
Investigating the Performance of Asynchronous
Jacobi’s Method for Solving Systems of Linear

Equations

Bethune, Iain and Bull, J. Mark and Dingle,
Nicholas J. and Higham, Nicholas J.

2011

MIMS EPrint: 2011.82

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/

Investigating the Performance of Asynchronous Jacobi’s
Method for Solving Systems of Linear Equations

Iain Bethune J. Mark Bull Nicholas J. Dingle Nicholas J. Higham

EPCC, James Clark Maxwell Building, School of Mathematics, University of Manchester,
The King’s Buildings, University of Edinburgh, Oxford Road, Manchester M13 9PL, UK

Mayfield Road, Edinburgh EH9 3JZ, Scotland, UK
{ibethune,markb}@epcc.ed.ac.uk {nicholas.dingle,nicholas.j.higham}@manchester.ac.uk

ABSTRACT
Ever-increasing core counts create the need to develop par-
allel algorithms that avoid closely-coupled execution across
cores. In this paper we present two case studies investigat-
ing the performance of several parallel asynchronous imple-
mentations of Jacobi’s method for solving systems of lin-
ear equations. Although conditions for the convergence of
asynchronous Jacobi are well known, what drives its rate
of convergence is less well understood. The first case study
investigates the algorithm’s performance when executed on
large numbers of processors on a Cray XE6, while the second
explores the effect of varying the number of synchronous and
asynchronous processors. We observe that the performance
of parallel asynchronous Jacobi is highly implementation,
problem and architecture-dependent.

1. INTRODUCTION
Modern high-performance computing systems are typi-

cally composed of many thousands of cores linked together
by high bandwidth and low latency interconnects such as In-
finiband. Over the coming decade core counts will continue
to grow as efforts are made to reach Exaflop performance. In
order to continue to exploit these resources efficiently, new
software algorithms and implementations will be required
that avoid tightly-coupled synchronisation between partici-
pating cores and that are resilient in the event of failure.

This paper investigates one such class of algorithms. The
solution of sets of linear equations Ax = b, where A is a
large, sparse n×n matrix and x and b are vectors, lies at the
heart of a large number of scientific computing kernels, and
so efficient solution implementations are crucial. Existing
iterative techniques for solving such systems in parallel are
typically synchronous, in that all processors must exchange
updated vector information at the end of every iteration,
and this creates a barrier beyond which computation cannot
proceed until all participating processors have reached that
point. Such approaches will not scale.

Instead, we are interested in developing asynchronous tech-
niques that avoid this blocking behaviour by permitting pro-
cessors to operate on whatever data they have, even if new
data has not yet arrived from other processors. To date
there has been work on both the theoretical [1, 2, 5] and the
practical [4, 6] aspects of such algorithms. In order to be
able to reason about these algorithms we need to understand
what drives the speed of their convergence, but existing re-
sults merely provide sufficient conditions for the algorithms

to converge. Here, we look for insights by investigating the
performance of the algorithms experimentally.

Through two case studies we investigate some of the is-
sues that can manifest themselves with asynchronous algo-
rithms. In the first case study, we look at the performance
of the algorithm on a Cray XE6 and compare a synchronous
implementation against two asynchronous versions. In the
second case study we explore what can happen when syn-
chronous and asynchronous approaches are mixed together.
In particular, we highlight how simple measures of algorithm
performance, such as the mean number of iterations, can
hide surprising behaviour in an asynchronous context.

2. JACOBI’S METHOD
Jacobi’s method for the system of linear equations Ax = b,

where the n×n matrix A is assumed to be nonsingular and
to have nonzero diagonal, computes the sequence of vectors
x(k), where

x
(k)
i =

1

aii

�
bi −

�

j �=i

aijx
(k−1)
j

�
, i = 1: n.

The x
(k)
i , i = 1: n, are independent, which means that

vector element updates can be performed in parallel. Ja-
cobi’s method is also amenable to an asynchronous par-
allel implementation in which newly-computed vector up-
dates are exchanged when they become available rather than
by all processors at the end of each iteration. This asyn-
chronous scheme is known to converge if ρ(|M |) < 1 [5],
where ρ(|M |) denotes the spectral radius (maximum abso-
lute value of the eigenvalues) of the matrix |M | = (|mij |)
and M = −D−1(L+U). Here, D,L,U are, respectively, the
diagonal and strictly lower and upper triangular parts of
A. In contrast, the synchronous version of Jacobi’s method
converges if the weaker condition ρ(M) < 1 holds.

