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Abstract. We construct stochastic Galerkin approximations to the solution of a first-order
system of PDEs with random coefficients. Under the standard finite-dimensional noise assumption,
we transform the variational saddle point problem to a parametric deterministic one. Approximations
are constructed by combining mixed finite elements on the computational domain with M -variate
tensor product polynomials. We study the inf-sup stability and well-posedness of the continuous and
finite-dimensional problems, the regularity of solutions with respect to the M parameters describing
the random coefficients, and establish a priori error estimates for stochastic Galerkin finite element
approximations.
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1. Introduction. The numerical approximation of solutions to elliptic PDEs
with random data is a topical research area (see, e.g., [2], [3], [11], [12], [14], [19], [25]).
In particular, stochastic Galerkin approximations have been extensively studied, and
a priori error estimates are provided in [3]. Relatively little work has been done on
saddle point problems with random data (although see [10], [17], and [20]) and a priori
error analysis for such problems is much less well developed.

To begin, consider the abstract problem: find q ∈ V and u ∈ W such that

(1.1)
a(q, r) + b(r, u) = �(r) ∀ r ∈ V,

b(q, v) = t(v) ∀ v ∈ W,

where a(·, ·) : V × V → R and b(·, ·) : V × W → R are bounded bilinear forms,
� : V → R, t : W → R are bounded linear functionals, andV andW are Hilbert spaces
of vector-valued functions and scalar functions, respectively. The general theory of
saddle point problems (see [9]) guarantees that a unique solution exists if a(·, ·) is
coercive on the null-space of b(·, ·), and if

(1.2) ∃β > 0 such that sup
r∈V

b(r, v)

‖r‖V
≥ β ‖v‖W ∀ v ∈ W.

Now, let D ⊂ Rd (d = 2, 3) be a Lipschitz domain with polygonal (d = 2) or
polyhedral (d = 3) boundary ∂D and let ∂DDir and ∂DNeu be disjoint open subsets
of ∂D such that ∂DDir 	= ∅ and ∂DNeu = ∂D\∂DDir. A commonly studied example
of (1.1) arises from the mixed variational formulation of the boundary value problem
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(1.3)

A−1q+∇u = 0 in D,
div q = f in D,

u = g on ∂DDir,
n · q = 0 on ∂DNeu.

Other examples arise from mixed variational formulations of, e.g., the Stokes and
Navier–Stokes equations. In the case of (1.3), V := H0(div, D), W := L2(D),

a(q, r) :=

∫
D

A−1q · r dx, b(r, u) := −
∫
D

u divr dx, t(v) =

∫
D

fv dx,

and �(r) = 0, where, as usual,

H0(div, D) :=
{
r ∈ L2(D); div r ∈ L2(D), 〈r,∇v〉 + 〈div r, v〉 = 0 ∀ v ∈ H1

0,Dir(D)
}

and H1
0,Dir(D) contains H1(D) functions having vanishing trace on ∂DDir. For V =

H0(div, D) and W = L2(D), the inf-sup condition (1.2) is satisfied (see [9]) and there
exists β > 0, depending only on the domain D, such that

(1.4) sup
r∈H0(div,D)

∫
D
v divr dx

‖r‖H(div,D)
≥ β ‖v‖L2(D) ∀ v ∈ L2(D).

Galerkin approximations to the solution (q, u) of the saddle point problem (1.1)
can be obtained by replacing V and W with finite-dimensional subspaces Ṽ ⊂ V and
W̃ ⊂ W that satisfy the discrete analogue of the inf-sup condition. For (1.3), we need
Ṽ ⊂ H0(div, D) and W̃ ⊂ L2(D) for which there exists β̃ > 0, such that

(1.5) sup
r∈Ṽ

∫
D v divr dx

‖r‖H(div,D)
≥ β̃ ‖v‖L2(D) ∀ v ∈ W̃ .

Suitable pairs of finite element spaces, defined with respect to a partition ofD, include
the well known Raviart–Thomas (RT) and Brezzi–Douglas–Marini (BDM) spaces.

Suppose now that A−1 in (1.3) is not known at every point in the computational
domain; this is common in engineering applications. To accommodate such data
uncertainty we can model A−1 as a random field, i.e., as a random variable at every
x ∈ D. To that end, we introduce a complete probability space (Ω,F ,P), where Ω
denotes the set of outcomes, F is a σ-algebra of events, and P : F → [0, 1] is a
probability measure. Now, if A−1 = A−1(x, ω), x ∈ D, ω ∈ Ω, the solution to (1.3) is
a pair of random fields (q, u) = (q(x, ω), u(x, ω)) such that, P-a.e. in Ω,

(1.6)

A−1(x, ω)q(x, ω) +∇u(x, ω) = 0 in D,
div q(x, ω) = f(x) in D,

u(x, ω) = g(x) on ∂DDir,
n · q(x, ω) = 0 on ∂DNeu.

The mixed variational formulation of (1.6) is also a saddle point problem of the form
(1.1). However, the bilinear form a(·, ·) contains a random coefficient, and the solution
and test functions are random fields.

Approximations of (1.6) are sought via stochastic collocation methods in [20]
and [21] and via stochastic Galerkin methods in [18] and [17]. The emphasis in the
latter works is on linear algebra and fast solvers, although a partial error analysis and
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discussion of inf-sup stability is provided in [17]. An interesting saddle point problem
arises when solving PDEs on random domains using a fictitious domain approach,
where randomness enters via the bilinear form b(·, ·) and not via a(·, ·). Stochastic
Galerkin approximation of this problem is discussed in [10]. Here, we provide a full a
priori error analysis for stochastic Galerkin approximations of (1.6), as has been done
for second-order elliptic PDEs with random coefficients in [3].

The paper is organized as follows. In section 2 we derive a variational formulation
of (1.6), introduce appropriate solution spaces, and verify well-posedness. We then
approximate the random input A−1 using a spectral expansion in M random vari-
ables. We derive a perturbed saddle point problem, prove well-posedness, and convert
to a deterministic problem with M parameters. In section 3 we construct stochas-
tic Galerkin approximations to the solution of the parametric deterministic problem,
combining inf-sup stable deterministic finite element spaces on D with M -variate ten-
sor product polynomials. Our main results appear in sections 4 and 5. In section 4, we
extend the work in [3] to show that both components of the solution to the parametric
saddle point problem are analytic with respect to the M parameters describing the
random data. In section 5, we derive bounds for the error introduced by approximat-
ing the random data and the error in the stochastic Galerkin approximation arising
from the choice of finite element and polynomial approximation spaces. We conclude
our presentation in section 6 with some remarks and perspectives. The final section is
a technical appendix. It contains auxiliary results needed for completeness but that
disturb the flow of the discussion when included in the text.

2. Saddle point problem with random data. In order to set up the mixed
variational formulation of (1.6), we first provide some notation and define suitable
spaces of functions on D × Ω (random fields) as well as bilinear forms.

For an integer q ≥ 1, Lq
P
(Ω) denotes the set of real-valued random variables on

the probability space (Ω,F ,P) with finite qth moment. If ξ ∈ L1
P
(Ω), the expectation

E[ξ] is well defined, and if the probability density function ρξ : R → [0,+∞) exists,

E[ξ] :=

∫
Ω

ξ(ω)dP(ω) =

∫
R

yρξ(y)dy.

In addition, the covariance of two random variables ξ, η ∈ L2
P
(Ω) is defined as

Cov(ξ, η) := E
[
(ξ − E[ξ])(η − E[η])

]
.

We use boldface to denote vector-valued functions and spaces of such functions
(e.g., Hs(D) = (Hs(D))d). As usual, the associated norms and inner products are
defined componentwise. The L2(D) inner product and norm of scalar functions on D
are denoted by 〈·, ·〉 and ‖ · ‖, respectively, and we use the same notation for vector-
valued functions u ∈ L2(D). Standard notation is used for the differential operators
∇ = (∂/∂x1, . . . , ∂/∂xd), div = ∇ ·, curl = ∇×, and the Laplace operator Δ = div∇.

Now, let X(D) be a normed vector space of real-valued scalar functions on D
with norm ‖ · ‖X . We can define the Bochner space

L2
P
(Ω, X(D)) :=

{
v (x, ω) : D × Ω → R; ‖ v ‖L2

P
(Ω,X(D))< ∞

}
of second-order scalar random fields, where

(2.1) ‖ v ‖L2
P
(Ω,X(D)):=

(
E
[
‖v‖2X

])1/2
.
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Spaces of vector-valued random fields are analogously defined. In particular, we will
work with the spaces

V := L2
P
(Ω,H0(div, D)) and W := L2

P
(Ω, L2(D))

with the corresponding norms

‖r‖V :=
(
E
[
‖r‖2H(div,D)

])1/2
and ‖v‖W :=

(
E
[
‖v‖2
])1/2

,

where ‖r‖2H(div,D) := ‖r‖2 + ‖div r‖2.
We make the following assumptions on the input random field A−1 in (1.6).
Assumption 2.1. A−1(x, ω) : D × Ω → R is a second-order random field, i.e.,

A−1(x, ·) ∈ L2
P
(Ω) ∀x ∈ D, with given mean E[A−1](x) =

∫
Ω
A−1(x, ω)dP(ω) ∈ L2(D)

and covariance function

(2.2) C[A−1](x,x′) := Cov
(
A−1(x, ·), A−1(x′, ·)

)
∈ L2(D ×D).

Assumption 2.2. A−1(x, ω) ∈ L∞(D ×Ω) is uniformly bounded away from zero,
i.e., there exist positive constants Cmin and Cmax such that

(2.3) 0 < Cmin ≤ A−1(x, ω) ≤ Cmax < ∞ a.e. in D × Ω.

