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Abstract We present a quantitative method to find jointly optimal tetgées for an
industry regulator and a firm, who operate under exogenoasrtainty. The firm
controls its operating policy in order to maximize its exigecfuture profits, whilst
taking account of regulatory fines. The regulator aims tarbithe probability that
the firm enters a given undesirable state, such as ceasidggiion, by imposing a
fine which is as low as possible, while achieving the requiegtiiction in probabil-
ity. The exogenous uncertainty is modeled using a stoahdgferential equation,
and we show this implies that the firm’s behavior can be soliadhe Hamilton-
Jacobi-Bellman equation, and the regulatory fine can bdrddavia the Feynman-
Kac formula. We discuss both analytic and numerical sotuti@thods. Our results
are illustrated for a security of supply problem for vacgmmeduction where future
production costs are uncertain and, using empirical dataari abandonment prob-
lem in a gold mining operation where future commodity priees uncertain. The
method determines the level of fine which establishes a Ngshilwium in these
nonzero-sum games, under uncertainty.

Keywords Regulation, Uncertainty, Nash Equilibrium, Early Terntioa, Mining,
Vaccine Supply
JEL Classification G38, C58, Q32

1 Introduction
The quantitative mathematical analysis of industry reteoffers a principled ba-

sis for policymaking (Brock and Carpenter, 2007; Heyes, @®bvel, 1999). Such
analysis is made more challenging when account is takenamfanic uncertainty
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(Morgan et al., 1990; Brennan and Schwartz, 1982) and ofrtaiogy over firms’
operating policies (Ruhl, 2005; Camerer, 1999; Sunst&ifiy). A cautionary exam-
ple is provided by the banking crisis of 2008, in which thexgned nature of multi-
ple parties’ interests clouded analysis of the systemis(islay and Arinaminpathy,
2010). In this paper we aim to contribute to the understapdirsuch economic sys-
tems: in particular, we present a quantitative method teesalmodel of a regulated
industry, which takes account of both exogenous unceytaind the intertwined in-
terests of a profit maximizing firm and a regulator.

In highly controlled markets such as the public utility irsthies, the regulator of
an industry may impose direct control on the operatingepaof a firm, even though
the company operates under exogenous uncertainty (RBa#tee and Xepapadeas,
2004). As an example, the UK water regulator OFWAT resttizésnumber of times
a privatized water utility operator can impose a domestgepge ban (Arnell, 1998)
- despite uncertainty over the level and pattern of rainéadt the fact that additional
bans may be optimal for the operator. In other markets, tiemulatory control is
either impossible or undesirable. An example is vaccindgpetion in the US, where
demand levels and costs can be highly uncertain (Danzon @08I5). Indeed, secu-
rity of vaccine supply is highly important, since the effentpublic health of vaccine
shortages can be significant (Helms et al., 2005): during¢hied 2000 to 2005, one-
third of all childhood vaccine shortages in the US are edtihéo have been caused
by vaccine manufacturers deciding to cease productionauefavorable economic
conditions (Hinman et al., 2006); we explore a variant of fvioblem in Section 3.
However, a regulator can exert indirect influence by chapgifirms economic pa-
rameters (Sappington, 2005), in particular by the use ohfii# incentives such as
fines (Helms et al., 2005).

Motivated by such examples, this paper makes three cor@atomssumptions:
firstly, that the future profits of a firm depend on the valuéetaby an exogenous
stochastic process, such as a commaodity price, level of dédmmaabor market costs;
secondly, that the industry under review has a regulatoo, wishes to reduce the
probability of a certain undesirab&ent by appropriately controlling the size of a
fine; and thirdly, that firms follow operating policies whialaximize the expected
future profit from their operation, taking account of finesdér these assumptions
we show how to derive partial differential equations whittakacterize thigvent
probability and we describe fast and accurate numerical algorithmstéordme the
optimal level of fine.