These known conditions for convergence in the synchronous
and asynchronous cases are the main reason why we have
chosen to base our case studies on Jacobi’s method. In prac-
tice, synchronous parallel versions of other iterative schemes
(e.g. conjugate gradient methods) are often preferred, but
asynchronous parallel versions of these approaches are not
yet well developed.

3. CASE STUDY 1
In order to investigate the convergence and performance

of Jacobi’s method at large scale, we have implemented three
variants - Synchronous Jacobi (sync), and two Asynchronous

Jacobi (async and async racy) - all parallelised using MPI
and written in Fortran 90. The behaviour of these programs
was studied on HECToR, a Cray XE6 supercomputer, us-
ing up to 24 576 processor cores. HECToR is composed of
1 856 compute nodes, each with two 12-core AMD Opteron
2.1GHz processors and 32GB of memory. A 3D torus inter-
connect exists between nodes, which are connected to it via
Cray’s Gemini router chip.

3.1 Implementation
Instead of developing a general Jacobi solver with explicit

A matrix, we solve the 3D diffusion problem ∇2u = 0 using
a 6-point stencil over a 3D grid. In all cases, we have fixed
the grid size for each process at 503, and so as we increase
the number of participating processes the global problem
size is weak-scaled to match. The boundary conditions for
the problem are set to zero, with the exception of a cir-
cular region on the bottom of the global grid defined by

e−((0.5−x)2+(0.5−y)2). The grid is initialised to zero at the
start of the iteration, and convergence is declared when the
�2-norm of the residual (normalised by the source) is less
than 10−4.

In common with many grid-based distributed memory ap-
plications, a ‘halo swap’ operation is required, since the
update of a local grid point requires the data from each
of the 6 neighbouring points in 3D. If a point lies on the
boundary of a process’s local grid, then data is required
from a neighbouring process. To achieve this, each process
stores a single-element ‘halo’ surrounding its own local grid,
and this is updated with new data from the neighbouring
processes’ boundary regions at each iteration (in the syn-
chronous case), and vice versa, hence ‘swap’.

The structure of all three programs is similar (see Fig-
ure 1), but the implementation of the halo swap and global
residual calculation vary between versions.

• sync Halo swaps are performed using MPI_ISend and
MPI_IRecv followed by a single MPI_Waitall for all the
sends and receives. Once all halo swap communication
has completed, a process may proceed. Global sum-
mation of the residual is done every 100 iterations via
MPI_Allreduce, which is a blocking collective opera-
tion. In this implementation, all processes are syn-
chronised by communication, and therefore proceed in
lockstep.

• async This implementation allows multiple halo swaps
to be ‘in flight’ at any one time (up to 100 between
each pair of processes). This is done by means of a
circular buffer storing MPI_Requests. When a process
wishes to send halo data it uses up one of the 100 MPI
requests and sends the halo data to a corresponding
receive buffer on the neighbouring process. If all 100
MPI requests are active (i.e. messages have been sent
but not yet received) it will simply skip the halo send
for that iteration and carry on iterating. On the receiv-
ing side, a process will check for arrival of messages,
and if new data has arrived, copy the data into the
halo cells of its u array and continue (even if no new
data was received in that iteration). By using multiple
receive buffers we ensure that the data in the u array
halos on each process is a consistent image of the halo
data that was sent at some iteration in the past by the
neighbouring process.

In addition, we also replace the blocking reduction
with an asynchronous binary-tree based scheme, where
each process calculates its local residual, and inputs
this value into the reduction tree. These local con-
tributions are summed and sent on up the tree until
reaching the root, at which point the global residual is
broadcast (asynchronously) down the same reduction
tree. Since the reduction takes place over a number
of iterations (the minimum time being the message la-
tency × log2 p), as soon as a process receives the global
residual it immediately starts another reduction.

