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Abstract For standard eigenvalue problems, closed-form expressions for the
condition numbers of a multiple eigenvalue are known. In particular, they
are uniformly 1 in the Hermitian case and generally take different values in
the non-Hermitian case. We consider the generalized eigenvalue problem and
identify the condition numbers. Our main result is that a multiple eigenvalue
generally has multiple condition numbers, even in the Hermitian definite case.
The condition numbers are characterized in terms of the singular values of the
outer product of the corresponding left and right eigenvectors.
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1 Introduction

This paper is concerned with the sensitivities of a multiple eigenvalue of gener-
alized eigenvalue problems Ax = λBx under normwise additive perturbations.
When perturbations are introduced in the matrices, a multiple eigenvalue λ0

of multiplicity r generally splits into r simple eigenvalues. We are interested
in the sensitivity of each of the r eigenvalues in the absolute (as opposed to
relative) sense.

The condition number κ(A, λ0) of a simple eigenvalue λ0 of an n×n matrix
A is defined as follows: denoting by λ0 +∆(ε, E) the eigenvalue of A+ εE with
‖E‖2 = 1 such that limε→0 ∆(ε, E) = 0,

κ(A, λ0) = lim
ε→0

sup
‖E‖2=1

|∆(ε, E)|
|ε| .

Y. Nakatsukasa
School of Mathematics, The University of Manchester, Manchester, M13 9PL, UK. E-mail:
yuji.nakatsukasa@manchester.ac.uk
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In words, κ(A, λ0) measures by how much small changes in A can be magnified
in the eigenvalue λ0, in the first order sense. It is well-known (e.g. [4, p. 323])
that κ(A, λ0) = 1/|yHx|, where y and x are the left and right eigenvectors
corresponding to λ, normalized to have unit 2-norms.

Sun [16] extends the notion of condition numbers to a multiple eigenvalue.
Supposing that λ0 is a nondefective multiple eigenvalue of A of multiplicity r,
he defines r condition numbers κi(A, λ0) for i = 1, . . . , r by

κi(A, λ0) = lim
ε→0

sup
‖E‖2=1

|∆i(ε, E)|
|ε| ,

where λ0 + ∆i(ε, E) for i = 1, . . . , r are (generally distinct) eigenvalues of A +
εE, such that |∆1(ε, E)| ≥ |∆2(ε, E)| ≥ · · · ≥ |∆r(ε, E)| and limε→0 ∆i(ε, E) =
0 for all i. ∆i(ε, E) can be a discontinous function of ε, but |∆i(ε, E)| cannot.
Sun derives the closed-form expression

κi(A, λ0) =
( i∏

j=1

cj(A, λ0)
)1/i

for i = 1, . . . , r, (1)

where ci(A, λ0) are the secants of the canonical angles between the left and
right invariant subspaces corresponding to the multiple eigenvalue λ0. When A
is non-Hermitian ci(A, λ0) generally take different values for different i, hence
so do κi(A, λ0) and (1) shows that a multiple eigenvalue has multiple condition
numbers.

In contrast, in the Hermitian case we have ci(A, λ0) ≡ 1, so κi(A, λ0) = 1
for i = 1, . . . , r, regardless of whether the perturbation is Hermitian or non-
Hermitian. Hence (1) also shows the well-known fact that a multiple eigenvalue
of a Hermitian matrix always has the same condition number 1 under general
normwise perturbations.

The purpose of this paper is to extend the above results to generalized
eigenvalue problems Ax = λBx. We follow the previous studies and define the
condition numbers κi(A,B, τ, λ0) of a multiple eigenvalue λ0 by

κi(A,B, τ, λ0) = lim
ε→0

sup
‖E‖2=1,‖F‖2=τ

|∆i(ε, E, F )|
|ε| , (2)

where λ0+∆i(ε, E, F ) for i = 1, . . . , r are the r eigenvalues of (A+εE, B+εF ),
such that |∆1(ε, E, F )| ≥ · · · ≥ |∆r(ε, E, F )| and limε→0 ∆i(ε, E, F ) = 0 for all
i. Here τ is a positive constant that allows for the case where perturbations in
A and B occur in different magnitudes, which is a notion adopted for example
in [5].

Since a standard non-Hermitian eigenvalue problem can be regarded as
a special case (B = I, τ = 0) of the generalized non-Hermitian eigenvalue
problem Ax = λBx, it is clear that a multiple eigenvalue in the latter case
must have multiple condition numbers. On the other hand, in the important
case of the generalized Hermitian definite pair (where A and B are Hermitian
and B is positive definite), it is not obvious whether or not the condition
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numbers κi(A,B, τ, λ0) for i = 1, . . . , r take different values. In this paper
we derive closed-form expressions for κi(A,B, τ, λ0) that reveal they generally
do take r different values. We shall see that there are two sources for this
difference in conditioning, namely the difference between the left and right
eigenvectors (as present in non-Hermitian standard eigenproblems), and the
fact that the B-orthonormal eigenvectors have 2-norms that are different from
each other when B 6= I.