The methodology in this paper is closely related to that aitEet al. (2011) in
which it was described how various expected values in a maidelsource extrac-
tion, including the probability of mine abandonment, maydeeived. We presented
analytical solutions, and numerical methods which buildrua recent algorithm first
used in a real options context by Chen and Forsyth (2007%. dunirent paper builds
upon the mathematical structure of Evatt et al. (2011), toalestrate a broader appli-
cation in regulation; whilst the quantities determined wag et al. (2011) inform the
choice of operating policy by the mining firm, this paper sedvow they also lend
themselves to a broader assessment of risk. For instarcdgettision to abandon a
large mining project can have significant undesirable iogtions for the surrounding
environment and economy (Otto, 2010; Veiga et al., 2001).i4img industry regu-
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lator may therefore seek to reduce the probability of abardmt to a target level.
As our method models the intertwined interests of mining fumd industry regulator
guantitatively, it may be used to efficiently choose the mnegflievel of abandonment
fine; such an example is explored further in Section 4.

A regulator may have several quantitative targets whichegtahe security of
supply (Helm, 2002), such as limits on the probability of ersipply, or target vari-
ance of supply levels. In this paper, we focus on controlfirgprobability of cessa-
tion of production, which we refer to abandonment. We assume a target level for
the probability of abandonment is given, although we do pet#y how this target
level should be set, since this is often a political decigldalt, 2005) and is clearly
outside the scope of this paper. In a non-public policy cant@any business-to-
business contracts already incorporate an early terrimédie (Bates and Lemmon,
2003), whose primary objective is financial (Sharp et alQ80This fee can miti-
gate any additional financial costs associated with eartyitetion, as it makes the
counterparty less inclined to terminate due to the highst @&illiamson, 1985).

The problem of controlling event probabilities in reguthiadustries has been
considered previously in related contexts. In financiautatpn, the Value at Risk
measure limits the probability of losses above a given sizggortfolio due to market
movements (Duffie and Pan, 1997). It does not, however, agxldoess behavioural
considerations in the construction of financial portfoliosr the setting of appropri-
ate regulatory fines. Optimal control with probabilistimstraints has been investi-
gated in non-regulatory contexts, such as control engimgéKandukuri and Boyd,
2002) and operations research (White, 1974), althougletsieslies have only con-
sidered the objectives of a single party. The regulatonpl@m considered in this
paper involves the strategies of two participants: the firasihthoose an operating
strategy which maximises returns, while the regulator sksahe level of a fine,
taking account of the firm’s operating strategy, in order ttch the abandonment
probability to the target level. The solutions presentedhis paper are therefore
Nash equilibria for a nonzero-sum game (Starr and Ho, 1969).

The paper is organized as follows. Details of the matheralatiethods are pre-
sented in Section 2. In Section 3 the method is applied to alaey wishing to
control the security of supply of a vaccine. A more compleataadriven example is
presented in Section 4, where a mining industry regulateh@as to reduce the prob-
ability of total abandonment of a gold mining project. We cloide by discussing
further potential applications in Section 5.

2 Optimal Control with Probabilistic Constraints

In this section we present the mathematical details of thihadkg in a manner in-
tended to be sufficiently general to be employed in a rangegilatory contexts.
The method is a one-dimensional search over the |1&velf the fine for abandon-
ment, and may be summarized as follows:

1. Find the optimal control strategy for the current valudsof
2. Find the abandonment probability for this control sggte
3. UpdateK and return to step 1
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In considering the firm’s optimal strategy, the essentiath@anatical tool is the
Hamilton-Jacobi-Bellman (HJB) equation, which links aotied 1td diffusions and
partial differential equations (PDESs). A controlled Itidfdsion in R™ takes the form

dXt = dXZL = b(Xt,’LLt)dt + O'(Xt,ut)dBt, (1)

whereb is a function taking values iR™ representing an instantaneous dufis the
instantaneous volatility function, taking values®¥*™, and (B;):>¢ is a Wiener
process iMR™. In our setting, the process(;):>o represents the time evolution of
the economic state of a firm, driven by the noise prodgsghich represents random
fluctuations in, for example, commaodity or labor prices and@&d levels. We assume
that the firm will abandon production when its economic stases to be favorable,
which corresponds to the first time at whidh leaves a predetermined s&t We
denote thisabandonment time by v. The functionu represents the firm’s operating
strategy (specified for each possible economic stgjewhich is assumed to be fixed
at the outset. At each timethe valueu; depends on the economic stafg and may
only take values in the admissible g&tFor further background on stochastic optimal
control we refer the reader to @ksendal (2003).