• async racy A potential performance optimisation is
that instead of having 100 individual buffers to receive
halo data, we instead have a single buffer to which
all in-flight messages are sent. This introduces a de-
liberate race condition in that as data is read out of
the buffer into the u array, other messages may be ar-
riving simultaneously, depending on the operation of
the MPI library. In this case, assuming atomic ac-
cess to individual data elements (in this case double-
precision floats), we are no longer guaranteed that we
have a consistent set of halo data from some iteration
in the past, but in general will have some combination
of data from several iterations. It is hoped that this
reduces the amount of memory overhead (and cache
space) needed for multiple buffers, without harming
convergence in practice.

3.2 Timing Results
Table 1 shows results for each of the three versions on a

range of processor counts on HECToR. The smallest run is
done with 24 processes, since this is the number of cores
on a HECToR compute node; using fewer than this would
increase the amount of memory bandwidth available to the
processes, and artificially inflate the iteration rates in com-
parison to runs on larger numbers of processes using full
nodes.

The three different processor counts (24, 1 536 and 24 576)
correspond to A having 3 million, 192 million and 3.072 bil-
lion rows respectively. Due to the expense of running 24 576
processor jobs, we report results from a single run of each
asynchronous variant for each processor count. We report
the maximum and minimum number of iterations across all
processors, as well as the average number of iterations and
the total runtime.

Table 1: HECToR results summary.
Processes Iterations Execution
Version Min. Mean Max. Time (s)

24
sync 8200 24.1
async 10479 10991 12024 31.2

async racy 7984 8476 9025 23.7
1536
sync 43870 52318 61932 164.0
async 44200 151.3

async racy 39624 45678 53384 143.5
24576
sync 101400 351.2
async 94350 109460 137636 348.8

async racy 85777 102536 132904 319.0

do

swap a one-element-thick halo with each neighbouring process

every 100 steps
calculate local residual
sum global residual
if global residual < 10^(-4) then stop

for all local points
u_new(i,j,k) = 1/6*(u(i+1,j,k)+u(i-1,j,k)+u(i,j+1,k)+u(i,j-1,k)+u(i,j,k+1)+u(i,j,k-1))

for all local points
u(i,j,k) = u_new(i,j,k)

end do

Figure 1: Pseudocode of parallel Jacobi implementation on HECToR.

Consider, first, the results for 24 processes. It is clear that
both asynchronous versions achieve higher average iteration
rates (353 and 357 iterations per second, compared with
341 iterations per second for the synchronous case). Per-
formance profiling using the CrayPAT tools (Figure 2(a))
showed that the most significant extra cost in the synchronous
code was the MPI_Waitall call, whose cost is entirely avoided
in the asynchronous codes. It is also apparent that the async
version takes around 25% more iterations to converge than
than the synchronous version. While this might be expected,
since in the absence of new data, extra iterations might
be performed that do not improve (very much) the over-
all convergence, it is not clear why this is not the case for
the async racy version, which takes approximately the same
number of iterations on average as the synchronous imple-
mentation. Looking at the total execution time, async racy
slightly outperforms sync, while async is significantly slower.

1 536 processes (Figure 2(b)) is a medium-sized simula-
tion, which is representative of typical job sizes run on HEC-
ToR today. Here we begin to see the greater scalability
of the asynchronous versions. In the synchronous case the
cost of the MPI_Waitall has grown even further (since mes-
sages now have to travel over the network, thus increasing
latency compared to the intra-node case), reducing the it-
eration rate to only 292 iterations per second (c.f. 318-319
for both asynchronous versions). The increased latency cost
is effectively masked by allowing multiple messages to be in
flight at once. While the async version is still overall slower
than the sync version, for this problem size, async racy is
already 5% faster.

The largest job allowed on HECToR is 24 576 processes
(Figure 2(c)), taking over half of the machine. Again, the
cost of the MPI_Waitall has grown, but we also for the first
time we see the synchronisation cost of the MPI_Allreduce

used for the global residual calculation. These effects com-
bine to cause sync to run slower than the async code. How-
ever, as before, the async racy version is faster still, up to
10% faster than the synchronous code.