It is important to note that in the Hermitian definite case an alterna-
tive, natural choice of metric can be based on the B-based inner product
(x, y)B = xHBy instead of the standard inner product (x, y) = xHy. An
analysis using the B-based inner product leads to the standard eigenvalue
problem for the Hermitian matrix B−1/2AB−1/2, so in this inner product all
the condition numbers are the same. Our discussion in this paper assumes
the use of the standard inner product. We also note that the chordal metric
chord(a, b) = |a−b|/

√
(1 + |a|2)(1 + |b|2) is commonly used when dealing with

generalized eigenvalue problems [4, p. 378],[13, p. 283]. The condition numbers
κi(A,B, τ, λ0) in this paper can be recast in terms of the chordal metric by
the scaling κi,chord(A,B, τ, λ0)← κi(A,B, τ, λ0)/(1 + |λ0|2).

The condition numbers κi for i = 1, . . . , r of a nondefective finite multiple
eigenvalue λ0 in four situations are summarized in Table 1 (in which both the
matrices A (and B) and the perturbations E (and F ) are Hermitian in the
middle column and non-Hermitian in the right column), expressed in terms of
σ1, . . . , σr, the r positive singular values of X1Y

H
1 , where X1 and Y1 are n× r

matrices whose columns represent the right and left eigenvectors corresponding
to λ0 respectively, such that (Y H

1 AX1, Y
H
1 BX1) = (λ0Ir, Ir). In the standard

case B = I we have σi = ci(A, λ0) for i = 1, . . . , r. The contribution of
this paper is that we fill in the second row of Table 1, that is, we identify
the condition numbers of a multiple eigenvalue in a generalized eigenvalue
problem, both for the Hermitian definite case and the non-Hermitian case.
Note that for the Hermitian definite case, the perturbed pair is also definite
if εF is sufficiently small (‖εF‖2 ≤ σmin(B) is a sufficient condition, where
σmin(B) is B’s smallest singular value), which is true in the limit ε→ 0.

Table 1 Summary of condition numbers κi of a finite, nondefective multiple eigenvalue λ0

for i = 1, . . . , r.

Hermitian Non-Hermitian

Ax = λx 1
“Qi

j=1 σj

”1/i

Ax = λBx (1 + τ |λ0|)min1≤j≤i
√

σjσi−j+1 (1 + τ |λ0|)
“Qi

j=1 σj

”1/i

There are a number of related studies in the literature. The authors in [6]
investigate the Hölder condition number, which is essentially κ1 in our termi-
nology when λ0 is nondefective. The focus of [6] is the effect of the structure



4 Yuji Nakatsukasa

of the perturbation on the Hölder condition number, and in section 4.1 we
discuss how our results are related to those in [6].

An observation that a multiple eigenvalue of a generalized eigenvalue prob-
lem has different sensitivities under perturbations was first made in [13, p. 300],
which mentions that a multiple eigenvalue of a pair such as A = [ 2000 0

0 2 ],
B = [ 1000 0

0 1 ] tends to behave differently under perturbations in A and B. We
note that as shown in [1,3,17] for Hermitian definite pairs, small Hermitian
componentwise relative changes in A and B can introduce only small rela-
tive perturbation to any eigenvalue, and it is easy to see the two eigenvalues
of the above pair (A,B) have similar behaviors under relative perturbations.
However, in terms of “standard” normwise perturbation, that is, when (A,B)
is perturbed to (A + εE, B + εF ) under ‖E‖2 ≤ 1, ‖F‖2 ≤ τ and ε > 0,
a multiple eigenvalue can exhibit different behaviors, for both Hermitian and
non-Hermitian perturbations. The papers [7,9] consider the Hermitian definite
case and give explanations for this behavior, presenting r different perturba-
tion bounds for λ0 under Hermitian perturbations of finite norm. The approach
of this paper is different in that our focus is on the condition numbers, which
are attainable perturbation bounds in the first order sense in the limit ε→ 0.
The bounds in [7,9] are valid for non-asymptotic ε > 0 but are less tight (gen-
erally not attainable) when ε → 0. In addition, we consider both Hermitian
and non-Hermitian perturbations.

Our arguments closely follow that of [16], in which the condition numbers
are called worst-case condition numbers, to emphasize the difference from the
typical-case condition numbers, as presented in [14]. In this sense, our results
should also be regarded as worst-case condition numbers, in that κi are the
largest attainable bounds in the first order sense. Experiments suggest that
these bounds are not likely to be attained in practice for randomly generated
perturbations, especially for large i (see the example in section 4.1).

The structure of this paper is as follows. First in section 2 we establish
characterizations of the condition numbers κi(A,B, τ, λ0) as defined in (2).
In section 3 we treat the Hermitian definite case and show that a multiple
eigenvalue indeed takes multiple condition numbers in generalized eigenvalue
problems. Section 4 treats the general non-Hermitian case, in which we give
simple numerical examples to illustrate our results. We also discuss the case
of an infinite and defective multiple eigenvalue.

Notation: σi(X) denotes the ith largest singular value of a rectangular
matrix X. λi(A) denotes the ith largest eigenvalue of A in magnitude. We use
only the matrix spectral norm ‖ · ‖2, so that ‖A‖2 = σ1(A). We use MATLAB
notation, in which V (i, j : k) with j ≤ k denotes a row vector consisting of the
jth to kth elements of the ith row of V . Ik is the identity matrix of order k.

