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Abstract We present a quantitative method to find jointly optimal strategies for an
industry regulator and a firm, who operate under exogenous uncertainty. The firm
controls its operating policy in order to maximize its expected future profits, whilst
taking account of regulatory fines. The regulator aims to control the probability that
the firm enters a given undesirable state, such as ceasing production, by imposing a
fine which is as low as possible, while achieving the requiredreduction in probabil-
ity. The exogenous uncertainty is modeled using a stochastic differential equation,
and we show this implies that the firm’s behavior can be solvedvia the Hamilton-
Jacobi-Bellman equation, and the regulatory fine can be obtained via the Feynman-
Kac formula. We discuss both analytic and numerical solution methods. Our results
are illustrated for a security of supply problem for vaccineproduction where future
production costs are uncertain and, using empirical data, for an abandonment prob-
lem in a gold mining operation where future commodity pricesare uncertain. The
method determines the level of fine which establishes a Nash equilibrium in these
nonzero-sum games, under uncertainty.

Keywords Regulation, Uncertainty, Nash Equilibrium, Early Termination, Mining,
Vaccine Supply
JEL Classification G38, C58, Q32

1 Introduction

The quantitative mathematical analysis of industry regulation offers a principled ba-
sis for policymaking (Brock and Carpenter, 2007; Heyes, 2000; Povel, 1999). Such
analysis is made more challenging when account is taken of economic uncertainty
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(Morgan et al., 1990; Brennan and Schwartz, 1982) and of uncertainty over firms’
operating policies (Ruhl, 2005; Camerer, 1999; Sunstein, 1997). A cautionary exam-
ple is provided by the banking crisis of 2008, in which the entwined nature of multi-
ple parties’ interests clouded analysis of the systemic risks (May and Arinaminpathy,
2010). In this paper we aim to contribute to the understanding of such economic sys-
tems: in particular, we present a quantitative method to solve a model of a regulated
industry, which takes account of both exogenous uncertainty and the intertwined in-
terests of a profit maximizing firm and a regulator.

In highly controlled markets such as the public utility industries, the regulator of
an industry may impose direct control on the operating strategy of a firm, even though
the company operates under exogenous uncertainty (Roseta-Palma and Xepapadeas,
2004). As an example, the UK water regulator OFWAT restrictsthe number of times
a privatized water utility operator can impose a domestic hosepipe ban (Arnell, 1998)
- despite uncertainty over the level and pattern of rainfall, and the fact that additional
bans may be optimal for the operator. In other markets, direct regulatory control is
either impossible or undesirable. An example is vaccine production in the US, where
demand levels and costs can be highly uncertain (Danzon et al., 2005). Indeed, secu-
rity of vaccine supply is highly important, since the effecton public health of vaccine
shortages can be significant (Helms et al., 2005): during theperiod 2000 to 2005, one-
third of all childhood vaccine shortages in the US are estimated to have been caused
by vaccine manufacturers deciding to cease production due to unfavorable economic
conditions (Hinman et al., 2006); we explore a variant of this problem in Section 3.
However, a regulator can exert indirect influence by changing a firms economic pa-
rameters (Sappington, 2005), in particular by the use of financial incentives such as
fines (Helms et al., 2005).

Motivated by such examples, this paper makes three core economic assumptions:
firstly, that the future profits of a firm depend on the values taken by an exogenous
stochastic process, such as a commodity price, level of demand or labor market costs;
secondly, that the industry under review has a regulator, who wishes to reduce the
probability of a certain undesirableevent by appropriately controlling the size of a
fine; and thirdly, that firms follow operating policies whichmaximize the expected
future profit from their operation, taking account of fines. Under these assumptions
we show how to derive partial differential equations which characterize thisevent
probability and we describe fast and accurate numerical algorithms to determine the
optimal level of fine.

The methodology in this paper is closely related to that of Evatt et al. (2011) in
which it was described how various expected values in a modelof resource extrac-
tion, including the probability of mine abandonment, may bederived. We presented
analytical solutions, and numerical methods which build upon a recent algorithm first
used in a real options context by Chen and Forsyth (2007). This current paper builds
upon the mathematical structure of Evatt et al. (2011), to demonstrate a broader appli-
cation in regulation; whilst the quantities determined in Evatt et al. (2011) inform the
choice of operating policy by the mining firm, this paper shows how they also lend
themselves to a broader assessment of risk. For instance, the decision to abandon a
large mining project can have significant undesirable implications for the surrounding
environment and economy (Otto, 2010; Veiga et al., 2001). A mining industry regu-
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lator may therefore seek to reduce the probability of abandonment to a target level.
As our method models the intertwined interests of mining firmand industry regulator
quantitatively, it may be used to efficiently choose the required level of abandonment
fine; such an example is explored further in Section 4.