Looking at these results as a whole, two points are imme-
diately apparent. First, the relaxation of data consistency in
the async racy code does provide a substantial performance
improvement, such that for all 3 processor counts it always
outperforms the synchronous implementation. Secondly, the
more careful async version does obtain higher iteration rates
than the synchronous version, but because it takes more it-

erations to converge it only outperforms it for very large
processor counts, and is never faster than async racy.

3.3 Convergence
As can be seen in Figure 3, while the sync and async racy

versions seem to share similar convergence profiles (although
async racy is around 5% faster) the async version exhibits
two features that are different. First, it begins to converge
faster than either of the other two methods, but gradually
shallows out. This indicates that the choice of stopping cri-
terion may influence which version is in fact fastest for a
given problem size. In addition, there are several ‘jagged’
sections of the curve, where for several iterations the residual
increases, before settling back towards convergence again.
We hypothesise that these are caused by multiple iterations
occurring without new data arriving from neighbours (so
each process continues to converge with respect to its own
halo data), followed by the arrival of data, which is now so
‘old’ that when the residual is calculated, artificially high
values are reached since the local data is far from conver-
gence with respect to the new halo data. This behaviour is
not observed in async racy, but the reason for this is not yet
understood.

4. CASE STUDY 2
In this case study we investigate the convergence behaviour

of an asynchronous parallel implementation of Jacobi’s method
when subsets of the participating processors synchronise at
the end of every iteration. Such a situation could occur
in a hybrid solver where a shared-memory library such as
OpenMP is used to parallelise computations within a multi-
core node and a message-passing library like MPI is used to
parallelise computations across nodes. Synchronous compu-
tation might be used within a node, but vector update ex-
changes between nodes might be performed asynchronously.

4.1 Implementation
Figure 4 shows a pseudocode representation of our parallel

asynchronous solver. The original is written using C++ and
MPI. The intention is not to present a fully-fledged solver,
but rather to produce an example implementation to investi-
gate the key dynamics that such solvers may display. Func-
tionality such as efficient communication patterns (e.g. only
sending updated vector elements to those processes which

(a) 24 processes

(b) 1 536 processes

(c) 24 576 processes

Figure 2: Profiles showing time per iteration for Jacobi on HECToR.

Figure 3: Convergence for 1 536 processes on HECToR.

while(!converged)

//compute Jacobi on locally held rows using local and remote vector elements
for (every matrix row i)
for (every row entry j)

sum += A[i][j]*x[j];
end
new_x[i] = (b[i] - sum)/A[i][i];

end

//work out our local convergence data and asynchronously send it to rank 0
convergence[0] = max(new_x - x);
convergence[1] = max(new_x);
MPI_Put(convergence, 0);

//varying the members of "subset" allows us to adjust the number of
//synchronising processors
MPI_Barrier(subset);
for (every other processor p)
MPI_Put(new_x, p);

end
MPI_Barrier(subset);

//rank 0: work out global convergence from current convergence data
// and asynchronously update "converged" on all processors
if (root processor)
max_diff = max(convergence[0]);
max_soln = max(convergence[1]);

if (max_diff/max_soln < epsilon)
converged = false;
for (every other processor p)
MPI_Put(converged, p);

end
end

end

end

Figure 4: Pseudocode of parallel Jacobi implementation where the degree of synchronisation can be adjusted.

require them) and node failure detection and recovery has
not yet been implemented.

To achieve asynchronous exchange of data we use MPI-
2 remote memory operations to enable processes to put
data (with MPI_Put) directly into eachother’s address spaces.
This avoids the need to match MPI_Sends and MPI_Recvs

on both sides, and also avoids the need to explicitly track
the completion of asynchronous MPI_Isends or MPI_Irecvs.
Each process maintains a buffer of remote vector data for
every other process (i.e. when there are p processes in to-
tal, each one will have p − 1 of these buffers), and so as
in previous case study’s async racy implementation we may
encounter race conditions where data is read from a buffer
at the same time as new data is being written into it.

We also use this remote memory functionality to transmit
information about the subvectors held on each processor to
the master (rank 0) to check for global convergence, and also
for the master to signal when convergence has been achieved.