2 Characterizations of the condition numbers

To analyze the condition numbers in (2) we need the first order expansion
for λ0. The first order perturbation expansion for a simple eigenvalue is a
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well-known result [12,13], and that for a multiple eigenvalue is also studied
in [15] for standard eigenvalue problems and in [2] for generalized eigenvalue
problems, including singular matrix pairs. For an n × n matrix pair (A,B),
suppose that λ0 is a nondefective finite multiple eigenvalue (we discuss the
infinite and defective cases later in section 4.3) of multiplicity r, so that there
exist nonsingular matrices X = [X1, X2] and Y = [Y1, Y2] with X1, Y1 ∈ Cn×r

such that

Y HAX =
[
λ0Ir 0

0 JA

]
, Y HBX =

[
Ir 0
0 JB

]
. (3)

Here the spectrum of the pair (JA, JB) does not contain λ0. Then, the pen-
cil (A + εE, B + εF ) has eigenvalues λ̂1, λ̂2, . . . , λ̂r admitting the first order
expansion [6,8]

λ̂i = λ0 + λi(Y H
1 (E − λ0F )X1)ε + o(ε), i = 1, 2, . . . , r, (4)

where λi(Y H
1 (E − λ0F )X1) are the eigenvalues of Y H

1 (E − λ0F )X1 for i =
1, . . . , r. In light of (4) and the definition (2), we obtain the following charac-
terization of κi(A,B, τ, λ0).

Lemma 1 Let (A,B) be an n×n matrix pair that has the decomposition (3),
so that λ0 is a multiple eigenvalue of multiplicity r. Then, κi(A,B, τ, λ0) in
(2) can be expressed as

κi(A,B, τ, λ0) ≡ sup
‖E‖2≤1,‖F‖2≤τ

|λi(Y H
1 (E − λ0F )X1)|, i = 1, . . . , r, (5)

where the eigenvalues λi(Y H
1 (E − λ0F )X1) are ordered by decreasing absolute

value.

We note that the matrices E, F that attain the supremum in (5) are differ-
ent for each value of i, that is, the supremums generally cannot be attained
simultaneously. This fact is also noted in [15] for standard eigenvalue problems.

We now derive another characterization of κi(A,B, τ, λ0), which can be
regarded as a generalization of the fact κi(A, λ0) = sup‖ eE‖2≤1 |λi(ΣẼ)| for

i = 1, . . . , r for the standard case B = I [16, Thm. 2.1], where Ẽ, Σ ∈ Cr×r

and Σ = diag(ci(A, λ0)). We note that the secants of the canonical angles have
the expression ci(A, λ0) = σi(X1Y

H
1 ) for i = 1, . . . , r [10,14]. In this paper

we use the quantity σi(X1Y
H
1 ) instead of ci(A, λ0) to express the condition

numbers, because it allows us to treat generalized eigenvalue problems in a
uniform way.

We use the proof of Theorem 2.1 in [16], whose crucial identity is

|λi(Y H
1 (E − λ0F )X1)| = |λi((E − λ0F )X1Y

H
1 )| = |λi((E − λ0F )UΣV H)|

= |λi(V H(E − λ0F )UΣ)| for i = 1, . . . , r,

where X1Y
H
1 = UΣV H is the “thin” SVD, in which U and V have r(≤ n)

columns [4, p. 72]. Here, to get the first and last equalities we used the fact [13,
p. 27] that for general X ∈ Cn×m and Y ∈ Cm×n, the nonzero eigenvalues of
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XY and those of Y X are the same. Since V and U have orthonormal columns
and E,F can be arbitrary matrices with ‖E‖2 ≤ 1, ‖F‖2 ≤ τ , it follows that
Ẽ := V HEU and F̃ := V HFU can also be arbitrary r × r matrices such
that ‖Ẽ‖2 ≤ 1, ‖F̃‖2 ≤ τ (for example, any Ẽ, F̃ are obtained by letting
E = V ẼUH and F = V F̃UH). Hence we see that the condition numbers
κi(A,B, τ, λ0) have the following characterization.

Lemma 2 Under the assumptions in Lemma 1, suppose that X1Y
H
1 = UΣV H

is an SVD where Σ = diag(σi) ∈ Rr×r (σ1 ≥ σ2 ≥ . . . ≥ σr > 0). Then

κi(A,B, τ, λ0) = sup
‖ eE‖2≤1,‖ eF‖2≤τ

|λi(Σ(Ẽ − λ0F̃ ))|, i = 1, . . . , r. (6)

In the sequel we use (6) to find closed-form expressions for κi(A,B, τ, λ0).

