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HydraMP: Exploiting shared memory parallelism inHYDRA with OpenMPNiholas J. DingleShool of Mathematis, University of Manhester, Manhester, M13 9PLniholas.dingle�manhester.a.ukAbstrat. Multiore CPUs are now found in desktops, servers and superomputers butmany existing parallel performane analysis tools were designed for the single-ore distributed-memory world. In this paper we investigate the pratiality of taking an existing tool, namelythe HYDRA response time analyser, and parallelising it with OpenMP to produe a multi-threaded implementation suitable for exeution on multiore shared-memory mahines. Wedisuss the amount of software engineering work required to do this, and show that only asmall number of lines of ode need to be added to ahieve dramati speed-ups over the serialversion. We also ompare the run-times of our OpenMP-parallelised version with existingMPI-parallelised ode on the same hardware.1 IntrodutionIt is a truth universally aknowledged that, for the foreseeable future at least, improvements toCPUs will fous on inreasing the number of ores that they ontain rather than inreasing theores' raw lok-speeds. This presents a new set of problems to software writers, and those workingin the performane analysis domain are not immune. Previously, performane improvements toexisting ode were granted simply by the new generation of single-ore CPUs running faster thanthe previous generation, but exploiting the extra omputing power of multiore CPUs is a muhmore ompliated task that requires existing serial ode to be rewritten to take advantage ofopportunities for parallelism.Many existing parallel performane analysis tools, for example DNAmaa [1, 2℄ and HYDRA [3,4℄, date from turn of the entury when single-ore proessors were the norm. Multiore versions ofthese tools, where they exist, were typially written to run on distributed-memory nodes that eahontained a single ore, neessitating the exhange of data aross the network by means of librariessuh as Message Passing Interfae (MPI) [5℄ or Parallel Virtual Mahine (PVM) [6℄. Running theseMPI-based solvers on a single modern shared-memory multiore mahine is possible but unwieldy:the built-in assumption that memory is distributed usually means that there is a data-partitioningstage that is unneessary on a shared-memory mahine. The user must also rely on the underlyingommuniation library to implement shared-memory operations e�iently.Reent advanes in shared memory parallel programming libraries suh as OpenMP [7℄ give aneasy way to parallelise existing serial solvers for shared memory environments. They are typiallyeasier to inorporate into existing ode than MPI as they do not require the programmer toexpliitly ode in the work-distribution and interproessor-ommuniation steps. This raises thepossibility that it might be feasible to ahieve good speed-ups of existing single-threaded toolssuh as HYDRA on modern multiore CPUs for little programming e�ort.In this paper we investigate the speed-ups ahieved in parallelising the existing performanetool HYDRA using OpenMP. There are two opportunities for parallelism in this ode: the repeatedsparse matrix�vetor multipliations and the alulation of Erlang distribution terms. We onsiderthe e�ort required to parallelise both of these using OpenMP, and show the e�et that eah hason the overall run-time of the tool. We also ompare the resulting OpenMP-parallelised versionof HYDRA, whih we all HydraMP, with the serial HYDRA and with the MPI-parallelisedHYDRA running on a single multiore mahine, and highlight the run-time speed-ups ahieved.The remainder of this paper is organised as follows. Setion 2 desribes OpenMP and the HY-DRA tool. The parallelisation of sparse matrix�vetor multipliation is addressed in Setion 3,



