
Reducing the Influence of Tiny Normwise
Relative Errors on Performance Profiles

Dingle, Nicholas J. and Higham, Nicholas J.

2011

MIMS EPrint: 2011.90

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/

A

Reducing the Influence of Tiny Normwise Relative Errors on
Performance Profiles

NICHOLAS J. DINGLE, The University of Manchester
NICHOLAS J. HIGHAM, The University of Manchester

It is a widespread but little-noticed phenomenon that the normwise relative error ‖x − y‖/‖x‖ of vectors x

and y of floating point numbers, where y is an approximation to x, can be many orders of magnitude smaller
than the unit roundoff. We analyze this phenomenon and show that in the∞-norm it happens precisely when
x has components of widely varying magnitude and every component of x of largest magnitude agrees with
the corresponding component of y. Performance profiles are a popular way to compare competing algorithms
according to particular measures of performance. We show that performance profiles based on normwise
relative errors can give a misleading impression due to the influence of zero or tiny errors. We propose a
transformation that reduces the influence of these extreme errors in a controlled manner, while preserving
the monotonicity of the underlying data and leaving the performance profile unchanged at its left end-point.
Numerical examples with both artificial and genuine data illustrate the benefits of the transformation.

Categories and Subject Descriptors: G.4 [Mathematical Software]: Algorithm design and analysis; G.1.0
[General]: Computer arithmetic; G.1.3 [Numerical linear algebra]

General Terms: Algorithms, Performance

Additional Key Words and Phrases: normwise relative error, performance profile, floating point arithmetic,
forward error, backward error

1. INTRODUCTION
Many computational problems in numerical analysis have as solution a vector x ∈ Rn.
The accuracy of an approximation y ∈ Rn to x provided by an algorithm is typically
measured by the normwise relative error

θ(x, y) =
‖x− y‖
‖x‖

,

for some norm. For algorithms in which rounding errors are the only source of error,
such as direct methods for solving linear systems Ax = b, the aim is usually to achieve
a normwise relative error of order u, the unit roundoff.

This paper is motivated by our observation of a phenomenon that is widespread,
yet hardly noticed: normwise relative errors are sometimes less than, and possibly
several orders of magnitude less than, u. This phenomenon is seen, for example, in
three papers on iterative refinement for linear systems [Demmel et al. 2006, Figs. 2,
3], [Higham 1997, Table 2], [Oishi et al. 2009, Tables 2, 3], and we recently noticed it in
an experiment to compare the accuracy of different methods for computing the action
of the matrix exponential on a vector, eAb [Al-Mohy and Higham 2011a, Exp. 1]. We
can illustrate the phenomenon with a simple experiment.

In MATLAB we use the function matrix from the Matrix Computation Toolbox
[Higham] to generate 47 10 × 10 matrices A. These include most of the matrices pro-
vided by the MATLAB gallery function and a few others; we excluded matrices with
1-norm condition numbers greater than u−1/100. MATLAB uses IEEE standard double

Version of November 9, 2011.
This work was supported by Engineering and Physical Sciences Research Council grant EP/I006702/1. The
work of the second author was also supported by Engineering and Physical Sciences Research Council grant
EP/E050441/1 (CICADA: Centre for Interdisciplinary Computational and Dynamical Analysis) and Euro-
pean Research Council Advanced Grant MATFUN (267526). Author’s addresses: Nicholas J. Dingle and
Nicholas J. Higham, School of Mathematics, The University of Manchester, Manchester, M13 9PL, UK;
email: higham@ma.man.ac.uk, nicholas.dingle@manchester.ac.uk.

