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THEORETICAL ANALYSIS OF ACOUSTIC INSTABILITY

OF A HYPERSONIC SHOCK LAYER ON A POROUS WALL

UDC 532.5.013.4A. V. Fedorov and D. V. Yumashev

The possibility of controlling the laminar–turbulent transition in hypersonic shock layers by means
of porous coatings is considered. The linear stability of the shock layer to acoustic disturbances is
analyzed. A dispersion relation is derived in an analytical form and analyzed for different character-
istic values of porosity of the wall, which allows one to study the spectrum of acoustic disturbances
in the shock layer. Analytical expressions for the growth rate of instability of acoustic disturbances
are presented as functions of the reflection factor. Their structure indicates that the porous coating
effectively decreases acoustic instability of the shock layer.
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Introduction. A theoretical study of the possibility of controlling the laminar–turbulent transition in
hypersonic shock layers by means of porous coatings is described in the present paper. If the levels of free-
stream disturbances and surface roughness are low, the laminar–turbulent transition is caused by amplification
of instability modes developed in the boundary layer on the vehicle surface [1]. Instability modes of two types
dominate in supersonic boundary layers. The first mode (Tollmien–Schlichting waves) has a viscous nature and can
be suppressed by natural cooling of the vehicle surface with a thermoprotective coating [2]. The second mode (also
called the acoustic mode) arises in supersonic boundary layers where the main flow velocity is greater than the
phase velocity of disturbances. The possibility of acoustic-mode stabilization is currently associated with the use of
porous materials that cover the vehicle surface [3, 4]. The experimental studies of [5] showed that the porous coating
can ensure a significant delay of the transition on a sharp cone. The results of experimental studies of stability
of the boundary layer on a cone covered by a porous material with a random [6, 7] and regular [8] microstructure
supported the theory developed in [3, 4].

At hypersonic flight velocities and/or large angles of attack, the bow shock wave is fairly close to the vehicle
surface and forms a thin shock layer (Fig. 1). In the basic approximation, this layer is locally parallel because the
angle of shock-wave inclination to the wetted surface is small. The problem of stability of a plane–parallel shock
layer to comparatively inviscid two-dimensional disturbances was numerically considered in [9, 10]. The short-wave
part of the spectrum was considered in [11, 12] by asymptotic methods. It was shown there that the shock layer is a
waveguide in which acoustic disturbances propagate. Several physically different regions can be distinguished across
the shock layer, depending on the main flow parameters and phase velocity of disturbances. The most interesting
case corresponds to phase velocities at which the shock layer contains two waveguides separated by a corridor weakly
permeable for acoustic waves: “silent zone” (see Fig. 1). The eigenoscillations separated by the “silent zone” can
be synchronized, which leads to convective instability of acoustic modes. These results were obtained for the case
of a continuous vehicle surface impermeable for flow disturbances.
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Fig. 1. Propagation of acoustic disturbances in a hypersonic shock layer.
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Fig. 2. Velocity and temperature of the main flow (a) and amplitudes of disturbances of the pres-
sure P (y) and the function q(y) (b) in the two-waveguide regime in a hypersonic shock layer.

Based on the conclusions of papers on boundary-layer stability [3, 4], it is natural to assume that the porous
coating that ensures a complex disturbance reflection factor |τ | < 1 can suppress unstable acoustic disturbances in
the shock layer as well. To support this hypothesis, the influence of the porous wall on shock-layer stability was
theoretically analyzed in the present work.

Boundary-Value Problem for Acoustic Disturbances. Acoustic instability is most profoundly man-
ifested in the two-dimensional case [12]; therefore, we confine ourselves to considering a locally parallel two-
dimensional shock layer. We define an orthogonal coordinate system x, y: the x axis is directed downstream
and the y axis is directed across the shock layer. The main flow is characterized by the profiles of the streamwise
velocity component U(y) and temperature T (y) (Fig. 2a). A small perturbation of pressure p(x, y, t) is described
by the equation

M 2D3p−D∇ · (T∇p) + 2T
dU

dy

∂2p

∂x ∂y
= 0,

where D = ∂/∂t + U(y) ∂/∂x and M = Ue/
√

γRTe is the Mach number at the upper edge of the shock layer
(y = 1 − 0). The quantities in this equation are normalized as follows: the coordinates are normalized to the
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shock-layer thickness δe, the velocity and temperature are normalized to the velocity Ue and temperature Te at the
outer edge of the shock layer, and the time is normalized to te = δe/Ue.