3 Hermitian definite pairs

When (A, B) is a Hermitian definite pair, all the eigenvalues are always real
and nondefective, and there exists a nonsingular matrix X such that [4]

XHAX =
[
λ0Ir 0

0 Λ1

]
, XHBX = In, (7)

where Λ1 is a diagonal matrix containing the eigenvalues not equal to λ0.
Hence the diagonals of Σ in (6) are the r positive singular values of the ma-
trix X1X

H
1 , which are equal to the eigenvalues of the matrix XH

1 X1. Since
(A,B) is a Hermitian definite pair it is natural to require that the perturba-
tion matrices preserve the property, so (6) becomes the “structured” condition
numbers κi(A, B, τ, λ0;S), in which S indicates the Hermitian structure of the
perturbations E, F (and hence Ẽ, F̃ ), expressed by

κi(A,B, τ, λ0; S) ≡ sup
‖ eE‖2≤1,‖ eF‖2≤τ
eE= eEH , eF= eF H

|λi(Σ(Ẽ − λ0F̃ ))|, i = 1, . . . , r. (8)

The dependence of κi on the Hermitian structure S is made explicit because
the structure affects κi in a nontrivial manner, as we shall see below.

Denoting
D = Σ1/2 = diag(

√
σ1, . . . ,

√
σr), (9)

we see that the eigenvalues of Σ(Ẽ−λ0F̃ ) are equal to those of the Hermitian
matrix D(Ẽ − λ0F̃ )D.

We further observe that Ẽ − λ0F̃ can represent an arbitrary Hermitian
matrix H with ‖H‖2 ≤ 1 + τ |λ0|, which can be done by letting Ẽ = H/‖H‖2
and F̃ = −τẼ|λ0|/λ0. Conversely, it is easily seen that the class of Hermitian
matrices H with ‖H‖2 ≤ 1 + τ |λ0| includes all the matrices expressed by
Ẽ − λ0F̃ . Together with the fact that the absolute values of the eigenvalues



Condition numbers of a multiple generalized eigenvalue 7

of a Hermitian matrix are simply the singular values, we have yet another
characterization of condition numbers in the Hermitian definite case:

κi(A,B, τ, λ0;S) = (1 + τ |λ0|) sup
‖H‖2≤1
H=HH

σi(DHD), i = 1, . . . , r. (10)

3.1 A closed-form expression of the condition numbers

Now we are ready to derive the expression of the condition numbers κi(A,B, τ, λ0; S)
using the singular values σi of X1Y

H
1 .

Theorem 1 Let (A, B) be a Hermitian definite pair that has the decomposi-
tion (7), so that λ0 is a multiple eigenvalue of multiplicity r. Denote by σi the
ith largest singular value of XH

1 X1. Then the condition numbers of λ0 under
Hermitian perturbations E = EH , F = FH , as in (8), (10) are

κi(A,B, τ, λ0;S) = (1 + τ |λ0|) min
1≤j≤i

√
σjσi−j+1, i = 1, . . . , r. (11)

Note that √σjσi−j+1 is the geometric mean of σj and σi−j+1, the jth largest
and smallest of (σ1, σ2, . . . , σi), which is the set of the i largest singular values
of XH

1 X1.

Proof In view of (10), to prove the theorem it suffices to prove that for D
as in (9) and for any Hermitian H such that ‖H‖2 = 1, σi(DHD) is bounded
above by minj

√
σjσi−j+1 for i = 1, . . . , r, and that this bound is attainable.

First, proving attainability is simply done by considering the case where
H is zero except for its i× i leading principal submatrix, which has 1s on the
antidiagonal and 0 elsewhere, that is, Hj,k = 1 if j + k = i + 1 and otherwise
Hj,k = 0. This choice of H makes the i×i leading principal submatrix of DHD
also an anti-diagonal matrix, whose jth antidiagonal is √σjσi−j+1. Hence we
have σi(DHD) = minj

√
σjσi−j+1.

Our remaining task is to prove that minj
√

σjσi−j+1 is an upper bound of
σi(DHD) for any Hermitian H with ‖H‖2 ≤ 1. Using the max-min charac-
terization of singular values [11, p. 68], we have

σi(DHD) = max
QHQ=Ii

min
‖v‖2=1

‖DHDQv‖2,

so it suffices to show that for any Q ∈ Cr×i with orthonormal columns, there
exists a unit vector v such that ‖DHDQv‖2 ≤ minj

√
σjσi−j+1.

To prove this, let j0 = argminj≤(i+1)/2
√

σjσi−j+1. Since for any Q we have
rank(Q(1 : i− j0, :)) ≤ i− j0, there are at least j0 linearly independent vectors
in Ci×1 that are orthogonal to the rows of Q(1 : i−j0, :). Therefore there must
exist P ∈ Ci×j0 with orthonormal columns such that the first i − j0 rows of
the r × j0 matrix QP are all zeros. For such P , we have

‖DQP‖2 = ‖diag(0, . . . , 0,
√

σi−j0+1, . . . ,
√

σr)QP‖2 ≤ √σi−j0+1.
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Furthermore, since denoting by W = H(1 : j0 − 1, :)DQP the first j0 − 1
rows of HDQP we have rank(W ) ≤ j0 − 1, so there must exist a unit vector
w ∈ Cj0×1 that is orthogonal to W , so that the first j0−1 rows of HDQPw are
all zeros. We easily see that for such w we have ‖DHDQPw‖2 ≤ √σj0σi−j0+1.
Therefore we have shown that for any Q ∈ Ck×i with orthonormal columns
there exists a unit vector v0 = Pw such that

min
‖v‖2=1

‖DHDQv‖2 ≤ ‖DHDQv0‖2 ≤ √σj0σi−j0+1 = min
j

√
σiσi−j+1.