Given an operating strategy we express the firm’s future profits using a running
profit functiong, discounted at the rate of interestLet T" be the time at which the
operating license expires. In addition to the running prtfi firm also experiences
a final cashflowh (X, ); if v < T then the firm has abandoned early, andi$&,)
includes the fine. We define thaerformance function w* to be the firm’s expected
total profit, net of any fine:

w"(z) = By [/OV e_f'zg(Xz,uz)dz + e_f”h(XV) , (2)

where E, denotes the expected value wh&g = = € R™. We remove the en-
dogenous behavioral uncertainty due to the firm's choicepefrating strategy. by
assuming that there exists an optimal strateggyvhich maximizes the value of the
performance functiom® (). This value is thus given by the functidf, where

Vi (z) = w" (x) (3)
The HJB equation gives th&t* is the solution to the PDE

sup{LV(z) + g(z,v) — 7V (z)} =0 in H

velU
lim V(z) = —h(y,v) for ye€oH 4)
Ty
where
D SIS V) o
o =1 Y 835183:] — laxi

and[a;;] = $00’, andH is the set of all economic states which itself is often part of

the solution to the optimal control. A time derivative is @&tl presentin (4), as time
forms part of the stochastic process (@)= 1.dt + 0.dB.
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In order to study the effect of varying the level of the fike we specify the
following form for A:

h(Xl/7ul/) :l(XV)uV)+KIV<T (6)

wherel, .7 equals 1 if the firm abandons early (ie.yik T') and equals 0 otherwise.
Note that in equation (6), the fine is not inflation-linked; lenger horizong” it may
be appropriate to inflation-link the fine, which correspotaigremultiplyingK by a
factore™. To make the dependence &nexplicit, let us writeV* = V*(z, K) and
u* = u*(K) . Our three steps are now:

1. We first solve (4) to obtaif*(z, K') andu*(K). This provides the optimal op-
erating strategy.* (K') under the model, given that the fine is set at |eiel

2. The firm is now assumed to follow this operating strategd, amder this as-
sumption, its economic stafé* (5) is an (uncontrolled) Itd diffusion. As a re-
sult the quantity of interest to the regulator, namely theralbnment probability
P(z) = P(x, K) for a firm with initial economic state;, is then found as de-
scribed in Evatt et al. (2011) by solving a form of the Feynriat formula:

LP(zx)=0 in H
lim P(x) = I;,«r for ycoH 7

T—Y

wheret, is the value of the time co-ordinate at the pajnt

3. We now varyK (which in turn varies:*) until the abandonment probability is
reduced to the leval” required by the regulator. Lét™* be this optimal fine, so
that

P(z,K*) =Y. (8)

By construction of this three step process, once the camd(8) is met we are in
a form of nonzero sum Nash equilibrium (Starr and Ho, 1969).

It is worth noting that, depending on the application, thte & interest* above
(which is used to find”) may be different from the one used to solve the Feynman-
Kac formula (7) (and hence to finft). If the economic uncertainty is the price
process of a traded commaodity, then the market prices efédgtdetermine a risk-
adjusted rate of interest. In order to avoid the possibditarbitrage, it is this rate
that must be used to calculaté In contrast, when calculating the abandonment
probability the regulator is free to leave the probabilibdiscounted. Alternatively,

a bespoke discount rate may be specifiedifpin order to place greater weight on
early abandonment and correspondingly less weight ondd@ndonment.