The boundary conditions are

v
∣∣∣
y=0

= Ap
∣∣∣
y=0

, p
∣∣∣
y=1

= 0.

The first condition relates the vertical component of the velocity perturbation to the pressure perturbation on
the porous wall. The coefficient A is a complex quantity depending on the properties of the porous material
and parameters of acoustic disturbances. The second condition is derived from the Hugoniot equations under the
assumption that the shock wave is parallel to the wall.

The pressure perturbation is presented in the form of a traveling wave

p(x, y, t) = P (y) exp [i(αx− ωt)] exp (−σx).

The amplitude function P (y) is the solution of the boundary-value problem

P ′′ +
[T ′

T
− 2kU ′

kU − ω

]
P ′ +

[M 2(kU − ω)2

T
− k2

]
P = 0,

P (1) = 0, P ′(0) = iωAγM 2P (0)/T (0).
(1)

Here ω is the frequency assumed to be real, k = α + iσ is the complex wavenumber, α is the real part of the
wavenumber, and σ is the decay (σ > 0) or the growth rate (σ < 0); the prime indicates the derivative with
respect to y. In the case of a continuous wall with A = 0, problem (1) is equivalent to that considered in [11, 12].
By solving problem (1), we obtain the dispersion dependences α(ω) and σ(ω), which characterize the spectrum of
eigenoscillations in the shock layer. It is possible to analyze the specific features of the spectrum by asymptotic
methods without solving problem (1) numerically.

Short-Wave Approximation. We consider the short-wave part of the spectrum (λ = α−1 � 1), assuming
that c = ω/α = O(1) and σ = O(1). If the phase velocity is c < 1, the shock layer contains a critical point yc where
U(yc) = c. In the critical layer with an internal variable Y = (y − yc)/λ, Eq. (1) has the solution

P(0)(Y ) = H1(1− Y − iY∗) eY +iY∗ +H2(1 + Y + iY∗) e−Y −iY∗ +O(λ), (2)

where Y∗ = σc/U ′(yc) and H1 and H2 are constants. Outside the critical layer, the function P (y) can be represented
in the form

P (y) =
[ (1 + iσλ)U − c√

T

]
u(y),

where u(y) is the solution of the equation

λ2 d2u

dy2
+ q(y) + 2iσλg(y) + O(λ2)]u = 0,

q(y) = M 2(U − c)2/T − 1, g(y) = M 2U(U − c)/T − 1.

(3)

The function u(y) is approximated by the Wentzel–Kramers–Brillouin (WKB) asymptotic expansion [13]

u(y) = exp {[w(0)(y) + λw(1)(y) + O(λ2)]/λ}, (4)

in which w(0)(y) and w(1)(y) are new unknown functions. Substitution of (4) into (3) yields a system of differential
equations for w(0) and w(1):

(w′
(0))

2 + q = 0, w′′
(0) + 2w′

(0)w
′
(1) + 2iσg = 0.

The qualitative behavior of the eigenfunction u(y) is determined by the sign of the function q(y) (see Fig. 2b).
The eigenfunction oscillates in regions with q > 0. Such regions are waveguides for acoustic modes. In regions
with q < 0, the eigenfunction decays exponentially. The boundaries between the physically different regions are
determined by the turning points ya where q = 0. The relation U(ya) = c± a(ya), where a(y) =

√
T (y)/M is the

local velocity of sound, is satisfied at these points.
The most important case for stability analysis is the shock layer containing two waveguides [12]. Note that

the critical layer is located between the turning points, 0 < ya1 < yc < ya2 < 1. The inequalities q′(ya1) < 0 and
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q′(ya2) > 0 are satisfied for typical profiles of the main flow (Fig. 2b). Expansion (4) is invalid in small vicinities
of the turning points (of thickness λ2/3), called acoustic layers, which necessitates the construction of a special
solution in these regions.