¤
Three remarks are in order.

– When B 6= In, σi for i = 1, . . . , r generally take different values, so (11)
shows that a multiple eigenvalue in generalized eigenvalue problems actu-
ally take multiple condition numbers that are different from each other,
which is our main result. Note that the ratio among the condition num-
bers is bounded by κ1(A,B, τ, λ0;S)/κr(A,B, τ, λ0; S) ≤ σ1/σr. Now since
σmin(B−1) ≤ σr ≤ σ1 ≤ σmax(B−1), we have σ1/σr ≤ σmax(B)/σmin(B) =
κ2(B), the standard 2-norm condition number of B. It follows that if B
is well-conditioned then a multiple eigenvalue of a Hermitian definite pair
must have similar condition numbers.

– The matrix H that attains the supremum in (10) for each i is highly in-
definite, suggesting that the supremums cannot be attained when the per-
turbation is definite. In fact, if H = Ẽ − λ0F̃ is (positive) definite, then
DHD is also positive definite, so the singular values are equal to the eigen-
values, and noting that D2‖H‖2 − DHD = D(‖H‖2I − H)D is positive
semidefinite we conclude that σi(DHD) ≤ σi(D2‖H‖2) = σi. Hence if we
confine to perturbation where H is definite, the condition numbers become
(1 + τ |λ0|)σi.

– The above arguments show that the difference among condition numbers of
a multiple eigenvalue is due to the difference among the r singular values of
X1Y

H
1 , the outer product of the left and right eigenvectors corresponding

to λ0. σi(X1Y
H
1 ) are all 1 in the standard Hermitian case because X1 = Y1

has orthonormal columns. In the standard non-Hermitian case X1 6= Y1

and neither has orthonormal columns, so the σi(X1Y
H
1 ) generally take r

different values. In the generalized Hermitian case we have X1 = Y1 but
X1 has B-orthonormal columns that are not orthonormal, so σi(X1X

H
1 )

again can take r different values. Note that if one uses the B-based inner
product the difference in condition numbers disappears (recall the remark
in the introduction).

4 Non-Hermitian pairs

Here we consider the case where (A,B) is a general non-Hermitian pair. In
view of (6), our task is to bound |λi(XΣ)| for an arbitrary square matrix
X such that ‖X‖2 ≤ 1. This is in fact the exact same problem addressed in
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[16, Thm. 3.1]. Hence the analysis there can be directly applied to yield the
following result.

Theorem 2 Let (A,B) be a non-Hermitian pair that satisfies (3), and let
σ1 ≥ σ2 ≥ . . . ≥ σr > 0 be the positive singular values of the matrix X1Y

H
1 .

Then, κi(A, B, τ, λ0) under non-Hermitian perturbations can be expressed as

κi(A,B, τ, λ0) = (1 + τ |λ0|)
( i∏

j=1

σj

)1/i

, i = 1, . . . , r. (12)

4.1 Structured perturbations

It is instructive to revisit the Hermitian definite case, but now allowing for
non-Hermitian perturbations, that is, E, F are general matrices whose norms
are bounded by 1. In this case, the condition numbers κi(A,B, τ, λ0) have the
characterization (6) (instead of (10)), so they have the expression (12), the
same as that for a non-Hermitian pair.

As might be expected, the condition number under Hermitian perturbation
(11) is never larger than that under non-Hermitian perturbations (12):

κi(A,B, τ, λ0;S)
1 + τ |λ0| =

(
min

1≤j≤i
(σjσi−j+1)i

)1/2i

≤
( i∏

j=1

(σjσi−j+1)
)1/2i

=
( i∏

j=1

σ2
j

)1/2i

=
( i∏

j=1

σj

)1/i

=
κi(A,B, τ, λ0)

1 + τ |λ0| .

The above arguments imply that under general non-Hermitian perturbation
the Hermitian structure of A and B plays no direct role in the condition num-
bers. In particular, for a Hermitian definite pair (A,B) and a non-Hermitian
pair (Ã, B̃) that both have a multiple eigenvalue λ0 of multiplicity r with nor-
malized eigenvectors X1, Y1 and X̃1, Ỹ1 respectively, if σi(X1Y

H
1 ) = σi(X̃1Ỹ

H
1 )

for i = 1, . . . , r, then under a general non-Hermitian perturbation we have
κi(A,B, τ, λ0) = κi(Ã, B̃, τ, λ0) = (1 + τ |λ0|)(

∏i
j=1 σj)1/i for i = 1, . . . , r.

Therefore, for a Hermitian definite pair the structure of the perturbation ma-
trices plays an important role in the sensitivity of a multiple eigenvalue. We
note that the standard Hermitian case with B ≡ I is an exception, in which the
condition numbers are always all 1 whether or not the perturbation matrices
are Hermitian.

This point of view, to focus on the effect of the structure of the perturba-
tion, was investigated extensively in [6], in which (Theorem 4.5) it is shown
that (among other structures they consider) the Hermitian structure of the
perturbation matrices does not have any effect on the Hölder condition num-
ber.

