(M) , λγ ∈H±XM ,D(M) and δXM ζγ ∈ L2H±XM ,co(M).
If δXM γ = 0, then dXM ξγ = 0, and hence

γ ∈ kerδXM ⇐⇒ γ = δXM(ηγ +ζγ)+λγ .

This establishes the isomorphismH±XM ,D(M)∼= H±(Ω±G,δXM). r

Remark 3.3.20 Analogously to the case of ∂M = /0 (Remark 3.2.12), if G acts on the
Riemannian manifold with boundary, preserving XM, then Theorem 3.3.18 (XM-Hodge
Isomorphism) provides that the G-invariant relative and absolute XM-cohomology groups
or the corresponding spaces of Dirichlet and Neumann XM-harmonic fields are independent
of the choice of torus, provided it contains G(X).

3.4 Relation with equivariant cohomology and singular
homology

3.4.1 XM-cohomology and equivariant cohomology

When the manifold in question has no boundary, Atiyah and Bott [8] discuss the rela-
tionship between equivariant cohomology and XM-cohomology by using their localization
theorem. In this section we will relate the relative and absolute XM-cohomology with the
relative and absolute equivariant cohomology H±G (M,∂M) and H±G (M); the arguments are
no different to the ones in [8]. First we recall briefly the basic definitions of equivariant
cohomology, and the relevant localization theorem, and then state the conclusions for the
relative and absolute XM-cohomology.

If a torus G acts on a manifold M (with or without boundary), the Cartan model for
the equivariant cohomology is defined as follows. Let {X1, . . . ,X`} be a basis of g and
{u1, . . . ,u`} the corresponding coordinates. The Cartan complex consists of polynomial1

1we use real valued polynomials, though complex valued ones works just as well, and all tensor products
are thus over R, unless stated otherwise
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maps from g to the space of invariant differential forms, so is equal to Ω∗G(M)⊗R where
R = R[u1, . . . ,u`], with differential

deq(ω) = dω +
`

∑
j=1

u j ιX jω. (3.36)

The equivariant cohomology H∗G(M) is the cohomology of this complex. The relative
equivariant cohomology H∗G(M,∂M) (if M has non-empty boundary) is formed by taking
the subcomplex with forms that vanish on the boundary i∗ω = 0, with the same differential.

The cohomology groups are graded by giving the ui weight 2 and a k-form weight k,
so the differential deq is of degree 1. Furthermore, as the cochain groups are R-modules,
and deq is a homomorphism of R-modules, it follows that the equivariant cohomology is
an R-module. The localization theorem of Atiyah and Bott [8] gives information on the
module structure (there it is only stated for absolute cohomology, but it is equally true in
the relative setting, with the same proof; see also Appendix C of [19]).

First we define the following subset of g,

Z :=
⋃

K̂(G

k

where the union is over proper isotropy subgroups K̂ (and k its Lie algebra) of the action on
M. If M is compact, then Z is a finite union of proper subspaces of g. Let F = Fix(G,M) =

{x ∈ M | G · x = x} be the set of fixed points in M. It follows from the local structure of
group actions that F is a submanifold of M, with boundary ∂F = F ∩∂M.

Theorem 3.4.1 (Atiyah-Bott [8, Theorem 3.5]) The inclusion j : F ↪→ M induces homo-

morphisms of R-modules

H∗G(M)
j∗−→ H∗G(F)

H∗G(M,∂M)
j∗−→ H∗G(F,∂F)

whose kernel and cokernel have support in Z.

In particular, this means that if f ∈ I(Z) (the ideal in R of polynomials vanishing on Z)
then the localizations2 H∗G(M) f and H∗G(F) f are isomorphic R f -modules. Notice that the
act of localization destroys the integer grading of the cohomology, but since the ui have
weight 2, it preserves the parity of the grading, so that the separate even and odd parts are
maintained: H±G (M) f ∼= H±G (F) f . The same reasoning applies to the cohomology relative
to the boundary, so H±G (M,∂M) f ∼= H±G (F,∂F) f

2The localized ring R f consists of elements of R divided by a power of f and if K is an R-module, its
localization is K f := K⊗R R f ; they correspond to restricting to the open set where f is non-zero. See the
notes by Libine [29] for a good discussion of localization in this context.
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Since the action on F is trivial, it is immediate from the definition that there is an
isomorphism of R-modules, H∗G(F)∼= H∗(F)⊗R so that the localization theorem shows j∗

induces an isomorphism of R f -modules,

H±G (M) f
j∗−→ H±(F)⊗R f . (3.37)

It follows that H±G (M) f is a free R f module whenever f ∈ I(Z). Of course, analogous
statements hold for the relative versions. Since localization does not alter the rank of a
module (it just annihilates torsion elements), we have that

rankH±G (M) = dimH±(F), rankH±G (M,∂M) = dimH±(F,∂F).

For X ∈ g, define N(XM) = {x ∈ M | XM(x) = 0}, the set of zeros of the vector field
XM. Since X generates a torus action, N(XM) is a manifold with boundary ∂N(XM) =

N(XM)∩∂M. Clearly N(XM)⊃ F , and N(XM) = F if and only if X 6∈ Z.

Theorem 3.4.2 Let X = ∑ j s jX j ∈ g. If the set of zeros of the corresponding vector field

XM is equal to the fixed point set for the G-action (i.e. N(XM) = F) then

H±XM
(M, ∂M)∼= H±G (M,∂M)/mX H±G (M,∂M), (3.38)

and

H±XM
(M)∼= H±G (M)/mX H±G (M) (3.39)

where mX = 〈u1− s1, . . . ,ul− sl〉 is the ideal of polynomials vanishing at X.

PROOF: Our assumption N(XM) = F is equivalent to X ∈ g \ Z. Therefore there is a
polynomial f ∈ I(Z) such that f (X) 6= 0. In addition, we can use f and replace the ring
R by R f and then localize H±G (M) and H±G (M,∂M) to make H±G (M) f and H±G (M,∂M) f

which are free R f -modules.
We now apply the lemma stated below, in which the left-hand side is obtained by

putting ui = si before taking cohomology, so results in H±XM
(M) (or similar for the rela-

tive case), while the right-hand side is the right-hand side of (3.38) and (3.39), so proving
the theorem. r

Lemma 3.4.3 (Atiyah-Bott [8, Lemma 5.6]) Let (C∗,d) be a cochain complex of free R-

modules and assume that, for some polynomial f , H(C∗,d) f is a free module over the

localized ring R f . Then, if s ∈ Rl with f (s) 6= 0,

H±(C∗s ,ds)∼= H±(C∗,d) mod ms
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where ms is the (maximal) ideal 〈u1− s1, . . . ,ul− sl〉 at X in R[g].

Corollary 3.4.4 Let X ∈ g and jX : N(XM) ↪→ M, then j∗X induces the following isomor-

phisms

1- H±XM
(M)∼= H±(N(XM)),

2- H±XM
(M,∂M)∼= H±(N(XM),∂N(XM)).

Moreover, if N(XM) = F then dimH±XM
(M,∂M) = rankH±G (M,∂M) and dimH±XM

(M) =

rankH±G (M).

PROOF: First suppose X 6∈ Z which implies N(XM) = F . Then the isomorphisms above
follow by reducing equation (3.37) modulo mX and applying Theorem 3.4.2. This proves
the equality between the dimension of XM-cohomology and the rank of equivariant coho-
mology.

If on the other hand, X ∈ Z, then let G′ be the corresponding isotropy subgroup, so that
N(XM) = Fix(G′,M) (it is clear that G′ ⊃ G(X), the subgroup of G generated by X). The
considerations above show that H±XM ,G′(M,∂M)∼= H±(N(XM),∂N(XM)) and H±XM ,G′(M)∼=
H±(N(XM)), where H±XM ,G′(M) and H±XM ,G′(M,∂M) are defined using G′-invariant forms,
and mG′,X is the maximal ideal at X in the ring R[g′]. Moreover, all classes in H±XM ,G′(M)

and H±XM ,G′(M,∂M) have representatives which are G-invariant, not only G′-invariant (ei-
ther by an averaging argument, or by using the unique XM-harmonic representatives, see re-
mark 3.3.20). So, this gives H±XM ,G(M)∼=H±XM ,G′(M) and H±XM ,G(M,∂M)∼=H±XM ,G′(M,∂M),
∀X ∈ g′ ⊂ g as desired.

r

3.4.2 XM-cohomology and singular homology

One of the fundamental result in algebraic topology of manifolds is that: If M is a com-
pact manifold with or without boundary then the absolute Hk(M) (relative Hk(M,∂M)) de
Rham cohomology is isomorphic with the absolute Hk(M)(relative Hk(M,∂M)) singular
homology, all over R, [34, 17]. Using this fact together with corollary 3.4.4, we get the
following theorem:

Theorem 3.4.5 Let M be a compact, oriented smooth Riemannian manifold of dimension

n with boundary and G act by isometries on M. Then for X ∈ g,

H±XM
(M) ∼= H±(N(XM)) (3.40)

H±XM
(M,∂M) ∼= H±(N(XM),∂N(XM)) (3.41)
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where,

H+(N(XM))=⊕∞
i=0H2i(N(XM)) and H−(N(XM),∂N(XM))=⊕∞

i=0H2i+1(N(XM),∂N(XM)),

by using the map

[ω]XM({c}) =
∫

c
j∗X ω, (3.42)

where ω is an XM-closed ±-form representing the absolute (or relative) XM-cohomology

class [ω]XM on M and c is a ±-cycle representing the absolute (or relative) singular ho-

mology class {c} on N(XM).

The real numbers determined by the integral (3.42) of j∗X ω over ±-cycles on N(XM) are
called the periods of j∗X ω over all the ±-cycles on N(XM). In the setting above, Stokes’
theorem for dXM (theorem3.2.1) and corollary 3.4.4 assert that the periods of an XM-exact
form are all zero. Conversely, If XM-closed form ω has all of the periods of j∗X ω zero over
the cycles of N(XM) then it is XM-exact where this follows immediately from the injectivity
of the isomorphisms in theorem 3.4.5. In this light, theorem 3.4.5 proves that:

an XM-closed form ω is XM-exact iff all the periods of j∗X ω over ±-cycles of N(XM)

vanish.

3.5 Conclusions

(1) Theorem 3.3.18 proves that dimH±XM
(M, ∂M) = dimH±XM ,D(M) and dimH±XM

(M) =

dimH±XM ,N(M). These results show the following: the definition of the Dirichlet and
Neumann XM-harmonic fields depend on the Riemannian metric and so their dimen-
sion whereas the relative and absolute XM-cohomology are defined regardless of the
Riemannian metric and hence the dimension of XM-cohomology does not depend on
the metric. This argument can be applied also when M has no boundary ∂M (propo-
sition 3.2.6) as the Witten-Hodge-Laplacian ∆XM depends on the Riemannian metric.
This fact could be useful somehow to relate XM-cohomology with the Atiyah-Singer
index theorem because like this fact (for standard de Rham cohomology) was used
as a key stone in Atiyah-Singer index theorem to relate the analytic index with the
topological index [16].

(2) The relation of the XM-cohomology with the equivariant cohomology and singular
homology in section 3.4 prove that the XM-cohomology groups depend only on the
underlying topological structure of N(XM) and do not depend on the smooth or dif-
ferentiable structure.

(3) The following example is to support the above conclusions: consider M = S3 (the
unit 3-sphere in C2). Let a 2-torus G = S1× S1 acts on M by (eiθ ,eiφ ).(z1,z2) =
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(eiθ z1,eiφ z2). Let X = (a,b) ∈ g, so XM(z1,z2) = (aiz1,biz2). We have the following
four cases:

– Case 1: If a 6= 0 and b 6= 0 then we have that F =N(XM)= /0. In this case, corol-
lary 3.4.4 asserts that H±XM

(M) = 0 which represents the free part of H±G (M) and
this gives rankH±G (M) = 0.

– Case 2: If a = 0 and b 6= 0 then we have that N(XM) = {(z1,0)} ' S1. Hence,
in this case corollary 3.4.4 asserts H±XM

(M)' H±(S1)' R. This gives some of
the torsion part of H±G (M) because in this case X = (0,b) ∈ Z ⊂ g.

– Case 3: If a 6= 0 and b = 0 then we have that N(XM) = {(0,z2)} ' S1. Hence,
in this case corollary 3.4.4 asserts H±XM

(M)' H±(S1)' R. This gives some of
the torsion part of H±G (M) because in this case X = (a,0) ∈ Z ⊂ g.

– Case 4: If a = b = 0 then we have XM = 0. In this case 0-cohomology of M

reduces to the standard de Rham cohomology of M. This means that H±0 (M) =

H±(M)' R.