2.1 Feasibility

The fine K* obtained above is optimal, in the sense that a lower fine waotd
achieve the desired reduction in abandonment probabitity eahigher fine would
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have a negative societal impact by discouraging the puecbisew licenses. How-
ever, the optimal fine may be sufficiently high so that no raidirm would buy a
new license. The optimétasiblefine, K7 (), is therefore

Kj(z) = min{K;(z), K*(2)}, 9)

whereK(x) is the maximum fine the firm can afford; further discussiontus s
given by Lear and Maxwell (1998), and the practical impletagan of fines (such
as collecting performance bonds) is discussed by Holt (R005

2.2 Notation

The notation used in this section is consistent with thatgaly used in probability
theory, in the sense of @ksendal (2003). Yet as can be seme, dhe three different
symbols related to the stochastic process: the set of aifpleprocesses’, the indi-
vidual pointin the proces&;* and the quantity post-averagimgThe notation serves
a purpose in deriving the theoretical basis. But given itppse has been satisfied,
we now intentionally relax some of the notational rigor irder for an interdisci-
plinary reader to more easily move their way through the iemg sections. To be
consistent with some of the key work on real options theod/gumantitative finance
(such as Dixit and Pindyck (1994) and Wilmott et al. (199%)¥ar as possible we
use just the capital letter to denote the stochastic variabl

3 Improving security of vaccine supply

In this section, motivated by Hinman et al. (2006) and Helmale(2005), we in-
vestigate the problem of increasing the security of supplg @waccine. We employ
a simple real options model, in which a firm is contracted tppdy vaccines at a
fixed quantity and price, and is exposed to both fixed and tmicenput costs. The
only control available to the firm is the early terminationtloé contract, whilst the
industry regulator may wish to use a fine to control the prdiglof termination.
Termination fines are commonly used (Bates and Lemmon, 2808)the method of
Section 2 provides a quantitative method for setting thellef/fine, taking account
of the profit maximizing behavior of the firm.

Our model in this section is the following. The firm must detwa fixed number
q of doses each year fdr years, which are to be sold at an agreed sale price of
per dose. The firm’s costs include a fixed amount pér year and a variable amount
S which is uncertain and is assumed to follow a geometric Biawmotion

dS = pSdt + ocSdB (20)

wherey is the percentage drift anglis the percentage volatility. The firm’s control
strategy is simply to terminate the contract whgmises to a predetermined level
S*(t). This level may be time-dependent (although we will oftepmess the time
parameter for notational convenience), and takes accdualt termination costs.
With the notation of Section 2, the firm exerts no control uth& termination time
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v, and so the choice of strategy reduces to the choice of anation surfaces™.
We supply our own plausible parameter values characteritie uncertainty and
where possible, we use parameter values consistent wisie tiiven in Hinman et al.
(2006):

p=25%yr" Y, o=03yr Y2 r=2%yr !, s.=$30U"1,
T=5yr, I=%$100M, ¢g=5MUyr !, e=$13Myr ! (12)

where [ is the initial investment and we suppose that the currerdl lef/variable
input costs isS = $10 U~!, whereU refers to a single dose. We suppose that
the regulator’s target is to reduce the termination prdiigliiy 20% relative to the
baseline level when there is no fine, that is:

P <T|K = K*) =y = W< ?K:O). (12)

3.1 Regulator problem: Termination probability

In the notation of Section 2 we have= 2 andm = 1. Since the firm exerts no
control before the termination time, we do not model a cdntasiablew; and (1)
reduces to

X, = [f}] (X, ) = [“ﬂ L o(Xy) = ["(ﬂ , (13)

where the economic staf€, takes values in the regialf bounded above (in its first
coordinate) by the surfac&*. Inserting this in equation (7), we have the equation
governing the probability of contract termination:

P 1 , ,0°P or
5 a5z THI55 =0

ot 27

P=0 when t=T,
P=1 on §S=5%
P—0 as S—0. (24)

The solution to this equation depends on the firm’s contraltsgly, which is given
by the termination surfacg&* obtained in Section (3.2) below.