A regulator may have several quantitative targets which protect the security of
supply (Helm, 2002), such as limits on the probability of undersupply, or target vari-
ance of supply levels. In this paper, we focus on controllingthe probability of cessa-
tion of production, which we refer to asabandonment. We assume a target level for
the probability of abandonment is given, although we do not specify how this target
level should be set, since this is often a political decision(Holt, 2005) and is clearly
outside the scope of this paper. In a non-public policy context, many business-to-
business contracts already incorporate an early termination fee (Bates and Lemmon,
2003), whose primary objective is financial (Sharp et al., 2008). This fee can miti-
gate any additional financial costs associated with early termination, as it makes the
counterparty less inclined to terminate due to the higher cost (Williamson, 1985).

The problem of controlling event probabilities in regulated industries has been
considered previously in related contexts. In financial regulation, the Value at Risk
measure limits the probability of losses above a given size in a portfolio due to market
movements (Duffie and Pan, 1997). It does not, however, aim toaddress behavioural
considerations in the construction of financial portfolios, nor the setting of appropri-
ate regulatory fines. Optimal control with probabilistic constraints has been investi-
gated in non-regulatory contexts, such as control engineering (Kandukuri and Boyd,
2002) and operations research (White, 1974), although these studies have only con-
sidered the objectives of a single party. The regulatory problem considered in this
paper involves the strategies of two participants: the firm must choose an operating
strategy which maximises returns, while the regulator chooses the level of a fine,
taking account of the firm’s operating strategy, in order to match the abandonment
probability to the target level. The solutions presented inthis paper are therefore
Nash equilibria for a nonzero-sum game (Starr and Ho, 1969).

The paper is organized as follows. Details of the mathematical methods are pre-
sented in Section 2. In Section 3 the method is applied to a regulator wishing to
control the security of supply of a vaccine. A more complex, data-driven example is
presented in Section 4, where a mining industry regulator wishes to reduce the prob-
ability of total abandonment of a gold mining project. We conclude by discussing
further potential applications in Section 5.

2 Optimal Control with Probabilistic Constraints

In this section we present the mathematical details of the method, in a manner in-
tended to be sufficiently general to be employed in a range of regulatory contexts.
The method is a one-dimensional search over the levelK of the fine for abandon-
ment, and may be summarized as follows:

1. Find the optimal control strategy for the current value ofK

2. Find the abandonment probability for this control strategy
3. UpdateK and return to step 1
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In considering the firm’s optimal strategy, the essential mathematical tool is the
Hamilton-Jacobi-Bellman (HJB) equation, which links controlled Itô diffusions and
partial differential equations (PDEs). A controlled Itô diffusion inR

n takes the form

dXt = dXu
t = b(Xt, ut)dt+ σ(Xt, ut)dBt, (1)

whereb is a function taking values inRn representing an instantaneous drift,σ is the
instantaneous volatility function, taking values inRn×m, and(Bt)t≥0 is a Wiener
process inRm. In our setting, the process(Xt)t≥0 represents the time evolution of
the economic state of a firm, driven by the noise processB which represents random
fluctuations in, for example, commodity or labor prices or demand levels. We assume
that the firm will abandon production when its economic stateceases to be favorable,
which corresponds to the first time at whichXt leaves a predetermined setH . We
denote thisabandonment time by ν. The functionu represents the firm’s operating
strategy (specified for each possible economic stateXt), which is assumed to be fixed
at the outset. At each timet, the valueut depends on the economic stateXt and may
only take values in the admissible setU . For further background on stochastic optimal
control we refer the reader to Øksendal (2003).

Given an operating strategyu, we express the firm’s future profits using a running
profit functiong, discounted at the rate of interestr. Let T be the time at which the
operating license expires. In addition to the running profit, the firm also experiences
a final cashflowh(Xν); if ν < T then the firm has abandoned early, and soh(Xν)
includes the fine. We define theperformance function wu to be the firm’s expected
total profit, net of any fine:

wu(x) = Ex

[
∫ ν

0

e−r̂zg(Xz, uz)dz + e−r̂νh(Xν)

]

, (2)

whereEx denotes the expected value whenX0 = x ∈ R
n. We remove the en-

dogenous behavioral uncertainty due to the firm’s choice of operating strategyu by
assuming that there exists an optimal strategyu∗ which maximizes the value of the
performance functionwu(x). This value is thus given by the functionV ∗, where

V ∗(x) = wu∗

(x) (3)

The HJB equation gives thatV ∗ is the solution to the PDE

sup
v∈U

{LV (x) + g(x, v)− r̂V (x)} = 0 in H

lim
x→y

V (x) = −h(y, v) for y ∈ ∂H (4)

where

L ≡
n
∑

i,j=1

aij
∂2

∂xi∂xj
+

n
∑

i=1

bi
∂

∂xi
(5)

and[aij ] = 1
2σσ

′, andH is the set of all economic states which itself is often part of
the solution to the optimal control. A time derivative is indeed present in (4), as time
forms part of the stochastic process (1):dt = 1.dt+ 0.dB.
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In order to study the effect of varying the level of the fineK, we specify the
following form for h:

h(Xν , uν) = l(Xν , uν) +KIν<T (6)

whereIν<T equals 1 if the firm abandons early (ie., ifν < T ) and equals 0 otherwise.
Note that in equation (6), the fine is not inflation-linked; for longer horizonsT it may
be appropriate to inflation-link the fine, which correspondsto premultiplyingK by a
factorer̂ν . To make the dependence onK explicit, let us writeV ∗ = V ∗(x,K) and
u∗ = u∗(K) . Our three steps are now:

1. We first solve (4) to obtainV ∗(x,K) andu∗(K). This provides the optimal op-
erating strategyu∗(K) under the model, given that the fine is set at levelK.

2. The firm is now assumed to follow this operating strategy and, under this as-
sumption, its economic stateXu∗(K) is an (uncontrolled) Itô diffusion. As a re-
sult the quantity of interest to the regulator, namely the abandonment probability
P (x) = P (x,K) for a firm with initial economic statex, is then found as de-
scribed in Evatt et al. (2011) by solving a form of the Feynman-Kac formula:

LP (x) = 0 in H

lim
x→y

P (x) = Ity<T for y ∈ ∂H (7)

wherety is the value of the time co-ordinate at the pointy.
3. We now varyK (which in turn variesu∗) until the abandonment probability is

reduced to the levelY required by the regulator. LetK∗ be this optimal fine, so
that

P (x,K∗) = Y. (8)

By construction of this three step process, once the condition (8) is met we are in
a form of nonzero sum Nash equilibrium (Starr and Ho, 1969).

It is worth noting that, depending on the application, the rate of interest̂r above
(which is used to findV ) may be different from the one used to solve the Feynman-
Kac formula (7) (and hence to findK). If the economic uncertainty is the price
process of a traded commodity, then the market prices effectively determine a risk-
adjusted rate of interest. In order to avoid the possibilityof arbitrage, it is this rate
that must be used to calculateV . In contrast, when calculating the abandonment
probability the regulator is free to leave the probability undiscounted. Alternatively,
a bespoke discount rate may be specified forP , in order to place greater weight on
early abandonment and correspondingly less weight on laterabandonment.

2.1 Feasibility

The fineK∗ obtained above is optimal, in the sense that a lower fine wouldnot
achieve the desired reduction in abandonment probability and a higher fine would
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have a negative societal impact by discouraging the purchase of new licenses. How-
ever, the optimal fine may be sufficiently high so that no rational firm would buy a
new license. The optimalfeasible fine,K∗

f (x), is therefore

K∗
f (x) = min{Kf(x),K

∗(x)}, (9)

whereKf(x) is the maximum fine the firm can afford; further discussion on this is
given by Lear and Maxwell (1998), and the practical implementation of fines (such
as collecting performance bonds) is discussed by Holt (2005).

2.2 Notation

The notation used in this section is consistent with that generally used in probability
theory, in the sense of Øksendal (2003). Yet as can be seen, there are three different
symbols related to the stochastic process: the set of all possible processesX , the indi-
vidual point in the processXu

t and the quantity post-averagingx. The notation serves
a purpose in deriving the theoretical basis. But given its purpose has been satisfied,
we now intentionally relax some of the notational rigor in order for an interdisci-
plinary reader to more easily move their way through the remaining sections. To be
consistent with some of the key work on real options theory and quantitative finance
(such as Dixit and Pindyck (1994) and Wilmott et al. (1995)) as far as possible we
use just the capital letter to denote the stochastic variable.

3 Improving security of vaccine supply

In this section, motivated by Hinman et al. (2006) and Helms et al. (2005), we in-
vestigate the problem of increasing the security of supply of a vaccine. We employ
a simple real options model, in which a firm is contracted to supply vaccines at a
fixed quantity and price, and is exposed to both fixed and uncertain input costs. The
only control available to the firm is the early termination ofthe contract, whilst the
industry regulator may wish to use a fine to control the probability of termination.
Termination fines are commonly used (Bates and Lemmon, 2003), and the method of
Section 2 provides a quantitative method for setting the level of fine, taking account
of the profit maximizing behavior of the firm.