The four cases above show that the dependence of XM-cohomology on the vector
field X even when M is not changed.

(3) Generalization of Witten’s results: In previous sections, we began with the action
of a torus G; here we state results for a given Killing vector field K on a compact
Riemannian manifold M (with or without boundary), more in keeping with Witten’s
original work [35]. Recall that the group Isom(M) of isometries of M is a compact
Lie group, and the smallest closed subgroup G(K) containing K in its Lie algebra is
abelian, so a torus. Furthermore, the submanifold N(K) of zeros of K coincides with
Fix(G(K),M).

The equivariant cohomology constructions of Section 3.4 give us the proof of the
following result, which extends the theorem of Witten (our Theorem 3.2.10) to man-
ifolds with boundary.

Theorem 3.5.1 Let K be a Killing vector field on the compact Riemannian manifold

M (with or without boundary), and let N(K) be the submanifold of zeros of K. Then

pullback to N(K) induces isomorphisms

H±K (M)∼= H±(N(K)), and H±K (M, ∂M)∼= H±(N(K), ∂N(K)).

PROOF: Apply Corollary 3.4.4 to the equivariant cohomology for the action of the
torus G(K). r
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Furthermore, using the Hodge star operator, the Poincaré-Lefschetz duality of Theo-
rem 3.3.18(c) corresponds under the isomorphisms in the theorem above, to Poincaré-
Lefschetz duality on the fixed point space.

Translating this theorem into the language of harmonic fields, shows

H±K,N(M)∼=H±N (N(K)) and H±K,D(M)∼=H±D(N(K)). (3.43)

whereH±N (N(K)) andH±D(N(K)) are the ordinary Neumann and Dirichlet harmonic
fields on N(K) respectively.

Corollary 3.5.2 Given any harmonic field on N(K) with either Dirichlet or Neu-

mann boundary conditions, there is a unique K-harmonic field on M with the corre-

sponding boundary conditions whose pullback to N(K) is cohomologous to the given

harmonic field.

Note that if ∂N(K) = /0 then the boundary condition on N(K) is non-existent, and
so every harmonic form (= field) on N(K) has corresponding to it both a unique
Dirichlet and a unique Neumann K-harmonic field on M.

As an application, we have the fact that theorem 3.5.1 and corollary 3.5.2 can be
used to extend the other results of Witten in [35]. In addition, Witten mentions in
[35] that in Quantum Fields Theory, M will be infinite dimensional and N(K) finite

dimensional. The reduction of a problem on M to a problem on N(K) is crucial

to make computation possible, so following this we hope that this extension (i.e.
theorem 3.5.1 and corollary 3.5.2) will be useful in Quantum Field Theory and other
mathematical and physical applications when ∂M 6= /0.

(4) Euler characteristics: As is well known, given a complex of R[s] (or C[s]) modules
whose cohomology is finitely generated, the Euler characteristic of the complex is
independent of s. This remains true for a Z2-graded complex, for the same reasons
(briefly, the cohomology is the direct sum of a torsion module and a free module,
and the torsion cancels in the Euler characteristic).

Applying this to the complexes for XM-cohomology, with XM = sK, it follows that
χ(M) = χ(N) and χ(M,∂M) = χ(N,∂N) (where N = N(K)), and furthermore ap-
plying the same arguments to the manifold ∂M, one has χ(∂M) = χ(∂N), i.e.

χ(M) = χ(∂M)+χ(M,∂M) = χ(∂N)+χ(N,∂N) = χ(N).

(5) Other Applications: We have shown that the Witten-Hodge theory can shed light to
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give additional topological insight. In addition, the fact that we can use the new de-
compositions of L2Ω

±
G(M) given in theorem 3.3.13 and corollary 3.3.16 and also the

relation between the XM-cohomology and XM-harmonic fields (theorem 3.3.18 (XM-
Hodge Isomorphism)) as powerful tools (under topological aspects) in the theory of
differential equations on L2Ω

±
G(M) to obtain the solvability of various BVPs. In par-

ticular, we can extend most of the results of chapter three of [31] on L2Ω
±
G(M) to

the context of the operators dXM , δXM and ∆XM . Moreover, the classical Hodge theory
plays a fundamental role in incompressible hydrodynamics and it has applications to
many other area of mathematical physics and engineering [1]. So, following these,
we hope that the Witten-Hodge theory will be useful as tools in these applications as
well.



Chapter 4

Interior and boundary portions of
XM-cohomology

4.1 Introduction

It seems reasonable to think that we can extend the results of chapter 3 further in the style
of DeTurck and Gluck [15], and break down the Neumann and Dirichlet XM-harmonic
fields into interior and boundary subspaces. If so, we ask the following question, does the

natural extension of corollary 3.4.4 hold? The affirmative answer of this question which
is given in corollary 4.3.5 gives more concrete understanding to improve the main results
of chapter 3.

However, the results of chapter 3 do not extend immediately to the style of DeTurck
and Gluck [15] because the proofs of DeTurck and Gluck’s results in [15] do not appear to
extend to the present setting. But, in section 4.2 we do the first step by using a new argu-
ment, providing that the concrete realization of the relative and absolute XM-cohomology
groups meet only at the origin in Ω

±
G(M). In section 4.3, we define the interior and bound-

ary portions of XM-cohomology and we present a new different argument to break down the
Neumann and Dirichlet XM-harmonic fields into interior and boundary subspaces. Finally,
a few conclusions are given in section 4.4 with a geometric open problem. The results of
this chapter are given in [2] while part of them (in particular theorem 4.2.1) are given in
[3].

4.2 The intersection ofH±XM,N(M) andH±XM,D(M)

An important classical result is that any harmonic field satisfying both Neumann and
Dirichlet boundary conditions (so one vanishing on the boundary) is necessarily zero: see
theorem 3.4.4 in [31] or lemma 2 in [13]. So, we present this theorem.

51
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Theorem 4.2.1 Let M be a compact, connected, oriented smooth Riemannian manifold of

dimension n with boundary and with an action of a torus G which acts by isometries on M.

If an XM-harmonic field λ ∈H±XM
(M) vanishes on the boundary ∂M, then λ ≡ 0, i.e.

H±XM ,N(M)∩H±XM ,D(M) = {0} (4.1)

In general, the proof consists in showing that a form which is both Neumann and Dirichlet
harmonic fields has a zero of infinite order at every boundary point and then applying the
Strong Unique Continuation Theorem below. However, the proof that there are zeros of
infinite order in [31, 13] does not appear to extend to our present setting, so we give a
different argument, based on Hadamard’s lemma and the boundary normal coordinates.
Moreover, this basic technique is also valid in the classical case which gives another proof
of theorem 3.4.4 in [31].

First, we state the Strong Unique Continuation Theorem, due to Aronszajn [5], Aron-
szajn, Krzywicki and Szarski [6]. In [26], Kazdan writes this theorem in terms of Laplacian
operator ∆ but he mentions that it is still valid for any operator having the diagonal form
P = ∆I+ lower-order terms, where I is the identity matrix. Hence, one can state this theo-
rem in terms of diagonal form operator by the following form:

Theorem 4.2.2 (Strong Unique Continuation Theorem [26]) Let M be a Riemannian man-

ifold with Lipschitz continuous metric, and let ω be a differential form having first deriva-

tives in L2 that satisfies P(ω) = 0 where P is a diagonal form operator. If ω has a zero of

infinite order at some point in M, then ω is identically zero on M.

In addition, the following remark will be used during the proof.

Remark 4.2.3 Along the boundary of M, any smooth differential form ω has a natural
decomposition into tangential ( tω ) and normal( nω ) components. i.e.

ω |∂M= tω +nω

and the tangential component tω is uniquely determined by the pull-back i∗ω and it has
been denoted in a slight abuse of notation by i∗ω = i∗tω = tω . The normal and tangential
components of ω are Hodge adjoint to each other [31], i.e.

?(nω) = t(?ω) = i∗ ?ω.

Proof of Theorem 4.2.1. Suppose λ ∈ H±XM ,N(M)∩H±XM ,D(M), then λ is smooth by
theorem 3.3.5(c). Since i∗λ = i∗ ?λ = 0 then remark 4.2.3 asserts that tλ = nλ = 0. Hence
λ |∂M≡ 0 and we get that (ιXM λ ) |∂M= 0 as well.
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The proof is local so we can consider M to be the upper half space in Rn with ∂M =

Rn−1. Since the metric, the differential form λ and the vector field XM are given in the
upper half space, we can extend them from there to all of Rn by making them invariant
under the reflection in ∂M = Rn−1. The resulting objects are: the extended metric , which
will be Lipschitz continuous [13]; the extended form λ and extended vector field XM which
will be a Lipschitz continuous vector field. But the original λ satisfies λ |∂M≡ 0 and
dXM λ = δXM λ = 0 on the upper half space, hence the extended one will be of class C1 and
satisfy dXM λ = δXM λ = 0 on Rn, i.e. the extended λ satisfies P(λ ) = ∆XM λ = 0 on all of
Rn where the operator ∆XM has diagonal form, i.e. P = ∆XM = ∆I+ lower-order terms. So
far, we satisfy the first condition of theorem 4.2.2.

Now, we need to satisfy the remaining hypotheses of theorem 4.2.2. Let x = (x′,xn) be
a coordinates chart where x′ = (x1,x2, ...,xn−1) is a chart on the boundary ∂M and xn is the
distance to the boundary. In these coordinates xn > 0 in M and ∂M is locally characterized
by xn = 0. These coordinates are called boundary normal coordinates and the Riemannian
metric in these coordinates has the form ∑

n−1
m,r=1 hm,r(x)dxm⊗dxr+dxn⊗dxn, [25] and [28].

Now, we consider a neighborhood of p ∈ ∂M where our boundary normal coordinates
are well defined. We can write λ = α +β ∧dxn where α = ∑ fI1(x)dxI1 , β = ∑gI2(x)dxI2

and I1, I2 ⊂ {1,2, ...,n− 1}. Our goal is to prove that all the partial derivatives of the
coefficients of λ (i.e. fI1(x) and gI2(x)) vanish at p ∈ ∂M. Now, λ |∂M≡ 0 which implies
that fI1(x

′,0) = gI2(x
′,0) = 0. Hence, we can apply Hadamard’s lemma [24] to fI1(x) and

gI2(x) and deduce that fI1(x) = xn f I1
(x) and gI2(x) = xngI2

(x) for some smooth functions
f I1

(x) and gI2
(x). Moreover, these representations for fI1(x) and gI2(x) help us to conclude

that all the higher partial derivatives of fI1(x) and gI2(x) with respect to the coordinates of
x′ (i.e. except the normal direction coordinate xn) at the point p are all zero. i.e.

∂ |s| fI1(x
′,0)

∂xs1
1 ...∂xsn−1

n−1
=

∂ |s|gI2(x
′,0)

∂xs1
1 ...∂xsn−1

n−1
= 0, ∀s1,s2, ...,sn−1 = 0,1,2, ...

Therefore, we only need to prove that all the higher partial derivatives of fI1(x) and
gI2(x) in the normal direction are zero to deduce that the Taylor series of fI1(x) and gI2(x)

around xn = 0 are zero.
For contradiction, suppose the Taylor series of fI1(x) and gI2(x) around xn = 0 are not

zero at p ∈ ∂M which means that there exist the largest positive integer numbers k and j

such that fI1(x) = xk
n f̂J1(x) and gI2(x) = x j

nĝJ2(x) where f̂J1(x
′,0) 6= 0 and ĝJ2(x

′,0) 6= 0 for
some J1,J2. Thus, we can always write λ in the following form λ = xk

nτ +x j
nρ ∧dxn where

the differential forms τ and ρ do not contain dxn. Applying dXM λ = 0, we get

0 = dXM λ = kxk−1
n dxn∧ τ + xk

ndτ + x j
ndρ ∧dxn + xk

nιXM τ + x j
nιXM(ρ ∧dxn).
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Now, reducing this equation modulo xk
n we conclude that the term x j

n(dρ∧dxn+ιXM(ρ∧
dxn)) 6≡ 0 modulo xk

n because the term kxk−1
n dxn∧ τ 6≡ 0 modulo xk

n and as a consequence,
we infer that k > j.

Similarly, we can calculate δXM λ =−(∓)n(?d?λ +?ιXM ?λ ) = 0 ( using the Rieman-
nian metric above). For simplicity, it is enough to calculate d ? λ + ιXM ? λ = 0 where
?λ = xk

nξ ∧dxn + x j
nζ such that the differential forms ξ and ζ do not contain dxn and both

of them should contain many of the coefficients hm,r(x). Hence, we get

0 = d?λ + ιXM ?λ = xk
ndξ ∧dxn + jx j−1

n dxn∧ζ + x j
ndζ + xk

nιXM(ξ ∧dxn)+ x j
nιXM ζ .