where we disuss how this is implemented in HYDRA and ompare the performane of theOpenMP-parallelised implementation with that of the original MPI-parallelised HYDRA. Setion 4then disusses how HYDRA's alulation of the Erlang distribution terms an be parallelised andpresents results showing the performane improvement of so doing ompared with serial HYDRA.In Setion 5 we look at the overall e�et of ombining the two forms of OpenMP parallelisation ina single version of HYDRA. Setion 6 disusses related work and �nally Setion 7 onludes anddisusses opportunities for future work.2 BakgroundThis setion presents a brief overview of OpenMP (Open Multi-Proessing) [7℄ and then disussesthe uniformisation tehnique for alulating full response time densities and distributions in Con-tinuous Time Markov Chains (CTMCs) before summarising its implementation in the HYpergraph-based Distributed Response-time Analyser (HYDRA) [3, 4℄.2.1 OpenMPOpenMP is a multithreading extension for C/C++ and Fortran that allows users to easily exploitshared-memory parallelism on a range of modern omputing arhitetures. It follows a fork-joinmodel, with slave threads being spawned from a single master thread on demand. These threadsexeute spei�ed ode setions in parallel before synhronising at the end and returning ontrolto the master thread.OpenMP inludes a number of work-sharing onstruts. For the purposes of this paper themain one is omp for, whih divides loop iterations between partiipating threads. Unless expliitlyspei�ed by the programmer there will be no �xed ordering of the iterations, whih means thatorretness will only be maintained if this is applied to a loop in whih there is no dependenebetween iterations; the work done in eah loop iteration must not rely on results omputed in aprevious (lower-numbered) iteration. OpenMP also has the omp setions onstrut, whih allowsthe programmer to speify di�erent bloks of ode to be exeuted by eah partiipating thread.The work presented in this paper does not exploit setions, and so we do not disuss it further.The proess of reating threads, dividing work between them and destroying them when theyare no longer required is automatially handled by the ompiler and run-time environment. Thisis in ontrast to libraries like MPI, where the programmer must enode not only the program logibut also the division of data and the pattern of inter-proessor ommuniation.#pragma omp parallel forfor (int n=0; n<10; n++) {printf("%i ", n);}Fig. 1. Speifying a parallel loop in OpenMP.In both C/C++ and Fortran, OpenMP programming is ahieved through the use of ompilerdiretives inserted into the soure-ode. For example, Fig. 1 shows a fragment of C ode inludingthe use of the OpenMP diretive #pragma omp parallel for to parallelise a simple loop printingout the numbers 0 to 9. In the serial ase this loop will print out the numbers in-order, but whenmultiple threads are used this will no longer be the ase.It will be seen that parallelising existing ode with OpenMP an be very straightforward: ifthe program ontains suitable onstruts it is easy to onvert them into parallel onstruts andthis an lead to muh improved performane. Sometimes, however, further modi�ations may beneeded to ensure orretness is maintained and that good multithreaded performane is ahieved.



2.2 UniformisationResponse time densities and quantiles in CTMCs an be omputed through the use of uniformisa-tion (also known as randomization) [8�11℄. This transforms a CTMC into one in whih all stateshave the same mean holding time, 1/q, by allowing �invisible� transitions from a state to itself.This is equivalent to a disrete-time Markov hain, after normalisation of the rows, together withan assoiated Poisson proess of rate q. The one-step transition probability matrix P whih har-aterises the one-step behaviour of the uniformised DTMC is derived from the generator matrix
Q of the CTMC as:

P = Q/q + I (1)where the rate q > maxi |qii| ensures that the DTMC is aperiodi.The alulation of the �rst passage time density between two states has two main omponents.The �rst onsiders the time to omplete n hops (n = 1, 2, 3, . . .). Reall that in the uniformisedhain all transitions our with rate q. This means that the onvolution of n of these holding-timedensities is the onvolution of n exponentials all with rate q, whih is an n-stage Erlang densitywith rate q.Seondly, it is neessary to alulate the probability that the transition between a soure andtarget state ours in exatly n hops of the uniformised hain, for every value of n between 1 and amaximum value m. This is alulated by repeated sparse matrix�vetor multipliations. The valueof m is determined when the value of the nth Erlang density funtion drops below a thresholdvalue. After this point, further terms are deemed to add nothing signi�ant to the passage timedensity and are disregarded.The density of the time to pass between a soure state i and a target state j in a uniformisedMarkov hain an therefore be expressed as the sum of m n-stage Erlang densities, weighted withthe probability that the hain moves from state i to state j in exatly n hops (1 ≤ n ≤ m). Theresponse time between the non-empty set of soure states i and the non-empty set of target states
j therefore has probability density funtion:
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 (2)where
π(n+1) = π(n)P for n ≥ 0 (3)2.3 HYDRAHYDRA is a performane analysis tool whih implements the uniformisation tehnique to omputeresponse time densities and distributions in CTMC models spei�ed in a number of high-levelmodelling formalisms. HYDRA has proved to be partiularly popular with modellers who workwith the stohasti proess algebra PEPA (Performane Evaluation Proess Algebra) thanks tothe interfae provided by the International PEPA Compiler (ip) [12℄ and has aordingly beenused to analyse a range of CTMC models, inluding:� Software systems [13℄, and more spei�ally assembly ode [14℄, ontent adaptation systems [15℄and a software retrieval servie derived from a UML model [16℄,� Wireless protools [17℄,� Timing attaks on ommuniations protools [18℄,� Servie Level Agreements (SLAs) [19, 20℄,� Grid omputing systems [21℄,� Role-playing games [22℄.
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Fig. 2. HYDRA tool arhiteture [4℄.� Stohasti Well-formed Network models of healthare organisations [23℄Fig. 2 shows the arhiteture of the HYDRA tool. The proess of alulating a response timedensity begins with a high-level model spei�ed in an enhaned form of the DNAmaa interfaelanguage. Next, a probabilisti, hash-based state generator uses the high-level model desriptionto produe the generator matrix Q of the model's underlying Markov hain as well as a list of theinitial and target states. P is onstruted from Q aording to Eq. 1.The pipeline is ompleted by our response time alulator. Two versions of this exist, bothimplemented in C++: a serial implementation, and a distributed version whih uses MPI toparallelise the sparse matrix�vetor multipliations of Eq. 3. Both versions have essentially thesame struture. First, the maximum number of hops m is alulated by omputing the Erlang termsfor highest value of t for whih fij(t) is required. When these terms fall below a spei�ed thresholdvalue then the maximum number of hops is deemed to have been reahed. The vetor π(n) is thenalulated for n = 1, 2, 3, . . . , m by repeated sparse matrix�vetor multipliations of the form ofEq. 3. In the parallel version of HYDRA it is neessary to map the non-zero elements of P ontoproessors suh that the omputational load is balaned and ommuniation between proessorsis minimised if this omputation is to be done e�iently. To ahieve this, we use hypergraphpartitioning to assign matrix rows and orresponding vetor elements to proessors [24℄. The sum
∑

k∈j π
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k is alulated from eah vetor π(n).The program then loops over all values of t for whih fij(t) is required, alulating the or-responding Erlang density/distribution terms and multiplying them with the vetor sums. In theparallel version of HYDRA this proedure only takes plae on the master proessor. The resultingpoints are written to a disk �le and are displayed using the GNUplot graph plotting utility.3 The Hard Bit: Sparse Matrix�Vetor MultipliationHYDRA uses DNAmaa's sparse matrix representation, summarised in Fig. 3, to store P in amemory-e�ient fashion. Individual matrix elements are not stored as distint doubles, but ratherunique matrix element values are kept in the Store and the matrix maintains pointers into thisStore for eah element. The AVLTree is used to e�iently searh the Store when new elementsare added to the matrix. For matries derived from high-level modelling formalisms suh as Petrinets, this sheme an redue the amount of memory required as the matrix entries will often berates (or funtions of rates) taken from the high-level model desription, and these will often havefar fewer distint values than the number of states or transitions in the underlying CTMC.Sparse matrix�vetor multipliation in HYDRA is aomplished using the SparseMatrix lass'stransMultiply() method, whih is summarised in Fig. 4. This loops over the olumns of thematrix and multiplies eah entry with the orresponding vetor element, storing the result in theresult vetor. This method would seem to be a likely andidate for parallelisation with OpenMPas the iterations are independent of eah-other. Doing this is as simple as adding two lines of ode:#inlude "omp.h"goes at the beginning, and:#pragma omp parallel for default(none) private(_ol,t,sum) shared(x,result)shedule(guided,1)