We now define two bilinear forms,

a(q, r) := E

[ ∫
D

A−1(x, ·)q(x, ·) · r(x, ·) dx
]
, q, r ∈ V ,(2.4)

b(r, v) := −E

[ ∫
D

v(x, ·) div r(x, ·) dx
]
, r ∈ V, v ∈ W ,(2.5)

and, for simplicity, assume g ≡ 0 on ∂DDir in (1.6). Then, for a given f ∈ L2(D), the
variational formulation of problem (1.6) reads as follows: find q ∈ V and u ∈ W such
that

(2.6)
a(q, r) + b(r, u) = 0 ∀ r ∈ V ,

b(q, v) = − E[〈f, v〉] ∀ v ∈ W .

The well-posedness of (2.6) is established in the next lemma.

Lemma 2.1. If A−1(x, ω) satisfies Assumption 2.2, then problem (2.6) admits a
unique solution pair (q, u) ∈ V ×W. Moreover,

‖q‖L2
P
(Ω,L2(D)) ≤

Cmax

βCmin
‖f‖,(2.7)

‖q‖V ≤
((

Cmax

Cminβ

)2

+ 1

)1/2

‖f‖, ‖u‖W ≤ C2
max

Cminβ2
‖f‖,(2.8)

where Cmin, Cmax are as in (2.3) and β > 0 satisfies (1.4) and is also the inf-sup
constant for (2.6).

The proof follows the general theory of saddle point problems in [9, Chapter II].
We skip it here as is it essentially the same as the proof of Lemma 2.3, given later.
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Remark 2.1. It is possible to guarantee the existence and uniqueness of the
solution to problem (2.6) under a weaker assumption on A−1. More precisely, one can
assume, instead of (2.3), that P-a.e. in Ω there holds

0 < Cmin(ω) ≤ A−1(x, ω) ≤ Cmax(ω) < ∞ a.e. in D

(so Cmin and Cmax are random variables). An assumption of this type is advantageous
when A−1 is an unbounded (e.g., Gaussian or lognormal) random variable at x ∈ D.
(We do not consider that case here.) See [2, Lemma 1.2] and [11, 12] for a discussion
of a similar assumption for primal formulations of elliptic PDEs with random data.

2.1. A perturbed saddle point problem with random data. In order to
transform the saddle point problem (2.6) into one that is amenable to solution by
deterministic numerical methods, we use a spectral expansion of A−1(x, ω) to separate
out the dependence on x ∈ D and ω ∈ Ω. Several such representations are available
(see [25] for a survey). Herein, we focus on the Karhunen–Loève (KL) expansion

(2.9) A−1(x, ω) = E[A−1](x) +

∞∑
j=1

√
λjϕj(x)ξj(ω)

(see [26]), where {ξj}∞j=1 is a family of uncorrelated random variables with mean

zero and unit variance, and {(λj , ϕj)}∞j=1 , with λ1 ≥ λ2 ≥ . . . ≥ 0, are the ordered

eigenpairs of the integral operator CA−1 : L2(D) → L2(D), defined by

(2.10) (CA−1w)(x) =

∫
D

C[A−1](x,x′)w(x′)dx′.

The first step in discretizing (2.6) is to approximate A−1 by truncating (2.9) after
M terms:

(2.11) A−1(x, ω) ≈ A−1
M (x, ω) := E[A−1](x) +

M∑
j=1

√
λjϕj(x)ξj(ω), M ∈ N.

Using the truncated coefficient A−1
M (x, ω) instead of A−1(x, ω) in (2.6), we arrive

at a perturbed problem: find q(M) ∈ V and u(M) ∈ W such that

(2.12)
aM
(
q(M), r

)
+ b
(
r, u(M)

)
= 0 ∀ r ∈ V ,

b
(
q(M), v

)
= − E[〈f, v〉] ∀ v ∈ W ,

where now the leading bilinear form in the first equation is defined by

(2.13) aM (q, r) := E

[∫
D

A−1
M (x, ·)q(x, ·) · r(x, ·) dx

]
, q, r ∈ V.

It follows immediately from Lemma 2.1 that (2.12) is uniquely solvable if A−1
M is

uniformly bounded almost everywhere in D×Ω, i.e., if there exist positive constants
CM and CM (depending on M) such that CM ≤ A−1

M (x, ω) ≤ CM a.e. in D × Ω.
However, it is possible to bypass this requirement if ‖A−1 − A−1

M ‖L∞(D×Ω) → 0 as
M → ∞. To ensure this, we need the following assumption.

Assumption 2.3. The family ξ = {ξj}∞j=1 of random variables in the KL expansion
(2.9) is uniformly bounded, i.e., ∃Cξ > 0 such that ‖ξj‖L∞

P
(Ω) ≤ Cξ ∀ j ≥ 1.
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Now, for KL expansions with bounded random variables, the rate at which the
error ‖A−1−A−1

M ‖L∞(D×Ω) converges to zero depends on the decay rate of the eigen-
values λj . Studies of decay rates of eigenvalues of integral operators such as the one
in (2.10) and the dependence on the regularity of the kernel (here, the covariance
function) date back to [31] (see also [24], [28], and [19]). In general, the smoother
the covariance, the faster the eigenvalues decay, and the faster the truncation error
‖A−1−A−1

M ‖L∞(D×Ω) converges to zero. In particular, [19] shows that piecewise ana-
lytic covariance kernels lead to exponential convergence (with respect to M), whereas
piecewise smooth covariance functions ensure only algebraic convergence. This re-
sult is formulated precisely in Lemma 2.2, which we quote from [19, Proposition 4.2].
First, we need the following definition.

Definition 2.1. The function C[A−1] : D×D → R is piecewise analytic (resp.,
piecewise smooth) on D ×D if there exists a finite family {Di}Ii=1 ⊂ R

d of mutually
disjoint open subdomains of D such that D̄ ⊆ ∪I

i=1D̄i and for any pair (i, i′), the
restriction C[A−1]|Di×Di′ has analytic (resp., smooth) continuation in a neighborhood
of D̄i × D̄i′ .

Lemma 2.2. Let Assumption 2.3 hold. If C[A−1] is piecewise analytic on D×D,
then there exists a constant c > 0 such that for any � > 0 there holds

(2.14) ‖A−1 −A−1
M ‖L∞(D×Ω) ≤ C e−c (1/2−�)M1/d ∀M ∈ N

with a positive constant C depending on d, �, c, Cξ, and I.
If C[A−1] is piecewise smooth on D ×D, then for any t, � > 0 there holds

(2.15) ‖A−1 −A−1
M ‖L∞(D×Ω) ≤ CM1−t(1−�)/d ∀M ∈ N

with C > 0 depending on d, t, �, Cξ, and I.
Corollary 2.1. Let A−1(x, ω) satisfy Assumptions 2.1, 2.2, and 2.3. If the

covariance function C[A−1] is piecewise smooth on D ×D, then there exists M0 ∈ N

depending on Cmin, Cmax in (2.3) and on C[A−1] such that for any M ≥ M0,

(2.16) αmin := 1
2Cmin ≤ A−1

M (x, ω) ≤ Cmax +
1
2Cmin =: αmax a.e. in D × Ω.

Hence, problem (2.12) admits a unique solution
(
q(M), u(M)

)
∈ V ×W satisfying

(2.17)
∥∥q(M)

∥∥
V ≤

((
αmax

αminβ

)2

+ 1

)1/2

‖f‖,
∥∥u(M)

∥∥
W ≤ α2

max

αminβ2
‖f‖,

where β > 0 satisfies (1.4) and is also the inf-sup constant for (2.12).

2.2. Parametric deterministic reformulation. We are now going to write
problem (2.12) in an equivalent parametric form. This is straightforward under the
following assumption on the random variables ξj in the KL expansion (2.9).

Assumption 2.4. The random variables ξj : Ω → R (j = 1, 2, . . .) in (2.9) are
independent, Γj := ξj(Ω) is a bounded interval in R, and the density function ρj :
Γj → R+ of each ξj is given.

When using A−1
M (x, ω) in (2.12), we restrict the variability of A−1 to the M

random variables ξ1, . . . , ξM . Since q(M) and u(M) exist, and are measurable with
respect to the σ-algebra generated by (ξ1, . . . , ξM ), the Doob–Dynkin lemma (cf. [27])
says that q(M) and u(M) are functions of these same M random variables. With a
slight abuse of notation, we can write q(M)(x, ω) = q(M)(x, ξ1(ω), . . . , ξM (ω)) and
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u(M)(x, ω) = u(M)(x, ξ1(ω), . . . , ξM (ω)). Now, let y = (y1, . . . , yM ) ∈ Γ be the vector
whose components are yj = ξj(ω), j = 1, . . . ,M, with Γ := Γ1 × · · · × ΓM ⊂ RM .
By independence of the ξj , the joint probability density of (ξ1, . . . , ξM ) is ρ(y) :=∏M

j=1 ρj(yj), and for any measurable function g of ξ1, . . . , ξM , E[g] =
∫
Γ ρ(y) g(y) dy.

We can now write the parametric variational formulation equivalent to (2.12) as
follows: find

(
q(M), u(M)

)
∈ V ×W satisfying

(2.18)

aM
(
q(M), r

)
+ b
(
r, u(M)

)
= 0 ∀ r ∈ V,

b
(
q(M), v

)
= −

∫
Γ

〈f, v〉 ρ(y)dy ∀ v ∈ W,

where V:=L2
ρ(Γ;H0(div, D)), W :=L2

ρ(Γ;L
2(D)) are the Bochner spaces with norms

‖r‖2V :=

(∫
Γ

‖r(·,y)‖2H(div,D)ρ(y)dy

)
, ‖v‖2W :=

(∫
Γ

‖v(·,y)‖2L2(D)ρ(y)dy

)
.