Reducing this equation modulo x j
n and for the same reason above but replacing k by

j, then we can infer that k < j, but this is a contradiction, then there are not such largest
positive integer numbers k and j. Hence, the Taylor series for the coefficients fI1(x) and
gI2(x) around xn = 0 must be zero at p ∈ ∂M, i.e.

∂ r fI1(x
′,0)

∂xr
n

=
∂ rgI2(x

′,0)
∂xr

n
= 0, ∀r = 0,1,2, . . .

It means that all the higher partial derivatives of fI1(x) and gI2(x) we have already consid-
ered vanish at all points of the boundary ∂M. Thus, this facts are enough to show the mixed
partial derivatives including xn also vanish at the boundary. Hence, λ has a zero of infinite
order at p ∈ ∂M.

The remaining possibility of one of the coefficients fI1(x) and gI2(x) having finite order
and the other infinite order in xn follows from the same argument as above.

Thus, λ satisfies all the hypotheses of the strong Unique Continuation Theorem 4.2.2
then λ must be zero on all of Rn. Since M is assumed to be connected, λ must be identically
zero on all of M, i.e. λ ≡ 0. r

In addition, theorem 4.2.1 has not only an interest of its own, but is also crucial for
creating the generalized boundary data which will be given in chapter 5 and possibly for
solving various BVPs. However, it will be used in section 4.3 in order to refine the XM-
Hodge-Morrey-Friedrichs decompositions and to prove that the XM-Poincaré duality angles
are all acute.

4.3 XM-cohomology in the style of DeTurck-Gluck

In this section, we define the interior and boundary portions of XM-cohomology and then
we force the main results of chapter 3 to be written in the style of DeTurck and Gluck by
using a new different argument in the proofs of the main results in this section. In addition,
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this new argument can also be used to prove the main original results of [15].

4.3.1 Refinement of the XM-Hodge-Morrey-Friedrichs decomposition

Theorem 4.2.1 proves that the sum H±XM ,N(M) +H±XM ,D(M) is a direct sum, and by us-
ing Green’s formula (3.1), one finds that the orthogonal complement of H±XM ,N(M) +

H±XM ,D(M) insideH±XM
(M) isH±XM ,ex,co(M) =H±XM ,ex(M)∩H±XM ,co(M). Therefore, we can

refine the XM-Friedrichs decomposition (theorem 3.3.14) into

H±XM
(M) = (H±XM ,N(M)+H±XM ,D(M))⊕H±XM ,ex,co(M).

Consequently, following DeTurck and Gluck’s decomposition (2.6), we can refine the XM-
Hodge-Morrey-Friedrichs decompositions (Corollary 3.3.16) into the following five terms
decomposition:

Ω
±
G(M) = E±XM

(M)⊕C±XM
(M)⊕ (H±XM ,N(M)+H±XM ,D(M))⊕H±XM ,ex,co(M). (4.2)

Here as usual, ⊕ is an orthogonal direct sum, while + is just a direct sum.

4.3.2 Interior and boundary portions and decomposition theorems

The non-orthogonality ofH±XM ,N(M) andH±XM ,D(M) has to do that some of the XM-cohomology
of M comes from the “interior” of M and some comes from the boundary.

Since the vector field XM which we are considering is always tangent to the boundary
∂M then we can still define XM-cohomology on ∂M, i.e. H±XM

(∂M) and also we have
that dXM and i∗ commute. So, we can define the following long exact sequence in XM-
cohomology of the topological pair (M,∂M) derived from the inclusion i : ∂M ↪→M,

· · · i∗−→H∓XM
(∂M)

∂ ∗−→H±XM
(M,∂M)

ρ∗−→H±XM
(M)

i∗−→H±XM
(∂M)

∂ ∗−→H∓XM
(M,∂M)−→ ·· ·

(4.3)
where ∂ ∗ is derived from dXM as follows: given an XM-closed form λ on ∂M, let λ̃ be an ex-
tension form on M. Then [dXM λ̃ ](XM ,M,∂M) defines a well-defined element of H±XM

(M,∂M).
The operator ρ∗ is induced by the embedding of pairs ρ : (M, /0) ⊂ (M,∂M). Thus, ρ∗ is
well-defined.

Hence, in this light we can define interior and boundary portions of the absolute and
relative XM-cohomology respectively,

IH±XM
(M) = ker[i∗ : H±XM

(M)→ H±XM
(∂M)]

BH±XM
(M,∂M) = im[∂ ∗ : H∓XM

(∂M)→ H±XM
(M,∂M)].

(4.4)
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These spaces are realized as XM-harmonic fields through Theorem 3.3.18 (XM-Hodge
Isomorphism) as

IH±XM ,N = {ω ∈H±XM ,N(M) | i∗ω = dXM θ , for some θ ∈Ω
∓
G(∂M)}

BH±XM ,D = H±XM ,D(M)∩H±XM ,ex

respectively. Now use the Hodge star operator to define two other spaces:

IH±XM ,D = {ω ∈H±XM ,D(M) : i∗ ?ω = dXM κ, for some κ ∈Ω
n−∓
G (∂M)}

BH±XM ,N = H±XM ,N(M)∩H±XM ,co.

Note that Hodge star maps boundary to boundary and interior to interior; it follows that,
for example BH±XM ,N

∼= BHn−±
XM ,D.

The following theorem gives more information for the boundary subspaces, analogous
to theorem 2.3.3.

Theorem 4.3.1 The boundary subspace BH±XM ,N(M) is the largest subspace of H±XM ,N(M)

orthogonal to all of H±XM ,D(M) while the boundary subspace BH±XM ,D(M) is the largest

subspace of H±XM ,D(M) orthogonal to all ofH±XM ,N(M).

PROOF: The proof of the orthogonality follows immediately from the definition of these
subspaces and from proposition 3.2.2 (Green’s formula for dXM and δXM ).

Next, in theorem 3.3.14, we prove that

H±XM ,co(M) =H±XM ,D(M)⊥∩H±XM
(M), H±XM ,ex(M) =H±XM ,N(M)⊥∩H±XM

(M)

and these relations are also true for the class of smooth invariant forms.
So, if a form ω ∈ H±XM ,N(M) ⊂ H±XM

(M) is orthogonal to all of H±XM ,D(M), i.e. ω ∈
H±XM ,D(M)⊥ ∩H±XM ,N(M) ⊂ H±XM ,co(M), then ω ∈ H±XM ,co(M)∩H±XM ,N(M) and therefore,
ω ∈ BH±XM ,N(M).

Likewise, if α ∈ H±XM ,D(M) ⊂ H±XM
(M) is orthogonal to all of H±XM ,N(M), then α ∈

H±XM ,ex(M)∩H±XM ,D(M) and therefore, α ∈ BH±XM ,D(M). r

The main goal of this subsection is to prove the following theorem and to answer the
question which is given in section 4.1.

Theorem 4.3.2 Analogous to theorem 2.3.4, we have the orthogonal decompositions

H±XM ,N(M) = IH±XM ,N(M)⊕BH±XM ,N(M)

Hk
XM ,D(M) = BH±XM ,D(M)⊕IH±XM ,D(M).
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Remark 4.3.3 The proof by DeTurck and Gluck of the analogous result uses the duality be-
tween de Rham cohomology and singular homology. However, we do not have such a result
on M (see, subsection 3.4.2), so we give a direct proof involving only the cohomology—
the same argument can be used to prove Deturck and Gluck’s original theorem (replacing
dXM by d and ± by k everywhere). In addition, an alternative argument will be given later
using the localization to the fixed point set (corollary 3.4.4).

The direct proof of theorem 4.3.2 is as follows.

PROOF: The orthogonality of the right hand sides follows from Green’s formula (3.1).
It follows that

IH±XM ,N⊕BH
±
XM ,N ⊂H

±
XM ,N(M) and BH±XM ,D⊕IH

±
XM ,D ⊂H

±
XM ,D(M). (4.5)

Now reconsider the long exact sequence (4.3) in XM-cohomology derived from the
inclusion i : ∂M ↪→M

· · · i∗−→H∓XM
(∂M)

∂ ∗−→H±XM
(M,∂M)

ρ∗−→H±XM
(M)

i∗−→H±XM
(∂M)

∂ ∗−→H∓XM
(M,∂M)−→·· · .

It follows from the exactness that

IH±XM
(M) = imρ

∗, and BH±XM
(M,∂M) = kerρ

∗.

Thus, H±XM
(M,∂M)∼= BH±XM

(M,∂M)+ IH±XM
(M), (direct sum) or equivalently

H±XM ,D
∼= BH±XM ,D +IH±XM ,N . (4.6)

It follows from equations (4.5) and (4.6) that dim(IH±XM ,D)≤ dim(IH±XM ,N). However, the
Hodge star operator identifies IH±XM ,N with IHn−±

XM ,D which implies that the inequality in
dimensions is in fact an equality: for even n this is immediate, while for odd n one has the
sequence,

dimIH+
XM ,D ≤ dimIH+

XM ,N = dimIH−XM ,D ≤ dimIH−XM ,N = dimIH+
XM ,D

and the result follows. r

4.3.3 Interior and boundary portions of equivariant cohomology

The first purpose of this subsection is to refine theorem 3.4.1 (Atiyah-Bott [8, Theorem
3.5]) while the second purpose is to use an alternative argument to give another proof
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to theorem 4.3.2 (remark 4.3.3), based on the localization to the fixed point set (corol-
lary 3.4.4).

To do the first aim, we first define the interior and boundary portions for absolute and
relative equivariant cohomology respectively. For clarification, we denote in this subsec-
tion the following inclusion maps as follows: i∂M : ∂M ↪→ M, i∂F : ∂F ↪→ F, j∂F :
∂F ↪→ ∂M and jF : F ↪→M. Similarly to sequence (4.3), there is a long exact sequence in
equivariant cohomology of the topological pair (M,∂M) derived from the inclusion i∂M but
replacing the absolute (relative) XM-cohomology groups by absolute (relative) equivariant
cohomology groups and dXM by Cartan coboundary operator deq (see, equation (3.36)).

Hence, in this light we can define interior and boundary portions of the absolute and
relative equivariant cohomology respectively,

IH±G (M) = ker[i∗
∂M : H±G (M)→ H±G (∂M)]

BH±G (M,∂M) = im[∂ ∗ : H∓G (∂M)→ H±G (M,∂M)].
(4.7)

Here, ∂ ∗ is derived from the deq as described above. Hence, we refine the localization
theorem of Atiyah-Bott into the following theorem

Theorem 4.3.4 The inclusion jF : F ↪→M induces isomorphisms of R f -modules

IH±G (M) f
j∗F−→ IH±G (F) f

BH±G (M,∂M) f
j∗F−→ BH±G (F,∂F) f

where f ∈ I(Z). Moreover, IH±G (F) f ∼= IH±(F)⊗R f and BH±G (F,∂F) f ∼= BH±(F)⊗R f .

PROOF: Since j∗F is bijection (theorem 3.4.1), then the definition of the interior and
boundary portions of the absolute and relative equivariant cohomology (eq. (4.7)) imply
the isomorphisms above as desired. r

Since localization does not alter the rank of a module, we have that

rank IH±G (M) = dim IH±(F), rankBH±G (M,∂M) = dimBH±(F,∂F).

Now, to satisfy the second purpose of this subsection, we first refine corollary 3.4.4
into the following corollary 4.3.5 which makes the following natural extension of corol-
lary 3.4.4 possible.

Corollary 4.3.5 Let F ′ = N(XM), then jF ′ induces the isomorphisms,

1- IH±XM
(M)∼= IH±(F ′), H±XM

(M)/IH±XM
(M)∼= H±(F ′)/IH±(F ′),
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2- BH±XM
(M,∂M)∼=BH±(F ′,∂F ′), H±XM

(M,∂M)/BH±XM
(M,∂M)∼=H±(F ′,∂F ′)/BH±(F ′,∂F ′).