Fig. 3. DNAmaa's sparse matrix representation [1℄.
void SparseMatrix::transMultiply(Vetor<double> &x, Vetor <double> &result) onst {double sum;long i,t;SparseMatrixCol *_ol;for (i=0; i<n; i++) {_ol = &ol(i);sum = 0;for (t=0; t<_ol->getEntries(); t++) {sum += (*(_ol->getIndex(t)))*x(_ol->getRow(t));}result[i℄ = sum;}}Fig. 4. The transMultiply() method from DNAmaa's SparseMatrix lass for a matrix with n olumns.



double data[nz℄;long row[nz℄;long offset[n+1℄;double pi[n℄;double result[n℄;for (long i=0; i<n; i++) {double sum = 0;long begin = offset[i℄;long end = offset[i+1℄;for (long t=begin; t<end; t++) {sum += data[t℄ * pi[row[t℄℄;}result[i℄ = sum;}Fig. 5. CSR representation and matrix�vetor multipliation routine for a matrix with n rows and nznon-zero entries and a vetor pi with n entries.is plaed before the loop indexed by long i in Fig. 4. The �nal addition is to tell the ompiler touse OpenMP by means of the -fopenmp �ag.We ontrast DNAmaa's SparseMatrix lass with the well-known Compressed Sparse Row(CSR) [25℄ sheme. This stores the matrix in three arrays: one ontaining the matrix elementvalues, one ontaining the olumn indies of eah element and one ontaining the o�sets into the�rst two arrays marking the start of eah row. Matrix element values are stored expliitly ratherthan as pointers into a list of distint values, however, whih inreases the amount of memoryused ompared with the SparseMatrix sheme. The advantages of CSR are that there are fewerindiret memory aesses and also more regular memory aess patterns (as we are iterating over1-dimensional arrays) whih an lead to improved performane.This CSR data struture and the ode used to perform sparse matrix�vetor multipliationwith a vetor pi is shown in Fig. 5. The multipliation an also be parallelised with OpenMP byplaing a #pragma omp parallel for outside the loop indexed by long i.Model # States Serial Parallel transMultiply() Parallel CSRtransMultiply() 1 2 3 4 1 2 3 4ourier 11 700 0.35 0.36 0.20 0.14 0.11 0.38 0.21 0.14 0.12fms 537 768 61.27 61.84 43.43 38.38 36.52 20.44 15.92 15.09 15.62
1 639 440 202.64 202.83 142.15 127.55 119.98 70.76 54.90 53.85 53.33
4 459 455 576.84 579.96 405.43 359.09 341.52 209.82 164.14 156.81 156.32Table 1. Run-times in seonds for repeated sparse matrix�vetor multipliation for SparseMatrix andCSR formats parallelised with 1 to 4 OpenMP threads.Tab. 1 presents the time taken to perform 1000 sparse matrix�vetor multipliations using theOpenMP parallelisation of SparseMatrix::transMultiply() and also the parallelised CSR for arange of matrix sizes and number of threads, and ompares these results against the single-threadedperformane of the original serial SparseMatrix::transMultiply(). Results were produed onan Intel Core2 3.0GHz quad-ore CPU workstation with 8GB RAM using between 1 and 4 threads.Eah entry in Tab. 1 is the average of 5 runs. The models used are the well-known Courier [26℄and Flexible Manufaturing System (FMS) [27℄ Generalised Stohasti Petri nets (GSPNs).