At first sight this seems to contradict our results, which show that the
Hermitian structure of the perturbation matrices does affect the condition
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numbers of the multiple eigenvalue λ0. The explanation is that [6] treats only
the Hölder condition number, which is equivalent to κ1(A,B, τ, λ0) in the
nondefective case. Here we are identifying individual condition numbers of
each of the r eigenvalues. In fact, we can see that for i = 1, κi in (11) and
(12) are the same, both equal to (1+ τ |λ0|)σ1. We can easily see that they are
equal also for i = 2. The difference between (11) and (12) starts to take effect
only for i ≥ 3, so λ0’s multiplicity r must be at least 3. In particular, for a
simple eigenvalue the Hermitian structure of the perturbation has no effect on
the condition number, which is a trivial consequence of the results in [6], and
also pointed out in [5].

4.2 Examples

Here we present two simple examples to illustrate the above results and ob-
servations, and to reveal the behavior of a multiple eigenvalue under random
perturbations.

Example 1 For the Hermitian definite pair [ 2000 0
0 2 ], B = [ 1000 0

0 1 ] presented in
[13, p. 300], we have κ1(A,B, τ, λ0; S) = κ1(A,B, τ, λ0) = 3 and κ2(A,B, τ, λ0; S) =
κ2(A,B, τ, λ0) = 3/

√
1000, which shows that the multiple eigenvalue λ0 = 2

has different sensitivities. Note that in this case the structure of the perturba-
tion has no effect on the condition numbers, because the multiplicity of λ0 is
r < 3.

Example 2 We consider a 4× 4 Hermitian definite pair (A,B) expressed by

A = WHΛW, B = WHW,

where Λ = diag(1, 1, 1, 2) and W = diag(1, 2, 100, 1), so the eigenvalues of
(A,B) are 1, 1, 1, 2. Since X that diagonalizes A,B (as in (7)) is X = W−1 =
diag(1, 0.5, 0.01, 1) and X1 is its first three columns, the singular values of
X1X

H
1 are σ1 = 12, σ2 = 0.52, σ3 = 0.012 (where in this example we let τ = 1),

hence by (11) it follows that κ1(A,B, 1, 1;S) = 2, κ2(A, B, 1, 1; S) = 1 and
κ3(A,B, τ, 1; S) = 0.02. Using MATLAB version 7.10 we generated 106 sets of
random Hermitian perturbation matrices E and F such that ||E||2, ||F ||2 ≤ 1
(whose elements were generated using the MATLAB command randn, then
normalizing E ← ζE/‖E‖2 where ζ = rand ≤ 1 is another positive random
number), and examined the behavior of the three eigenvalues of the pair (A +
εE, B + εF ) that are closest to λ0 = 1, where we let ε = 10−5. Specifically,
recalling the discussion in the introduction, we denote by 1 + ∆i(ε, E, F ) for
i = 1, 2, 3 the three eigenvalues of (A + εE, B + εF ) that are closest to 1 such
that |∆1(ε, E, F )| ≥ |∆2(ε, E, F )| ≥ |∆3(ε, E, F )|, and examine how large
|∆i(ε, E, F )|/ε can be for i = 1, 2, 3.

We also experimented with non-Hermitian perturbations, in which case
we let E, F be random non-Hermitian matrices with ||E||2, ||F ||2 ≤ 1. In
this case the condition numbers (12) are κ1(A,B, 1, 1) = 2, κ2(A,B, 1, 1) =
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2(1 · 0.52)1/2 = 1 and κ3(A,B, 1, 1) = 2(1 · 0.52 · 0.012)1/3 ' 0.058, in which
we confirm that the first two are the same as in the above Hermitian case.

Lastly, in order to see how the Hermitian property of the matrices plays
a role in the eigenvalue perturbation behaviors, we also tested with a non-
Hermitian pair (A,B) that has the same eigenvalues and σi (of X1Y

H
1 ) as

the above Hermitian pair. We formed such a pair (A, B) by defining A =
Y −HΛX−1 and B = Y −HX−1, where Λ = diag(1, 1, 1, 2), Y H

1 (the first 3
rows of Y ) is set to ZΣV H and X1 (the first 3 columns of X) is set to UZ−1,
where U and V are randomly generated matrices with orthonormal columns,
Σ = diag(σ1, σ2, σ3) = (12, 0.52, 0.012) and Z is an arbitrary nonsingular
matrix1. Elements of the last row of Y and the last column of X were taken
as random numbers. Since we have X1Y

H
1 = UΣV H , we have κ1(A, B, 1, 1) =

2, κ2(A,B, 1, 1) = 1 and κ3(A,B, 1, 1) = 0.058, the same condition numbers
as the above second case with non-Hermitian perturbation, as was intended.
The perturbations E and F are taken as arbitrary non-Hermitian matrices.

In summary, we tested three different situations, all of which have the
same σi(X1Y

H
1 ): (i) Both (A,B) and (E, F ) are Hermitian (shown as “Herm

+ Herm” in Table 2), (ii) (A, B) is Hermitian but (E, F ) is non-Hermitian
(“Herm + NonHerm”), and (iii) Both (A,B) and (E, F ) are non-Hermitian
(“NonHerm + NonHerm”).