Synchronisation of subsets of processes is achieved with
MPI_Barriers around the transmission of vector updates.
Only those processes which belong to the MPI communica-
tor subset are blocked by these, and this allows us to control
the number of synchronising processes. Processors which do
not block at these barriers proceed asynchronously.

4.2 Markov Chain Results
We first investigate the convergence of asynchronous par-

allel Jacobi when solving systems of linear equations arising
from the steady-state solution of Continuous Time Markov
Chains (CTMCs). In this context A is an explicitly-stored
transposed generator matrix of the CTMC, x is a probability
vector (

�n

i=1 xi = 1) and b = 0. Note that here convergence
occurs even though ρ(|M |) = 1 [7].

Table 2: CTMC matrix results.
Synchronous Iterations Execution
Processors Min. Average Max. Time (s)

0 680 735 944 168
2 628 742 965 181
4 636 763 989 205
6 632 747 949 182
8 660 730 896 161
10 661 746 1004 179
12 680 748 1067 183
14 705 755 987 187
16 714 763 1046 199
18 722 749 1061 179
20 726 762 1191 201
22 731 758 1422 219
24 733 733 733 154

Table 2 presents the number of iterations and overall run-
time observed for increasing numbers of synchronising pro-
cessors. Note that 0 synchronising processors corresponds
to fully asynchronous parallel solution, and 24 synchronis-
ing processors corresponds to fully synchronous. All of the
results were gathered on the Computational Shared Facility
(CSF) at the University of Manchester using 2 nodes com-
prising 24 processors in total. Each CSF node has two 6-core
Xeon X5650 2.66GHz processors and 48GB of memory, and
they are connected with Infiniband. A has 1 639 440 rows
and 13 552 968 nonzeros, and was partitioned across the par-

ticipating processors by assigning a block of contiguous rows

to each. Iterations were continued until ||x(k)−x(k−1)||∞
||x(k)||∞

< ε;

in these experiments we set ε = 10−06. We performed 5 re-
peated runs for each number of synchronising processors,
and in each case we report the minimum and maximum
number of iterations observed across all 5 runs and all pro-
cessors, and the mean of the 5 iteration counts and runtimes.

As in Case Study 1, we observe that fully asynchronous ex-
ecution requires more iterations to converge than fully syn-
chronous. This observation can be attributed to the use of
outdated vector elements delaying the achievement of con-
vergence and so requiring processors to do more work. Un-
like in Case Study 1, however, we do not see a reduction
in runtime for asynchronous execution versus synchronous;
indeed, here the fully synchronous execution is actually the
fastest. We believe that this is because, for this size of ma-
trix on this architecture, the computation time completely
dominates the communication time. As such, any saving
in not synchronising is lost because of the need to perform
extra iterations to achieve convergence.

The figures presented in the table do not tell the full story,
however. In order to reveal more about the behaviour of the
implementation we have plotted the distribution of iteration
counts for a variety of different matrix sizes. Figure 5 shows
the iteration count distributions for a 1 639 440 row matrix
(the same size as featured in Table 2). These are repre-
sentative of the distributions observed over repeated runs,
and display the behaviour we would expect: as the number
of synchronising processors increases, the distribution of it-
erations becomes increasingly bi-modal with the first peak
corresponding to the number of iterations performed by the
synchronous processors and the higher iteration counts oc-
curring on the asynchronous processors.

Figure 5(a) is interesting as it shows two groups of pro-
cessors: one group of 12 performed fewer than 700 iterations
and the other over 800. Examining the log files, we find that
these correspond to MPI ranks 0-11 and 12-23 respectively.
It would be interesting to know to which nodes these ranks
were assigned, as we may be observing that one node was
slower than the other. Had the processors been operating
synchronously, the overall execution of the solver would have
been limited by the speed of the slow node.

We do not always observe the expected behaviour, how-
ever. On an number of runs we found that the widely-
spread iteration count distributions seen in the previous
figure were no longer evident and instead all participating
processors have carried out approximately the same num-
ber of iterations regardless of whether they were operating
synchronously or asynchronously. It is unclear if this be-
haviour becomes more likely to occur as matrix size grows,
or whether it is a manifestation of the interference that oc-
curs from other jobs running on the shared system. Larger
systems will take longer to solve and so are more vulnerable
to clashing with other jobs.