It an be seen that both parallelisation shemes o�er performane improvements over theserial transMultiply() in DNAmaa, but that parallel CSR is between 2 and 3 times faster thanparallel transMultiply() in all but the smallest example (ourier). This is to be expeted, forthe reasons we disussed above. The performane gained purely from moving from SparseMatrixto CSR format an be seen by omparing the run-times with only 1 OpenMP thread.When it omes to deiding whih of these shemes should be inorporated into HYDRA weare fored to trade o� performane again onveniene. Parallel transMultiply() is the simplestto implement as it requires little more than adding #pragma omp parallel for around the loopover i in Fig. 4. Swithing HYDRA's storage format from the SparseMatrix lass to CSR hasthe potential to result in even better performane but requires far more work: HYDRA urrentlyexploits all the lass methods for reading in the matrix and doing the multipliation, and all thesewould need to be rewritten to take advantage of CSR format.3.1 Comparison with MPI-Parallelised Sparse Matrix�Vetor MultipliationAs disussed above, the original HYDRA parallelises the sparse matrix�vetor multipliationswith MPI. It is interesting therefore to ompare its run-time with that of the OpenMP-parallelisedtransMultiply() version on a shared-memory mahine. One again, we use an Intel Core2 3.0GHzquad-ore CPU workstation with 8GB RAM.Model # States # iterations Serial OpenMP MPI (row-striped) MPI (hypergraph)ourier 11 700 1 329 0.38 0.19 0.10 0.10fms 537 768 712 26.4 16.4 15.1 13.9
1 639 440 712 83.9 51.7 52.2 49.9
4 459 455 712 234.5 142.7 154.9 152.5Table 2. Run-times in seonds for serial, OpenMP and MPI sparse matrix�vetor multipliation on ashared-memory mahine. All parallel results used 4 threads/proesses.Tab. 2 presents the run-times for serial and parallel sparse matrix�vetor multipliations for arange of model sizes and number of iterations. Note that eah entry in the table is the average of 5runs. We onsider two data-partitioning shemes for the MPI-parallelised ase: row-striping, whereeah proessor is alloated a blok of ontiguous rows suh that eah proessor has approximatelythe same number of non-zeros, and hypergraph, where omputational load is again balaned butommuniation between proessors is minimised. In a distributed-memory setting the latter shemeis very muh more e�ient than the former, and it is interesting to note that the same applies in ashared-memory setting. Presumably this is beause hypergraph partitioning results in less opyingof data between the proesses' address spaes.The results presented in Tab. 2 show that the performane of parallel sparse matrix�vetormultipliation is essentially the same for OpenMP and MPI. When the matrix is small then usingMPI is faster, but as the matrix size inreases then OpenMP beomes the quiker of the two. Wetheorise that this an be attributed to the overhead of reating and destroying thread groups inOpenMP: when the matrix is small then this proess dominates the solution time, but for largermatries the start-up ost beomes insigni�ant ompared to the time required to perform theatual omputations.In the ases where the MPI version of HYDRA is faster, we must aknowledge that it issigni�antly more ompliated to use: it requires us to exeute a separate partitioning program(possibly a third-party hypergraph partitioner) and to apply the results to the matrix before wean even begin to exeute the response time analyser, while the OpenMP version is exeuted inexatly the same way as the serial version. It is entirely oneivable that the run-time improvementsseen in the MPI results in Tab. 2 will be overshadowed by these extra data-partitioning stages.We therefore onlude that in a shared-memory environment the use of OpenMP to parallelise thesparse matrix�vetor multipliations is preferable to the use of MPI.



4 The Easy Bit: Erlang Term Parallelisationfor (int ount=0; ount < (int)(t_top/t_step); ount++) {double pdf_answer = 0.0;double df_answer = 0.0;for (int n=1; n <= m; n++) {pdf_answer += log_erlang(n, _q, (ount+1)*t_step) * sum_pi_target[n℄;df_answer += log_erlang_df(n, _q, (ount+1)*t_step) * sum_pi_target[n℄;}pdf_result_output << (ount+1)*t_step << " " << pdf_answer << endl;df_result_output << (ount+1)*t_step << " " << df_answer << endl;} Fig. 6. HYDRA loop for alulating fij (t) at all required values of t.HYDRA's loop over the values of t at whih fij(t) is required is summarised in Fig. 6. The innerloop (from n = 1 to m) orresponds to the outer summation in Eq. 2, while the sum_pi_targetarray holds the preomputed ∑

k∈j π
(n)
k terms (the inner summation in Eq. 2) that are alulatedby repeated sparse matrix�vetor multipliation as disussed in the previous setion. Note thatthe outer loop iterations are independent of eah-other, whih makes it an ideal andidate forOpenMP parallelisation. Doing this is again easily ahieved by adding:#pragma omp parallel for shared(max_hops,sum_pi_target) shedule(guided)before the loop indexed by int ount in Fig. 6.Model # States # t-points Serial Mx�Ve Serial Erlang Serial Time (s) OpenMP Time (s) Speed-upourier 11 700 100 1.7% 97.1% 22.1 6.1 3.6