The bilinear forms in (2.18) are now rewritten as

aM (q, r) =

∫
Γ

ρ(y)

∫
D

A−1
M (x,y)q(x,y) · r(x,y) dxdy, q, r ∈ V,(2.19)

b(r, v) = −
∫
Γ

ρ(y)

∫
D

v(x,y) div r(x,y) dxdy, r ∈ V, v ∈ W,(2.20)

where aM (·, ·) contains the parameterized coefficient

A−1
M (x,y) = E[A−1](x) +

M∑
j=1

√
λjϕj(x)yj .(2.21)

In what follows, we assume M is sufficiently large that A−1
M (x,y) is bounded as in

(2.16), i.e.,

(2.22) αmin ≤ A−1
M (x,y) ≤ αmax a.e. in D × Γ,

with αmin = 1
2Cmin and αmax = Cmax+

1
2Cmin, where Cmin, Cmax are as in (2.3). (See

Corollary 2.1 for the necessary assumptions for (2.22) to hold.)
The following lemma establishes the well-posedness of (2.18).
Lemma 2.3. If A−1 satisfies the assumptions in Corollary 2.1and Assumption 2.4,

then problem (2.18) admits a unique solution pair
(
q(M), u(M)

)
∈ V×W . Moreover,

(2.23)
∥∥q(M)

∥∥
V

≤
(( αmax

αminβ

)2
+ 1

)1/2

‖f‖,
∥∥u(M)

∥∥
W

≤ α2
max

αminβ2
‖f‖,

where β > 0 satisfies (1.4) and is the inf-sup constant for (2.18).
Proof. In order to apply the general result for saddle point problems (see Lem-

ma 7.1), one needs to verify the continuity of both bilinear forms (2.19)–(2.20), the
coercivity of aM (·, ·) on the null-space associated with b(·, ·), and the inf-sup condition.
The proof of the continuity and coercivity properties is standard (see [6, Lemma 2.3]
for details). To verify the inf-sup condition, for any v ∈ W we use Lemma 7.2 to
find z ∈ V such that div z = v in W and ‖z‖V ≤ CD‖v‖W , where CD is a constant
depending only on D. Then, the inf-sup condition follows:

(2.24) sup
r∈V

b(r, v)

‖r‖V
≥ − b(z, v)

‖z‖V
=

∫
Γ
〈v, div z〉ρ(y)dy

‖z‖V
=

‖v‖2W
‖z‖V

≥ β ‖v‖W ∀ v ∈ W
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with the constant β := 1/CD. Following the arguments in Lemma 7.2 for the deter-
ministic spaces (i.e., V = H0(div, D), and W = L2(D)), it is possible to show the
deterministic inf-sup condition (1.4) is satisfied with this same choice of β.

The above conditions ensure the existence and uniqueness of a solution to problem
(2.18). Inequalities (2.23) are then established by using the standard techniques for
saddle point problems (see [6, Lemma 2.3]).

3. Galerkin approximation. Our goal in this section is to construct inf-sup
stable Galerkin approximations of the solution

(
q(M), u(M)

)
to problem (2.18). To do

this, we build finite-dimensional subspaces Vhp,k ⊂ V and Whp,k ⊂ W by tensorizing
standard finite element functions of x ∈ D and M -variate polynomials of y ∈ Γ. In
what follows, h > 0 and p ≥ 1 will always denote discretization parameters associ-
ated with the finite element approximation on D, whereas k ∈ NM

0 will denote the
discretization parameter for M -variate polynomial approximations on Γ.

Let T be a family of quasi-uniform shape-regular meshes Δh on D. Each mesh
is a partition of D into d-simplices (triangular or tetrahedral elements) Kj such that
D̄ = ∪J

j=1K̄j , and K̄i∩ K̄j (i 	= j) is either a common vertex or an entire edge/face or
is empty. The parameter h refers to the maximal diameter of elements in the mesh.

We start by choosing finite-dimensional subspaces of H0(div, D) and L2(D) that
are inf-sup stable for the deterministic discrete saddle point problem (i.e., so that
(1.5) holds). Denote by Pp(K) the set of polynomials in x of total degree ≤ p on a
generic element K. We use two families of H(div, D)-conforming elements: the RT
and BDM elements. (See Remark 5.1 regarding other types of mixed finite elements.)
The corresponding spaces of degree p ≥ 1 on the element K are denoted as follows
(see, e.g., [9, 29]):

PRT
p (K) = (Pp−1(K))d ⊕ xPp−1(K); PBDM

p (K) = (Pp(K))d.

We use the unified notation Pp(K) to refer to either the RT or the BDM space on K
for p ≥ 1. Then, we set

(3.1) Xdiv
hp :=

{
r ∈ H0(div, D); r|K ∈ Pp(K) ∀K ∈ Δh

}
.

Note that only one of the RT or BDM spaces is used in (3.1) for all simplices. Now,
a compatible subspace of L2(D) (in the sense of (1.5); cf. [9]) is defined as follows:

X0
hp :=

{
v ∈ L2(D); v|K ∈ Pp−1(K) ∀K ∈ Δh

}
.

Since q(M) and u(M) depend on y = (y1, y2, . . . , yM ), we also need suitable finite-
dimensional subspace(s) of L2

ρ(Γ). We will use the same subspace of L2
ρ(Γ) for both

components of the solution. Given a multi-index k = (k1, k2, . . . , kM ) ∈ NM
0 of

polynomial degrees kj ∈ N0, we introduce the space of tensor product polynomials:

(3.2) Sk = Sk(Γ) := Sk1(Γ1)⊗ Sk2(Γ2)⊗ . . .⊗ SkM (ΓM ) ⊂ L2
ρ(Γ),

where Skj (Γj) = span{yαj

j ; 0 ≤ αj ≤ kj} ⊂ L2
ρj
(Γj), j = 1, 2, . . . ,M .

Now, choosing

(3.3) Vhp,k := Xdiv
hp ⊗ Sk and Whp,k := X0

hp ⊗ Sk,
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we arrive at the stochastic Galerkin FEM (sGFEM) formulation for problem (2.18):

find
(
q
(M)
hp,k, u

(M)
hp,k

)
∈ Vhp,k ×Whp,k satisfying

(3.4)
aM

(
q
(M)
hp,k, r

)
+ b
(
r, u

(M)
hp,k

)
= 0 ∀ r ∈ Vhp,k,

b
(
q
(M)
hp,k, v

)
= −

∫
Γ

〈f, v〉 ρ(y)dy ∀ v ∈ Whp,k.

For convergence and error analysis, we now restrict ourselves to two spatial dimensions
i.e., we assume that D ⊂ R

2. (See Remark 5.1 on extensions to three dimensions.)
Lemma 3.1. Let D ⊂ R2. For any h > 0, p ≥ 1, and k ∈ NM

0 , the discrete
problem (3.4) is uniquely solvable, and the sGFEM converges quasi-optimally, i.e.,

∥∥q(M) − q
(M)
hp,k

∥∥
V

≤
(
1 +

αmax

αmin

)(
1 +

1

β̃

)
inf

r∈Vhp,k

∥∥q(M) − r
∥∥
V
,(3.5)

∥∥u(M) − u
(M)
hp,k

∥∥
W

≤
(
1 +

1

β̃

)
inf

v∈Whp,k

∥∥u(M) − v
∥∥
W

+
αmax

β̃

∥∥q(M) − q
(M)
hp,k

∥∥
V
.(3.6)

Here,
(
q(M), u(M)

)
∈ V×W is the solution of (2.18),

(
q
(M)
hp,k, u

(M)
hp,k

)
∈ Vhp,k ×Whp,k

is the solution of (3.4), αmin and αmax are the positive constants in (2.22), and β̃ > 0
is the discrete inf-sup constant for (3.4) and is independent of h, p, and k.

Proof. Analogously to the proof of Lemma 2.3, we verify continuity of the bilinear
forms (now on the discrete subspaces), coercivity of aM (·, ·) on the discrete null-space
of b(·, ·), and the discrete inf-sup condition.

Continuity of the bilinear forms is established easily:

|aM (q, r)| ≤ αmax‖q‖V‖r‖V ∀q, r ∈ Vhp,k,(3.7)

|b(r, v)| ≤ ‖r‖V‖v‖W ∀ r ∈ Vhp,k, ∀ v ∈ Whp,k.(3.8)

Now, we introduce the discrete null-space associated with b(·, ·):

V0
hp,k :=

{
r ∈ Vhp,k; b(r, v) = 0 ∀ v ∈ Whp,k

}
.

Recalling that b(r, v) = −
∫
Γ

〈
v(·,y), div r(·,y)

〉
ρ(y)dy and observing that

(3.9) div r(x,y) ∈ Whp,k ∀ r ∈ Vhp,k,

we have

‖r‖2V =

∫
Γ

‖r(·,y)‖2 ρ(y)dy ∀ r ∈ V0
hp,k.

The coercivity of aM (·, ·) on V0
hp,k follows by making use of the lower bound in (2.22):

aM (r, r)=

∫
Γ

ρ(y)

∫
D

A−1
M (x,y) |r(x,y)|2 dxdy

≥ αmin

∫
Γ

‖r(·,y)‖2 ρ(y)dy = αmin ‖r‖2V ∀ r ∈ V0
hp,k.(3.10)
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It remains to prove the discrete inf-sup condition. To that end, for any v ∈ Whp,k ⊂
L2(D)⊗Sk(Γ) we use Lemma 7.2 to find z ∈

(
Hε(D)∩H0(div, D)

)
⊗Sk(Γ) for some

ε > 0 such that div z = v and

(3.11) ‖z‖2L2
ρ(Γ,H

ε(D)) =

∫
Γ

‖z‖2Hε(D) ρ(y)dy ≤ C2
reg ‖v‖2W .