Moreover, if N(XM) = F then dim IH±XM
(M) = rank IH±G (M) and dimBH±XM

(M,∂M) =

rankBH±G (M,∂M)

PROOF: The following square is commutative,

H±XM
(M)

j∗F ′−−−→ H±(F ′)yi∗
∂M

yi∗
∂F ′

H±XM
(∂M)

j∗
∂F ′−−−→ H±(∂F ′)

(4.8)

because of jF ′ ◦ i∂F ′ = i∂M ◦ j∂F ′ . But, j∗F ′ and j∗
∂F ′ are bijections (corollary 3.4.4). Hence,

the commutativity of diagram 4.8 and corollary 3.4.4 prove that j∗F ′ moves the interior
portion of absolute XM-cohomology of M onto the interior portion of the absolute de Rham
cohomology of F ′ and the boundary portion of the relative XM-cohomology of M onto
the boundary portion of the relative de Rham cohomology of F ′, and the result follows as
desired. r

In this light, using corollary 4.3.5, we can neatly break down the isomorphismsH±XM ,N(M)
∼= H±N (F ′) and H±XM ,D(M) ∼= H±D(F ′) (these isomorphisms follow from Theorem 3.3.18
(XM-Hodge Isomorphism) and corollary 3.4.4) into the following more precise ones:

Theorem 4.3.6 Let F ′ = N(XM). We have isomorphisms,

IH±XM ,N(M)∼= IH±N (F ′), BH
±
XM ,D(M)∼= BH±D(F ′),

IH±XM ,D(M)∼= IH±D(F ′), BH
±
XM ,N(M)∼= BH±N (F ′).

PROOF: We prove the first two; the other two follow by applying the Hodge star operator
(on M and on F ′). jF ′ : F ′ ↪→ M induces a chain map between the long exact sequences
of XM-cohomology on M and de Rham cohomology on F ′, which by corollary 3.4.4 is an
isomorphism.

But, corollary 4.3.5 proves that jF ′ induces isomorphisms

IH±XM
(M)∼= IH±(F ′), and BH±XM

(M,∂M)∼= BH±(F ′,∂F ′).

It then follows from the Theorem 3.3.18 (XM-Hodge Isomorphism) and corollary 4.3.5 that
there are isomorphisms IH±XM ,N(M)∼= IH±N (F ′) and BH±XM ,D(M)∼= BH±D(F ′). r

Now, based on the results above, we can give another proof of theorem 4.3.2. We just
prove H±XM ,N(M) = IH±XM ,N(M)⊕BH±XM ,N(M) while the other one follows by applying
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the Hodge star operator.
Green’s formula (3.1) and theorem 4.3.6 give the following orthogonal direct sum

IH±XM ,N(M)⊕BH±XM ,N(M)∼= IH±N (F
′)⊕BH±N (F

′)

but, theorem 2.3.4 asserts thatH±N (F ′) = IH
±
N (F

′)⊕BH±N (F ′) while Theorem 3.3.18 (XM-
Hodge Isomorphism) and corollary 3.4.4 imply H±XM ,N(M) ∼= H±N (F ′). Hence, we prove
the isomorphism

H±XM ,N(M)∼= IH±XM ,N(M)⊕BH±XM ,N(M).

Thus, this isomorphism together with the fact that IH±XM ,N(M)⊕BH±XM ,N(M)⊂H±XM ,N(M)

imply the equality ofH±XM ,N(M) = IH±XM ,N(M)⊕BH±XM ,N(M), as desired.
The analogue of Gluck and DeTurck’s theorem for the Poincaré duality angles (theorem

2.3.5) also holds. The XM-Poincaré duality angles are defined in the obvious way, as the
principal angles between IH±XM ,D and IH±XM ,N .

Proposition 4.3.7 The XM-Poincaré duality angles are all acute.

PROOF: These angles can be neither 0 nor π/2, firstly becauseH±XM ,N(M)∩H±XM ,D(M)=

{0} (Theorem 4.2.1), and secondly because of theorem 4.3.1. Hence they must all be acute.
r

4.4 Conclusions and geometric open problem

1- Recalling, the generalization of Witten’s results (section 3.5, No.(3)), we have that
theorem 3.5.1 and eq. (3.43) can be refined to the style of interior and boundary por-
tions (corollary 4.3.5 and theorem 4.3.6 respectively) and this gives a more precise
meaning for these isomorphisms.

Moreover, if ∂N(K) = /0 then there is no boundary part of the cohomology of N(K).
In other words, it means that all the de Rham cohomology of N(K) must come only
from the interior portion, i.e. H±(N(K)) = H±(N(K),∂N(K)), which shows that
every interior de Rham cohomology class on N(K) has corresponding to it both a
unique relative and a unique absolute K-cohomology class on M.

2- The XM-Poincaré duality angles are invariants of the Riemannian structure on M and
they do not depend on the group action on M (see, remark 3.3.20). In addition, this
provides that the Witten-Hodge theory gives additional equivariant geometric insight
rather than the topological insight.
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Geometric question: Finally, we proved that IH±XM ,N(M)∼= IH±N (N(XM)) and IH±XM ,D(M)∼=
IH±D(N(XM)) and that the principal angles between the corresponding interior subspaces
are all acute. Hence, it would be interesting to answer the following:
How do the XM-Poincaré duality angles between the interior subspaces IH±XM ,N(M) and

IH±XM ,D(M) depend on X, and how do they compare to the Poincaré duality angles between

the interior subspaces IH±N (N(XM)) and IH±D(N(XM))?.



Chapter 5

Generalized DN-operator on invariant
differential forms

5.1 Introduction

The construction of the XM-Hodge-Morrey-Friedrichs decompositions (corollary 3.3.16)
of smooth invariant differential forms gives us insight to create boundary data which is a
generalization of Belishev-Sharafutdinov’s boundary data on Ω

±
G(∂M).

In this chapter, we give an answer to the topological open problem which states,
“To what extent is the equivariant topology of a manifold determined by the DN or a

variant map”?.

So, we take a more topological approach, looking to determine the absolute and rel-
ative XM-cohomology groups and consequently the free part of the absolute and relative
equivariant cohomology groups from the generalized boundary data which we set up in
this chapter. To this end, we first in section 5.2 prove fundamental results which follow
from Theorem 4.2.1 while in section 5.3 we define the XM-DN operator ΛXM on Ω

±
G(∂M),

the definition involves showing that certain boundary value problems are solvable. In fact,
the definition of ΛXM represents a generalization of Belishev-Sharafutdinov’s DN-operator
Λ on Ω

±
G(∂M) in the sense that when X = 0, we have Λ0 = Λ. Finally, in the remaining

sections, we explain to what extent the equivariant topology of the manifold in question is
determined by ΛXM . The results of this chapter are given as well in [3].

5.2 Preparing to the generalized boundary data

Theorem 4.2.1 plays a fundamental role to obtain the following results.

Corollary 5.2.1

H±XM
(M) =H±XM ,ex(M)+H±XM ,co(M) (5.1)

62
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where “+ “ is not direct sum.

PROOF: The XM-Friedrichs Decomposition Theorem 3.3.14 shows the following inter-
sections: (H±XM ,D(M))⊥∩H±XM

(M)=H±XM ,co(M) and (H±XM ,N(M))⊥∩H±XM
(M)=H±XM ,ex(M).

Hence, using these facts together with Theorem 4.2.1, we conclude eq.(5.1.) r

Corollary 5.2.2 The trace map i∗ :H±XM ,N(M)−→ i∗H±XM ,N(M) defines an isomorphism.

PROOF: It is clear that i∗ is surjective and Theorem 4.2.1 implies the kernel of the linear
map i∗ is zero (i.e. ker i∗ = {0}) which means that i∗ is injective. Thus, i∗ is a bijection. r

Corollary 5.2.3 1- The map f : i∗H±XM ,N(M)−→H±XM
(M) defined by f (i∗λN)= [λN ](XM ,M)

for λN ∈H±XM ,N(M) is an isomorphism.

2- The map h : i∗Hn−±
XM ,N(M)−→H±XM

(M, ∂M) defined by h(i∗λN) = [?λN ](XM ,M,∂M) for

λN ∈Hn−±
XM ,N(M) is an isomorphism.

PROOF:

1- f is a well-defined map because ker i∗ = {0} (corollary 5.2.2). Furthermore, f is a
bijection because there exists a unique Neumann XM-harmonic field in any absolute
XM- cohomology class (Theorem 3.3.18) hence part (1) holds.

2- It follows from part (1) by using XM-Poincaré-Lefschetz duality (Theorem 3.3.18(c)).

r

Corollary 5.2.4 dim(H±XM ,N(M)) = dim(i∗H±XM ,N(M)) = dim(H±XM
(M)) = dim(Hn−±

XM
(M,∂M)).

As we state in section 3.5 No. (5) that Witten-Hodge theory can be used to obtain the
solvability of various BVPS. Therefore, in this chapter we will need the following theorem
which can be proved by using the XM-Hodge-Morrey-Friedrichs decompositions.

Theorem 5.2.5 Let M be a compact, oriented smooth Riemannian manifold of dimension

n with boundary and with an action of a torus G which acts by isometries on M. Given

χ,ρ ∈Ω
∓
G(M) and ψ ∈Ω

±
G(∂M), the boundary value problem

dXM ω = χ on M

δXM ω = ρ on M

i∗ω = ψ on ∂M

(5.2)
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is solvable for ω ∈Ω
±
G(M) if and only if the data obey the integrability conditions

δXM ρ = 0, 〈ρ, κ〉= 0, ∀κ ∈H∓XM ,D(M) (5.3)

and

dXM χ = 0, i∗χ = dXM ψ, 〈χ, κ〉=
∫

∂M
ψ ∧ i∗ ?κ, ∀κ ∈H∓XM ,D(M). (5.4)

The solution of eq.(5.2) is unique up to arbitrary Dirichlet XM- harmonic fields κ ∈H±XM ,D(M).

PROOF: The proof is identical to the proof of theorem 3.2.5 of [31] but replacing d by
dXM and δ by δXM . r

Now, let us prove the following lemma which will be used later.

Lemma 5.2.6

i∗H±XM
(M) = E±XM

(∂M)+ i∗H±XM ,N(M) (5.5)

where E±XM
(∂M) = {dXM α | α ∈Ω

∓
G(∂M)}.

PROOF: We first prove that, i∗H±XM
(M)⊆ E±XM

(∂M)+ i∗H±XM ,N(M).
Suppose λ ∈H±XM

(M) then the XM-Friedrichs Decomposition (3.29) implies that

λ = dXM α +λN ∈H±XM ,ex(M)⊕H±XM ,N(M).

Hence,
i∗λ = dXM i∗α + i∗λN .

Conversely, it is clear that i∗H±XM ,N(M) ⊆ i∗H±XM
(M). So, we only need to prove that

E±XM
(∂M)⊆ i∗H±XM

(M). Suppose, η = dXM α ∈ E±XM
(∂M) then η satisfies

dXM η = 0,
∫

∂M
dXM α ∧ i∗ ?κ = 0, ∀κ ∈H∓XM ,D(M). (5.6)

Clearly, theorem 5.2.5 asserts that the condition (5.6) is a necessary and sufficient condition
for the existence of λ ∈H±XM

(M) such that η = i∗λ . r

5.3 XM-DN operator

Before defining this operator, we first need to prove the solvability of a certain boundary
value problem (5.7). The proof depends on the main results in chapter 3 and there is not any
corresponding statement of it in [31]. When X = 0, this gives an independent proof of the
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solvability of Belishev-Sharafutdinov’s BVP (2.8). Theorem 5.3.1 represents the keystone
to defining the XM-DN operator and then to exploiting a connection between this XM-DN
operator and XM-cohomology via the Neumann XM-trace space i∗H±XM ,N(M).

Theorem 5.3.1 Let M be a compact, oriented smooth Riemannian manifold of dimension

n with boundary and with an action of a torus G which acts by isometries on M. Given

θ ∈Ω
±
G(∂M) and η ∈Ω

±
G(M), then the BVP

∆XM ω = η on M

i∗ω = θ on ∂M

i∗(δXM ω) = 0 on ∂M.

(5.7)

is solvable for ω ∈Ω
±
G(M) if and only if

〈η , κD〉= 0, ∀κD ∈H±XM ,D(M) (5.8)

The solution of BVP (5.7) is unique up to an arbitrary Dirichlet XM-harmonic fieldH±XM ,D(M).

PROOF: Suppose eq.(5.7) has a solution then one can easily show that the condition
(5.8) holds by using Green’s formula (3.1).

Now, suppose the condition 〈η , κD〉= 0, ∀κD ∈H±XM ,D(M) is given (i.e. η ∈H±XM ,D(M)⊥

). Since θ ∈Ω
±
G(∂M), we can construct an extension ω1 ∈Ω

±
G(M) of the differential form

θ ∈Ω
±
G(∂M) such that

i∗ω1 = θ , ω1 = δXM βω1 +λω1 ∈ C
±
XM

(M)⊕H±XM
(M).