Our model in this section is the following. The firm must deliver a fixed number
q of doses each year forT years, which are to be sold at an agreed sale price ofsc
per dose. The firm’s costs include a fixed amount ofǫ per year and a variable amount
S which is uncertain and is assumed to follow a geometric Brownian motion

dS = µSdt+ σSdB (10)

whereµ is the percentage drift andσ is the percentage volatility. The firm’s control
strategy is simply to terminate the contract whenS rises to a predetermined level
S∗(t). This level may be time-dependent (although we will often suppress the time
parameter for notational convenience), and takes account of all termination costs.
With the notation of Section 2, the firm exerts no control until the termination time
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ν, and so the choice of strategy reduces to the choice of a termination surfaceS∗.
We supply our own plausible parameter values characterizing the uncertainty and
where possible, we use parameter values consistent with those given in Hinman et al.
(2006):

µ = 2.5% yr−1, σ = 0.3 yr−1/2, r = 2% yr−1, sc = $30 U−1,

T = 5 yr, I = $100M, q = 5M U yr−1, ǫ = $1.3M yr−1 (11)

whereI is the initial investment and we suppose that the current level of variable
input costs isS = $10 U−1, whereU refers to a single dose. We suppose that
the regulator’s target is to reduce the termination probability by 20% relative to the
baseline level when there is no fine, that is:

P (ν < T |K = K∗) = Y =
4P (ν < T |K = 0)

5
. (12)

3.1 Regulator problem: Termination probability

In the notation of Section 2 we haven = 2 andm = 1. Since the firm exerts no
control before the termination time, we do not model a control variableut and (1)
reduces to

Xt =

[

St

t

]

, b(Xt, ut) =

[

µS

1

]

, σ(Xt) =

[

σS

0

]

, (13)

where the economic stateXt takes values in the regionH bounded above (in its first
coordinate) by the surfaceS∗. Inserting this in equation (7), we have the equation
governing the probability of contract termination:

∂P

∂t
+

1

2
σ2S2 ∂

2P

∂S2
+ µS

∂P

∂S
= 0,

P = 0 when t = T,

P = 1 on S = S∗,

P → 0 as S → 0. (14)

The solution to this equation depends on the firm’s control strategy, which is given
by the termination surfaceS∗ obtained in Section (3.2) below.

We note that if the contract is held in perpetuity, and if the final cashflowh is
constant in time, we obtain a time-stationary version of theproblem. These assump-
tions are commonly used in real options studies (Dixit and Pindyck, 1994), and make
closed form solutions available by removing the time dimension from the problem.
However, in the setting of this paper, the effect of discounting a constant fine reduces
its effect so greatly that such perpetual solutions are uninformative. In the following
we therefore explore solutions to finite time horizon problems, using robust numerical
algorithms.
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3.2 Operator problem: termination surface

We now obtain the optimal termination surfaceS∗, as a function of the fine levelK.
The surfaceS∗(K) is both an input to the calculation in section (3.1), and the optimal
operating strategy for the firm under this model. The firm’s running profit is modeled
as the sum of the sales, variable costs and fixed costs:

g(S) = q(sc − S)− ǫ (15)

and the functionl from (6) in section 4 represents the capital cost of closure,C.
Inserting the price process (10) and cashflows (15) into (4),we can write the equation
governing the valuation as1

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ µS

∂V

∂S
− rV + d(sc − S)− ǫ = 0

V = 0 when t = T,

V = qsc−ǫ
r

(

1− e−r(T−t)
)

when S = 0,

V = −C −K on S = S∗. (16)

To maximizeV , the firm must choose the surfaceS∗ optimally. This may be achieved
using the smooth pasting principle as fully detailed by Dixit and Pindyck (1994). In
the case of this abandonment problem, in which there are no future cash flows once
abandonment has been completed, the condition is given by,

∂V

∂S
= 0 on S = S∗. (17)

3.3 Numerical Approach

The boundaryS∗(K) found in Section (3.2) may now be input to the calculation
in Section (3.1), to obtain the abandonment probability. Wedenote this probability
P (K,S, t), again to indicate dependence onK. Given the current variable production
costS, it is now a matter of a one-dimensional search to find the minimum value of
K such thatP (K,S, t) = Y .

The precise numerical scheme we shall use to solve for the operational control de-
termined via equation (16), is a projected successive over relaxation (PSOR) method,
which is an accurate procedure for solving such free boundary problems in quantita-
tive finance. The solution to the regulators problem for determining the probability,
(14), does not involve determining a free boundary, as this boundary is purely an in-
put. As such, one can use a standard implicit finite-difference scheme. Both of these
schemes are explained and detailed in Wilmott et al. (1995).

1 It is straightforward to show that when the running profit function g is linear, and when a continuous
interval [a, b] of choices is available forU , then the resulting optimal strategy is of a ‘bang-bang’ nature,
where the optimal control always lies within a finite set. In these cases, although the HJB equation holds,
it simplifies to solving Feynman-Kac equations on overlapping domains with free boundaries (Øksendal,
2003). When the running profit is nonlinear this is no longer true, and the full HJB equation must be solved.
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3.4 Results
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Fig. 1 The top graph shows the firm’s NPV for each termination fineK, and the lower graph shows the
firm’s probability of early termination (the quantity of interest to the regulator) for eachK. The fineK∗

achieving a 20% reduction in termination probability is shown in the lower graph (where the curve meets
the horizontal dashed line), and the corresponding NPV is given in the top graph.