We note that if the contract is held in perpetuity, and if theaficashflowh is
constant in time, we obtain a time-stationary version ofgrablem. These assump-
tions are commonly used in real options studies (Dixit amaliack, 1994), and make
closed form solutions available by removing the time dini@m$rom the problem.
However, in the setting of this paper, the effect of discng&a constant fine reduces
its effect so greatly that such perpetual solutions arefammative. In the following
we therefore explore solutions to finite time horizon profideusing robust numerical
algorithms.
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3.2 Operator problem: termination surface

We now obtain the optimal termination surfagg, as a function of the fine level.
The surfaces™(K) is both an input to the calculation in section (3.1), and thignoal
operating strategy for the firm under this model. The firmisrming profit is modeled
as the sum of the sales, variable costs and fixed costs:

g(8) =q(sc = 5) —e (15)

and the functionl from (6) in section 4 represents the capital cost of closGre,
Inserting the price process (10) and cashflows (15) intofd);an write the equation
governing the valuation &s

AV 1 5 0%V ov B
8t+20S 852+uSanTV+d(scfS)fe—0

V=0 when t=T,
V= 2=c (1 —e7T-1) when S =0,
V=-C-K on §5=5" (16)

To maximizeV/, the firm must choose the surfagé optimally. This may be achieved
using the smooth pasting principle as fully detailed by Datid Pindyck (1994). In
the case of this abandonment problem, in which there aretnoefeash flows once
abandonment has been completed, the condition is given by,

ov

3.3 Numerical Approach

The boundaryS*(K) found in Section (3.2) may now be input to the calculation
in Section (3.1), to obtain the abandonment probability. d&Baote this probability
P(K,S,t), again to indicate dependence &nGiven the current variable production
costS, it is now a matter of a one-dimensional search to find the mum value of
K such thatP(K, S,t) =Y.

The precise numerical scheme we shall use to solve for thateal control de-
termined via equation (16), is a projected successive @axation (PSOR) method,
which is an accurate procedure for solving such free boyrm@ablems in quantita-
tive finance. The solution to the regulators problem for deieing the probability,
(14), does not involve determining a free boundary, as tbisdary is purely an in-
put. As such, one can use a standard implicit finite-diffeesscheme. Both of these
schemes are explained and detailed in Wilmott et al. (1995).

1 Itis straightforward to show that when the running profitdtion g is linear, and when a continuous
interval [a, b] of choices is available fal/, then the resulting optimal strategy is of a ‘bang-banguret
where the optimal control always lies within a finite set.iege cases, although the HIB equation holds,
it simplifies to solving Feynman-Kac equations on overlagpilomains with free boundaries (dksendal,
2003). When the running profit is nonlinear this is no longee tand the full HIB equation must be solved.
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3.4 Results

137.6 T T T T T T

137.4

137.2

137

NPV ($m)

136.8

136.6 I I I I I | I
0

Penalty Fine K ($m)

Probability P

Penalty Fine K ($m)

Fig. 1 The top graph shows the firm’s NPV for each termination fiieand the lower graph shows the
firm’s probability of early termination (the quantity of erest to the regulator) for eadki. The fine K*
achieving a 20% reduction in termination probability iswhadn the lower graph (where the curve meets
the horizontal dashed line), and the corresponding NPWisngin the top graph.

The solutions to (16) and (14), when using the parameterengdy (11), are
shown in Figure 1. The top graph shows how the optimal netepteglue (NPV
= V — I) of the operation is dependent upon the termination fiheand the lower
graph shows how the resulting probability of terminatiories The objective of the
regulator is to reduce the probability of early terminatiy20%, and the fine which
achieves this aim is indicated by the intersecting dashestlin the lower graph:
K* = $5.6M. The introduction of this fine leads to a reduction of the fsiNPV
from $137.5M to $136.82M, a reduction in NPV of just 0.5%.