But ∆XM ω1 = δXMdXM δXM βω1 , then (3.1) implies that ∆XM ω1 ∈H±XM ,D(M)⊥ as well. Hence,
η −∆XM ω1 ∈ H±XM ,D(M)⊥. We now apply proposition 3.3.9 which for smooth invariant
forms states that for each η ∈ H±XM ,D(M)⊥ there is a unique smooth differential form ω ∈
Ω
±
G,D∩H

±
XM ,D(M)⊥ satisfying the BVP (5.7) but with η = η and θ = 0. Since η−∆XM ω1 ∈

H±XM ,D(M)⊥ is smooth, it follows from this there is a unique smooth differential form
ω2 ∈Ω

±
G,D∩H

±
XM ,D(M)⊥ which satisfies the BVP


∆XM ω2 = η−∆XM ω1 on M

i∗ω2 = 0 on ∂M

i∗(δXM ω2) = 0 on ∂M.

(5.9)

Now, let ω2 = ω −ω1, then the BVP (5.9) turns into the BVP (5.7). Hence, there exists a
solution to the BVP (5.7) which is ω = ω1 +ω2, where the uniqueness of ω is up to an
arbitrary Dirichlet XM-harmonic fields. r
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Definition 5.3.2 (XM-DN operator ΛXM ) Let M be the manifold in question. We consider
the BVP (5.7) with η = 0, i.e.

∆XM ω = 0 on M

i∗ω = θ on ∂M

i∗(δXM ω) = 0 on ∂M

(5.10)

then the BVP (5.10) is solvable and the solution is unique up to an arbitrary Dirichlet XM-
harmonic field κD ∈ H±XM ,D(M) (Theorem 5.3.1). We can therefore define the XM-DN

operator ΛXM : Ω
±
G(∂M)−→Ω

n−(∓)
G (∂M) by

ΛXM θ = i∗(?dXM ω).

Note that taking dXM ω eliminates the ambiguity in the choice of the solution ω which
means ΛXM θ is well defined.

In the case of X = 0, definition (5.3.2) reduces to the definition of the DN-operator Λ

given by Belishev and Sharafutdinov [11].

The results above and those in chapter 3 provide the basic ingredients needed to extend
(by analogy) the results in [11] and some of the results in [32] (on the ring structure) to the
context of XM-cohomology and the XM-DN map. However, some results in sections 5.4
and 5.6 are different and are specified here.

Lemma 5.3.3 Let ω ∈Ω
±
G(M) be a solution to the BVP (5.10) where θ ∈Ω

±
G(∂M) is given.

Then dXM ω ∈H∓XM
(M) and δXM ω = 0.

PROOF: Since dXM commutes with i∗ and ∆XM then the BVP (5.10) and the fact that
ΛXM θ = i∗(?dXM ω) show that dXM ω solves the BVP

∆XMdXM ω = 0, i∗(?d2
XM

ω) = 0, i∗(δXMdXM ω) = 0.

But proposition 3.3.2(4) implies that dXM ω ∈H∓XM
(M).

Since dXM ω ∈ H∓XM
(M), one can easily verify that dXM δXM ω = −δXMdXM ω = 0 and

δ 2
XM

ω = 0 which means that δXM ω ∈H±XM ,co(M) but the second condition (i.e. i∗(δXM ω) =

0 ) of the BVP (5.10) gives that δXM ω ∈ H±XM ,D(M). Using (3.28), this then implies that
δXM ω ∈H±XM ,D(M)∩H±XM ,co(M) = {0}, i.e. δXM ω = 0. r
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Lemma 5.3.4 The operator ΛXM is nonnegative in the sense that the integral∫
∂M

θ ∧ΛXM θ

is nonnegative for any θ ∈Ω
±
G(∂M).

PROOF: For given θ , let ω ∈ Ω
±
G(M) be a solution to the BVP (5.10). Then it follows

from (3.1) that

0 = 〈∆XM ω, ω〉= 〈dXM ω, dXM ω〉+ 〈δXM ω, δXM ω〉−
∫

∂M
i∗ω ∧ i∗(?dXM ω)

whence ∫
∂M

θ ∧ΛXM θ = ‖dXM ω‖2 +‖δXM ω‖2 ≥ 0. (5.11)

r

Lemma 5.3.5

kerΛXM = RanΛXM = i∗HXM(M)

whereHXM =H+
XM
⊕H−XM

.

PROOF: We first prove that kerΛXM = i∗HXM(M). If θ = i∗λ ∈ i∗HXM(M) for λ ∈
HXM(M), then λ is a solution to the BVP (5.10). But dXM λ = δXM λ = 0, therefore ΛXM θ =

i∗(?dXM λ ) = 0. Conversely, if θ ∈ kerΛXM and λ is a solution to the BVP (5.10) then
θ = i∗λ and equation (5.11) implies that dXM λ = δXM λ = 0. i.e. θ = i∗λ ∈ i∗HXM(M).

Hence, kerΛXM = i∗HXM(M).

Now, to prove RanΛXM = i∗HXM(M), suppose φ ∈ RanΛXM then φ = ΛXM θ where
θ = i∗λ such that λ is a solution of the BVP (5.10). But, dXM λ ∈ HXM(M) (Lemma 5.3.3)
then ?dXM λ ∈ HXM(M) too. Hence, φ = ΛXM θ = i∗(?dXM λ ) ∈ i∗HXM(M). Conversely,
let φ = i∗λ ∈ i∗HXM(M), i.e. λ ∈ HXM(M). Applying, the XM-Friedrichs Decomposition
(3.29), we can decompose ?λ as

?λ = dXM ω +λN ∈HXM ,ex(M)⊕HXM ,N(M). (5.12)

Remark 3.3.15 asserts that ω can be chosen such that

∆XM ω = 0, δXM ω = 0

which implies that
ΛXM i∗ω = i∗(?dXM ω).
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We can obtain from eq. (5.12) that

i∗(?dXM ω) =±i∗λ .

Comparing the last two equation with φ = i∗λ , we obtain φ = ΛXM(±i∗ω) ∈ RanΛXM .

r

Corollary 5.3.6 The operator ΛXM satisfies the following relations:

ΛXMdXM = 0, dXM ΛXM = 0, Λ
2
XM

= 0. (5.13)

PROOF: The first relation of (5.13) means that any form in the space EXM(∂M) is the
trace of an XM-harmonic field which is true by EXM(∂M) ⊆ i∗HXM(M) = kerΛXM (lemma
5.2.6 and lemma 5.3.5) while the second and third of equalities (5.13) follow from Lemma
5.3.5.

r

In this corollary, we introduce the XM-Hilbert transform TXM which is of course the
analogue of the usual Hilbert transform (see section 5 in [11]) and it will be used in section
5.5.

Corollary 5.3.7 The operator TXM := dXM Λ
−1
XM

: i∗HXM(M)−→ i∗HXM(M) is well-defined ;

i.e. the equation φ = ΛXM θ has a solution θ for any φ ∈ i∗HXM(M), and dXM θ is uniquely

determined by φ = ΛXM θ . In particular, the operator dXM Λ
−1
XM

dXM : ΩG(∂M)−→ΩG(∂M)

is well-defined.

PROOF: Lemma 5.3.5 proves that RanΛXM = i∗HXM(M). Hence, if φ ∈ i∗HXM(M) then
the equation φ = ΛXM θ is solvable. If ΛXM θ1 = ΛXM θ2 then θ1− θ2 ∈ kerΛXM is XM-
closed (i.e. dXM(θ1−θ2) = 0) because kerΛXM = i∗HXM(M). Thus, dXM θ1 = dXM θ2 which
means that dXM θ is uniquely determined by φ = ΛXM θ . Clearly, the operator dXM Λ

−1
XM

dXM

is well-defined because we have shown in lemma 5.2.6 that EXM(∂M)⊆ i∗HXM(M). r

Remark 5.3.8 In the case of X = 0, the definition of XM-Hilbert transform TXM reduces to
the definition of the generalized Hilbert transform which is given in chapter 2 (section 2.4).
The above construction enables one to extend theorem 2.4.2 to the context of ΛXM but we
leave this for future work.

The above constructions provide the essential ingredients needed to extend theorem 4.2
of [11] (our theorem 2.4.1) to the present context:
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Theorem 5.3.9 The Neumann XM-trace space i∗Hn−(∓)
XM ,N (M) can be completely determined

from our boundary data (∂M,ΛXM) in particular,

(ΛXM − (∓1)n+1dXM Λ
−1
XM

dXM)Ω
±
G(∂M) = i∗Hn−(∓)

XM ,N (M) (5.14)

PROOF: We need first to prove that

(ΛXM − (∓1)n+1dXM Λ
−1
XM

dXM)Ω
±
G(∂M)⊆ i∗Hn−(∓)

XM ,N (M).

Suppose θ ∈ Ω
±
G(∂M), let ω ∈ Ω

±
G(M) be a solution to the BVP (5.10). Lemma (5.3.3)

proves that dXM ω ∈H∓XM
(M). Applying the XM-Friedrichs decomposition to dXM ω , we get

dXM ω = δXM α +λD ∈H∓XM ,co(M)⊕H∓XM ,D(M) (5.15)

where α ∈Ω
±
G(M) and by remark 3.3.15, α can be chosen such that

dXM α = 0, ∆XM α = 0. (5.16)

We set β = ?α ∈Ω
n−±
G (M). Hence, eq.(5.16) implies

δXM β = 0, ∆XM β = 0. (5.17)

Substituting α = (±1)n+1 ?β into eq.(5.15), we have

dXM ω = (±1)n+1
δXM ?β +λD (5.18)

which implies
i∗(dXM ω) = (±1)n+1i∗(δXM ?β ). (5.19)

But, i∗(dXM ω) = dXM(i
∗ω) = dXM θ and δXM ? β = ∓(−1)n ? dXM β , thus, eq.(5.19)

turns into
dXM θ =−(∓1)ni∗(?dXM β ) (5.20)

Formulas (5.17) and (5.20) mean that

dXM θ =−(∓1)n
ΛXM i∗β . (5.21)

Now, applying, ( i∗? ) to eq.(5.18) with the fact that ΛXM θ = i∗(?dXM ω), we get

ΛXM θ = (±1)n+1i∗(?δXM ?β )+ i∗(?λD). (5.22)
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Using the relation ?δXM ?β = (±1)ndXM β , then eq.(5.22) reduces to

ΛXM θ =±dXM(i
∗
β )+ i∗(?λD) (5.23)

we can obtain from eq.(5.21) that

dXM(i
∗
β ) =−(∓1)ndXM Λ

−1
XM

dXM θ .

Putting the latter equation in eq.(5.23), we get

i∗(?λD) = (ΛXM − (∓1)n+1dXM Λ
−1
XM

dXM)θ .

Hence, (ΛXM − (∓1)n+1dXM Λ
−1
XM

dXM)θ ∈ i∗Hn−(∓)
XM ,N (M).

The next step is then to prove the converse, i.e.

i∗Hn−(∓)
XM ,N (M)⊆ (ΛXM − (∓1)n+1dXM Λ

−1
XM

dXM)Ω
±
G(∂M).

Given λN ∈ Hn−(∓)
XM ,N (M), then corollary 5.2.1 asserts that λN has the following representa-

tion
λN = dXM α +δXM β ∈Hn−∓

XM ,ex(M)+Hn−∓
XM ,co(M) (5.24)

and also by remark 3.3.15, α and β can be chosen respectively to satisfy

δXM α = 0, ∆XM α = 0 (5.25)

and
dXM β = 0, ∆XM β = 0. (5.26)

We set up the transformations

ω =−(±1)n ?β , ε =−(∓1)n+1
α.

Then eqs.(5.25)-(5.26) turn into

δXM ω = 0, ∆XM ω = 0 (5.27)

δXM ε = 0, ∆XM ε = 0 (5.28)

and eq.(5.24) implies
λN = ?dXM ω− (∓1)n+1dXM ε (5.29)

hence,
?λN =−(∓1)n+1(?dXM ε−dXM ω). (5.30)
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We can define forms φ ,ψ ∈ΩG(∂M) by setting

φ = i∗ω, ψ = i∗ε. (5.31)

Restricting eq.(5.29) to the boundary and using the fact that i∗ ?dXM ω = ΛXM φ , we obtain

i∗λN = ΛXM φ − (∓1)n+1dXM ψ. (5.32)

Restricting eq.(5.30) to the boundary

i∗(?dXM ε) = dXM(i
∗
ω) (5.33)

but i∗(?dXM ε) = ΛXM ψ because of eq.(5.28) and the second of equality (5.31). Hence,
eq.(5.33) turns to

ΛXM ψ = dXM φ . (5.34)

Now, we can eliminate the form ψ from eq.(5.32) and eq.(5.34) and we can obtain that

i∗λN = (ΛXM − (∓1)n+1dXM Λ
−1
XM

dXM)φ .