Dispersion Relation. We consider four main regions where the WKB expansions are valid.
1. In the region 0 6 y < ya1 −O(λ2/3) (lower waveguide), we have

w(0)(y) = ±i

y∫
0

√
q(h) dh, w(1)(y) = −1

4
ln q(y)∓ σ

y∫
0

g(h)√
q(h)

dh,

and the solution of Eq. (3) can be represented as

u(y) =
C1

q1/4(y)
cos

( 1
λ

y∫
0

√
q(h) dh + iσ

y∫
0

g(h)√
q(h)

dh + ϕ1

)
+ O(λ), (5)

where C1 and ϕ1 are constants. This solution can be considered as a superposition of the incident wave and the
wave reflected from the wall:

P (y) = P̂1(y) exp
{
− i

1
λ

y∫
0

√
q(h) dh

}
+ P̂2(y) exp

{
i

1
λ

y∫
0

√
q(h) dh

}
,

(6)

P̂1,2(y) = const1,2
(1 + iσλ)U − c

q1/4
√

T
exp

{
± σ

y∫
0

g(h)√
q(h)

dh
}

.

We determine the amplitude reflection factor on the wall surface τ = P̂2(0)/P̂1(0); in the general case, it is a
complex quantity within the circle |τ | 6 1; for the impermeable wall, we have τ = 1. Substitution of (6) into the
boundary condition (1) on the wall yields the following equation in the basic approximation:

P̂2(0)− P̂1(0) = cAγM 2(P̂2(0) + P̂1(0))/(T (0)
√

q(0) ).

In turn, this equation yields the relation between the coefficient A and the reflection factor τ :

A =
T (0)

√
q(0)

γM 2c

τ − 1
τ + 1

. (7)

The boundary condition on the wall allows us to determine the phase ϕ1 in (5):

tan ϕ1 = −icAγM 2/(T (0)
√

q(0) ) + O(λ).

With allowance for (7), we obtain
ϕ1 = −(i/2) ln τ + O(λ). (8)

2. In the region ya1 + O(λ2/3) < y < yc −O(λ) (lower part of the “silent zone”), we have

w(0)(y) = ±
y∫

ya1

√
−q(h) dh, w(1)(y) = −1

4
ln(−q(y))∓ iσ

y∫
ya1

g(h)√
−q(h)

dh,

and the solution with accuracy to O(λ) has the form

u(y) =
1

[−q(y)]1/4

2∑
n=1

Bn exp
{

(−1)n
( 1

λ

y∫
ya1

√
−q(h) dh + iσ

y∫
ya1

g(h)√
−q(h)

dh
)}

, (9)

where B1,2 are constants.
3. In the region yc + O(λ) < y < ya2 − O(λ2/3) (upper part of the “silent zone), we obtain the following

solution with accuracy to O(λ):

u(y) =
1

[−q(y)]1/4

2∑
n=1

Dn exp
{

(−1)n
( 1

λ

ya2∫
y

√
−q(h) dh + iσ

ya2∫
y

g(h)√
−q(h)

dh
)}

(10)

(D1,2 are constants).
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4. In the region ya2 + O(λ2/3) < y 6 1 (upper waveguide), the solution has the form

u(y) =
C4

q1/4(y)
cos

( 1
λ

1∫
y

√
q(h) dh + iσ

1∫
y

g(h)√
q(h)

dh + ϕ4

)
+ O(λ), (11)

where C4 is an unknown constant; the phase ϕ4 is determined from the boundary condition on the shock wave:

ϕ4 = π/2 + O(λ). (12)

In acoustic layers, the order of the functions w(0) and λw(1) is identical, and the WKB expansion is invalid.
In the lower acoustic layer |y − ya1| 6 O(λ2/3) with the variable

z = [−q′(ya1)]1/3(y − ya1)/λ2/3 − 2iσλ1/3g(ya1)/[−q′(ya1)]2/3,

the solution in the basic approximation is expressed in terms of the Airy functions [14] as

u[z] = C2[cos ϕ2 Ai (z) + sinϕ2 Bi (z)]. (13)