A:2 N. J. Dingle and N. J. Higham

precision arithmetic with unit roundoff u = 2−53 ≈ 1.1 × 10−16, and our computations
are carried out in MATLAB R2011b. We solve the system Ax = b, where bi = 11 − i,
using the backslash operator, once in double precision arithmetic (A\b) and again us-
ing 100-digit arithmetic (vpa(A)\vpa(b), after issuing the command digits(100)); we
take for y the former vector and for x the 100-digit vector rounded to double precision,
and compute the normwise relative error in the∞-norm, θ∞(x, y). The vector of errors
sorted in increasing order comprises 10 zeros followed by (to three significant digits)

1.14e-17 1.48e-17 2.29e-17 3.70e-17 4.60e-17 8.40e-17 1.57e-16

and then 30 larger errors (of maximum size around 10−5). So here we have θ∞(x, y)
nonzero but smaller than u in about 15 percent of the cases, by a factor as large as 10.
Now we repeat the experiment, but with A replaced by its diagonal part. Since A\b now
computes a correctly rounded approximation to each solution component we carry out
one step of iterative refinement in fixed precision in order to introduce some rounding
errors:

x = A\b; x = x + A\(b-A*x);

We now have sorted normwise relative errors comprising 32 zeros followed by

1.32e-22 3.39e-22 3.39e-21 8.67e-20 1.39e-18 4.36e-18 5.30e-18
5.83e-18 1.45e-17 3.76e-17 3.76e-17 4.27e-17

and four errors of order 10−16. Now we see several instances with 0 < θ∞(x, y)� u.
We note that in this example we can alternatively compute the numerator of θ∞(x, y)

by forming vpa(x) - vpa(A)\vpa(b) and then rounding this 100-digit difference back
to double precision. This results in even more cases where 0 < θ∞(x, y)� u.

This behavior raises two questions. The first concerns the interpretation of the norm-
wise relative error. The usual interpretation is that if θ(x, y) ≈ 1

2 × 10−p then compo-
nents xi with |xi| ≈ ‖x‖∞ have about p correct significant decimal digits [Higham 2002,
Sec. 1.2]. Thus if θ(x, y) ≈ u then the largest components of y are accurate in virtually
all their digits. What, then, does it mean for θ(x, y) to be significantly smaller than u?

The second question is whether the occurrence of computed y with θ(x, y) � u af-
fects how we assess the results of numerical experiments. Our particular concern is
with performance profiles, proposed by Dolan and Moré [2002] as a way to compare
a performance measure of different methods on a set of test problems. Although only
introduced in 2002, performance profiles are already widely used, as indicated by the
294 citations to Dolan and Moré [2002] on the Web of Science at the time of writing.
When the performance measure is normwise relative error, can performance profiles
be skewed by tiny normwise relative errors and, if so, what should be done to remedy
this?

We begin, in Section 2, by analyzing the phenomenon of tiny normwise relative er-
rors. In particular, we characterize when θ∞(x, y) � u holds for floating point vectors
x and y. In Section 3 we show how zero and tiny normwise relative errors can produce
misleading performance profiles and we propose a transformation of the data that pro-
duces more useful profiles.

2. NORMWISE RELATIVE ERRORS
Consider floating point arithmetic with base β and precision t. Denote by u = 1

2β
1−t

the unit roundoff and by εM = β1−t the machine epsilon [Higham 2002, Sec. 2.1].
We begin by obtaining a lower bound on the relative difference of two floating point

numbers.

Reducing the Influence of Tiny Normwise Relative Errors A:3

LEMMA 2.1. If x 6= 0 and y are distinct normalized floating point numbers then
|x− y|/|x| ≥ εM/β and this lower bound is attainable.

Proof. The relative error is unaffected by shifting the exponent of x and y, so we can
assume without loss of generality that x ∈ [1, β). Recall that the spacing of the floating
point numbers on [1, β] is εM , while on [β−1, 1] it is εM/β [Higham 2002, Sec. 2.1]. The
relative error |x − y|/|x| will be minimized when y 6= x is a floating point number
adjacent to x, so we just need to consider y = x ± εM , for which |x − y|/|x| = εM/|x| >
εM/β in all but one case. The exceptional case is when x = 1 and y = x − εM/β is the
next smaller floating point number: then |x− y|/|x| = εM/β.

From now on we specialize to base β = 2, which is the case of most practical impor-
tance. Then the lemma says that |x− y|/|x| ≥ u.