Hence, i∗λN ∈ (ΛXM − (∓1)n+1dXM Λ
−1
XM

dXM)Ω
±
G(∂M). r

Now, using Theorem 5.3.9, we have this lemma.

Lemma 5.3.10 The XM- Hilbert transform maps i∗H±XM ,N(M) to i∗Hn−(±)
XM ,N (M).

PROOF: Let ϕ ∈ i∗H±XM ,N(M) then theorem 5.3.9 implies that

ϕ = (ΛXM − (±1)n+1dXM Λ
−1
XM

dXM)θ

for some θ ∈Ωn−(∓)(∂M). Hence, it follows that

TXM ϕ = dXM Λ
−1
XM

(ΛXM − (±1)n+1dXM Λ
−1
XM

dXM)θ

= (dXM − (±1)n+1dXM Λ
−1
XM

dXM Λ
−1
XM

dXM)θ

= (ΛXM − (±1)n+1dXM Λ
−1
XM

dXM)Λ
−1
XM

dXM θ

= (ΛXM − (±1)n+1dXM Λ
−1
XM

dXM)Λ
−1
XM

dXM θ

but Λ
−1
XM

dXM(θ) ∈ Ω
∓
G(∂M). Thus, by theorem (5.3.9) we find that the right hand side of

the latter formula must belong to i∗Hn−(±)
XM ,N (M). r
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5.4 ΛXM operator, XM-cohomology and equivariant coho-
mology

The following result is an extension of theorem 2.4.3 to XM-cohomology. We relate the
dimension of H±XM

(M) with the kernel of ΛXM as follows:

Theorem 5.4.1 Let Λ
±
XM

be the restriction of XM-DN operator to Ω
±
G(∂M). Then E±XM

(∂M)⊆
kerΛ

±
XM

and

dim[kerΛ
±
XM

/E±XM
(∂M)]≤min{dim(H±XM

(∂M)),dim(H±XM
(M))}. (5.35)

Moreover, if every component of F ′ = N(XM) has a boundary then

max{dim[kerΛ
±
XM

/E±XM
(∂M)], dim[kerΛ

±/E±(∂F ′)]}≤min{dim(H±XM
(∂M)),dim(H±XM

(M))}.

PROOF: We can apply the XM-Hodge-Morrey decomposition theorem 3.3.13 (or theo-
rem 3.2.5) for ∂M which asserts that the direct sum of the first and third subspaces is equal
to the subspace of all XM-closed invariant differential ±-forms (that is, kerdXM ). Hence,
this fact together with eq.(5.13) implies that

E±XM
(∂M)⊂ kerΛ

±
XM
⊂H±XM

(∂M)⊕E±XM
(∂M).

This implies

dim[kerΛ
±
XM

/E±XM
(∂M)]≤ dimH±XM

(∂M) = dim(H±XM
(∂M)).

By lemma 5.2.6 and lemma 5.3.5,

kerΛ
±
XM

= E±XM
(∂M)+ i∗H±XM ,N(M).

Thus,
dim[kerΛ

±
XM

/E±XM
(∂M)]≤ dim(i∗H±XM ,N(M)) = dim(H±XM

(M)).

Therefore

dim[kerΛ
±
XM

/E±XM
(∂M)]≤min{dim(H±XM

(∂M)),dim(H±XM
(M))}

as required.
The second part follows by applying theorem 2.4.3 to F ′ and then using the first part of

this theorem. r
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Remark 5.4.2 The second part of theorem 5.4.1 moreover refers implicitly to a possible
relation between the dimensions of kerΛ

±
XM

/E±XM
(∂M) and kerΛ±/E±(∂F ′) which needs

to be discovered. In addition, this relation will help to extend many of the results of [32] to
the style of XM-cohomology but we will leave it for future work.

To relate these inequalities to equivariant cohomology, one uses a result in chapter 3
which asserts that if F ′ = F := Fix(G,M), then dim(H±XM

(M)) = rankH±G (M) (see, Corol-
lary 3.4.4). Hence we conclude that under this assumption, the right hand side of the
inequalities above can be replaced by min{rankH±G (∂M), rankH±G (M)}.

5.5 Recovering XM-cohomology from the boundary data
(∂M,ΛXM)

In this section, we continue extending the results of Belishev-Sharafutdinov and Shon-
kwiler’s theorem 2.4.4 on recovering the de Rham cohomology groups and ring structure
from the boundary data (∂M,Λ) to the context of absolute and relative XM-cohomology and
their concrete realizations H±XM ,N(M) and H±XM ,D(M) leading to the generalized boundary
data (∂M,ΛXM) on ΩG(M).

5.5.1 Recovering the long exact XM-cohomology sequence of (M,∂M)

We show that the data (∂M,ΛXM) determines the long exact XM-cohomology sequence of
the topological pair (M,∂M).

We reconsider the long exact sequence (4.3) in XM-cohomology derived from the in-
clusion i : ∂M ↪→M

· · · i∗−→H∓XM
(∂M)

∂ ∗−→H±XM
(M,∂M)

ρ∗−→H±XM
(M)

i∗−→H±XM
(∂M)

∂ ∗−→H∓XM
(M,∂M)−→·· · .

But, theorem 5.3.9 proves that we can determine the space i∗H±XM ,N(M) from the bound-
ary data (∂M,ΛXM) and corollary 5.2.3 gives i∗H±XM ,N(M) ∼= H±XM

(M) and i∗Hn−±
XM ,N(M) ∼=

H±XM
(M,∂M). This reads that the additive absolute and relative XM-cohomology are com-

pletely determined by (∂M,ΛXM).
So, if the boundary data (∂M,ΛXM) is given then we can construct the sequence

. . .
∂
∗

−−−→ i∗Hn−(±)
XM ,N (M)

ρ
∗

−−−→ i∗H±XM ,N(M)
i∗−−−→ H±XM

(∂M)
∂
∗

−−−→ i∗Hn−(∓)
XM ,N (M)

ρ
∗

−−−→ . . .

(5.36)

where we define the operators of sequence (5.36) by the following formulas:

1. i∗θ = [θ ](XM ,∂M), if θ ∈ i∗H±XM ,N then θ is XM-closed because i∗ and dXM commute.
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2. Using Lemma 5.3.10, we set, ρ
∗
θ =−(±1)n+1TXM θ , ∀θ ∈ i∗Hn−(±)

XM ,N .

3. Based on theorem 5.3.9, ΛXM θ = (ΛXM − (∓1)n+1dXM Λ
−1
XM

dXM)θ , if [θ ](XM ,∂M) ∈
H±XM

(∂M). Hence, we set

∂
∗
[θ ](XM ,∂M) = (∓1)n+1

ΛXM θ , ∀ [θ ](XM ,∂M) ∈ H±XM
(∂M).

More concretely, our goal is then to recover sequence (4.3) from sequence (5.36). It
means that we need to prove the following theorem.

Theorem 5.5.1 The following diagram (5.37) is commutative.

. . .
∂
∗

−−−→ i∗Hn−(±)
XM ,N (M)

ρ
∗

−−−→ i∗H±XM ,N(M)
i∗−−−→ H±XM

(∂M)
∂
∗

−−−→ i∗Hn−(∓)
XM ,N (M)

ρ
∗

−−−→ . . .yh

y f
yι

yh

. . .
∂ ∗−−−→ H±XM

(M, ∂M)
ρ∗−−−→ H±XM

(M)
i∗−−−→ H±XM

(∂M)
∂ ∗−−−→ H∓XM

(M, ∂M)
ρ∗−−−→ . . .
(5.37)

where ι is the identity operator while f and h are given in corollary 5.2.3.

PROOF: We prove the commutativity of the diagram (5.37) by a method similar to that
given in [11] but in terms of the operators dXM and δXM and it is as follows:

The commutativity of the square

i∗H±XM ,N(M)
i∗−−−→ H±XM

(∂M)y f
yι

H±XM
(M)

i∗−−−→ H±XM
(∂M)

follows directly from the definitions of our operators. In fact, an invariant form θ = i∗ω ∈
i∗H±XM ,N(M) with ω ∈H±XM ,N(M) implies that

i∗ f (θ) = i∗[ω](XM ,M) = [i∗ω](XM ,∂M) = [θ ](XM ,∂M) = i∗θ .

Now, we check the commutativity of the second square

i∗Hn−(±)
XM ,N (M)

ρ
∗

−−−→ i∗H±XM ,N(M)yh

y f

H±XM
(M, ∂M)

ρ∗−−−→ H±XM
(M)

Let θ = i∗ω ∈ i∗Hn−±
XM ,N(M) with ω ∈Hn−±

XM ,N(M). Then by the definitions of our operators,
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we obtain
ρ
∗h(θ) = ρ

∗[?ω](XM ,M,∂M) = [?ω](XM ,M). (5.38)

And the form ψ = ρ
∗
θ ∈ i∗H±XM ,N(M) can be written as

ψ = ρ
∗
θ = i∗ν , ν ∈H±XM ,N(M).

By the definition of f ,
f ρ
∗(θ) = f (ψ) = [ν ](XM ,M). (5.39)

Hence, we conclude that the commutativity of the square is equivalent to prove the equality
of the following XM-cohomology classes [?ω](XM ,M) = [ν ](XM ,M), which means that the
XM-Friedrichs decomposition (3.28) asserts that the invariant form ?ω must be of the form
(because ?ω is harmonic field):

?ω = ν +dXM α ∈H±XM ,N(M)⊕H±XM ,ex(M). (5.40)

But Remark 3.3.15 asserts that α can be chosen to satisfy

∆XM α = 0, δXM α = 0.

Restricting equation (5.40) to the boundary, we have

ψ = i∗ν =−i∗dXM α =−dXM i∗α. (5.41)

Now, applying ? to (5.40), we get (±)n+1ω = ?ν +?dXM α. Retracting the last equation to
the boundary

(±)n+1
θ = (±)n+1i∗ω = i∗(?dXM α) = ΛXM i∗α.

We obtain from the last equation

i∗α = (±)n+1
Λ
−1
XM

θ .

Substitution the value of i∗α above into (5.41), we get

ψ =−(±)n+1dXM Λ
−1
XM

θ =−(±)n+1TXM θ

i.e. ψ = ρ
∗
θ =−(±)n+1TXM θ . This is just our definition of the operator ρ

∗.
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Finally, we check the commutativity of the last square

H±XM
(∂M)

∂
∗

−−−→ i∗Hn−(∓)
XM ,N (M)yι

yh

H±XM
(∂M)

∂ ∗−−−→ H∓XM
(M, ∂M)

Let [θ ](XM ,∂M) ∈ H±XM
(∂M) and ω ∈Ω

±
G(M) be a solution to the BVP (5.10). Then

∂
∗[θ ](XM ,∂M) = [dXM ω](XM ,M,∂M) (5.42)

and ΛXM θ = i∗(?dXM ω). By the definition of h,

hΛXM θ = [??dXM ω](XM ,M,∂M) = (∓)n+1[dXM ω](XM ,M,∂M). (5.43)

Comparing (5.42) and (5.43), we obtain hΛXM θ = (∓)n+1∂ ∗[θ ](XM ,∂M). But our definition
of ∂

∗
asserts that the last equation proves that

h∂
∗
[θ ](XM ,∂M) = ∂

∗[θ ](XM ,∂M).

Thus we prove the commutativity of the diagram (5.37). r

Actually, the above construction proves that the data (∂M,ΛXM) recovers sequence
(4.3) of the pair (M,∂M) up to an isomorphism (i.e. f and h) from the sequence (5.36).

5.5.2 Recovering the ring structure of the XM-cohomology

We consider the following question: Can the ring (i.e. multiplicative) structure of the real

absolute and relative XM-cohomology be completely recovered from the boundary data

(∂M,ΛXM)?

First of all, we consider the mixed cup product ∪ between the absolute and relative
XM-cohomology as follows:

∪ : H±XM
(M)×H±XM

(M,∂M)−→ H±XM
(M,∂M)

by setting

[α](XM ,M)∪[β ](XM ,M,∂M) = [α∧β ](XM ,M,∂M), ∀([α](XM ,M), [β ](XM ,M,∂M))∈H±XM
(M)×H±XM

(M,∂M).

It is easy to check that∪ is a well-defined map. In addition, Theorem 3.3.18 asserts that any



CHAPTER 5. GENERALIZED DN-OPERATOR 77

absolute and relative XM-cohomology classes contain a unique Neumann and Dirichlet XM-
harmonic field respectively. Hence, we can regard any absolute (relative) XM-cohomology
class as a Neumann(Dirichlet) XM-harmonic field. But [α](XM ,M)∪[β ](XM ,M,∂M) = [α ∧
β ](XM ,M,∂M) is a relative XM-cohomology class, so there exists a unique Dirichlet XM-
harmonic field η ∈H±XM ,D(M) such that [α ∧β ](XM ,M,∂M) = [η ](XM ,M,∂M), i.e.