4.3 Random Matrix Results
Table 3 shows the results of solving a set of 200 000 000

linear equations (the matrix A had 2 000 045 816 nonzero en-
tries in total). A was diagonally dominant with off-diagonal
elements randomly sampled from a uniform distribution on
[0, 1). The column indices of the off-diagonal elements were
also randomly selected from a uniform distribution across all

681 702 723 744 765 786 807 828 849 870

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

Iterations

F
re

q
u

e
n

cy

(a) 0 sync. procs.

685 707 729 751 773 795 817 839 861 883 905

0
2

4
6

8
1

0
1

2

Iterations

F
re

q
u

e
n

cy

(b) 12 sync. procs.

726 768 810 852 894 936 978 1025 1077 1129 1181

0
5

1
0

1
5

2
0

Iterations

F
re

q
u
e
n
c
y

(c) 20 sync. procs.

Figure 5: 1 639 440 row matrix iteration count distributions (0-20 sync. procs.).

Table 3: Random matrix results.
Synchronous Iterations Execution
Processors Min. Average Max. Time (s)

0 113 118 127 5709
2 73 100 136 4975
4 60 98 130 4663
6 83 110 133 5264
8 62 95 150 4323
10 74 115 142 5563
12 77 108 138 5451
14 141 141 143 6630
16 116 134 174 6676
18 112 139 170 6739
20 137 142 201 6629
22 127 142 288 6841
24 216 216 216 7205

columns, excluding the diagonal. The right-hand side vector
b was constructed such that xi = 1 ∀i and we took ε = 10−08.
The results were gathered on the CSF at the University of
Manchester using 24 processors over 5 repeated runs.

We note that fully asynchronous execution is faster and
requires fewer iterations than the fully synchronous case.
This matches our experience in Case Study 1, but differs
from what was observed on the CSF for the smaller CTMC
matrix. It is interesting, however, that here the fully asyn-
chronous case is actually slower than the mixed cases up to
and including those with 12 synchronous processors. The
sudden increase in runtimes and iteration counts that oc-
curs at 14 synchronous processors is probably due to the
fact that at this point it is guaranteed that the synchro-
nising subset will span both participating nodes (each of
which has 12 cores) and so communication across the net-
work must occur. After this point the observed execution
times are largely the same as the number of synchronising
processors increases, and only increase again when the fully
synchronous case is reached.

It may seem somewhat surprising that the fully asyn-
chronous execution requires fewer iterations than the fully
synchronous version. One possible explanation might be
the existence of a Gauss-Seidel effect in the asynchronous
version, as has been observed elsewhere [3]. In the fully
synchronous case we have implemented pure Jacobi where
locally-updated vector elements are not used in calculations

until the next iteration. In contrast, asynchronous pro-
cessors use remotely-computed updated vector elements as
soon as they are received, which means that they may be
using newly-computed elements within an iteration. The
fully synchronous execution could perhaps converge faster if
newly-computed local vector elements were used as soon as
they were available.

Figure 6 shows the iteration count distributions for a num-
ber of these experiments. Again, we observe that as the
number of synchronising processors increases the spread of
the iteration counts is increased. This is most marked in the
case of 20 synchronous processors (Figure 6(c)).

We also observed unusual behaviour for some executions
of the solver, exactly as we did for the CTMC matrix ex-
periments. Most surprising were the cases for which all par-
ticipating processors (synchronous and asynchronous) per-
formed exactly the same number of iterations. In one case
with 22 synchronous processors we observed that all pro-
cessors converged to the solution after 127 iterations, when
we would have expected the spread of iteration counts to be
very wide indeed. This number of iterations is a little more
than half the number required by the fully synchronous case;
we theorise that this is a manifestation of the Gauss-Seidel
effect noted above.

5. CONCLUSION
We have implemented a number of variations of asyn-

chronous parallel Jacobi and evaluated their behaviour ex-
perimentally on several scientific problems. We observed
differing behaviour between the two case studies and also
within Case Study 2, which suggests that the performance
of parallel asynchronous Jacobi is highly implementation,
problem and architecture-dependent. For larger matrices,
we observed that the fully asynchronous versions ran faster
than the fully synchronous versions, especially for large num-
bers of processors on HECToR, and this reinforces our con-
tention that asynchronous algorithms will be vital in effi-
ciently harnessing the computing power of parallel machines
with millions of cores.