In contrast to the scalar relative error, for vectors the relative error in the ∞-norm
can be less than u, and the next lemma characterizes when this is the case.

LEMMA 2.2. Let x, y ∈ Rn with x 6= 0 be vectors of normalized floating point num-
bers. If θ∞(x, y) < u then xk = yk for all k such that |xk| = ‖x‖∞.

Proof. For any k as defined in the statement of the lemma we have

|xk − yk|
|xk|

=
|xk − yk|
‖x‖∞

≤ ‖x− y‖∞
‖x‖∞

< u, (1)

so by Lemma 2.1, xk = yk.

Thus θ∞(x, y) < u for floating point vectors x and y only when the components of x
and y of maximal magnitude are equal. For further insight we note that if xk 6= 0 and
xk 6= yk then, by Lemma 2.1,

u ≤ |xk − yk|
|xk|

≤ ‖x− y‖∞
‖x‖∞

· ‖x‖∞
|xk|

= θ∞(x, y)
‖x‖∞
|xk|

,

and so θ∞(x, y) ≥ u|xk|/‖x‖∞. It follows that tiny values θ∞(x, y)� u are possible only
when x has components of widely varying magnitude. This situation is quite common;
for example, the elements of an eigenvector of a tridiagonal matrix can have a very
large dynamic range [Parlett 1998, Sec. 7.3], [Wilkinson 1965, p. 315 ff.].

For an example where θ∞(x, y)� u, consider (in IEEE double precision arithmetic)

x =

[
1

2−16

2−32

]
, y(1) =

[
1

2−16(1 + 4u)
2−32

]
, y(2) =

[
1 + 2u
2−16

2−32

]
. (2)

We have

θ∞(x, y(1)) = 4 · 2−16u� 2u = θ∞(x, y(2)).

Here, y(1) has a much smaller normwise relative error than y(2), even though y(2) has a
smaller maximum componentwise relative error1 than y(2) (2u versus 4u). This exam-
ple illustrates the difficulty of capturing all the relevant information about the quality
of the approximation y ≈ x in a single number.

Since all norms are equivalent, up to constant factors, we can obtain results similar
to Lemma 2.2 for other norms. For example, for the 2-norm, if θ2(x, y) < n−1/2u then
θ∞(x, y) < u and the conclusion of Lemma 2.2 holds.

1The componentwise relative error of y as an approximation to x is maxi(|xi − yi|/|xi|).

A:4 N. J. Dingle and N. J. Higham

One way to avoid the phenomenon of tiny normwise relative errors is to use a modi-
fied definition of relative error. For example, we can define

rel(x, y) =

0, x = y,
‖x− y‖∞

max{ |xk| : xk 6= yk }
, x 6= y.

This quantity is never smaller than u.

LEMMA 2.3. Let x, y ∈ Rn be distinct vectors of normalized floating point numbers.
Then rel(x, y) ≥ u.

Proof. Let ` be an index for which |x`| = max{ |xk| : xk 6= yk }. Then rel(x, y) =
‖x− y‖∞/|x`| ≥ |x` − y`|/|x`| ≥ u, by Lemma 2.1.

However, rel does not preserve monotonicity, in the sense that we can have
θ∞(x, y(1)) < θ∞(x, y(2)) but rel(x, y(1)) > rel(x, y(2)). Indeed in the example (2) we
have θ∞(x, y(1)) � θ∞(x, y(2)) but 4u = rel(x, y(1)) > rel(x, y(2)) = 2u (and rel is the
same as the componentwise relative error in both cases). As the appropriate definition
of relative error is problem and algorithm dependent, we will not pursue it further
here. However, we note that the use of mixed absolute and relative errors in conver-
gence tests for optimization codes and the effect on performance profiles is investigated
by Dolan et al. [2006].