α ∧β = η +dXM ξ ∈H±XM ,D(M)⊕E±XM
(M). (5.44)

But, we can get from corollary 5.2.3 that

H±XM
(M,∂M)∼= Hn−(±)

XM
(M)∼= i∗Hn−(±)

XM ,N (M)

According to our illustrations above we know that an absolute XM-cohomology class
[α](XM ,M) ∈H±XM

(M) and relative XM-cohomology classes [β ](XM ,M,∂M), [α∧β ](XM ,M,∂M) ∈
H±XM

(M,∂M) are represented by the Neumann XM-harmonic field α ∈ H±XM ,N(M) and the
Dirichlet XM-harmonic fields β ,η ∈ H±XM ,D(M) respectively, such that they correspond,
respectively, to forms on the boundary by setting

φ = i∗α ∈ i∗H±XM ,N(M), ψ = i∗ ?β ∈ i∗ ?H±XM ,D(M), ϑ = i∗ ?η ∈ i∗ ?H±XM ,D(M).

The answer to the above question will only be partial, in the sense that we will not
consider all the classes of the relative XM-cohomology. In fact, we will just consider the
boundary portion BH±XM

(M,∂M) of H±XM
(M,∂M) which we define it in subsection 4.3.2.

Now, using the results of subsection 4.3.2 together with corollary 5.2.3(2), we have that
BH±XM

(M,∂M)∼= i∗ ?BH±XM ,D.

Then, the above constructions help us to adapt Shonkwiler’s map [32] to the context of
the setting above in order to define the following map with notation as above

φ∪XM ψ = ΛXM(±φ ∧Λ
−1
XM

ψ), ∀(φ ,ψ) ∈ i∗H±XM ,N(M)× i∗ ?H±XM ,D(M). (5.45)

Now, we use the same method as [32] but together with the definition 5.3.2 in order to prove
∪XM is well-defined and it is as follows. In general, Λ

−1
XM

ψ is not well-defined because ΛXM

has a large kernel, so for any (∓)-invariant form σ ∈ kerΛXM , the form Λ
−1
XM

ψ + σ is
another valid choice for Λ

−1
XM

ψ . To prove that, we need only to show that, ∀σ ∈ kerΛXM ,

ΛXM(φ ∧ (Λ
−1
XM

ψ +σ)) = ΛXM(φ ∧Λ
−1
XM

ψ)+ΛXM(φ ∧σ) = ΛXM(φ ∧Λ
−1
XM

ψ). (5.46)

It means that we need only to prove φ ∧σ ∈ kerΛXM . Lemma 5.3.5 asserts that σ = i∗τ ∈
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i∗H∓XM
(M). Since, α and τ are XM-closed, it follows that so too is α ∧ τ. However, XM-

Hodge-Morrey decomposition theorem 3.3.13 for smooth invariant form implies that

α ∧ τ = χ +dXM ε ∈H∓XM
(M)⊕E∓XM

(M),

so χ solves the BVP (5.10), i.e.

∆XM χ = 0, i∗χ = φ ∧σ , i∗δXM χ = 0.

Thus, definition 5.3.2 implies that

ΛXM(φ ∧σ) = i∗ ?dXM χ = 0

as desired. Following [32], the map ∪XM is well-defined regardless of whether or not
β ∈ BH±XM ,D.

Now, we can extend Shonkwiler’s theorem 2.4.4 to the style above.

Theorem 5.5.2 The boundary data (∂M,ΛXM) completely determines the mixed cup prod-

uct structure of the XM-cohomology when the relative XM-cohomology classes come from

the boundary subspace. That is, if (α,β ) ∈ H±XM ,N(M)×BH±XM ,D(M) such that α ∧β =

η +dXM ξ ∈H±XM ,D(M)⊕E±XM
(M) then

i∗ ?η = ΛXM(±φ ∧Λ
−1
XM

ψ)

where φ = i∗α and ψ = i∗ ? β . In fact one shows the commutativity of the following

diagram,

i∗H±XM ,N(M)× i∗ ?BH±XM ,D(M)
∪XM−−−→ i∗ ?BH±XM ,D(M)y( f ,h)

yh

H±XM
(M)×BH±XM

(M,∂M)
∪−−−→ BH±XM

(M,∂M) ,

(5.47)

where f and h are given in corollary 5.2.3.

PROOF: Our goal is then to show that
∀(φ ,ψ) = (i∗α, i∗ ?dXM β1) ∈ i∗H±XM ,N(M)× i∗ ?BH±XM ,D(M) we have

(h◦∪XM)(i
∗
α, i∗ ?dXM β1) = (∪◦ ( f ,h))(i∗α, i∗ ?dXM β1). (5.48)

Then the left-hand side gives

h(∪XM(i
∗
α, i∗ ?dXM β1)) = h(ΛXM(±i∗α ∧Λ

−1
XM

i∗ ?dXM β1))
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= h(ΛXM(±φ ∧Λ
−1
XM

ψ)) (5.49)

while the right-hand side together with eq.(5.44) and corollary 5.2.3 give

∪(( f (i∗α),h(i∗ ?dXM β1))) = ∪([α](XM ,M), [??dXM β1](XM ,M,∂M))

= [?? (α ∧dXM β1)](XM ,M,∂M)

= [??η ](XM ,M,∂M)

= h(i∗ ?η). (5.50)

The above construction shows that we only need to prove that eq.(5.49) and eq.(5.50) are
equal. This will be the case if

i∗ ?η = ΛXM(±φ ∧Λ
−1
XM

ψ). (5.51)

But, XM-DN map together with the results of chapter 3 contribute to extend Shon-
kwiler’s procedure (which he uses to prove theorem 2.4.4) to the style of the operators
dXM ,δXM and ΛXM . Similarly as in [32], we use the extending procedure as follows to show
that eq.(5.51) holds.

To this end, putting, β = dXM β1 ∈ BH±XM ,D(M) and using the XM-Hodge-Morrey de-
composition theorem (3.3.13), we infer that β1 can be chosen to solve the BVP

∆XM ν = 0 on M

i∗ν = i∗β1 on ∂M

i∗δXM ν = 0 on ∂M.

Hence,
ψ = i∗ ?dXM β1 = ΛXM i∗β1.

Therefore, Λ
−1
XM

ψ = i∗β1. But from eq.(5.44) we get that

η = dXM η
′ ∈ BH±XM ,D(M)

where η ′=±α∧β1−ξ . Applying the XM-Hodge-Morrey decomposition theorem (3.3.13)
on η ′, we infer that

η = dXM η
′ = dXM σ

such that σ solves the BVP

∆XM ε = 0, i∗ε = i∗σ , i∗δXM ε = 0.
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Hence,
ΛXM i∗σ = i∗ ?dXM σ = i∗ ?η . (5.52)

Since η ′ =±α ∧β1−ξ implies

dXM(±α ∧β1) = dXM η
′+dXM ξ

= dXM σ +dXM ξ . (5.53)

Eq. (5.53) shows that the class [±α ∧β1−σ −ξ ](XM ,M) ∈ H∓XM
(M), so the invariant form

±α ∧β1−σ −ξ can be decomposed as

±α ∧β1−σ −ξ = dXM τ1 + τ2 ∈ E∓XM
(M)⊕H∓XM

(M).

Now, restricting the latter equation to the boundary and using Lemma 5.3.5, this implies
that

ΛXM i∗(±α ∧β1−σ −ξ ) = ΛXM i∗τ2 = 0.

Combining this with eq. (5.52) gives that

ΛXM i∗(±α ∧β1) = ΛXM i∗(±α ∧β1−σ −ξ +σ +ξ )

= ΛXM i∗(±α ∧β1−σ −ξ )+ΛXM i∗σ

ΛXM(±φ ∧Λ
−1
XM

ψ) = i∗ ?η

Hence, the diagram (5.47) is commutative as desired. r

5.6 Conclusions and topological open problem

1- The key point used to recover the free part of the relative and absolute equivariant co-
homology groups from the generalized boundary data (∂M,ΛXM) is corollary 3.4.4.
Now, combining corollary 3.4.4 with theorem 5.3.9, we get

Theorem 5.6.1 Let F ′ = N(XM), then

H±XM
(M, ∂M)∼=

(
ΛXM − (±1)n+1dXM Λ

−1
XM

dXM

)
Ω
∓
G(∂M)∼= H±(F ′,∂F ′)

and

H±XM
(M)∼=

(
ΛXM − (±1)n+1dXM Λ

−1
XM

dXM

)
Ω

n−∓
G (∂M)∼= H±(F ′).

Since the Neumann XM-harmonic fields are uniquely determined by their Neumann
XM- trace spaces (corollary 5.2.3) which is in turn determined by the boundary
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data (∂M,ΛXM)(theorem 5.3.9), this means we can conclude, by using XM-Poincaré-
Lefschetz duality that we can realize the relative and absolute XM-cohomology groups
(and hence in some sense the free part of the relative and absolute equivariant coho-
mology groups) as particular subspaces of invariant differential forms on ∂M and
they are not just determined abstractly from the generalized boundary data.

2- We can apply theorem 2.4.1 to the manifolds F ′ = N(XM) with boundary ∂F ′. Since
G acts on F ′ the induced action on each H±(F ′) is trivial. Now, we can use theorem
5.6.1 to exploit the connection between Belishev-Sharafutdinov’s boundary data on
∂F ′ (i.e. (∂F ′,Λ)) and ours on ∂M (i.e. (∂M,ΛXM)). More concretely, we have the
following.

Theorem 5.6.2 If every component of F ′ has a boundary, then(
ΛXM − (∓1)n+1dXM Λ

−1
XM

dXM

)
Ω
±
G(∂M)∼=

(
Λ− (∓1)n+1dΛ

−1d
)

Ω
±(∂F ′).

This means that the boundary data (∂F ′,Λ) can be determined from the boundary
data (∂M,ΛXM) and vice versa. In this setting, it follows that since the de Rham
cohomology groups of (F ′,∂F ′) are determined by (∂F ′,Λ) (theorem 2.4.1), then
the ± de Rham cohomology groups of (F ′,∂F ′) are also determined by (∂M,ΛXM).

3- When M has no boundary, Witten proves in [35] that H±K (M)∼= H±(N(K)) where K

is a Killing vector field (our XM) on M and he shows how the K-cohomology and the
isomorphism above are useful in Quantum Field Theory and other mathematical and
physical applications. However, when ∂M 6= /0, the extend isomorphism is provided
by corollary 3.4.4 which gives insight that the extension for other results of Witten
[35] are possible. In this light, theorem 5.6.1 suggests that ΛXM may also be relevant
to Quantum Field Theory and following Witten, possibly to other mathematical and
physical interpretations. This shows that ΛXM may be interesting in its own right.

4- The results in this chapter assert that the generalized boundary data (∂M,ΛXM) en-
codes more information about the equivariant algebraic topology of M than does the
boundary data (∂M,Λ). Hence, these results contribute to answer the topological
open problem which is stated in section 5.1.

5- Extending the results of DeTurck and Gluck to the style of XM-cohomology (section
4.3) and recovering the XM-cohomology from the boundary data (M,∂M) together
with the five terms decomposition eq. (4.2) will certainly provide the crude ingredi-
ents which we need to extend most of the results of Shonkwiler’s Thesis [32] to the
context of XM-Poincaré duality angles but we will leave it for future work.
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Topological open problem: Finally, it is worth considering the following topological
problem: Can the torsion part of the absolute and relative equivariant cohomology groups

be completely recovered from the boundary data (∂M,ΛXM)? (Here torsion is meant as
a module over the ring of polynomials on g—the standard Cartan model: some torsion
information is available from Corollary 3.4.4 and Theorem 5.6.1 when X is in an isotropy
subalgera, but not all.) Answering this question will indeed complete the picture of the
boundary data (∂M,ΛXM) to be added into the list of objects of equivariant cohomology of
manifolds story.