Here, u[z] ≡ u(y(z)); C2 and ϕ2 are unknown constants. In the upper acoustic layer |y − ya2| 6 O(λ2/3) with the
variable

z = [q′(ya2)]1/3(y − ya2)/λ2/3 − 2iσλ1/3g(ya2)/[q′(ya2)]2/3

the following relation is valid:

u[z] = C3[cos ϕ3 Ai (z) + sinϕ3 Bi (z)] (14)

(C3 and ϕ3 are constants).
Matching expressions (2), (5), (9)–(11), (13), and (14) and using expressions (8) and (12), we obtain the

dispersion relation

cot
(π

4
+ αI1(c) + i

(
σJ1(c)−

1
2

ln τ
))

tan
(π

4
+ αI2(c) + iσJ2(c)

)
= − exp {2iσQ(c)}

4 exp {2αS(c)}
(1 + O(λ)), (15)

where

I1(c) =

ya1∫
0

√
q(y) dy, I2(c) =

1∫
ya2

√
q(y) dy, S(c) =

ya2∫
ya1

√
−q(y) dy,

J1(c) =

ya1∫
0

g(y)√
q(y)

dy, J2(c) =

1∫
ya2

g(y)√
q(y)

dy, Q(c) =

ya2∫
ya1

g(y)√
−q(y)

dy.

Equation (15) yields an implicit relation between α, σ, and c, which can be represented in the form of the dispersion
dependences α(ω) and σ(ω). Note, the critical layer in the basic approximation does not affect these dependences.

Spectrum of Eigenoscillations of the Shock Layer. We consider the real values τ 6 1. In the short-
wave approximation, the dispersion equation (15) contains a small parameter δ = exp (−αS). Representing Eq. (15)
in the form

cot (F1(α, σ, c)) tan (F2(α, σ, c)) = −δ2 exp [2iσQ(c)](1 + O(λ))/4,

where

F1(α, σ, c) = π/4 + αI1(c) + i(σJ1(c)− (1/2) ln τ), F2(α, σ, c) = π/4 + αI2(c) + iσJ2(c),

we construct the expansions of the functions F1 and F2:

F1 = F
(0)
1 (α, σ, c) + δ2F

(1)
1 (α, σ, c) + O(δ4), F2 = F

(0)
2 (α, σ, c) + δ2F

(1)
2 (α, σ, c) + O(δ4). (16)

For two basic approximations, we obtain the equations

cos F
(0)
1 sinF

(0)
2 = 0,

(sinF
(0)
1 sinF

(0)
2 )F (1)

1 − (cos F
(0)
1 cos F

(0)
2 )F (1)

2 = exp {2iσQ} sinF
(0)
1 cos F

(0)
2 /4.
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The first equation yields the discrete spectrum of eigenoscillations in the lower waveguide

α1(c, n1) = (π/4 + πn1)/I1(c) (n1 ∈ N, n1 � 1), σ1(c) = ln τ/(2J1(c)) > 0 (17)

and in the upper waveguide
α2(c, n2) = (−π/4 + πn2)/I2(c) (n2 ∈ N, n2 � 1), σ2(c) = 0. (18)

In the basic approximation, the eigenoscillations of the lower and upper waveguides do not interact with each other.
The modes of the lower waveguide exponentially decay (σ1 > 0) at τ < 1, which is caused by absorption of acoustic
disturbances by the porous wall. The modes of the upper waveguide are neutral (σ2 = 0). The group velocities of
the waves of the lower and upper waveguides are determined as v1,2 = dω1,2(α)/dα, where ω1,2(α) = αc1,2(α), and
c1,2(α) are the dispersion dependences α1,2(c) resolved with respect to c. It follows from (17), (18) that

v1,2(c) = c− I1,2(c)
/ dI1,2

dc
.

We can readily show that

J1,2(c) = −v1,2(c)
dI1,2

dc
.

As dI1/dc > 0, dI2/dc < 0, J1(c) < 0, and J2(c) > 0, the group velocities v1,2 are positive and satisfy the condition
v1(c) < c < v2(c). This means that the dispersion curves of different waveguides intersect each other, i.e., there are
points c∗ (points of synchronism) where α1(c∗) = α2(c∗). Expansions (16) are invalid in the vicinity of these points.
Even for small δ, there arises strong interaction of the waves of the lower and upper waveguides. It will be shown
below that this leads to acoustic instability of the shock layer.