Next, we employ the H(div, D)-conforming hp-interpolation operator Πdiv
hp : Hε(D)∩

H0(div, D) → Xdiv
hp (see section 7) to define zhp(x,y) := Πdiv

hp z(x,y) ∈ Xdiv
hp ⊗ Sk =

Vhp,k. Using the properties of Πdiv
hp (see Lemma 7.3) and recalling that div z = v, we

find

div zhp = div
(
Πdiv

hp z
)
= Π0

hp(div z) = Π0
hpv = v ∀ v ∈ Whp,k,

and the following estimate holds:

‖zhp‖2V = ‖zhp‖2L2
ρ(Γ,H(div,D)) ≤ C2

int

(
‖z‖2L2

ρ(Γ,H
ε(D)) + ‖div z‖2W

)
(3.11)

≤ C2
int

(
1 + C2

reg

)
‖v‖2W ,(3.12)

where Cint > 0 is the stability constant (independent of h and p) for Πdiv
hp (cf. prop-

erty (1) in Lemma 7.3). Now, the inf-sup stability follows in a standard way:

(3.13) sup
r∈Vhp,k

b(r, v)

‖r‖V
≥
∫
Γ
〈v, div zhp〉 ρ(y)dy

‖zhp‖V
=

‖v‖2W
‖zhp‖V

≥ β̃ ‖v‖W ∀ v ∈ Whp,k,

where β̃ =(Cint

√
1+C2

reg)
−1. This finishes the proof of well-posedness.

Having identified the continuity, coercivity, and discrete inf-sup constants (see
inequalities (3.7), (3.8), (3.10), and (3.13)), the estimates in (3.5)–(3.6) immediately
follow from the abstract theory of saddle point problems (cf. [9, section II.2.2]).

Remark 3.1. The fact that Sk(Γ) ⊂ L2
ρ(Γ) is used for both components of the

solution (see (3.3)) ensures that divVhp,k = Whp,k. Consequently, the discrete inf-sup
constant (see (3.13)) for (3.4) also satisfies (1.5) when we employ Xdiv

hp ⊂ H0(div, D)

and X0
hp ⊂ L2(D). That is, β̃ is identical to the discrete inf-sup constant for the

corresponding deterministic problem. Note also that the well-posedness proof does
not depend on the choice of subspace of L2

ρ(Γ). Polynomials of a fixed total degree
can be used instead of tensor product polynomials.

4. Regularity of the solution. Before deriving error estimates for the sGFEM
solution, we study the regularity of the solution

(
q(M), u(M)

)
to (2.18) with respect

to y1, . . . , yM . In the analysis below, we follow the notation conventions from [3].
Note that the regularity of

(
q(M), u(M)

)
with respect to x ∈ D for a fixed y ∈ Γ

follows from the theory of deterministic elliptic boundary value problems (see, e.g.,
[13, 22]). Specifically, if E[A−1] ∈ C1(D̄) and C[A−1] is smooth on D ×D, then the
samples A−1

M (x,y) ∈ C1(D̄) a.e. on Γ � y, and hence there exists s > 0 (depending
on the geometry of D and on the regularity of the right-hand side function f) such
that

(
q(M)(·,y), u(M)(·,y)

)
∈ Hs(div, D)×Hs(D) a.e. on Γ. Recall here

Hs(div, D) := {r ∈ Hs(D); div r ∈ Hs(D)}.

Hence,
(
q(M), u(M)

)
∈ L2

ρ(Γ;H
s(div, D))× L2

ρ(Γ;H
s(D)).
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The next lemma states that both components of the solution to problem (2.18)
are analytic with respect to the M parameters describing the random data. To prove
this result we show that for any j ∈ {1, . . . ,M}, q(M) and u(M) can be represented as
power series in yj . The corresponding coefficents in these series are coupled through
a set of deterministic saddle point problems, which define the coefficients uniquely.
Using upper bounds for the coefficients, we establish the convergence interval for each
series (in fact, this is the same for both of them). Thus, the power series representation
allows us to extend q(M) and u(M) analytically (as functions of yj) to a region in the
complex plane.

We will assume, without loss of generality, that Γj = [−1, 1] for any j ∈{1, . . . ,M}.
The proof of Lemma 4.1 for other bounded intervals Γj ⊂ R follows easily by using
an affine transformation [−1, 1] → Γj and standard scaling.

Lemma 4.1. Let the random coefficient A−1(x, ω) satisfy Assumptions 2.1–2.4,
and assume that the covariance function C[A−1] is piecewise smooth on D ×D. Let(
q(M), u(M)

)
be the solution to problem (2.18). Then, for each j ∈ {1, . . . ,M}, the

functions q(M) and u(M), as functions of the variable yj, can be analytically extended
to the following region in the complex plane:

(4.1) Σj :=

{
z ∈ C; |z − y0j | <

infx∈D

(
A−1

M (x, y0j ,y
∗
j )
)

√
λj ‖ϕj‖L∞(D)

∀ y0j ∈ Γj

}
,

where y∗
j = (y1, . . . , yj−1, yj+1, . . . , yM ) ∈ Γ∗

j = Γ1 × . . .× Γj−1 × Γj+1 × . . .× ΓM .

Proof. Without loss of generality we consider only j = 1. Let us fix an arbitrary
y∗
1 ∈ Γ∗

1 = [−1, 1]M−1. For any y01 ∈ [−1, 1], consider two formal power series in y1:

(4.2) qF (·, y1) =
∞∑
n=0

(y1 − y01)
n qn and uF (·, y1) =

∞∑
n=0

(y1 − y01)
n un,

where the coefficient pairs (qn, un) for n = 0, 1, . . . , are determined in a recursive way
by solving the following deterministic saddle point problems:

(n = 0) find (q0, u0) ∈ H0(div, D)× L2(D) such that

(4.3)

∫
D

A−1
M (x, y01 ,y

∗
1)q0(x) · r(x)dx −

∫
D

u0(x)div r(x)dx = 0,∫
D

v(x)div q0(x)dx =

∫
D

f(x)v(x)dx

for any r ∈ H0(div, D) and v ∈ L2(D);

(n ≥ 1) find (qn, un) ∈ H0(div, D)× L2(D) such that

(4.4)

∫
D

A−1
M (x, y01 ,y

∗
1)qn(x) · r(x)dx −

∫
D

un(x)div r(x)dx = Q(1)
n (r),∫

D

v(x)div qn(x)dx = 0

for any r ∈ H0(div, D) and v ∈ L2(D), where

Q(1)
n (r) := −

√
λ1

∫
D

ϕ1(x)qn−1(x) · r(x)dx.
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Under the assumptions of the lemma, the coefficient A−1
M (x,y) is bounded as in (2.22).

Hence, the well-posedness of both (4.3) and (4.4) is established using standard argu-
ments (see Lemma 7.1 and the proof of Lemma 2.3). Moreover, the following estimates
hold for the solution (q0, u0) of problem (4.3) (cf. (2.23)):

‖q0‖H(div,D)≤
([

supx∈D

(
A−1

M (x, y01 ,y
∗
1)
)

β infx∈D

(
A−1

M (x, y01 ,y
∗
1)
)]2+1

)1
2
‖f‖

≤
([

αmax

β αmin

]2
+1

)1
2
‖f‖,(4.5)

(4.6) ‖u0‖L2(D) ≤
αmax

β
‖q0‖ ≤ αmax

β
‖q0‖H(div,D),

where αmin, αmax satisfy (2.22), and β is the inf-sup constant satisfying (1.4).
Similarly, for (4.4), we use Lemma 7.1 to estimate

‖qn‖H(div,D) ≤

∥∥√λ1 ϕ1 qn−1

∥∥
H(div,D)

infx∈D

(
A−1

M (x, y01 ,y
∗
1)
) ≤ r−1

y0
1
‖qn−1‖H(div,D),(4.7)

‖un‖L2(D) ≤
1

β

(
supx∈D

(
A−1

M (x, y01 ,y
∗
1)
)

infx∈D

(
A−1

M (x, y01 ,y
∗
1)
) + 1

)∥∥∥√λ1 ϕ1 qn−1

∥∥∥
H(div,D)

≤ 2αmax

β
r−1
y0
1
‖qn−1‖H(div,D),(4.8)

where ry0
1
:=

infx∈D

(
A−1

M (x,y0
1,y

∗
1)
)

√
λ1 ‖ϕ1‖L∞(D)

.

Inequality (4.7) is recursive and yields

(4.9) ‖qn‖H(div,D) ≤ r−n
y0
1
‖q0‖H(div,D) ∀n ≥ 0.

Combining (4.8) and (4.9) we find

(4.10) ‖un‖L2(D) ≤
2αmax

β
r−n
y0
1
‖q0‖H(div,D) ∀n ≥ 1.