Figure 2 illustrates the effect of the optimal fidé* on the optimal operating
strategy of the firm, where the termination boundafié®) (dashed line) and (K ™)
(solid line) are shown. The difference between these twuitetion prices becomes
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Termination PriceS*

30 . . . . .
0 0.5 1 15 2 25 3 35 4 4.5 5

Time to expiry(T — t)

Fig. 2 Optimal termination prices for the manufacturer, viewedtestime to expiry is approached, for
two different penalty fines. The continuous line is when thgmal termination fine is imposed upon the
operatorK* = $5.6M, and the dashed line shows the optimal strategy when ndtpdiree is imposed
K = 30.

greater close to contract expiry. It is clear from Figure & tihe reduction in termi-

nation probability is principally achieved by excludingrténation decisions close to
expiry of the operating license: this feature also expl#ieselatively low impact of

the termination fine on the firm’'s NPV.

In Figure 3 we investigate the sensitivity of the resultshte parameter values
specified in (10). The top graph shows how, given the initiédeplevel, the proba-
bility of early termination increases as the percentagatility o is increased. In the
bottom graph we show how the probability of termination @ases as the percentage
drift . increases. We note that the main effect is a translationeottinve, so that the
objective of a 20% reduction in termination probability apps robust to uncertainty
over the parameteysando.

4 Increasing the societal benefit of an extraction project

In this section we consider the use of fines to reduce the pilityathat a mining
project will be abandoned early. The societal and economiefits from a mining
project can be large, with increased investment in an ar@&adging increased levels
of employment and improved community resources. When etitra ceases, these
benefits also cease, to the detriment of the community (Amsh®peed et al., 2005);
the abandonment of the extraction site may also carry amamnwiental cost. A re-
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02 o =0.35% i

; \
= o =0.3%
g 0.15F b
o
£ o =0.25%

0.1 s

0.05 \ \ \ \ \ \
0 1 2 3 4 5 6 7

Penalty Fine K ($m)

Probability P

Penalty Fine K ($m)

Fig. 3 The sensitivity of the probability of early termination, @se varies the parameters of the stochastic
process (10). The top graph shows the sensitivity towarelsdfatility: o = 0.25,0.3 and0.35 %. The
bottom graph shows the sensitivity towards the dfift= 0.1, 0.2 and0.3 %. Unless being varied in the
graph, all other parameters are given by (11).

cent World Bank report (Otto, 2010) discusses a legal frapnkwithin which local
governments can ensure more sustainable resource extractijects. Such consid-
erations include making provisions for new forms of ecoroaditivity and employ-
ment post-extraction (Veiga et al., 2001). However, thesgipions may not address
the risk of early abandonment of the mining project due tavorfable commodity
prices. In the context of a regulated market, a suitablelibguim must be sought
between the regulator and mining firm (Kniesner and LeetB420tto, 1997). If
the equilibrium is achieved through a fine for abandonmastrégulator must avoid
deterring this often vital corporate investment (Otto, @Q0We now show that this
problem falls within the scope of Section 2, when the exogsnmcertaintys is the
commodity price and the operating stratagis the rate at which the commodity is
extracted.
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Fig. 4 The ore grade of a gold mine, ordered in a chronological semef extraction. The gradé&;, is
measured in grammes per tonne, and the x-axis denotes thenanfaemaining ore@. This data was
supplied by Gemcom Software International.