The solutions to (16) and (14), when using the parameters given by (11), are
shown in Figure 1. The top graph shows how the optimal net present value (NPV
= V − I) of the operation is dependent upon the termination fineK, and the lower
graph shows how the resulting probability of termination varies. The objective of the
regulator is to reduce the probability of early terminationby 20%, and the fine which
achieves this aim is indicated by the intersecting dashed lines in the lower graph:
K∗ = $5.6M. The introduction of this fine leads to a reduction of the firm’s NPV
from $137.5M to $136.82M, a reduction in NPV of just 0.5%.

Figure 2 illustrates the effect of the optimal fineK∗ on the optimal operating
strategy of the firm, where the termination boundariesS(0) (dashed line) andS(K∗)
(solid line) are shown. The difference between these two termination prices becomes
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Fig. 2 Optimal termination prices for the manufacturer, viewed asthe time to expiry is approached, for
two different penalty fines. The continuous line is when the optimal termination fine is imposed upon the
operatorK∗ = $5.6M, and the dashed line shows the optimal strategy when no penalty fine is imposed
K = $0.

greater close to contract expiry. It is clear from Figure 2 that the reduction in termi-
nation probability is principally achieved by excluding termination decisions close to
expiry of the operating license: this feature also explainsthe relatively low impact of
the termination fine on the firm’s NPV.

In Figure 3 we investigate the sensitivity of the results to the parameter values
specified in (10). The top graph shows how, given the initial price level, the proba-
bility of early termination increases as the percentage volatility σ is increased. In the
bottom graph we show how the probability of termination increases as the percentage
drift µ increases. We note that the main effect is a translation of the curve, so that the
objective of a 20% reduction in termination probability appears robust to uncertainty
over the parametersµ andσ.

4 Increasing the societal benefit of an extraction project

In this section we consider the use of fines to reduce the probability that a mining
project will be abandoned early. The societal and economic benefits from a mining
project can be large, with increased investment in an area providing increased levels
of employment and improved community resources. When extraction ceases, these
benefits also cease, to the detriment of the community (Andrews-Speed et al., 2005);
the abandonment of the extraction site may also carry an environmental cost. A re-
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process (10). The top graph shows the sensitivity towards the volatility: σ = 0.25, 0.3 and0.35 %. The
bottom graph shows the sensitivity towards the drift:µ = 0.1, 0.2 and0.3 %. Unless being varied in the
graph, all other parameters are given by (11).

cent World Bank report (Otto, 2010) discusses a legal framework within which local
governments can ensure more sustainable resource extraction projects. Such consid-
erations include making provisions for new forms of economic activity and employ-
ment post-extraction (Veiga et al., 2001). However, these provisions may not address
the risk of early abandonment of the mining project due to unfavorable commodity
prices. In the context of a regulated market, a suitable equilibrium must be sought
between the regulator and mining firm (Kniesner and Leeth, 2004; Otto, 1997). If
the equilibrium is achieved through a fine for abandonment, the regulator must avoid
deterring this often vital corporate investment (Otto, 2010). We now show that this
problem falls within the scope of Section 2, when the exogenous uncertaintyS is the
commodity price and the operating strategyu is the rate at which the commodity is
extracted.
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Fig. 4 The ore grade of a gold mine, ordered in a chronological sequence of extraction. The grade,G, is
measured in grammes per tonne, and the x-axis denotes the amount of remaining ore,Q. This data was
supplied by Gemcom Software International.

4.1 Model: the mining operation

In this example we use empirical data on the ore-grade quality G (grammes of gold
per tonne of earth) from a real gold mining operation, whose data has been supplied
by Gemcom Software International (a large mining solutionsprovider). The data is
plotted in Figure 4, following an extraction schedule whichis scheduled to last 4.9
years at constant extraction rate. In our model, the economic state of the mine is
(S, t,Q), whereQ is the volume of ore remaining in the mine. We assume thatS

follows a mean-reverting Cox-Ingersoll-Ross process, with stochastic dynamics

dS = κ(µ− S)dt+ σ
√
SdB, (18)

whereµ is the long-term average price of gold andκ is the speed of mean reversion.
The diffusion(S, t,Q) is controlled by choosing the rate of extractionq = − dQ

dt . In
the notation of Section 2 we haven = 3, m = 1 and

ut = qt, Xt =





St

t

Qt,



 , b(Xt, ut) =





κ(µ− S)
1

−qt



 , σ(Xt, ut) =





σ
√
S

0
0



 .

(19)
We take a simple model in whichq may have either the valueq1 or q2, with q1 < q2;
we will refer to state 1 as ‘normal operation’, and to state 2 as ‘expanded operation’.
The capital cost of switching from state 1 to state 2 isCe, and switching from state
2 to state 1 is not possible. The mine may be abandoned from either state, incurring
a capital costC1a andC2a from states 1 and 2 respectively. The firm’s running cost
per unit time in statei is ǫi, so that the running cashflows for the mine are

gi(S, t,Q) = qiG(Q)S − ǫi. (20)
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The operational strategy of any firm is assumed to consist of three price thresholds
S∗
e (t, Q), S∗

1a(t, Q) andS∗
2a(t, Q), all of which may depend on both the timet and

the remaining quantity of oreQ. The thresholdS∗
e (t, Q) is the gold price at which

the operation expands from state 1 to state 2, whileS∗
1a(t, Q) andS∗

2a(t, Q) are the
gold prices at which the project is abandoned, respectivelyfrom states 1 and 2.