Note that due to (4.6), the inequality in (4.10) is valid for n = 0 as well. Using
estimates (4.5), (4.9), and (4.10) we prove the bounds for the series in (4.2)

‖qF ‖H(div,D) ≤ C(αmin, αmax, β) ‖f‖
∞∑
n=0

∣∣∣∣y1 − y01
ry0

1

∣∣∣∣
n

≤
C ‖f‖ ry0

1

ry0
1
− |y1 − y01 |

< +∞

and

‖uF‖L2(D) ≤
C̃(αmin, αmax, β) ‖f‖ ry0

1

ry0
1
− |y1 − y01 |

< +∞

provided that |y1 − y01 | < ry0
1
. Therefore, for any y01 ∈ [−1, 1], both power series in

(4.2) converge in the open ball B(y01, ry0
1
) =
{
y1 ∈ R; |y1 − y01 | < ry0

1

}
. (Convergence
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here is understood in the corresponding norm: the H(div, D)-norm for qF and the
L2(D)-norm for uF .) On the other hand, it is easy to check that for any y1 ∈ B(y01, ry0

1
)

and for arbitrary fixed y∗
1 ∈ [−1, 1]M−1, (qF , uF ) ∈ H0(div, D)× L2(D) satisfies

∫
D

A−1
M (x, y1,y

∗
1)qF (x, y1) · r(x)dx −

∫
D

uF (x, y1) div r(x)dx = 0,

(4.11) ∫
D

v(x) div qF (x, y1)dx =

∫
D

f(x)v(x)dx

for any r ∈ H0(div, D) and v ∈ L2(D). Indeed, observing that

A−1
M (x, y1,y

∗
1) = E[A−1](x) +

√
λ1 ϕ1(x) y1 +

M∑
j=2

√
λj ϕj(x) yj

= A−1
M (x, y01 ,y

∗
1) +

√
λ1 ϕ1(x)

(
y1 − y01

)
and using (4.3), (4.4), we have∫

D

A−1
M (x, y1,y

∗
1)qF (x, y1) · r(x)dx

=
∞∑

n=0

∫
D

(
A−1

M (x, y01 ,y
∗
1)
(
y1 − y01

)n
+
(
y1 − y01

)n+1√
λ1 ϕ1(x)

)
qn(x) · r(x)dx

=

∫
D

u0(x) div r(x) dx +

∞∑
n=1

(
y1 − y01

)n ∫
D

un(x) div r(x) dx

−
∞∑
n=1

(
y1 − y01

)n√
λ1

∫
D

ϕ1(x)qn−1(x) · r(x) dx

+

∞∑
n=0

(
y1 − y01

)n+1√
λ1

∫
D

ϕ1(x)qn(x) · r(x) dx

=

∞∑
n=0

(
y1 − y01

)n ∫
D

un(x) div r(x) dx =

∫
D

uF (x, y1) div r(x) dx ∀ r ∈ H0(div, D)

and∫
D

v(x) div qF (x, y1)dx =
∞∑

n=0

(
y1 − y01

)n ∫
D

v(x) div qn(x) dx

=

∫
D

v(x) div q0(x) dx =

∫
D

f(x)v(x)dx ∀ v ∈ L2(D).

Comparing (4.11) and (2.18), we conclude that q(M)(·, y1,y∗
1) = qF (·, y1) (in the

H0(div, D) sense) and u(M)(·, y1,y∗
1) = uF (·, y1) (in the L2(D) sense) for any y1 ∈

B
(
y01 , ry0

1

)
and for arbitrary y∗

1 ∈ [−1, 1]M−1. Then

qF (·, z1) =
∞∑
n=0

(z1 − y01)
n qn and uF (·, z1) =

∞∑
n=0

(z1 − y01)
n un
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are the analytic extensions of q(M)(·, y1,y∗
1) and u(M)(·, y1,y∗

1), respectively (for ar-
bitrary but fixed y∗

1 ∈ [−1, 1]M−1), to the following region of the complex plane:{
z1 ∈ C; |z1 − y01 | < ry0

1

}
. Repeating the above procedure for any y01 ∈ [−1, 1], we

find the region Σ1 in the complex plane (see (4.1)) such that both q(M) and u(M), as
functions of y1, admit analytic extensions to Σ1.

Remark 4.1. The analyticity of
(
q(M), u(M)

)
with respect to y1, . . . , yM is cru-

cial as it leads to fast, exponential convergence of the M -variate polynomial ap-
proximation in Γ � y (see Lemmas 5.4 and 5.5). It is the size of the analyticity
domain (i.e., the region in the complex plane into which q(M) and u(M) admit an-
alytic extensions) which determines the precise rate of exponential convergence: the
larger the analyticity domain, the faster convergence. We emphasise here that in
Lemma 4.1, both q(M) and u(M) are analytically extended to the same region in the
complex plane. This fact yields the same convergence rates (with respect to the chosen
polynomial degrees k = (k1, . . . , kM )) for both components of the solution
(cf. Lemma 5.5).

We also note that for any j ∈ {1, . . . ,M}, the coefficient A−1
M (x, yj ,y

∗
j ), as a

function of yj, admits a natural analytic extension to the whole complex plane:

A−1
M (x, zj ,y

∗
j ) = E[A−1](x) +

∑
1≤i≤M

i	=j

√
λi ϕi(x) yi +

√
λj ϕj(x) zj ∀ zj ∈ C.

We use this fact in Corollary 4.1, below. In this result only, L2(D) and H0(div, D)
denote spaces of complex-valued rather than real-valued functions.

Corollary 4.1. For any j ∈ {1, . . . ,M}, let q(M)(x, zj ,y
∗
j ) and u(M)(x, zj ,y

∗
j )

be the analytic extensions of q(M)(x, yj ,y
∗
j ) and u(M)(x, yj ,y

∗
j ), to the region Σj in

the complex plane, as constructed in Lemma 4.1, for arbitrary but fixed y∗
j ∈ Γ∗

j .

Then, for any zj ∈ Σj ,
(
q(M)(·, zj), u(M)(·, zj)

)
∈ H0(div, D)× L2(D) solves∫

D

A−1
M (x, zj ,y

∗
j )q

(M)(x, zj) · r̄(x)dx −
∫
D

u(M)(x, zj) div r̄(x)dx = 0,

∫
D

v̄(x) div qF (x, zj)dx =

∫
D

f(x)v̄(x)dx

for any r ∈ H0(div, D) and v ∈ L2(D). Moreover, the estimates

(4.12)
∥∥q(M)(·, zj)

∥∥
H(div,D)

≤ C ‖f‖
α(zj)

,
∥∥u(M)(·, zj)

∥∥
L2(D)

≤ C ‖f‖
α(zj)

hold provided that

α(zj) := inf
x∈D

{
E[A−1](x) +

∑
1≤i≤M

i	=j

√
λi ϕi(x) yi

}

−
√
λj ‖ϕj‖L∞(D) |Re{zj}| > 0.(4.13)

The constant C > 0 in (4.12) depends on the upper bound αmax in (2.22) and on the
inf-sup constant β satisfying (1.4).

Proof. Corollary 4.1 immediately follows from the proof of Lemma 4.1 (cf.
(4.11)) and from the result for a generic saddle point problem (see Lemma 7.1).
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In particular, inequalities (4.12) follow from the bounds in Lemma 7.1 by observing
that∣∣∣∣
∫
D

A−1
M (x, zj ,y

∗
j )q

(M)(x, zj) ·q(M)(x, zj)dx

∣∣∣∣
≥
∫
D

Re
{
A−1

M (x, zj ,y
∗
j )
} ∣∣q(M)(x, zj)

∣∣2 dx
=

∫
D

(
E[A−1](x) +

∑
1≤i≤M

i	=j

√
λi ϕi(x) yi +

√
λj ϕj Re{zj}

) ∣∣q(M)(x, zj)
∣∣2dx

≥ α(zj)
∥∥q(M)(·, zj)

∥∥2 > 0.

5. Error analysis. We are now ready to establish bounds for the errors that
were introduced at each of the discretization steps in the previous sections.

First, recall that we approximated A−1(x, ω) by a truncated KL expansion (2.11)
and replaced (2.6) with the perturbed problem (2.12). In section 5.1, we derive
bounds for the corresponding perturbation errors ‖ q − q(M) ‖V and ‖ u − u(M) ‖W
in terms of the discretization parameter M. After converting (2.12) to the equiva-
lent deterministic problem (2.18), we then approximated

(
q(M), u(M)

)
by the sGFEM

solution
(
q
(M)
hp,k, u

(M)
hp,k

)
. In section 5.2 we first show that the corresponding discretisa-

tion error can be decomposed into the sum of two errors: the error due to the chosen
hp-approximation on the spatial domain D, and the error due to the M -variate poly-
nomial approximation (associated with the chosen degree vector k) on Γ. We then
establish bounds for the total sGFEM error, in terms of the mesh parameter h, the
scalar polynomial degree p, and the vector of polynomial degrees k.

5.1. Estimating the perturbation error. First, we make a standard modifi-
cation of Strang’s lemma in order to relate perturbation errors in the data to pertur-
bation errors in the solution.

Lemma 5.1. Let (q, u) ∈ V ×W be the solution to (2.6) and let
(
q(M), u(M)

)
∈

V ×W be the solution to the perturbed problem (2.12). Then,

∥∥q− q(M)
∥∥
V ≤ Cmax

βCminαmin
‖f‖ ‖A−1 −A−1

M ‖L∞(D×Ω),(5.1)

∥∥u− u(M)
∥∥
W ≤ 1

β2

Cmax

Cmin

(
1 +

αmax

αmin

)
‖f‖ ‖A−1 −A−1

M ‖L∞(D×Ω),(5.2)

where Cmin and Cmax (resp., αmin and αmax) are the lower and upper bounds in (2.3)
(resp., in (2.16)), and β is the inf-sup constant from Lemma 2.1.

Proof. Let us denote eq = q − q(M) ∈ V and eu = u − u(M) ∈ W . Then we
deduce from (2.6) and (2.12) that

b(eq, v) = 0 ∀ v ∈ W (2.5)
=⇒ div eq = 0 a.e. in D × Ω;

a(q, eq) = − b(eq, u) = 0 and aM
(
q(M), eq

)
= − b

(
eq, u

(M)
)
= 0.