4.1 Model: the mining operation

In this example we use empirical data on the ore-grade gualifgrammes of gold

per tonne of earth) from a real gold mining operation, whasa thas been supplied
by Gemcom Software International (a large mining solutiprevider). The data is

plotted in Figure 4, following an extraction schedule whistscheduled to last 4.9
years at constant extraction rate. In our model, the econatate of the mine is

(S,t,Q), where@ is the volume of ore remaining in the mine. We assume that
follows a mean-reverting Cox-Ingersoll-Ross procesd) sfibchastic dynamics

dS = k(p — S)dt + o/ SdB, (18)

wherey is the long-term average price of gold amdk the speed of mean reversion.
The diffusion(S, ¢, Q) is controlled by choosing the rate of extractipn- —%. In
the notation of Section 2 we hawe= 3, m = 1 and

S k(p—S) o/ S
u=q, Xe= | t |, (X, up) = 1 , 0( Xy up) = 0
Qtv —qt 0

(19)
We take a simple model in whighmay have either the valug or g2, with g1 < ¢o;
we will refer to state 1 as ‘normal operation’, and to state 2eapanded operation’.
The capital cost of switching from state 1 to state Z’'is and switching from state
2 to state 1 is not possible. The mine may be abandoned fréwerestate, incurring
a capital cost’;, andCy, from states 1 and 2 respectively. The firm’s running cost
per unit time in state is ¢;, so that the running cashflows for the mine are

9i(8:t,Q) = ¢:G(Q)S — €. (20)
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The operational strategy of any firm is assumed to considtrektprice thresholds
S*(t,Q), Si,(t,Q) andS;,(t,Q), all of which may depend on both the timend
the remaining quantity of or€. The thresholdS* (¢, Q) is the gold price at which
the operation expands from state 1 to state 2, whiflg¢, @) and S5, (¢, Q) are the
gold prices at which the project is abandoned, respectivelfy states 1 and 2.

The objective of the regulator is assumed to be the intréoinicif a fine for
abandonment which halves the probability of abandonmentésto improve the
security of supply of economic benefit to the surrounding amity), relative to
the probability without a fine. The remaining parameter galof this gold mine
extraction project are given by

p=9%24.4gr"1, o=25%, k=00lyr ', r=8%uyr1,
I =$50M, q1=1Mtyr~t, g =2Mtyr~ !, € =€ =$yr 1,
Cio = $10M, Cs, = $10M, C.=$20M, Sy=$25.7gr*. (21)

4.2 Abandonment probability

Inserting the controlled diffusion (19) into equation (e probability of abandon-
ment is given by the coupled equations

1 2 82P1 8P1 6P1 aPl
lppgdfi 01 0% 5%y
27 555 ~ oy Dgg trl—Sgg =0

P1 =1 on S= Sika,
P, =0 when min{Q,7}=0,

P1:P2 on S:S:, (22)
and
1 2 82P2 8P2 an aPQ
—o°S - — = - S8)—=0
27995 o g tH— % =0

PQ =1 on S= S;av
P, =0 when min{Q,7}=0,
P,—0 as S — oo, (23)

wherer = T'—t. These particular boundary conditions are mathematiealjogous
to hysteresis problem in physics solved by Freidlin et @0(®. As in the previous
section, the solution to the coupled equations (22)—(2Bpdds on the firm’s con-
trol strategy. We now describe, from the point of view of a fitire optimal choice
for the three surfaceS;, (1, @), S3,(7, Q) andS? (7, Q).
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4.3 Operator

From the price process (18), controlled diffusion (19) anthing cash flows (20), we
can insert them into equation (4), to obtain the followingdPfor the mines expected
profit:

2Vi Vi oV oV,
- : - —S) e — Vi + @GS — e =0,

14
oS 95

37 995 ~ 5 " Wigg Tk

V1 =0 when min{r,Q} =0,
Vi=-Ciw— K when S=57,

Vi=Vo—-C, on S=5;, (24)
and
1 ,.0%Va OV OV vy
50’ SaSQ —E—QQ%—I—H(/L—S)%—7“/2+QQGS—€2:0,

Vo =0 when min{r,Q} =0,
Vo=—-Cs — K when S=53,
Vo~S as S — oo (25)

We refer to Brennan and Schwartz (1985) for the justificatibthese boundary con-
ditions. In addition, for optimality to be obtained, we réguthat at each of the tran-
sitions the smooth pasting condition must hold:

8‘/ * * *

% =0 on S:{SevslaaSQa}' (26)
The boundaries?, (7, Q), S;,(7, Q) and.S*(r, Q), which again depend oA (al-
though we have suppressed this for notational convenienmas) be obtained from
(24)—(25) as described in Evatt et al. (2011) and input tocéleulation in section
(4.2). A one-dimensional search is again sufficient to ebtlhé minimum value of
K achieving the desired reduction in abandonment probgbifitler the model.