Effect of the Porous Wall on Acoustic Instability. We consider small deviations of α and ω from the
point of synchronism (α∗, ω∗): ω̄ = ω − ω∗ = O(δ) and ᾱ = α − α∗ = O(δ), where δ = exp[−α∗S(c∗)] is a small
parameter. In this case, the dispersion relation (15) can be represented as the system

J1J2

v1v2
(ω̄ − v1ᾱ)(ω̄ − v2ᾱ)− tanh

(
σJ1 −

1
2

ln τ
)

tanh (σJ2) =
1
4

δ2 cos (2σQ),

J1

v1
(ω̄ − v1ᾱ) tanh (σJ2) +

J2

v2
(ω̄ − v2ᾱ) tanh

(
σJ1 −

1
2

ln τ
)

= −1
4

δ2 sin (2σQ),
(19)

where J1,2, v1,2, and Q are calculated at the point of synchronism. To analyze the structure of the solution of Eqs.
(19), we consider the characteristic values of the reflection factor τ .

1. For weakly absorbing coatings, the reflection factor is close to unity. We consider the values of τ = 1−O(δ)
for which ln τ = O(−δ) and σ = O(δ). Introducing a small quantity ε = ln τ/(2J1), we transform Eq. (19) to

(ω̄ − v1ᾱ)(ω̄ − v2ᾱ)− σ(σ − ε)v1v2 = δ2v1v2/(4J1J2),

(ω̄ − v1ᾱ)σv2 + (ω̄ − v2ᾱ)(σ − ε)v1 = O(δ3).

If σ 6= ε/2, we can eliminate ᾱ from the system, which yields the equation for σ:

(2σ − ε)2σ(σ − ε)v1v2 +
(v1 − v2)2

v1v2
σ(σ − ε)ω̄2 +

δ2v1v2

4J1J2
(2σ − ε)2 = 0. (20)

The real solution of Eq. (20) exists only if 0 6 σ(σ − ε) 6 −δ2/(4J1J2). Hence, the value of σ satisfies the
constraints

ε

2
−

√
ε2

4
− δ2

4J1J2
6 σ− 6 0, ε 6 σ+ 6

ε

2
+

√
ε2

4
− δ2

4J1J2
,

where σ− and σ+ correspond to the upper and lower waveguides, respectively. For the boundary values σ− = 0 and
σ+ = ε, there is no interaction between the waveguides. The dispersion dependences near the point of synchronism
become split: an unstable root σ− < 0 appears in the upper waveguide, and the root σ+ > ε in the lower waveguide
leads to stronger damping of acoustic waves. This splitting is shown in Fig. 3. The maximum growth rate of
instability

σinst(ε) = max
ω̄
|σ−(ω̄)| =

√
ε2

4
− δ2

4J1J2
− ε

2
(21)
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Fig. 3. Dispersion curves σ(ω̄) near the point of synchronism: the solid and dashed
curves refer to the cases with and without interaction of waveguides, respectively.

decreases with increasing ε. For ε = 0 (impermeable wall with τ = 1), σinst reaches the maximum value obtained
in [12]. Thus, even a weakly absorbing coating leads to a noticeable improvement in stability.

2. For strongly absorbing coatings with τ = 1 − O(1), system (19) has a real solution in two cases: |σJ1

− (1/2) ln τ | = O(δ2) and σ = O(δ2). In the first case, σ > 0, and no instability arises. In the second case, we
can expect a small unstable root to appear in the dispersion dependence σ(ω̄). Equations (19) yield the estimates
σ = O(δ2), (ω̄ − v1ᾱ) = O(δ), and (ω̄ − v2ᾱ) = O(δ3); based on these estimates, the following solution is obtained
in the basic approximation:

σ(τ) =
δ2

4J2

τ + 1
τ − 1

< 0.

This root corresponds to unstable disturbances with the growth rate

σinst(τ) = |σ(τ)| = δ2

4J2

1 + τ

1− τ
(22)

decreasing as τ → 0. Note, the growth rate of instability is now a quantity proportional to δ2 and significantly
lower than that in the case of a weakly absorbing coating [see Eq. (21)]. This means that the porous coating fairly
well stabilizes acoustic modes in the shock layer.