The objective of the regulator is assumed to be the introduction of a fine for
abandonment which halves the probability of abandonment (so as to improve the
security of supply of economic benefit to the surrounding community), relative to
the probability without a fine. The remaining parameter values of this gold mine
extraction project are given by

µ = $24.4gr−1, σ = 25%, κ = 0.01yr−1, r = 8% yr−1,

I = $50M, q1 = 1Mt yr−1, q2 = 2Mt yr−1, ǫ1 = ǫ2 = $yr−1,

C1a = $10M, C2a = $10M, Ce = $20M, S0 = $25.7gr−1. (21)

4.2 Abandonment probability

Inserting the controlled diffusion (19) into equation (7),the probability of abandon-
ment is given by the coupled equations

1

2
σ2S

∂2P1

∂S2
− ∂P1

∂τ
− q1

∂P1

∂Q
+ κ(µ− S)

∂P1

∂S
= 0,

P1 = 1 on S = S∗
1a,

P1 = 0 when min{Q, τ} = 0,

P1 = P2 on S = S∗
e , (22)

and

1

2
σ2S

∂2P2

∂S2
− ∂P2

∂τ
− q2

∂P2

∂Q
+ κ(µ− S)

∂P2

∂S
= 0,

P2 = 1 on S = S∗
2a,

P2 = 0 when min{Q, τ} = 0,

P2 → 0 as S → ∞, (23)

whereτ = T−t. These particular boundary conditions are mathematicallyanalogous
to hysteresis problem in physics solved by Freidlin et al. (2000). As in the previous
section, the solution to the coupled equations (22)—(23) depends on the firm’s con-
trol strategy. We now describe, from the point of view of a firm, the optimal choice
for the three surfacesS∗

1a(τ,Q), S∗
2a(τ,Q) andS∗

e (τ,Q).
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4.3 Operator

From the price process (18), controlled diffusion (19) and running cash flows (20), we
can insert them into equation (4), to obtain the following PDE for the mines expected
profit:

1

2
σ2S

∂2V1

∂S2
− ∂V1

∂τ
− q1

∂V1

∂Q
+ κ(µ− S)

∂V1

∂S
− rV1 + q1GS − ǫ1 = 0,

V1 = 0 when min{τ,Q} = 0,

V1 = −C1a −K when S = S∗
1a

V1 = V2 − Ce on S = S∗
e , (24)

and

1

2
σ2S

∂2V2

∂S2
− ∂V2

∂τ
− q2

∂V2

∂Q
+ κ(µ− S)

∂V2

∂S
− rV2 + q2GS − ǫ2 = 0,

V2 = 0 when min{τ,Q} = 0,

V2 = −C2a −K when S = S∗
2a

V2 ∼ S as S → ∞. (25)

We refer to Brennan and Schwartz (1985) for the justificationof these boundary con-
ditions. In addition, for optimality to be obtained, we require that at each of the tran-
sitions the smooth pasting condition must hold:

∂V

∂S
= 0 on S = {S∗

e , S
∗
1a, S

∗
2a}. (26)

The boundariesS∗
1a(τ,Q), S∗

2a(τ,Q) andS∗
e (τ,Q), which again depend onK (al-

though we have suppressed this for notational convenience), may be obtained from
(24)—(25) as described in Evatt et al. (2011) and input to thecalculation in section
(4.2). A one-dimensional search is again sufficient to obtain the minimum value of
K achieving the desired reduction in abandonment probability under the model.

4.4 Results

Since equations (24)—(25) are convection dominated in theQ variable, we obtain
numerical results by the semi-Lagrangian method, as utilized by Chen and Forsyth
(2007). In Figure 5 we show the probability of abandonment versus level of fineK
(top graph), and the mining project’s NPV versusK (bottom graph). The optimal
level forK is K∗ = $8.85M with an associated NPV of $97.05M, which compares
to $97.8M whenK = 0. The halving of abandonment probability is thus achieved in
return for a reduction in NPV of $0.75M, or 0.8%.The roughness of Figure 5 (top) is a
consequence of roughness in the ore grade data as shown in Figure 4. Figure 6 shows
the optimal thresholds for changing operational state, when no fine is imposed (top)
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Fig. 5 The probability of abandonment (top graph) and NPV (bottom graph) of a gold mining project,
plotted as a function of abandonment penalty fine. The dashedlines show where the regulators objective
is met - which is to half the probability of abandonment - and the resulting optimal NPV. The results are
plotted at$0.5M intervals, using the parameters values of (21).

and when the optimal fineK = $8.85M is imposed (bottom). The higher dashed
line is the optimal price to expand operationS∗

e , the lower dotted line is the optimal
price to abandon from the expanded stateS∗

a2 and the continuous line is the decision
to abandon from normal operationS∗

a1. The most significant difference between the
two operating strategies is found towards the end of extraction, asQ approaches 0.