It is natural to try to extend this analysis to backward errors. Recall that the com-
ponentwise backward error of an approximate solution y to a linear system Ax = b is
given by [Higham 2002, Thm. 7.3], [Oettli and Prager 1964]

ωE,f (y) := min{ε : (A+ ∆A)y = b+ ∆b, |∆A| ≤ εE, |∆b| ≤ εf}

= max
i

|ri|
(E|y|+ f)i

,

where E and f are a nonnegative matrix and vector of tolerances, |∆A| = (|∆aij |),
and r = b − Ay is the residual of y. Of most practical interest is the componentwise
relative backward error with E = |A| and f = |b|. Since for aij 6= 0 and bi 6= 0 the
inequalities in the definition of ω|A|,|b| imply ε ≥ |∆aij |/|aij | and ε ≥ |∆bij |/|bij |, it is
tempting to argue that ω|A|,|b| ≥ u, by Lemma 2.1. However, such an invocation is not
valid because the lemma requires the data to be floating point numbers, and while the
elements of A and b can be assumed to be floating point numbers those of ∆A and ∆b
cannot. Thus ω|A|,|b| cannot be bounded below, and there is no simple characterization
of when ω|A|,|b| < u holds. Nevertheless we have observed that it is not unusual for
componentwise or normwise backward errors to be orders of magnitude smaller than
u (see, e.g., Davies et al. [2001, Sec. 5]), so the development in the next section applies
equally well to backward errors.

We turn now to the influence of tiny normwise relative errors on performance pro-
files.

3. PERFORMANCE PROFILES
Performance profiles provide a way to compare several different algorithms on a set of
problems with respect to a performance measure such as run time, memory usage, or
accuracy [Dolan and Moré 2002].

The performance ratio for an algorithm on a particular problem is the performance
measure for that algorithm divided by the smallest performance measure for the same
problem over all the algorithms. Here, we are assuming that the performance mea-
sure is one for which smaller is better. The performance profile is the set of functions

Reducing the Influence of Tiny Normwise Relative Errors A:5

Table I. Artificial data representing relative er-
rors.

Problem Algorithm 1 Algorithm 2
1 4.0e-14 1.0e-16
2 6.0e-16 4.0e-16
3 1.0e-16 3.0e-16
4 9.0e-23 1.0e-17
5 6.0e-20 5.0e-17

{ fk(α): α ∈ [1,∞) }, where fk(α) is the the proportion of problems where the perfor-
mance ratio of the kth algorithm is at most α. Thus fk(α) is a monotonically increasing
function taking values in [0, 1]. By plotting the curves fk(α) on a single plot we can
easily compare them and deduce information about the relative performance of the
respective algorithms.

For α = 1, fk(α) reveals how often the kth algorithm was the best or joint best.
Assume that failure to solve a problem (perhaps through non-convergence of an it-
erative method) is signalled by a value of ∞ for the performance measure. Then
limα→∞ f(α) < 1 if the kth algorithm failed to solve at least one problem that was
solved by another algorithm. Thus for large values of α the performance profile re-
veals the reliability of the algorithm.

Although originally introduced as a tool for evaluating and comparing optimization
software, performance profiles are now widely used, and the second author has found
them very useful in the context of algorithms for matrix functions (see, for example,
Al-Mohy and Higham [2009; 2011a; 2011b], Higham [2005; 2008; 2009], Higham and
Lin [2011]).

In the light of our observations in Section 1, it is natural to ask whether tiny norm-
wise relative errors skew performance profiles. The following example shows that they
can. Consider the artificial data in Table I, which represents normwise relative errors
for two algorithms for solving Ax = b, implemented in IEEE double precision arith-
metic. Specifically the data comprises plausible values of θ∞(x, y) where y is computed
by the algorithm and the reference solution x is the true solution rounded to double
precision. Suppose also that the systems are very well conditioned, so that for a nu-
merically stable algorithm we can expect errors of order u. The performance profile
is plotted in Figure 1. Since the curve for Algorithm 1 lies entirely above the curve
for Algorithm 2 until the latter hits 1 at around α = 105, it is tempting to conclude
that Algorithm 1 has outperformed Algorithm 2 in the experiment. However, this is
clearly not the case. The errors for Algorithm 2 are all less than 4u, which is about
the best that can be expected. However, Algorithm 1 performs unstably on problem 1,
with an error of order 360u, and it is also slightly less accurate than Algorithm 2 on
problem 2. The performance profile has been unduly influenced by the tiny relative er-
rors produced by Algorithm 1 on problems 4 and 5, for which Lemma 2.2 tells us that
at least one component of the computed solution agrees exactly with that of the refer-
ence solution. The performance profile therefore provides an incomplete and possibly
misleading impression of the relative merits of the two algorithms.