1 000 0.2% 99.7% 216.5 55.3 3.9
10 000 0.02% 99.9% 2 149.9 541.2 4.0fms 537 768 100 79.9% 18.7% 33.1 28.3 1.1
1 000 29.7% 69.7% 88.8 42.1 2.1

10 000 4.0% 95.9% 647.0 182.0 3.6
1 639 440 100 91.9% 6.8% 91.6 86.4 1.1

1 000 57.2% 41.9% 147.2 100.5 1.5
10 000 12.0% 87.9% 704.5 239.8 2.9

4 459 455 100 95.9% 2.5% 245.8 238.9 1.0
1 000 78.3% 20.5% 301.7 252.8 1.2

10 000 27.6% 71.9% 858.2 392.3 2.2Table 3. Run-times for serial and 4-thread OpenMP versions of the loop in Fig. 6.The result of applying these seemingly minor hanges an be seen in Tab. 3, whih omparesthe run-time for the original serial version of HYDRA with that of the modi�ed version whihuses OpenMP with 4 threads. Results were produed on an Intel Core2 3.0GHz quad-ore CPUworkstation with 8GB RAM for a range of CTMC sizes and number of t-points. The orrespondingspeed-ups are also shown. Eah entry in Tab. 3 is the average of 5 runs. Note that all matrix�vetormultipliations here are onduted in serial; the e�et of inorporating parallel matrix�vetormultipliation will be onsidered in the next setion.



As we would expet the largest speed-up that is observed is 4 as this problem is triviallyparallelisable. The size of the speed-up aross the di�erent problem sizes and number of t-pointsobviously depends on the amount of work that an be parallelised; in those ases where therun-time is dominated by the time required to do the sparse matrix�vetor multipliations, theimprovement from speeding up the t-point loop is orrespondingly limited. This is Amdahl's lawin ation [28, 29℄.The number of t-points is independent of the size of the matrix and is instead spei�ed by theuser in the initial performane query. This means that in general it is hard to reason about therelative amount of work that the matrix�vetor multipliations and the Erlang term alulationwill require � for any model it depends entirely on the performane query being asked. The resultsin Tab. 3 suggest that parallelising the loop shown in Fig. 6 is worthwhile, however. For very littlesoftware engineering e�ort we an gain some speed-up in exeution time, and the overhead fromOpenMP seems to be su�iently small that even in ases where there is limited opportunity forparallelism (e.g. in the 100 t-point ase for the 4 459 455-state CTMC) we are no worse o�.One slight drawbak of the OpenMP version is that eah thread outputs the pdf/df valueat a partiular value of t as it is omputed, but beause the iterations are divided aross thepartiipating threads the overall output will be out of order. This is a minor problem, however, asit does not prevent GNUplot from displaying the orresponding graph orretly, and if text outputin inreasing order of t is required the data �le an easily be sorted one exeution is omplete.5 Putting It All TogetherModel # States # t-points Serial Time (s) OpenMP Time (s) Speed-upourier 11 700 100 22.1 5.9 3.7
1 000 216.5 54.3 4.0