The results are summarized in Table 2 below, which shows the average
and maximum (shown as avg. and max respectively) values of |∆i(ε, E, F )|/ε
among the 106 runs with randomly generated E and F , along with the con-
dition numbers κi (which is a first order upper bound for |∆i(ε, E, F )|/ε) for
i = 1, 2, 3.

Table 2 Average and maximum perturbation |∆i(ε, E, F )|/ε of 106 runs for i = 1, 2, 3.

Herm + Herm Herm + NonHerm NonHerm + NonHerm
i avg. max κi avg. max κi avg. max κi

1 0.579 1.98 2.0 0.41 1.86 2.0 0.42 1.90 2.0
2 0.141 0.84 1.0 0.136 0.76 1.0 0.137 0.76 1.0
3 0.00018 0.012 0.02 0.00021 0.027 0.058 0.00021 0.027 0.058

We make the following observations.

– We confirm that κi is an upper bound of max |∆i(ε, E, F )|/ε for all i in all
three cases (which is necessarily true in the limit ε→ 0). Interestingly, for
i = 1 the bound κi is nearly attained while for i = 2, 3, max |∆i(ε, E, F )|/ε
is noticeably smaller than κi, which suggests that for larger i it becomes
more and more rare that the largest possible perturbation is attained.

– Reflecting the fact that κi are the same for all the three cases for i = 1
and 2, we can see that max |∆i(ε, E, F )|/ε are similar in all three cases, so
two eigenvalues have similar maximum sensitivities regardless of whether

1 Note that the choice of Z does not affect the condition numbers κi(A, B, 1, 1).
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A,B, E, F are Hermitian or not. On the contrary, max |∆i(ε, E, F )|/ε for
i = 3 show the somewhat different sensitivities of the third eigenvalue
depending on the structure of E, F .

– The behavior of the multiple eigenvalue is remarkably similar for the latter
two cases, not only in terms of max |∆i(ε, E, F )|/ε but also avg.|∆i(ε, E, F )|/ε.
This reflects the fact that the first order expansions of λ0 are the same for
the two cases, so that the local behavior of an eigenvalue is determined
solely by the singular values of X1Y

H
1 , which does not depend explicitly

on whether A and B are Hermitian.
– Comparing avg.|∆i(ε, E, F )|/ε with max |∆i(ε, E, F )|/ε, we see that the

former is much smaller than the latter for larger i. For i = 1 the difference
seems less significant.

A precise explanation for the last two observations, which necessarily involves
statistical analysis, is an open problem: our discussions deal only with the max-
imum attainable perturbation max |∆i(ε, E, F )|/ε, not with avg.|∆i(ε, E, F )|/ε.

It is important to note that the above experiments only exhibit the behavior
of a multiple eigenvalue under random perturbations (artificially constructed
from a certain type of random matrices), which do not necessarily reflect the
typical backward errors observed in practical numerical methods.

4.3 Defective and infinite cases

So far we have treated only the case where λ0 is a finite and nondefective
multiple eigenvalue. Here we briefly consider the cases where λ0 is infinite
and/or defective.

The case λ0 = ∞ can be treated as in [2,6] simply by considering the
multiple zero eigenvalue of the pair (B, A), for which the exact same discussion
as above is valid.

When λ0 is defective, Lidskii’s perturbation theory [2,6,8] shows that the
leading term in λ0’s perturbation expansion is not linear in ε. Specifically,
if λ0 is an eigenvalue of (A,B) of multiplicity n1r belonging to a Jordan
block of dimension n1 repeated r times then there are n1r eigenvalues of
(A + εE,B + εF ) admitting the expansion

λ̂i,` = λ0 +
(
λi(Y H

1 (E − λ0F )X1)
)1/n1

ε1/n1 + o(ε1/n1) (13)

for i = 1, 2, . . . , r and ` = 1, 2, . . . , n1. Here Y H
1 ∈ Cr×n and X1 ∈ Cn×r

represent the linearly independent left and right eigenvectors of (A,B) corre-
sponding to λ0, and the value

(
λi(Y H

1 (E − λ0F )X1)
)1/n1 represents all the n1

distinct n1th roots.
In view of the exponent in (13), we define the condition numbers of λ0 with

the exponent 1/n1 by

κi,n1(A,B, τ, λ0) = lim
ε→0

sup
‖E‖2=1,‖F‖2=τ

|∆i,`(ε, E, F )|
|ε|1/n1

(14)
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for i = 1, . . . , r and ` = 1, . . . , n1, where ∆i,`(ε, E, F ) = λ̂i,` − λ0 such
that |∆1,`(ε, E, F )| ≥ · · · ≥ |∆r,`(ε, E, F )|, limε→0 ∆i,`(ε, E, F ) = 0 and
limε→0 |∆i,`(ε, E, F )|/|∆i,è(ε, E, F )| = 1 for any i ∈ {1, . . . , r} and `, ˜̀ ∈
{1, . . . , n1}.

By (13) and (14) we have κi,n1(A,B, τ, λ0) = sup‖E‖2≤1,‖F‖2≤τ |λi(Y H
1 (E−

λ0F )X1)|1/n1 . We observe that although the leading exponent is different from
that in (4), the sensitivities of the multiple eigenvalue are still governed by
|λi(Y H

1 (E−λ0F )X1)| for i = 1, . . . , r, for which we gave a bound in the above
discussions.