4.4 Results

Since equations (24)—(25) are convection dominated inQ2hgriable, we obtain
numerical results by the semi-Lagrangian method, as edillzy Chen and Forsyth
(2007). In Figure 5 we show the probability of abandonmenswe level of fine/

(top graph), and the mining project’s NPV verslis(bottom graph). The optimal
level for K is K* = $8.85M with an associated NPV of $97.05M, which compares
to $97.8M whenk = 0. The halving of abandonment probability is thus achieved in
return for a reduction in NPV of $0.75M, or 0.8%.The roughaefFigure 5 (top) is a
consequence of roughness in the ore grade data as showmnie Big-igure 6 shows
the optimal thresholds for changing operational state ,nr@fine is imposed (top)
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Fig. 5 The probability of abandonment (top graph) and NPV (bottoaph) of a gold mining project,
plotted as a function of abandonment penalty fine. The dalitesl show where the regulators objective
is met - which is to half the probability of abandonment - anel tesulting optimal NPV. The results are
plotted at$0.5M intervals, using the parameters values of (21).

and when the optimal fin& = $8.85M is imposed (bottom). The higher dashed
line is the optimal price to expand operatiSj, the lower dotted line is the optimal
price to abandon from the expanded st8ife and the continuous line is the decision
to abandon from normal operatictf,. The most significant difference between the
two operating strategies is found towards the end of extnacas(Q approaches 0.

5 Conclusion and discussion

We have presented a method for determining regulatory fitdshvestablish a Nash
equilibrium between an industry regulator and a firm, in thespnce of exogenous
uncertainty. The method uses the partial differential €éqna which govern both the
firm’s expected profit and the values of regulatory interiésontrasts with scenario
analysis (Postma and Liebl, 2005) by considerigpossible future scenarios, and
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Reference Price
/

Ore [106 Tonnes]

Reference Price
/

0 o | s 1 s 1 s 1
0 1 2 3 4

Ore [106 Tonnes]

Fig. 6 Graphs showing the optimal prices for when to change operatistate of a gold mine, for when
no penalty fine is present (top graph) and for when the optpeahlty fine, K = $8.85M, is imposed
(bottom graph). In each figure, results are shown for thergitexpansion decisiof} (higher dashed
line), the optimal abandonment decision from the expantid S, (lower dashed line), and the optimal
abandonment decision from the normal extraction sgte (lower continuous line). The graphs were
calculated using the parameters values of (21).

is exact in that it does not require simulations. Our workgpleable whenever the
evolution of a firm’s economic state can be modeled by a ctetttd diffusion, and
its profits can be expressed in the form (2). We have givestithtive applications to
two example regulatory scenarios.

A classic application of stochastic optimal control thewr§inance is the portfo-
lio allocation problem (dksendal, 2003), in which the (oftégh dimensional) state
of the portfolio is the controlled I1td diffusion of interedHowever, when the state
is described by a high dimensional controlled Itd diffusithe numerical methods
we have described are currently impractical. Indeed, gtagine analysis for finan-
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cial services regulation, which takes into account the proéximizing behavior of

financial agents, is currently a challenging area of majtarest (VanHoose, 2007).
For a current example of regulatory fines imposed on banksdardo control the

probability of default, see Jimenez-Martin et al. (2009)th/advances in numerical
schemes and computational power (Xiu, 2009) however, &nahethods such as the
one presented in this paper should become increasingljcapf# to the regulation
of financial services and other similarly complex industrie
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