5 Conclusion and discussion

We have presented a method for determining regulatory fines which establish a Nash
equilibrium between an industry regulator and a firm, in the presence of exogenous
uncertainty. The method uses the partial differential equations which govern both the
firm’s expected profit and the values of regulatory interest:it contrasts with scenario
analysis (Postma and Liebl, 2005) by consideringall possible future scenarios, and
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Fig. 6 Graphs showing the optimal prices for when to change operational state of a gold mine, for when
no penalty fine is present (top graph) and for when the optimalpenalty fine,K = $8.85M , is imposed
(bottom graph). In each figure, results are shown for the optimal expansion decisionS∗

e
(higher dashed

line), the optimal abandonment decision from the expanded stateS∗

a2
(lower dashed line), and the optimal

abandonment decision from the normal extraction stateS∗

a1
(lower continuous line). The graphs were

calculated using the parameters values of (21).

is exact in that it does not require simulations. Our work is applicable whenever the
evolution of a firm’s economic state can be modeled by a controlled Itô diffusion, and
its profits can be expressed in the form (2). We have given illustrative applications to
two example regulatory scenarios.

A classic application of stochastic optimal control theoryin finance is the portfo-
lio allocation problem (Øksendal, 2003), in which the (often high dimensional) state
of the portfolio is the controlled Itô diffusion of interest. However, when the state
is described by a high dimensional controlled Itô diffusion, the numerical methods
we have described are currently impractical. Indeed, quantitative analysis for finan-
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cial services regulation, which takes into account the profit-maximizing behavior of
financial agents, is currently a challenging area of major interest (VanHoose, 2007).
For a current example of regulatory fines imposed on banks in order to control the
probability of default, see Jimenez-Martin et al. (2009). With advances in numerical
schemes and computational power (Xiu, 2009) however, analytic methods such as the
one presented in this paper should become increasingly applicable to the regulation
of financial services and other similarly complex industries.

Acknowledgements Project funding was supplied by the Engineering and Physical Sciences Research
Council UK, via the University of Manchester Knowledge Transfer Account.The authors are grateful to
Gemcom Software International for supplying data and consultation for the gold mining example.

References

Andrews-Speed, P., G. Ma, B. Shao, and C. Liao (2005). Economic responses to the
closure of small-scale coal mines in chongqing, china.Resources Policy 30(1), 39
– 54.

Arnell, N. W. (1998). Climate change and water resources in britain. Climatic
Change 39, 83–110. 10.1023/A:1005339412565.

Bates, T. W. and M. L. Lemmon (2003). Breaking up is hard to do?an analysis
of termination fee provisions and merger outcomes.Journal of Financial Eco-
nomics 69(3), 469 – 504.

Brennan, M. J. and E. Schwartz (1985). Evaluating natural resource investments.The
Journal of Business 58(2), pp. 135–157.

Brennan, M. J. and E. S. Schwartz (1982). Consistent regulatory policy under uncer-
tainty. The Bell Journal of Economics 13(2), pp. 506–521.

Brock, W. A. and S. R. Carpenter (2007). Panaceas and diversification of environ-
mental policy.Proceedings of the National Academy of Sciences 104(39), 15206–
15211.

Camerer, C. (1999). Behavioral economics: Reunifying psychology and economics.
Proceedings of the National Academy of Sciences 96(19), 10575–10577.

Chen, Z. and P. Forsyth (2007, December). A semi-lagrangianapproach for natural
gas storage valuation and optimal operation.SIAM J. Sci. Comput. 30, 339–368.

Danzon, P. M., N. S. Pereira, and S. S. Tejwani (2005). Vaccine supply: A cross-
national perspective.Health Affairs 24(3), 706–717.

Dixit, A. and R. Pindyck (1994).Investment under uncertainty. Princeton University
Press.

Duffie, D. and J. Pan (1997). An overview of value at risk.The Journal of Deriva-
tives 4(3), 7–49.

Evatt, G. W., P. Johnson, P. Duck, S. Howell, and J. Moriarty (2011). The expected
lifetime of an extraction project.Proceedings of the Royal Society A: Mathemati-
cal, Physical and Engineering Sciences 467, 244–263.

Freidlin, M. I., I. Mayergoyz, and R. Pfeiffer (2000, Aug). Noise in hysteretic systems
and stochastic processes on graphs.Phys. Rev. E 62(2), 1850–1855.



18 G.W. Evatt et al.

Helm, D. (2002). Energy policy: security of supply, sustainability and competition.
Energy Policy 30(3), 173 – 184.