Hence, recalling the definitions of a(·, ·) and aM (·, ·) in (2.4) and (2.13) and using the
Cauchy–Schwarz inequality and the lower bound for A−1

M (x, ω) in (2.16), we have

αmin‖eq‖2V = αminE
[
‖eq‖2

]
≤ aM (eq, eq) = aM (q, eq)− a(q, eq)

≤
∥∥A−1 −A−1

M

∥∥
L∞(D×Ω)

∣∣E[〈q, eq〉]∣∣ ≤ ∥∥A−1 −A−1
M

∥∥
L∞(D×Ω)

‖q‖L2
P
(Ω,L2(D)) ‖eq‖V .
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Therefore,

(5.3) ‖eq‖V ≤ 1

αmin

∥∥A−1 −A−1
M

∥∥
L∞(D×Ω)

‖q‖L2
P
(Ω,L2(D)).

Combining (5.3) and the upper bound for ‖q‖L2
P
(Ω,L2(D)) in (2.7) gives (5.1).

Now, let us estimate the error eu = u − u(M). Using the inf-sup condition for
(2.6) (i.e., the inequality similar to (2.24)) we have

(5.4) ‖eu‖W ≤ 1

β
sup
r∈V

b(r, eu)

‖r‖V
.

In order to estimate b(r, eu) for any r ∈ V , we use, once again, the variational formu-
lations (2.6) and (2.12) and the definitions of a(·, ·) and aM (·, ·). We have

b(r, eu) = − a(q, r) + aM
(
q(M), r

)
= − aM (eq, r)−

(
a(q, r)− aM (q, r)

)
.

Then, making use of the upper bound for A−1
M (x, ω) in (2.16) and applying the

Cauchy–Schwarz inequality we obtain

(5.5) |b(r, eu)| ≤
(
αmax ‖eq‖V +

∥∥A−1 −A−1
M

∥∥
L∞(D×Ω)

‖q‖L2
P
(Ω,L2(D))

)
‖r‖V .

Combining (5.4), (5.5), and (5.3) gives

‖eu‖W ≤ 1

β

(
αmax

αmin
+ 1

)∥∥A−1 −A−1
M

∥∥
L∞(D×Ω)

‖q‖L2
P
(Ω,L2(D)).

Finally, substituting the upper bound for ‖q‖L2
P
(Ω,L2(D)) from (2.7) yields (5.2).

Combining Lemmas 5.1 and 2.2, we now derive upper bounds for the perturba-
tion error in terms of M. The convergence rate with respect to M depends on the
smoothness of the covariance function of A−1(x, ω).

Theorem 5.1. Suppose that A−1(x, ω) satisfies Assumptions 2.1 and 2.2 and is
represented by the KL expansion (2.9). Let (q, u) ∈ V×W and

(
q(M), u(M)

)
∈ V×W

be solutions to problems (2.6) and (2.12), respectively. Then, under the assumptions of
Lemma 2.2, the following error bounds hold for sufficiently large M: if the covariance
function C[A−1] is piecewise analytic on D ×D then ∃ c > 0 such that

(5.6)
∥∥q− q(M)

∥∥
V +
∥∥u− u(M)

∥∥
W ≤ C ‖f‖ e−c (1/2−�)M1/d

for any � > 0

and if C[A−1] is piecewise smooth on D ×D,

(5.7)
∥∥q− q(M)

∥∥
V +
∥∥u− u(M)

∥∥
W ≤ C ‖f‖M1−t(1−�)/d for any �, t > 0.

The positive constant C in (5.6) and (5.7) is independent of M but depends on Cmin

and Cmax in (2.3) as well as on the inf-sup constant β in Lemma 2.1.

5.2. Estimating the stochastic Galerkin error. Consider now the paramet-
ric variational formulation (2.18) and the sGFEM approximation (3.4). Our goal is
to establish a bound for the approximation error

(5.8) Ehp,k :=
∥∥q(M) − q

(M)
hp,k

∥∥
V
+
∥∥u(M) − u

(M)
hp,k

∥∥
W
.

Here, we only consider uniformly distributed random variables ξj in (2.11) and assume,
without loss of generality, that Γj = [−1, 1] so ρ(yj) ≡ 1

2 on Γj for each j = 1, . . . ,M .
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Our first result concerns the decomposition of the total error Ehp,k.
Lemma 5.2. There exists a positive constant C independent of the discretization

parameters (h, p,k) but depending on the constants αmin and αmax in (2.22) and on
the discrete inf-sup constant β̃ such that∥∥q(M) − q

(M)
hp,k

∥∥
V
+
∥∥u(M) − u

(M)
hp,k

∥∥
W

≤ C

[
inf

r∈Xdiv
hp ⊗L2

ρ(Γ)

∥∥q(M) − r
∥∥
V
+ inf

v∈X0
hp⊗L2

ρ(Γ)

∥∥u(M) − v
∥∥
W

+
M∑
j=1

(
inf

rj∈H0(div,D)⊗Skj
(Γj)

∥∥q(M) − rj
∥∥
V
+ inf

vj∈L2(D)⊗Skj
(Γj)

∥∥u(M) − vj
∥∥
W

)]
.

(5.9)

Proof. Let us introduce the orthogonal projections

Πdiv,⊥
hp : H0(div, D) → Xdiv

hp , Π0
hp : L2(D) → X0

hp,

Π0,ρ
k : L2

ρ(Γ) → Sk(Γ), Π
0,ρj

kj
: L2

ρj
(Γj) → Skj (Γj) (j = 1, . . . ,M)

with respect to the inner products in H(div, D), L2(D), L2
ρ(Γ), and L2

ρj
(Γj), respec-

tively. Then, for the vector-valued component of the solution we have

inf
r∈Vhp,k

∥∥q(M) − r
∥∥
V

≤
∥∥q(M) −Π0,ρ

k q(M)
∥∥
V
+
∥∥Π0,ρ

k

(
q(M) −Πdiv,⊥

hp q(M)
)∥∥

V

≤ inf
r∈Xdiv

hp ⊗L2
ρ(Γ)

∥∥q(M) − r
∥∥
V
+
∥∥q(M) −Π0,ρ

k q(M)
∥∥
V
,(5.10)

where we used the boundedness of Π0,ρ
k in L2

ρ(Γ) and the minimisation property of

the orthogonal projector Πdiv,⊥
hp on Xdiv

hp .

Similarly, for the scalar component of the solution, we employ the L2(D)-ortho-
gonal projection Π0

hp to estimate

(5.11) inf
v∈Whp,k

∥∥u(M) − v
∥∥
W

≤ inf
v∈X0

hp⊗L2
ρ(Γ)

∥∥u(M) − v
∥∥
W

+
∥∥u(M) −Π0,ρ

k u(M)
∥∥
W
.

Observe that Π0,ρ
k = Π0,ρ1

k1
Π0,ρ2

k2
. . .Π0,ρM

kM
. Hence, due to the boundedness of each

projector Π
0,ρj

kj
in L2

ρj
(Γj) (j = 1, . . . ,M), we estimate the second term on the right-

hand side of (5.10) as follows:∥∥q(M) −Π0,ρ
k q(M)

∥∥
V

=
∥∥(q(M) − Π0,ρ1

k1
q(M)

)
+Π0,ρ1

k1

(
q(M) −Π0,ρ2

k2
q(M)

)
+ · · ·+

+ Π0,ρ1

k1
. . .Π

0,ρM−1

kM−1

(
q(M) −Π0,ρM

kM
q(M)

)∥∥
V

≤
M∑
j=1

inf
rj∈H0(div,D)⊗Skj

(Γj)

∥∥q(M) − rj
∥∥
V
.(5.12)

Here, we also used the minimizing property of each projector Π0
kj

on Skj (Γj).

Now we combine estimates (5.10) and (5.11) for both components of the solution
and use inequality (5.12) together with the corresponding bound for the scalar com-
ponent of the solution. Then the desired estimate in (5.9) immediately follows due to
quasi-optimal convergence of the sGFEM (see (3.5), (3.6)).
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The errors due to hp-approximation in the spatial domain D ⊂ R2 (see the first
two terms on the right-hand side of (5.9)) can be estimated by applying Lemma 7.3
(see inequality (7.7)) and Lemma 7.4. Thus, the result below employs the available
Sobolev regularity of the solution

(
q(M), u(M)

)
with respect to the spatial variables

and states convergence rates in terms of the discretization parameters h and p.
Lemma 5.3. Let D⊂R2 and let

(
q(M), u(M)

)
∈L2

ρ(Γ;H
s(div, D))×L2

ρ(Γ;H
s(D))

(s > 0) be the solution to problem (2.18). Then there holds

inf
r∈Xdiv

hp ⊗L2
ρ(Γ)

∥∥q(M) − r
∥∥
V
+ inf

v∈X0
hp⊗L2

ρ(Γ)

∥∥u(M) − v
∥∥
W

≤
∥∥q(M) −Πdiv

hp q
(M)
∥∥
V
+
∥∥u(M) −Π0

hpu
(M)
∥∥
W

≤ C hmin {s,p} p−s
(
‖q(M)‖L2

ρ(Γ;H
s(div,D)) + ‖uM‖L2

ρ(Γ;H
s(D))

)
.