One way to address this problem is to round up any error less than u to u. Figure 2
shows the performance profile for the data transformed in this fashion. The curve for
Algorithm 2 is now on or above that for Algorithm 1. At α = 1 (where the curves
intersect the y-axis) the relative ordering has changed; moreover, due to the introduc-
tion of ties in problems 4 and 5 the rounding results in f1(1) + f2(1) > 1, whereas
f1(1) + f2(1) = 1 for the original data, as would usually be the case. Recall that the
values at α = 1 give the proportion of test problems on which a particular solver was
the best, and so it is desirable not to change these values. This rounding strategy is
too crude.

A:6 N. J. Dingle and N. J. Higham

10
0

10
1

10
2

10
3

10
4

10
5

0

0.2

0.4

0.6

0.8

1

α

f

Algorithm 1

Algorithm 2

Fig. 1. Performance profile for data in Figure I.

10
0

10
1

10
2

10
3

10
4

10
5

0

0.2

0.4

0.6

0.8

1

α

f

Algorithm 1

Algorithm 2

Fig. 2. Performance profiles for data in Figure I with entries below u rounded up to u.

A better strategy is to transform every data point t with t < u to f(t), where f is a
monotonic function with f(t) ≥ a, for some positive parameter a, and f(t) ≥ t. Such a
transformation preserves the ordering of errors for each problem, ensures that no error
less than u is decreased, and imposes a positive minimum value on the data points. We
will take

f(t) =

{
q(t) 0 ≤ t < u,

t, t ≥ u, (3)

with q a linear function satisfying q(0) = a and q(u) = u, so that q(t) = t(1 − a/u) + a.
The user is therefore only required to choose the single parameter a. Setting a = u
corresponds to the crude rounding strategy discussed above.

With a = 5 × 10−2u we applied the function (3) to the data in Table I, obtaining
Table II. The corresponding performance profile is plotted in Figure 3. Note that the

Reducing the Influence of Tiny Normwise Relative Errors A:7

Table II. Transformed artificial data (rounded
to two significant digits); numbers that have
changed are denoted by ∗.

Problem Algorithm 1 Algorithm 2
1 4.0e-14 1.0e-16∗

2 6.0e-16 4.0e-16
3 1.0e-16∗ 3.0e-16
4 5.6e-18∗ 1.1e-17∗

5 5.6e-18∗ 5.0e-17∗

10
0

10
1

10
2

10
3

10
4

10
5

0

0.2

0.4

0.6

0.8

1

α

f

Algorithm 1

Algorithm 2

Fig. 3. Performance profile for data in Figure I with data transformed by f in (3).

intersection of the curves with the y-axis is the same as for Figure 1. This performance
profile gives a much clearer indication of the relative merits of the two algorithms:
Algorithm 1 is most often the most accurate, but Algorithm 2 is at least as successful as
Algorithm 1 at producing an error at most a factor α times the smallest (transformed)
error for all α ≥ 7—in other words, Algorithm 2 is the more reliable.