Chapter 6

XM-Harmonic cohomology on manifolds
with boundary

6.1 Introduction

We denote in this chapter the space of k-harmonic forms by Harmk(M) = ker(∆|Ωk). The
de Rham coboundary operator d and ∆ commute [16], hence (Harm∗(M),d) forms a sub-
complex of the de Rham complex and it is therefore natural to compute the cohomology
of this subcomplex. When ∂M = /0, the Hodge Theorem (subsection (2.3.1)) implies that
Hk(Harm∗(M),d) ∼= Harmk(M). However, S.Cappell, D. DeTurck et al. [13] consider
the case ∂M 6= /0 and they prove that the cohomology of this subcomplex is given by the
following theorem

Theorem 6.1.1 [13]. Let M be a compact, connected, oriented smooth Riemannian mani-

fold of dimension n with boundary. Then the cohomology of the complex (Harm∗(M),d) of

harmonic forms on M is given by the direct sum of the de Rham cohomology:

Hk(Harm∗(M),d)∼= Hk(M)+Hk−1(M)

for k = 0,1, . . . ,n.

As consequences of the results in chapters 3, the principal idea of this chapter is to
extend theorem 6.1.1 to equivariant cohomology.

More in keeping with [13], we denote in this chapter the space of XM-harmonic forms
by Harm∗XM

(M) where Harm∗XM
(M) = Harm+

XM
(M)+Harm−XM

(M); it is the kernel of the
Witten-Hodge-Laplacian operator ∆XM (following chapter 3), i.e.

Harm±XM
(M) = ker∆XM ∩Ω

±
G = {ω ∈Ω

±
G | ∆XM ω = 0}.
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Clearly, Harm±XM
(M)⊂Ω

±
G , but ∆XM and dXM commute which means that the cobound-

ary operator dXM preserves the XM-harmonicity of invariant forms. i.e.

Harm±XM
(M)

dXM−−−→ Harm∓XM
(M).

Hence, (Harm∗XM
(M),dXM) is a subcomplex of the Z2-graded complex (Ω∗G,dXM). There-

fore, we can define the cohomology of this complex which we call the XM-harmonic coho-

mology and denote by H±(Harm∗XM
(M),dXM).

In the boundaryless case, we prove that the space of XM-harmonic fields H±XM
equal to

the space of XM-harmonic forms, i.e. Harm±XM
(M) =H±XM

. Thus, we can conclude that all
of the maps in the subcomplex (Harm∗XM

(M),dXM) are zero which means that

H±(Harm∗XM
(M),dXM)

∼= Harm±XM
(M).

But, proposition 3.2.6 asserts that H±XM
(M)∼=H±XM

, hence,

H±(Harm∗XM
(M),dXM)

∼= H±XM
(M). (6.1)

On the other hand, eq. (6.1) is no longer true when the manifold in question has a
boundary because the space of XM-harmonic forms Harm±XM

(M) no longer coincides with
the space of XM-harmonic fields H±XM

(following chapter 3). Hence, computing the coho-
mology H±(Harm∗XM

(M),dXM) will not be straight away as when ∂M = /0. Therefore, in
this chapter we consider this problem and the only way to solve it is by extending theorem
6.1.1 to the style of XM-cohomology and the resulting is theorem 6.2.3 which proves that
H±(Harm∗XM

(M),dXM) determine the whole XM-cohomology H∗XM
(M). The results of this

chapter are also contained in [4].

6.2 XM-Harmonic cohomology isomorphism theorem

In this section, we use the symbol + between the spaces to indicate a direct sum whereas
we reserve the symbol ⊕ for an orthogonal (with respect to L2-inner product) direct sum
unless otherwise indicated.

We begin with the following remark.

Remark 6.2.1 We need to define the following subspaces:

E±XM
(M) = {dXM α | α ∈Ω

∓
G(M)}

and
cE±XM

(M) = {δXM α | α ∈Ω
∓
G(M)}.
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The XM-Hodge-Morrey decomposition (3.26) implies the following decompositions:

E±XM
= E±XM

(M) = E±XM
(M)⊕H±XM ,ex(M)

and
cE±XM

= cE±XM
(M) = C±XM

(M)⊕H±XM ,co(M).

The image of the Witten-Hodge-Laplacian operator ∆XM will be most important to ob-
tain the main theorem 6.2.3. We therefore need first to prove the following lemma 6.2.2.
The proof here is slightly different from the original proof in the classical case in [13] but
it is also valid for that case .

Lemma 6.2.2 (The image of ∆XM ) The Witten-Hodge-Laplacian operator ∆XM = dXM δXM +

δXMdXM : Ω
±
G(M)−→Ω

±
G(M) is surjective.

PROOF: We need to prove that ∆XM(Ω
±
G(M)) = Ω

±
G(M). Clearly, ∆XM(Ω

±
G(M)) ⊂

Ω
±
G(M), so we only need to prove the converse. To do so, we will first compute the image

of ∆XM on each summand of the XM-Hodge-Morrey decomposition (3.26).
It is clear that

∆XM(E
±
XM

(M)) = dXM δXM(E
±
XM

(M))⊂ E±XM
.

Now, let β ∈ E±XM
then β = dXM α and by applying the XM-Hodge-Morrey decomposition

(3.26) on α we get α = dXM σ +δXM ρ +λ , so

β = dXM α = dXM δXM ρ

but also by (3.26), ρ can be written as ρ = dXM ε +δXM π +κ which implies that

β = dXM α = dXM δXM ρ = dXM δXMdXM ε ∈ ∆XM(E
±
XM

(M)).

Hence, ∆XM(E±XM
(M)) = E±XM

. Likewise, ∆XM(C±XM
(M)) = cE±XM

. Clearly, ∆XM(H±XM
(M)) =

0 . Using, the above equations together with remark 6.2.1, we obtain

∆XM(Ω
±
G(M)) = E±XM

+ cE±XM

= (E±XM
(M)⊕H±XM ,ex(M))+(C±XM

(M)⊕H±XM ,co(M)). (6.2)

where “+ “ is not a direct sum.
Finally, let ω ∈Ω

±
G(M) then the XM-Hodge-Morrey decomposition (3.26) together with
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corollary 5.2.1 assert that ω can be decomposed as

ω = dXM αω +δXM βω +(dXM ρω +δXM σω)∈E±XM
(M)⊕C±XM

(M)⊕(H±XM ,ex(M)+H±XM ,co(M))

(6.3)
Rearranging eq.(6.3), we get that eq.(6.2) shows that ω ∈ ∆XM(Ω

±
G(M)) as desired.

Thus, ∆XM is surjective. r

Now, it is time to present the following fundamental theorem which is analogous to
theorem 6.1.1.

Theorem 6.2.3 Let M be a compact, connected, oriented smooth Riemannian manifold of

dimension n with boundary and with an action of a torus G which acts by isometries on M.

Then the (even or odd) XM-harmonic cohomology of the subcomplex (Harm∗XM
(M),dXM)

completely determines the total XM-cohomology of the complex (Ω∗G,dXM) and it is given

by the direct sum:

H±(Harm∗XM
(M),dXM)

∼= H±XM
(M)+H∓XM

(M) = H∗XM
(M) (6.4)

PROOF: Applying the definition of the XM-cohomology of the subcomplex
(Harm±XM

(M),dXM), we obtain that

H±(Harm∗XM
(M),dXM) =

kerdXM |Harm±XM
(M)

dXM(Harm∓XM
(M))

where kerdXM |Harm±XM
(M)= kerdXM ∩Harm±XM

(M). But, the XM-Hodge-Morrey-Friedrichs
decomposition (3.35) implies the following decomposition

kerdXM |Harm±XM
(M)= E

±
XM

(M)⊕H±XM ,N(M)⊕H±XM ,ex(M) =H±XM ,N(M)⊕EXM Harm±XM
(M)

where EXM Harm±XM
(M) = E±XM

(M)∩Harm±XM
(M). But

dXM(Harm∓XM
(M))⊂ kerdXM |Harm±XM

(M), then we obtain a direct sum decomposition

H±(Harm∗XM
(M),dXM) =

kerdXM |Harm±XM
(M)

dXM(Harm∓XM
(M))

=H±XM ,N(M)+
EXM Harm±XM

(M)

dXM(Harm∓XM
(M))

However, the XM-Hodge isomorphism theorem 3.3.18 asserts that H±XM
(M) ∼=H±XM ,N(M).

Hence, we only need to prove that

EXM Harm±XM
(M)

dXM(Harm∓XM
(M))

∼=
kerdXM

dXM Ω
±
G

∼= H∓XM
(M).



CHAPTER 6. XM-HARMONIC COHOMOLOGY 87

We define the map δ XM as follows :

δ XM([ϕ]) = [δXM ϕ] ∈ H∓XM
(M), ∀[ϕ] ∈

EXM Harm±XM
(M)

dXM(Harm∓XM
(M))

To prove δ XM is a well-defined:
Let θ1−θ2 = dXM β , for some β ∈Harm∓XM

(M). i.e. ∆XM β = (dXM δXM +δXMdXM)β = 0.
Then

δXM θ1−δXM θ2 = δXMdXM β

= −dXM δXM β

= dXM(−δXM β ) ∈ dXM Ω
±
G (6.5)

Moreover, δXM β is XM-harmonic as ∆XM(δXM β ) = δXMdXM δXM β = δ 2
XM

(θ1− θ2) = 0. It
means that δXM(θ1−θ2) ∈ dXM Harm∓XM

. Thus, δ XM is a well-defined.

Next, we prove δ XM is one-to-one. To this end, let ϕ ∈ EXM Harm±XM
(M) and δXM ϕ ∈

dXM Ω
±
G . We only need to prove ϕ ∈ dXM(Harm∓XM

(M)). So, ϕ = dXM β , and therefore

∆XM β = (dXM δXM +δXMdXM)β = dXM δXM β +δXM ϕ ∈ dXM Ω
±
G

Thus, ∆XM β = dXM η for some η ∈ Ω
±
G , but ∆XM is onto by lemma (6.2.2) then we can

write η = ∆XM σ . Hence, ∆XM β = dXM η = dXM ∆XM σ = ∆XMdXM σ which implies that β −
dXM σ ∈ Harm∓XM

(M). Hence, we can rewrite ϕ = dXM β as follows, ϕ = dXM(β −dXM σ) ∈
dXM(Harm∓XM

(M)).
Finally, to prove δ XM is onto. Given α ∈ kerdXM , we should find ϕ ∈ EXM Harm±XM

(M)

such that δXM ϕ−α ∈ dXM Ω
±
G . Applying lemma (6.2.2) on α , then we can write α = ∆XM β

and then we take ϕ = dXM β . One should notice that ∆XM ϕ = ∆XMdXM β = dXM ∆XM β =

dXM α = 0, since α ∈ kerdXM . Thus, ϕ ∈ EXM Harm±XM
(M). Now,

δXM ϕ = δXMdXM β = ∆XM β −dXM δXM β = α−dXM δXM β

So, δXM ϕ−α ∈ dXM Ω
±
G , as desired. Hence δ XM is bijection map. So, eq.(6.4) holds. r

In addition, ∆XM and δXM commute. Hence, the coboundary operator δXM preserves the
XM-harmonicity of invariant forms. i.e.

Harm±XM
(M)

δXM−−−→ Harm∓XM
(M)

Thus, (Harm∗XM
(M),δXM) is a subcomplex of the Z2-graded complex (Ω∗G,δXM). Therefore,
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we can compute the cohomology of this complex which we denote by H±(Harm∗XM
(M),δXM).

Moreover, the Hodge star operator provides the isomorphism H±(Harm∗XM
(M),δXM)

∼=
Hn−±(Harm∗XM

(M),dXM) and then applying XM-Poincaré-Lefschetz duality on the right-
hand side of eq.(6.4) to obtain the following corollary.

Corollary 6.2.4

H±(Harm∗XM
(M),δXM)

∼= H±XM
(M,∂M)+H∓XM

(M,∂M) = H∗XM
(M,∂M)

6.3 Conclusions

In chapter 3, we elucidate the connection between the XM-cohomology groups of M and the
free part of the relative and absolute equivariant cohomology groups of M. Then Theorem
6.2.3 and corollary 3.4.4 imply the following theorem.

Theorem 6.3.1 If N(XM) = F, then the (even/odd) XM-harmonic cohomology of the sub-

complexes (Harm∗XM
(M),dXM) and (Harm∗XM

(M),δXM) completely determine the free part

of the absolute and relative equivariant cohomology groups, i.e.

H±(Harm∗XM
(M),dXM)

∼= H∗G(M)/mX H∗G(M)∼= H∗(F)

and

H±(Harm∗XM
(M),δXM)

∼= H∗G(M,∂M)/mX H∗G(M,∂M)∼= H∗(F,∂F).

Other perhaps interesting conclusion is that: Applying theorem 6.1.1 on the manifold
F with its boundary ∂F and then using theorem 6.3.1 we obtain the following theorem

Theorem 6.3.2 If every component of F has a boundary, then

H±(Harm∗XM
(M),dXM)

∼= H±(Harm∗(F),d).
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