Comparing iteration counts, our experiments showed that
using out-of-date information can lead to an increase in the
number of iterations required to reach convergence. In Case
Study 2, however, we also observed that asynchronous par-
allel Jacobi can sometimes require fewer iterations to con-
verge than its synchronous counterpart. Varying the amount

112 114 116 118 120 122 124 126 128

0
1

2
3

4
5

6
7

Iterations

F
re

q
u

e
n

cy

(a) 0 sync. procs.

97 100 104 108 112 116 120 124

0
2

4
6

8
1

0
1

2

Iterations

F
re

q
u

e
n

cy

(b) 12 sync. procs.

136 143 150 157 164 171 178 185 192 199

0
5

1
0

1
5

2
0

Iterations

F
re

q
u

e
n

cy

(c) 20 sync. procs.

Figure 6: Random matrix iteration count distributions (0-20 sync. procs.).

of synchronisation could have surprising effects, for exam-
ple reducing runtime in the random matrix case when small
numbers of synchronous processors were used. Some of this
behaviour only became apparent when we looked into the
distributions of iteration counts rather than just the means.

In the future we intend to conduct further experiments to
investigate those effects which we noted but could not ex-
plain, for example the lack of sudden increases in the resid-
uals for async racy and the extension of the Gauss-Seidel
effect to synchronous parallel Jacobi. We hope to combine
the results of all these experiments with appropriate the-
oretical analysis to improve our understanding of the con-
vergence of asynchronous Jacobi and thereby to assess its
suitability for the massively parallel machines of the future.
In addition, having implemented asynchronous Jacobi using
MPI (both single-sided and two-sided messaging), we intend
to explore a range of other parallel programming paradigms
such as OpenMP, SHMEM, or Partitioned Global Address
Space (PGAS) languages, to understand both performance
and suitability for expressing asynchronous algorithms.

Acknowledgements
This work made use of the facilities of HECToR, the UK’s
national high-performance computing service, which is pro-
vided by UoE HPCx Ltd at the University of Edinburgh,
Cray Inc and NAG Ltd, and funded by the Office of Sci-
ence and Technology through EPSRC’s High End Comput-
ing Programme.

The authors would like to acknowledge the assistance given
by IT Services for Research at the University of Manchester
regarding the use of the Computational Shared Facility.

The authors’ work was supported by EPSRC grants EP/I006680/1
and EP/I006702/1 “Novel Asynchronous Algorithms and
Software for Large Sparse Systems”. The work of the fourth
author was also supported by EPSRC grants EP/E050441/1
“CICADA: Centre for Interdisciplinary Computational and
Dynamical Analysis” and EP/I006702/1, and European Re-
search Council Advanced Grant MATFUN (267526).

6. REFERENCES
[1] G. Baudet. Asynchronous iterative methods for

multiprocessors. Journal of the Association for
Computing Machinery, 25(2):226–244, 1978.

[2] D. Bertsekas and J. Tsitsiklis. Parallel and Distributed
Computation: Numerical Methods. Prentice-Hall, 1989.

[3] D. Bertsekas and J. Tsitsiklis. Some aspects of parallel
and distributed iterative algorithms – a survey.
Automatica, 27(1):3–21, 1991.

[4] J. Bull and T. Freeman. Numerical performance of an
asynchronous Jacobi iteration. In Proceedings of the 2nd

Joint International Conference on Vector and Parallel
Processing (CONPAR’92), pages 361–366, 1992.

[5] D. Chazan and W. Miranker. Chaotic relaxation.
Linear Algebra and Its Applications, 2:199–222, 1960.

[6] D. de Jager and J. Bradley. Extracting state-based
performance metrics using asynchronous iterative
techniques. Performance Evaluation, 67(12):1353–1372,
2010.

[7] D. Szyld. The mystery of asynchronous iterations
convergence when the spectral radius is one. Technical
Report 98-102, Department of Mathematics, Temple
University, Philadelphia, PA, October 1998.