To estimate the error in the polynomial approximation used on Γ, we will exploit
the analyticity of

(
q(M), u(M)

)
with respect to each yj (see Lemma 4.1). Since the

corresponding errors (for both components of the solution) can be decomposed as in
(5.9), our arguments will be essentially in one dimension. Moreover, all arguments for
q(M) carry over without essential modifications to u(M). Thus, we present technical
details only for the vector-valued component of the solution q(M). We will prove that
analyticity of q(M) with respect to the variable yj yields exponential convergence for
the corresponding polynomial approximation on Γj . To that end, we need to make the
following assumption on A−1

M (x,y), which is a slightly stronger requirement than the
uniform lower bound for A−1

M (x,y) in (2.22) (cf. Assumption 6.1 in [3]).
Assumption 5.1. Assume that there exists a constant ν > 0 independent of M

such that for any j ∈ {1, . . . ,M} there holds

inf
x∈D

{
E[A−1](x) +

∑
1≤i≤M

i	=j

√
λi ϕi(x) yi

}
≥ ν +

√
λj ‖ϕj‖L∞(D) max

yj∈Γj

|yj |

uniformly in y∗
j = (y1, . . . , yj−1, yj+1, . . . , yM ) ∈ Γ∗

j .
Now, let t ∈ I = [−1, 1] and denote by Ln(t) for n = 0, 1, 2, . . . the Legendre

polynomials of degree n on I. These polynomials form an orthogonal basis in L2(I).
Since we assumed Γj = [−1, 1] and ρj(yj) ≡ 1

2 on Γj (j = 1, . . . ,M), it is natural

to represent q(M) and u(M) as Fourier expansions of these Legendre polynomials.
Projections of q(M) and u(M) onto the discrete subspaces Skj (Γj) are then obtained
by truncating those expansions. For any j ∈ {1, . . . ,M} we have the expansion

q(M)(·, yj) =
∞∑
n=0

qn,j Ln(yj) ∀y∗
j ∈ Γ∗

j = [−1, 1]M−1

with Fourier coefficients

(5.13) qn,j =
2n+ 1

2

∫
Γj

q(M)(·, yj)Ln(yj) dyj ∈ H0(div, D).

Hence we find∥∥q(M) −Π
0,ρj

kj
q(M)

∥∥2
V

=

∫
Γ∗
j

∫
Γj

ρ(y)

∥∥∥∥
∞∑

n=kj+1

qn,j Ln(yj)

∥∥∥∥
2

H(div,D)

dyj dy
∗
j

=

∫
Γ∗
j

∏
1≤i≤M

i	=j

ρi(yi)

( ∞∑
n=kj+1

1

2n+1
‖qn,j‖2H(div,D)

)
dy∗

j .(5.14)
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In the following lemma, we evaluate the Fourier coefficients qn,j .
Lemma 5.4. Let τ ∈ (0, 1) and j ∈ {1, . . . ,M}. Then, under Assumption 5.1

there exists a positive constant C depending only on αmax in (2.22), on the inf-sup
constant β in (1.4), and on ‖f‖ such that uniformly in y∗

j ∈ Γ∗
j there holds

(5.15) ‖qn,j‖H(div,D) ≤
2C

τν

√
πn

2

(√
1− η2j +O

(
n−1/3

))
ηnj ∀n ∈ N,

where ηj =
(
χj +

√
χ2
j − 1

)−1

∈ (0, 1) with χj = 1 + (1−τ)ν√
λj ‖ϕj‖L∞(D)

.

Proof. Let j ∈ {1, . . . ,M}. For simplicity of notation we will use the variable t
in place of yj ∈ Γj = [−1, 1]. Recall first that the Legendre polynomials Ln(t) can be
written as

Ln(t) =
1

2nn!

dn

dtn
(
(t2 − 1)n

)
, n = 0, 1, 2, . . . , t ∈ [−1, 1].

Integrating by parts n times in (5.13) and omitting the subscript j, we obtain

qn =
2n+ 1

2

∫ 1

−1

q(M)(·, t)Ln(t) dt

=
(2n+ 1)(−1)n

n! 2n+1

∫ 1

−1

(t2 − 1)n
∂n

∂tn
q(M)(·, t) dt,(5.16)

where ∂n

∂tnq
(M) denotes componentwise differentiation of q(M).

We now apply Lemma 4.1 to extend q(M) (as a function of t ∈ [−1, 1]) to the
region Σj (see (4.1)) of the complex plane. This allows us to use the Cauchy formula,

∂n

∂tn
q(M)(·, t) = n!

2πi

∫
γt

q(M)(·, z)
(z − t)n+1

dz,

where γt :=
{
z ∈ C; |z − t| = R(t)

}
for any t ∈ [−1, 1], γt is positively oriented, and

the radius R(t) is selected such that γt ⊂ Σj for any t ∈ [−1, 1]. Hence, by making
use of (4.12), we estimate

∥∥∥ ∂n

∂tn
q(M)(·, t)

∥∥∥
H(div,D)

≤ n!

2π

∫
γt

‖q(M)(·, z)‖H(div,D)

|z − t|n+1
|dz|

≤ C(αmax, β)n!

(R(t))n
‖f‖ sup

z∈γt

1

α(z)
,(5.17)

where α(z) is defined in (4.13). Then we derive from (5.16) that

(5.18) ‖qn‖H(div,D) ≤
(2n+ 1)C(αmax, β)

2n+1
‖f‖
∫ 1

−1

(
inf
z∈γt

α(z)

)−1(
1− t2

R(t)

)n

dt.

Due to Assumption 5.1, we can estimate α(z) in (4.13) as follows:

α(z) = inf
x∈D

{
E[A−1](x) +

∑
1≤i≤M

i	=j

√
λi ϕi(x) yi

}
−
√
λj ‖ϕj‖L∞(D) |Re{z}|

≥ ν +
√
λj ‖ϕj‖L∞(D)

(
max

t∈[−1,1]
|t| − |Re{z}|

)
≥ ν +

√
λj ‖ϕj‖L∞(D)

(
1− |t| −R(t)

)
∀ z ∈ γt, ∀ t ∈ [−1, 1].(5.19)
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Now, let τ ∈ (0, 1) and select R(t) = 1 − |t| + δ with δ = (1−τ)ν√
λj ‖ϕj‖L∞(D)

. It is easy

to check that with this choice of R(t) we have γt ⊂ Σj for any t ∈ [−1, 1]. Then it
follows from (5.19) that inft∈[−1,1] infz∈γt α(z) ≥ τν and estimate (5.18) yields

‖qn‖H(div,D) ≤
(2n+ 1)C(αmax, β)

2n τν
‖f‖
∫ 1

−1

(
1− t2

1 + t+ δ

)n

dt.

To complete the proof, it remains to apply Lemma 7.5 and recall the asymptotic

equivalence (2n)!!
(2n−1)!! ∼

√
πn
2 , n → ∞.

Since the scalar component of the solution admits an analytical extension to the
same region Σj in the complex plane (cf. Lemma 4.1), we obtain the same upper bound
as in (5.15) for the L2(D)-norm of the Fourier coefficients un,j for any j = 1, . . . ,M
and n ∈ N. We now use our upper bounds for ‖qn,j‖H(div,D) and ‖un,j‖L2(D) to
prove exponential convergence of the chosen M -variate tensor product polynomial
approximations on Γ.

Lemma 5.5. Let τ ∈ (0, 1) and
(
q(M), u(M)

)
be the solution to problem (2.18).

Then, under Assumption 5.1 there exists a positive constant C independent of the
degree vector k such that for any j ∈ {1, . . . ,M} there holds

inf
rj∈H0(div,D)⊗Skj

(Γj)

∥∥q(M) − rj
∥∥
V
+ inf

vj∈L2(D)⊗Skj
(Γj)

∥∥u(M) − vj
∥∥
W

≤
√
πC

τν

(
1 +
(
1− η2j

)−1/2 O
(
k
−1/3
j

))
η
kj+1
j

with ηj ∈ (0, 1) as in Lemma 5.4.
Proof. Combining estimates (5.14) and (5.15) we have for any j∈{1, . . . ,M}

inf
rj∈H0(div,D)⊗Skj

(Γj)

∥∥q(M) − rj
∥∥2
V

≤ πC2

(τν)2

(
1 +
(
1− η2j

)−1/2 O
(
k
−1/3
j

))2
η
2(kj+1)
j .

(5.20)

Here, we also used our assumption that Γ∗
j = [−1, 1]M−1 and ρj(yj) =

1
2 for any j =

1, . . . ,M . Since the same upper bound holds for infvj∈L2(D)⊗Skj
(Γj)

∥∥u(M) − vj
∥∥2
W
,

the desired result immediately follows from estimate (5.20).
Finally, we can state an a priori error bound for the total error Ehp,k in (5.8).

The next result is a direct consequence of Lemmas 5.2, 5.3, and 5.5.
Theorem 5.2. Let D ⊂ R2. If

(
q(M), u(M)

)
∈ L2

ρ(Γ;H
s(div, D))×L2

ρ(Γ;H
s(D))

(s > 0) and
(
q
(M)
hp,k, u

(M)
hp,k

)
∈ Vhp,k × Whp,k are the solutions to problem (2.18)

and (3.4), respectively, then under Assumption 5.1 the following error estimate
holds :

∥∥q(M) − q
(M)
hp,k

∥∥
V
+
∥∥u(M) − u

(M)
hp,k

∥∥
W

≤ C

(
hmin {s,p} p−s +

1

τ

M∑
j=1

η
kj+1
j

)
,

where C > 0 is independent of h, p, and k, ηj =
(
χj +

√
χ2
j − 1

)−1

∈ (0, 1) with

χj = 1 + (1−τ)ν√
λj ‖ϕj‖L∞(D)

for j = 1, . . . ,M, and τ ∈ (0, 1).

Remark 5.1. The results in Lemma 3.1 and Theorem 5.2 are formulated only
for D ⊂ R2. This is because the proofs of these results rely on the stability prop-
erty and on the optimal interpolation error bound for the H(div, D)-conforming hp-
interpolation operator Πdiv

hp (see Lemma 7.3). In three dimensions, the corresponding
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interpolation operator (on the master tetrahedral element T ) was introduced and ana-
lyzed in [16, section 5.3]. This operator is stable as a mappingHε(div, T ) → H(div, T )
for any ε > 0 (note the extra regularity requirement in comparison with the operator
Πdiv

hp in two dimensions), which leads to the constant Cint in (3.12) slightly depending

on h and p (more precisely, Cint = O
(
h−εp2ε

)
for arbitrarily small ε > 0). Further-

more, the p-interpolation error estimate for this operator in R3 is suboptimal by an
order of ε (cf. [16, Theorem 6]). Thus, the proof of an optimal p-error bound for
spatial approximations in R3 (see Lemma 5.3) is an open problem.