3. For real porous coatings, the reflection factor is the complex quantity
τ = R exp (iθ),

where R is the ratio of amplitudes, θ is the phase shift of the acoustic wave due to its reflection, and −2π < θ < 0.
In this case, ln τ = lnR + iθ and, in the approximation of the absence of interaction between the waveguides, Eq.
(15) acquires the form

cos
(π

4
+

θ

2
+ αI1(c) + i

(
σJ1(c)−

1
2

lnR
))

sin
(π

4
+ αI2(c) + iσJ2(c)

)
= 0.

In the lower waveguide, we obtain the dispersion dependences

α1(c, n1, θ) =
π/4− θ/2 + πn1

I1(c)
, σ1(c,R) =

lnR

2J1(c)
> 0.

The phase θ shifts the dispersion curves α1(c) and, correspondingly, the point of synchronism. This affects the
growth rates of instability waves. The value of R affects the stability parameters in the same manner as in the case
of real τ , which allows us to generalize expressions (21), (22) for complex τ :

σinst(R) =

√( lnR

4J1

)2

− δ2

4J1J2
− lnR

4J1
at R = 1−O(δ),

σinst(R) =
δ2

4J2

1 + R

1−R
at 0 < R < 1−O(1).

(23)
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Fig. 4. Dispersion curves of the instability mode for different values of the real reflection factor:
τ = 1− δ (1), 1− 2δ (2), 1− 3δ (3), 1− 4δ (4), and 1− 5δ (5); δ = 5.46 · 10−4.

Fig. 5. Instability growth rate versus the absolute value of the reflection factor for θ = 0 (1),
−π/3 (2), −2π/3 (3), and −π (4).

The phase θ is implicitly contained in the quantities J1,2 and δ, which are functions of the point of synchronism.
The growth rate of instability decreases as R = |τ | → 0. For real porous coatings, however, the parameter R cannot
be smaller than a certain minimum value Rmin > 0 caused by structural constraints. Therefore, a further increase
in stabilization can be reached by optimizing the phase θ = arg τ for a fixed R.

Calculation Results. The instability parameters were calculated for a shock layer with main flow profiles
U(y) and T (y) corresponding to a supersonic boundary layer on a flat plate with a thermally insulated wall. The
Mach number at the boundary-layer edge was M = 6, and the shock wave was artificially located at a distance of
1.25 of the displacement thickness from the wall. This flow qualitatively simulated a perfect gas flow in the shock
layer with the Prandtl number Pr = 0.72 and the ratio of specific heats equal to 1.4. The viscosity coefficient was
calculated by the power law µ/µe = (T/Te)0.75.

The dispersion equation (20) was solved numerically in the vicinity of the point of synchronism corresponding
to the maximum instability. Figure 4 shows the dispersion dependences σ(ω̄) for different real values of the reflection
factor τ corresponding to low values of porosity. As the reflection factor decreases, the dispersion curves are
deformed. Their maximum drastically decreases even for a relatively low level of absorption. The analytical
solution (23) of the dispersion equation (20) was used to calculate the growth rates of instability for different values
of the complex reflection factor. The results of this computation are plotted in Fig. 5. Varying the parameters
R = |τ | and θ = arg τ significantly decreases the growth rates of acoustic instability.

Conclusions. The influence of the porous wall on stability of acoustic disturbances in the shock layer was
theoretically analyzed by the method of matched asymptotic expansions. It was assumed that the porous coating
providing the complex reflection factor |τ | < 1 can suppress unstable acoustic disturbances. The two-waveguide
regime in which shock-layer instability arises was examined by the WKB method, which allows one to study the
specific features of development of disturbances from the high-frequency (short-wave) part of the spectrum. The
dispersion relation obtained in an analytical form was analyzed for different characteristic values of the reflection
factor τ . The analytical dependences of the growth rate of acoustic instability on τ testify that the porous coating
effectively suppresses acoustic instability of the shock layer. Numerical calculations for model profiles of the mean
flow in the shock layer are in agreement with this conclusion of the asymptotic theory.
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