Note that zero errors always present a dilemma in creating performance profiles,
as they create an infinite performance ratio for any solver not having a zero error on
the given problem. Transforming the data by f automatically solves this problem. To
illustrate, we use the errors for A\b with the original matrices A reported in Section 1,
along with corresponding errors for A\b followed by one step of iterative refinement
in fixed precision; this data includes a large number of zero errors. Figure 4 shows
two performance profiles: the top one is for the raw data and the lower plot is for
the data transformed by (3) with a = 5 × 10−2u. Like all performance profiles in this
paper, these were produced using function perfprof from Higham and Higham [2005,
Sec. 22.4], which does not massage the input data in any way. The performance profile
for the raw data suggests that the solvers are relatively unreliable, in that each solver
is more than a factor 10 less accurate than the other on at least 20 percent of the
problems. However, on 21 percent of the 47 problems both solvers produced zero error,
and these cases are filtered out by perfprof as the performance ratio is undefined
(as NaNs would be produced in the code’s divisions), while in two problems one of
the solvers produced a zero error and the other a nonzero error (a different solver
in each case), resulting in two infinite performance ratios; all these cases result in

A:8 N. J. Dingle and N. J. Higham

2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

α

p

x = A\b

Iterative refinement

2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

α

p

x = A\b

Iterative refinement

Fig. 4. Performance profiles for data from Section 1: raw data (top) and data transformed by (3) (bottom).

an unreasonable lowering of the performance profile curves. Our scaling (3) leads to a
performance profile that gives a truer representation of the performance of the solvers.

We give a final example that employs the data from Al-Mohy and Higham [2011a,
Exp. 1]. That experiment compares the normwise relative errors in the 2-norm of four
different methods for computing the action of the matrix exponential on a vector, eAb,
on 155 problems. To simplify the interpretation we take just two of the methods, which
we refer to as Algorithm 1 and Algorithm 2 (which are, respectively, Algorithm 3.1
and expm_new in Al-Mohy and Higham [2011a], where expm_new is from Al-Mohy and
Higham [2009]). There are 4 zero errors for Algorithm 1 and 16 for Algorithm 2, with
zero errors for both on 3 problems. Algorithm 1 has error less than or equal to that of
Algorithm 2 on 55 percent of the problems. Figure 5 shows three performance profiles:
the top one is for the raw data, the middle one is for the data with all errors less than u
rounded up to u, and the lower plot is for the data transformed by (3) with a = 5×10−2u.
We make several observations.

Reducing the Influence of Tiny Normwise Relative Errors A:9

— The performance profile for the raw data shows that for each algorithm the relative
error is more than a factor 100 larger than that for the other algorithm in more
than 10 percent of the cases. This statistic suggests unreliability, but it is misleading
because it masks the fact that many of the errors in questions are much less than u.

— Rounding the errors up to u solves the reliability issue, but causes the performance
profile for Algorithm 1 to lie entirely above that for Algorithm 2, which is also mis-
leading.

— The transformation (3) leads to a performance profile giving a more balanced view.
Algorithm 1 is most often the more accurate (as shown by all three plots, since they
have the same intercepts at α = 1, namely 0.55 for Algorithm 1 and 0.47 for Algo-
rithm 2), and although it is not as good as Algorithm 2 at producing errors within a
factor 10–80 of the smallest, it is at least as good for factors 80 onwards.

4. CONCLUSIONS
Transforming errors via the function f in (3) prior to computing a performance profile
based on relative errors produces more meaningful profiles that greatly reduce the
influence of tiny, or zero, errors, without affecting the monotonicity of the errors or
the values at α = 1 of the performance profile curves. This technique can equally well
be used on residuals, backward errors, and any other data where all values less than
some tolerance (here u) can be regarded as roughly equally good.

Our transformation (3) contains a parameter a that must be chosen by the user. To
aid the choice of a, we have developed a MATLAB GUI that allows a to be varied with
a slider and redraws the performance profile as a changes. Experimentation with the
GUI has shown that the precise value of a is not critical; the value a = 5× 10−2u used
in our experiments works well in our experience.