Hence as in Theorem 2, by (13) and (14) we have

κi,n1(A,B, τ, λ0) =
(

(1 + τ |λ0|)
( i∏

j=1

σj

)1/i
)1/n1

.

By (13), we must have |λ̂i,` − λ0|/ε1/n1 ≤ κi,n1(A, τ, B, λ0) for i = 1, . . . , r in
the limit ε→ 0 for any E and F . Note that κi,n1(A,B, τ, λ0) does not depend
explicitly on ` (which is why we do not write κi,n1,`(A, B, τ, λ0)), which means
the n1 condition numbers of the eigenvalues belonging to a certain Jordan
block are the same. We observe that in the defective case n1 ≥ 2, the exponent
1/n1 makes the difference among the condition numbers less significant than
in the nondefective case, see the example below for an illustration.

4.3.1 Example

To examine the behavior of a defective multiple eigenvalue, we generate a 7×7
pair (A, B) defined by

A = Y −H




J
J

J
2


 X−1, and B = Y −HX−1, (15)

where J = [ 1 1
0 1 ] is a 2 × 2 Jordan block. (A,B) has a multiple eigenvalue

λ0 = 1 of multiplicity six and a simple eigenvalue 2. Y H
1 ≡ [Y (:, 2) Y (:, 4) Y (:

, 6)]H = ZΣV H and X1 ≡ [X(:, 1) X(:, 3) X(:, 5)] = UZ−1 are the left and
right eigenvectors corresponding to λ0, where U and V are random matrices
with orthonormal columns and Z is an arbitrary nonsingular matrix. The
other rows of Y H and columns of X do not affect the condition numbers of
λ0, so we let them take random values. We let Σ = diag(12, 0.52, 0.012), so
that σi(X1Y

H
1 ) = {12, 0.52, 0.012} are the same values as in the non-Hermitian

case of the second example in section 4.2.
Recall from (13) that perturbations in (A,B) generally split λ0 into n1r

perturbed eigenvalues λ̂i,` for i = 1, . . . , r and ` = 1, . . . , n1. (13) also shows
that for a fixed i, |λ̂i,` − λ0| differ by at most o(ε1/n1) for varying `. For the
matrix pair (15) we have r = 3 and n1 = 2, so we separate the six eigenvalues
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λ̂i,` into three groups according to the value of i, so that the two eigenvalues
of the ith group have sensitivity governed by

∣∣λi(Y H
1 (E − λ0F )X1)

∣∣1/n1 .

With τ = 1, the condition numbers κi,2(A,B, 1, 1) for the ith group for i =

1, 2, 3 are κ1,2(A,B, 1, 1) = (2·1)1/2 =
√

2, κ2,2(A, B, 1, 1) =
(
2 · (1 · 0.52)1/2

)1/2
=

1 and κ3,2(A,B, 1, 1) =
(
2 · (1 · 0.52 · 0.012)1/3

)1/2 ' 0.24. Comparing these
with κi(A,B, 1, 1) in the example in section 4.2 we see that that although
σi(X1Y

H
1 ) take the same values, the relative difference among the condition

numbers κ1,n1/κr,n1 is smaller than κ1,1/κr,1 for n1 ≥ 2, due to the exponent
1/2.

Recalling that we must have |λ̂i,` − 1|/ε1/2 ≤ κi,2(A, B, 1, 1) for small ε,
here we examine how large |λ̂i,`−1|/ε1/2 becomes for i = 1, 2, 3. To do this, of
the six eigenvalues of (A + εE,B + εF ) close to λ0, we check the perturbation
of the most perturbed, third perturbed, and the fifth perturbed ones.

In the experiment we let E, F be random non-Hermitian matrices with
||E||2, ||F ||2 ≤ 1, let ε = 10−6 and tested with 106 pairs. In Table 3 we report
the average and maximum values of |λ̂i,` − 1|/ε1/2 for i = 1, 2, 3.

Table 3 Defective matrix pair (15) with three 2× 2 Jordan blocks, average and maximum

perturbation |bλi,` − 1|/ε1/2 of 106 runs for i = 1, 2, 3.

i avg. max κi,2

1 0.511 1.21 1.41
2 0.282 0.733 1
3 0.0089 0.138 0.24

As in the experiments in section 4.2 for nondefective multiple eigenvalues,
we see that a defective multiple eigenvalue also exhibits different sensitivities
under perturbation. We also tested with Hermitian perturbations E = EH

and F = FH , and obtained nearly the same results as in Table 3, suggesting
that the structure of the perturbation does not play a role here.

In all our experiments we had |λ̂i,1− λ̂i,2|/ε1/2 < 0.04 for i = 1, 2, 3, which
matches the theoretical result indicated by (13) that for a given i, |λ̂i,` − 1|
differ only by o(ε1/n1) for varying `.

Finally, comparing Table 3 and the third case of Table 2 we see that the
difference among each column is less pronounced in Table 3. This suggests
that the difference in sensitivities among the multiple eigenvalue λ0 is smaller
in the defective case n1 ≥ 2, reflecting the last remark before this example.
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