10 000 2 149.9 547.0 3.9fms 537 768 100 33.1 18.5 1.8
1 000 88.8 32.4 2.7

10 000 647.0 171.3 3.8
1 639 440 100 91.6 54.6 1.7

1 000 147.2 68.6 2.1
10 000 704.5 207.6 3.4

4 459 455 100 245.8 148.2 1.7
1 000 301.7 162.1 1.9

10 000 858.2 301.6 2.8Table 4. Run-times for serial HYDRA and 4-thread OpenMP version with both sparse matrix�vetormultipliation and t-point loop parallelisation.We now look at the e�et of bringing the two parallelisation opportunities desribed in Se-tions 3 and 4 together in a single implementation. Table 4 ompares the run-time of the originalserial HYDRA with a parallel version that uses OpenMP to parallelise both the sparse matrix�vetor multipliations and the t-point loop. Results were produed on an Intel Core2 3.0GHzquad-ore CPU workstation with 8GB RAM for a range of CTMC sizes and number of t-points.The orresponding speed-ups are also shown. Eah entry in Tab. 4 is the average of 5 runs.What is striking from Tab. 4 is that for very little software engineering e�ort we have produeda version of HYDRA that runs between 1.7 and 4.0 times faster on a modern multiore desktop.The exat speed-up ahieved depends on the problem size and number of t-points required, butin all ases we do observe a marked improvement for the inorporation of OpenMP into HYDRA.



6 Related WorkSparse matrix�vetor multipliation is the kernel of a wide range of sienti� tehniques, and assuh its e�ient implementation has been widely studied. Its performane is usually onstrainedby available memory bandwidth rather than instrution proessing speed (see [30℄ for a fullerdisussion), and this is exaerbated by the poor temporal loality of aesses to the vetor whihredues the e�etiveness of ahes. There has therefore been a great deal of work on improvedmatrix storage formats to overome these limitations, inluding numerous variants of Blok CSR(BCSR) and matrix reordering [31�33℄.There has similarly been a great deal of work on the performane of sparse matrix�vetormultipliation on shared-memory arhitetures. The work in [34℄, whih analyses performaneon a variety proessors inluding Intel, AMD and Cell, is partiularly relevant as it inludes aomparison of a Pthreads implementation with an MPI implementation. It is observed that thePthreads version is more than twie as fast as the MPI version.There has also been a number of papers investigating good matrix storage formats for OpenMPparallelised sparse matrix�vetor multipliations. In [35℄ the authors investigate the relative per-formane of standard CSR versus BCSR under OpenMP's standard work partitioning shemesand their own load-balaning approah, and onlude that blok partitioning that balanes thenumber of non-zeros aross partiipating proessors gives the best performane. Similarly, [36℄looks at the performane of sparse matrix�vetor multipliation using OpenMP with CSR, BCSRand diagonal matrix formats on a range of arhitetures. The authors onluded that the bestformat was arhiteture dependent.Based on this existing literature, we onlude that if we want to ahieve the best possibleperformane for parallel sparse matrix�vetor multipliation we should investigate storage formatsother than those onsidered in this paper. Implementing blok storage shemes in HYDRA wouldrequire a major rewrite of the existing ode, however, and must therefore be a topi for futurework: the fous of the urrent paper is on the bene�ts that an be gained with as little modi�ationto the existing program as possible.7 ConlusionWe have taken the existing performane tool HYDRA and investigated how its ore alulationsan be parallelised for modern multiore proessors by using OpenMP. We have shown that thereare two opportunities for parallelism, namely in the repeated sparse matrix�vetor multipliationsand in alulating the values of fij(t) for eah required value of t, and that in both ases theuse of OpenMP an give performane improvements over serial HYDRA at the ost of adding a3 or 4 extra lines of ode. To give some idea of the relative sale of e�ort versus developing theoriginal software, the serial version of HYDRA (inluding all headers and lass �les) omprisesover 12 000 lines of ode. If further ode refatoring work is aeptable then replaing the existingSparseMatrix lass from DNAmaa with a matrix stored in a more e�ient format has thepotential to yield even further redutions in run-time.There are a number of opportunities for further work. This paper has foused entirely on the�nal stage in the HYDRA pipeline of Fig. 2, but there has been other work on parallelising theearlier stages (partiularly the state generation and steady-state solution phases) for distributed-memory mahines by using MPI [2℄. It would be interesting to see if these stages are also suitablefor parallelisation with OpenMP.Finally, it should be noted that MPI and OpenMP are not mutually exlusive. Multioremahines form the building-bloks of almost all modern lusters and superomputers, and sothere is sope for a hybrid implementation of HYDRA where OpenMP is used to parallelise thealulations within the partiipating nodes and MPI is used to parallelise the problem arossmultiple nodes.
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