A:10 N. J. Dingle and N. J. Higham

20 40 60 80 100
0.4

0.5

0.6

0.7

0.8

0.9

1

α

p

Algorithm 1

Algorithm 2

20 40 60 80 100
0.4

0.5

0.6

0.7

0.8

0.9

1

α

p

Algorithm 1

Algorithm 2

20 40 60 80 100
0.4

0.5

0.6

0.7

0.8

0.9

1

α

p

Algorithm 1

Algorithm 2

Fig. 5. Performance profiles for data from Al-Mohy and Higham [2011a]: raw data (top), data with errors
less than u replaced by u (middle), and data transformed by (3) (bottom).

Reducing the Influence of Tiny Normwise Relative Errors A:11

REFERENCES
AL-MOHY, A. H. AND HIGHAM, N. J. 2009. A new scaling and squaring algorithm for the matrix exponen-

tial. SIAM J. Matrix Anal. Appl. 31, 3, 970–989.
AL-MOHY, A. H. AND HIGHAM, N. J. 2011a. Computing the action of the matrix exponential, with an

application to exponential integrators. SIAM J. Sci. Comput. 33, 2, 488–511.
AL-MOHY, A. H. AND HIGHAM, N. J. 2011b. Improved inverse scaling and squaring algorithms for the ma-

trix logarithm. MIMS EPrint 2011.83, Manchester Institute for Mathematical Sciences, The University
of Manchester, UK. Oct.

DAVIES, P. I., HIGHAM, N. J., AND TISSEUR, F. 2001. Analysis of the Cholesky method with iterative refine-
ment for solving the symmetric definite generalized eigenproblem. SIAM J. Matrix Anal. Appl. 23, 2,
472–493.

DEMMEL, J. W., HIDA, Y., KAHAN, W., LI, X. S., MUKHERJEE, S., AND RIEDY, E. J. 2006. Error bounds
from extra-precise iterative refinement. ACM Trans. Math. Software 32, 2, 325–351.

DOLAN, E. D. AND MORÉ, J. J. 2002. Benchmarking optimization software with performance profiles. Math.
Programming 91, 201–213.

DOLAN, E. D., MORÉ, J. J., AND MUNSON, T. S. 2006. Optimality measures for performance profiles. SIAM
J. Optim. 16, 3, 891–909.

HIGHAM, D. J. AND HIGHAM, N. J. 2005. MATLAB Guide Second Ed. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA.

HIGHAM, N. J. The Matrix Computation Toolbox. http://www.ma.man.ac.uk/~higham/mctoolbox.
HIGHAM, N. J. 1997. Iterative refinement for linear systems and LAPACK. IMA J. Numer. Anal. 17, 4,

495–509.
HIGHAM, N. J. 2002. Accuracy and Stability of Numerical Algorithms Second Ed. Society for Industrial and

Applied Mathematics, Philadelphia, PA, USA.
HIGHAM, N. J. 2005. The scaling and squaring method for the matrix exponential revisited. SIAM J. Matrix

Anal. Appl. 26, 4, 1179–1193.
HIGHAM, N. J. 2008. Functions of Matrices: Theory and Computation. Society for Industrial and Applied

Mathematics, Philadelphia, PA, USA.
HIGHAM, N. J. 2009. The scaling and squaring method for the matrix exponential revisited. SIAM Rev. 51, 4,

747–764.
HIGHAM, N. J. AND LIN, L. 2011. A Schur–Padé algorithm for fractional powers of a matrix. SIAM J. Matrix

Anal. Appl. 32, 3, 1056–1078.
OETTLI, W. AND PRAGER, W. 1964. Compatibility of approximate solution of linear equations with given

error bounds for coefficients and right-hand sides. Numer. Math. 6, 405–409.
OISHI, S., OGITA, T., AND RUMP, S. M. 2009. Iterative refinement for ill-conditioned linear systems. Japan

J. Indust. Appl. Math. 26, 465–476.
PARLETT, B. N. 1998. The Symmetric Eigenvalue Problem. Society for Industrial and Applied Mathematics,

Philadelphia, PA, USA. Unabridged, amended version of book first published by Prentice-Hall in 1980.
WILKINSON, J. H. 1965. The Algebraic Eigenvalue Problem. Oxford University Press.