However, when the polynomial degree p is fixed (i.e., only mesh refinements are
used for spatial approximations with, for example, the lowest-order RT or BDM ele-
ments), one can use the classical RT or BDM interpolation operators (see, e.g., [29,
Chapter II]), which are h-stable (but in general not p-stable) and satisfy optimal
interpolation error bounds in two and three dimensions. In this case the results in
Lemma 3.1 and Theorem 5.2 remain valid for D ⊂ R3. In fact, these results remain
valid for any other family of mixed finite elements (of fixed order), e.g., for Brezzi–
Douglas–Durán–Fortin elements [7] and Brezzi–Douglas–Fortin–Marini elements [8].

6. Concluding remarks. Interest in developing stochastic Galerkin approxi-
mation methods for PDE problems with random data has exploded over the last
decade. While there exists a large body of literature on stochastic Galerkin approx-
imation of primal formulations of steady-state diffusion problems, the case of mixed
variational problems is not so well understood. This is the motivation for this article.
An important point is that our analysis framework is quite general—although the
emphasis in this article is on steady potential flow problems, our theoretical results
are likely to be of use in many other applications.

Note that if stochastic Galerkin methods are to be competitive with traditional
deterministic methodologies based on sampling techniques, then we need fast and
robust linear algebra techniques to solve the large indefinite systems that arise. We
will use the results of this work to address this key issue in the future.

7. Auxiliary results. Several lemmas are collected in this section for complete-
ness. First, let us recall one of the main results from the general theory of saddle point
problems. This result concerns the well-posedness of the abstract problem (1.1).

Lemma 7.1 (see [9, Theorem 1.1, Chapter II]). Let a(·, ·) : V ×V → R, b(·, ·) :
V × W → R are bounded bilinear forms, and � : V → R, t : W → R are bounded
linear functionals acting on Hilbert spaces V and W with the norms ‖ · ‖V and ‖ · ‖W ,
respectively. Assume that a(·, ·) is coercive on the null-space of b(·, ·), i.e., there exists
α0 > 0 such that

a(r, r) ≥ α0‖r‖2V ∀ r ∈ V0 := {r ∈ V; b(r, v) = 0 ∀ v ∈ W}

and the inf-sup condition (1.2) holds. Then the abstract problem (1.1) has a unique
solution pair (q, u) ∈ V ×W . Moreover,

‖q‖V ≤ 1

α0
‖�‖V′ +

(
‖a‖
α0

+ 1

)
1

β
‖t‖W ′ ,

‖u‖W ≤
(
‖a‖
α0

+ 1

)
1

β
‖�‖V′ +

‖a‖
β2

(
‖a‖
α0

+ 1

)
‖t‖W ′ ,

where V′ and W ′ are dual spaces of V and W , respectively.
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In the next lemma we establish the result on the right inverse of the div operator.
Lemma 7.2. For any w∈W (resp., w∈L2(D) ⊗ Sk(Γ)) there exists a vector-

valued function z ∈ V (resp., z ∈ H0(div, D) ⊗ Sk(Γ)) such that z ∈ L2
ρ(Γ;H

ε(D))
(resp., z ∈ Hε(D) ⊗ Sk(Γ)) for some ε > 0, div z = w, and the following inequalities
hold:

‖z‖V ≤ CD ‖w‖W ,(7.1)

‖z‖L2
ρ(Γ;H

ε(D)) ≤ Creg ‖w‖W .(7.2)

The constant CD > 0 in (7.1) depends only on the domain D, whereas the constant
Creg > 0 in (7.2) depends on D and on ε.

Proof. Given w ∈ W , we solve the following problem: find u ∈ L2
ρ(Γ;H

1
0,Dir(D))

such that

(7.3)

∫
Γ

〈
∇u(·,y),∇v(·,y)

〉
ρ(y)dy =

∫
Γ

〈
w(·,y), v(·,y)

〉
ρ(y)dy

for any v ∈ L2
ρ(Γ;H

1
0,Dir(D)). The unique solvability of this problem follows immedi-

ately from the Lax–Milgram lemma, and there holds

(7.4) ‖u‖L2
ρ(Γ;H

1(D)) ≤ C1 ‖w‖W

with a positive constant C1 depending only on D. Furthermore, using the regularity
theory for deterministic elliptic problems in nonsmooth domains (see, e.g., [13, 22]),
we conclude that u ∈ L2

ρ(Γ;H
1+ε(D)) for some ε > 0 and

(7.5) ‖u‖L2
ρ(Γ;H

1+ε(D)) ≤ C2 ‖w‖W .

Now, we set z := −∇u. Then z ∈ L2
ρ(Γ;H

ε(D)) and using standard arguments (see,
e.g., [9, p. 136]) we prove that div z = w ∈ W and∫

Γ

(
〈z,∇v〉 + 〈div z, v〉

)
ρ(y)dy = 0 ∀ v ∈ L2

ρ(Γ;H
1
0,Dir(D)).

Hence, z ∈ L2
ρ(Γ;H

ε(D)∩H0(div, D)) and estimates (7.4) and (7.5) yield the desired
inequalities in (7.1) and (7.2):

‖z‖V =
(
‖∇u‖2L2

ρ(Γ;L
2(D)) + ‖w‖2L2

ρ(Γ;L
2(D))

)1/2
≤ CD‖w‖W

with CD :=
√
1 + C2

1 and

‖z‖L2
ρ(Γ;H

ε(D)) ≤ C3‖u‖L2
ρ(Γ;H

1+ε(D)) ≤ Creg‖w‖W , Creg := C2C3.

This finishes the proof of the statement concerning the function w ∈ W .
For the case where w ∈L2(D)⊗ Sk(Γ), the corresponding result is established in

a similar way: we define z := −∇u, where u ∈ H1
0,Dir(D) ⊗ Sk(Γ) satisfies (7.3) for

any v ∈ H1
0,Dir(D) ⊗ Sk(Γ) and then repeat the same arguments as in the first part

of the proof.
The next auxiliary result concerns H(div, D)-conforming (piecewise) polynomial

interpolation on a two-dimensional polygonal domain D. We employ the projection-
based interpolation operator introduced by Demkowicz and Babuška in [15] in the con-
text of Nédélec’s edge elements. (Note that due to the isomorphism of the scalar curl
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and the div operators in two dimensions, the H(curl)-conforming first (resp., second)
Nédélec family of edge elements is isomorphic to the H(div)-conforming RT (resp.,
BDM) elements.) We will denote by Πdiv

hp the H(div, D)-conforming projection-based
hp-interpolation operator for RT (or BDM) elements. (The precise definition of this
operator is sketched in [5, section 3.2].) This operator enjoys several useful properties,
which are summarized in the following lemma. (We refer to [15, Propositions 1–3] for
proofs of the stability and commutativity properties and to [4, Theorem 4.2] for the
proof of the optimal interpolation error bound.)

Lemma 7.3. Let D ⊂ R2. The H(div, D)-conforming projection-based hp-
interpolation operator Πdiv

hp : Hs(D)∩H0(div, D) → Xdiv
hp (s > 0) satisfies the follow-

ing properties:
(1) For any s > 0, the operator Πdiv

hp : Hs(D) ∩ H0(div, D) → H0(div, D) is
bounded, i.e., there exists a positive constant Cint independent of h and p
(but depending on s) such that for any r ∈ Hs(D) ∩H0(div, D) there holds

‖Πdiv
hp r‖H(div,D) ≤ Cint

(
‖r‖2Hs(D) + ‖div r‖2

)1/2
.

(2) Πdiv
hp preserves piecewise polynomial vector-valued functions in Xdiv

hp .
(3) For s > 0, we have the commutativity diagram

(7.6)

Hs(D) ∩H0(div, D)
div−→ L2(D)⏐⏐⏐# Πdiv

hp

⏐⏐⏐# Π0
hp

Xdiv
hp

div−→ X0
hp

where Π0
hp : L2(D) → X0

hp denotes the standard L2(D)-projection onto X0
hp.

(4) If r ∈ Hs(div, D), s > 0, then there exists a positive constant C independent
of h, p, and r such that

(7.7) ‖r−Πdiv
hp r‖H(div,D) ≤ C hmin {s,p} p−s ‖r‖Hs(div,D).

In the next lemma we state the error bound for the L2(D)-projection operator
Π0

hp : L2(D) → X0
hp. The result immediately follows from [1, Lemma 4.5] (cf. also

[30, Theorem 2.2]).
Lemma 7.4. Let D ⊂ R2 and u ∈ Hs(D), s > 0. Then there exists a positive

constant C independent of h, p, and u such that

‖u−Π0
hp u‖L2(D) ≤ C hmin {s,p} p−s ‖u‖Hs(D).

The last lemma has been established in [23, pp. 581, 586] and is used in the
proof of Lemma 5.4 to prove the exponential convergence of multivariate polynomial
approximations on Γ.

Lemma 7.5. Let χ < −1 and define η :=
(
|χ| +

√
χ2 − 1

)−1 ∈ (0, 1). Then for
any n ∈ N there holds

(−1)n
∫ 1

−1

(
t2 − 1

t+ |χ|

)n

dt = (2η)n 2n+1 n!

(2n+ 1)!!
Φn,0(η

2),

where Φn,0(η
2) is the Gauss hypergeometric function satisfying

Φn,0(η
2) =

√
1− η2 +O

(
n−1/3

)
uniformly with respect to η ∈ (0, 1).
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