Helms, C. M., F. A. Guerra, J. O. Klein, W. Schaffner, A. M. Arvin, and G. Peter
(2005). Strengthening the nations influenza vaccination system: A national vaccine
advisory committee assessment.American journal of preventive medicine 29, 221–
226.

Heyes, A. (2000). Implementing environmental regulation:Enforcement and compli-
ance.Journal of Regulatory Economics 17, 107–129. 10.1023/A:1008157410380.

Hinman, A. R., W. A. Orenstein, J. M. Santoli, L. E. Rodewald,and S. L. Cochi
(2006). Vaccine shortages: History, impact, and prospectsfor the future*.Annual
Review of Public Health 27(1), 235–259.

Holt, L. (2005). Utility service quality–telecommunications, electricity, water.Utili-
ties Policy 13(3), 189 – 200. Special Issue on Utility Service Quality.

Jimenez-Martin, J.-A., M. McAleer, and T. Perez-Amaral (2009). The ten command-
ments for managing value at risk under the basel ii accord.Journal of Economic
Surveys 23(5), 850–855.

Kandukuri, S. and S. Boyd (2002). Optimal power control in interference-limited
fading wireless channels with outage-probability specifications.Wireless Commu-
nications, IEEE Transactions on 1(1), 46–55.

Kniesner, T. J. and J. D. Leeth (2004). Data mining mining data: Msha enforcement
efforts, underground coal mine safety, and new health policy implications.Journal
of Risk and Uncertainty 29, 83–111. 10.1023/B:RISK.0000038939.25355.d8.

Lear, K. K. and J. W. Maxwell (1998). The impact of industry structure and penalty
policies on incentives for compliance and regulatory enforcement.Journal of Reg-
ulatory Economics 14, 127–148. 10.1023/A:1008005201435.

May, R. M. and N. Arinaminpathy (2010). Systemic risk: the dynamics of model
banking systems.Journal of the Royal Society Interface 7(46), 823–838.

Morgan, M., M. R.S. Henrion, and M. Small (1990).Uncertainty: A Guide to Dealing
with Uncertainty in Quantitive Risk and Policy Analysis. Cambridge University
Press.

Øksendal, B. (2003).Stochastic differential equations: an introduction with applica-
tions. Universitext (1979). Springer.

Otto, J. M. (1997). A national mineral policy as a regulatorytool. Resources Pol-
icy 23(1-2), 1 – 7.

Otto, J. M. (2010). Community development agreement: Modelregulations & exam-
ple guidelines.World Bank Report, 61482 1, 1 – 84.

Postma, T. J. B. M. and F. Liebl (2005). How to improve scenario analysis as a
strategic management tool?Technological Forecasting and Social Change 72(2),
161 – 173.

Povel, P. (1999). Optimal ’soft’ or ’tough’ bankruptcy procedures.Journal of Law,
Economics, and Organization 15(3), 659–684.

Roseta-Palma, C. and A. Xepapadeas (2004). Robust control in wa-
ter management. Journal of Risk and Uncertainty 29, 21–34.
10.1023/B:RISK.0000031443.39763.f0.

Ruhl, J. B. (2005). Regulation by Adaptive Management - Is ItPossible.Minnesota
Journal of Law Science and Technology 21(7), 35–64.



Regulating Industries under Exogenous Uncertainty 19

Sappington, D. E. M. (2005). Regulating service quality: A survey.Journal of Regu-
latory Economics 27, 123–154. 10.1007/s11149-004-5341-9.

Sharp, N., D. Newton, and P. Duck (2008). An improved fixed-rate mortgage valua-
tion methodology with interacting prepayment and default options.The Journal of
Real Estate Finance and Economics 36, 307–342. 10.1007/s11146-007-9055-5.

Starr, A. W. and Y. C. Ho (1969). Nonzero-sum differential games.Journal of Opti-
mization Theory and Applications 3, 184–206. 10.1007/BF00929443.

Sunstein, C. R. (1997). Behavioral analysis of law.The University of Chicago Law
Review 64(4), pp. 1175–1195.

VanHoose, D. (2007). Theories of bank behavior under capital regulation.Journal of
Banking and Finance 31(12), 3680 – 3697.

Veiga, M. M., M. Scoble, and M. L. McAllister (2001). Mining with communities.
Natural Resources Forum 25(3), 191–202.

White, D. J. (1974). Dynamic programming and probabilisticconstraints.Operations
Research 22(3), pp. 654–664.

Williamson, O. E. (1985). Assessing contract.Journal of Law, Economics, and
Organization 1(1), 177–208.

Wilmott, P., S. Howison, and J. Derwynne (1995).The Mathematics of Financial
Derivatives: A Student Introduction. Cambridge University Press.

Xiu, D. (2009). Fast numerical methods for stochastic computations: A review.Com-
munications in Computational Physics 5(2-4), 242–272.


