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School of Mathematics, University of Manchester

Abstract

We introduce a class of stochastic production tree model, based on Petri nets, which
admit a random matrix product description in the Max-plus algebra. With a kind
of combinatorial change of variables we are able to simplify the form of the matrices
arising from these models. For this class of Componentwise exponential matrix we
prove a new result relating the (Max-plus) spectrum of the product to the princi-
pal (classical) eigenvalue of an associated adjacency matrix by means of a sandwich
inequality. This theorem highlights several important theoretical factors in the dy-
namics of Max-plus linear systems generally and gives us some neat insight into the
different production tree models.

Introduction

The Max-plus algebra gives us an alternative way to look at a number of interesting
classically non-linear phenomena [1, 2, 3, 4, 5, 6]. In particular there are many quite
different dynamical systems/mathematical constructions which are quite intractable
with standard algebra but become linear or in some other way simpler when expressed
in Max-plus.

Dynamical systems whose variables are the starting times of different interacting
events fit quite naturally into the Max-plus linear systems framework. If some event
i can only reoccur for the (n + 1)th time Mi,j seconds after event j has occurred for
the nth time then xi(n+ 1), the time i occurs for the (n+ 1)th time, satisfies

xi(n+ 1) = max
j
Mi,j + xj(n) = [M ⊗ x(n)]i (1)

where ⊗ stands for Max-plus multiplication. The theory for Max-plus matrix alge-
bra follows in analogy to the classical case; there are eigenvalues and eigenvectors,
determinants, the Caley-Hamilton theorem holds and much more besides [6]. For an
introduction to Max-plus algebra see [1].

This paper focuses on stochastic queuing systems which can be thought of as very
high dimensional continuous time Markov chains. Although they are classically linear
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their dimension makes them intractable, and investigating any classical structure in
these models seems to be beyond the scope of standard Markov chain methods. We
are however to describe them completely with much lower dimensional Max-plus linear
models whose underlying structure can be studied more easily.

We show that products of i.i.d. Max-plus matrices are dominated by a Max-plus
exponent whose value can be attributed to the weight of a path through the vertex
set of the matrices. By taking this path-centric viewpoint we are able to give a new
neater proof of the Max-plus multiplicative ergodic theorem and prove a new result
relating the Max-plus exponent to the classical principal eigenvalue of an associated
adjacency matrix.

In section 1 we introduce petri-nets and explain how stochastically timed event
graphs can be described by products of i.i.d. max-plus matrices. In 1.1 we introduce
the main production line example. In section 2 we prove the max-plus multiplica-
tive ergodic theorem then introduce componentwise exponential max-plus matrices,
which are arguably the simplest possible non-trivial random max-plus matrices with
arbitrary graph topology, and prove my main result; a sandwich of bounds for the
max-plus exponent based on the principal eigenvalue of an associated graph. In sec-
tion 3 we generalize the first example to a production tree, show how these systems
can be recast in a componentwise exponential form and then look at their expo-
nents the theorem allows us to rigourously investigate the asymptotic behavior of the
production tree systems.

1 Stochastic timed event graphs

Petri-nets are a modeling language that can be used to describe a wide variety of
distributed systems [7]. Formally a petri-net is a directed bipartite graph in which
the vertices represent transitions (signified by bars, which represent some events that
can occur) and places (signified by circles, which represent some conditions or pro-
cesses). Places can contain one or more tokens which should be thought of as units of
information or of some product. Each token can be in a waiting state (signified by a
grey dot in the place) or ready state (signified by a black dot in the place). Waiting
tokens become ready after some waiting-time which is particular to the place that
the token occupies and can be a fixed non-negative number or random variable. The
dynamics of the petri-net move tokens from place to place.

Each transition that succeeds some place vertices can become enabled. A transi-
tion is enabled if and only if each place it is a successor of contains at least one ready
token. When a transition is enabled it is able to fire. When a transition fires a ready
token is removed from each place it succeeds and a waiting token is added to each
place it is a predecessor of.

Note that since it is possible to have two enabled transitions only one of which
is able to fire, the evolution of a petri net is not necessarily deterministic even if the
place waiting-times are constant. See fig 1.
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Figure 1: Evolution of a simple petri-net. a) The token in p1 must wait some time
to become ready, b) Now that there are ready tokens in p1 and p2 the transition T1

is enabled, c) On firing T1 takes the ready tokens from p1 and p2 and adds a waiting
token to p3, d) Now that the token in p3 is ready both transitions T2 and T3 are
enabled, e) In this example we choose T2 to fire taking the token from p3 and adding
a waiting token to p4, f) The token in p4 is now ready.

Definition A stochastic timed event graph is a petri net with the following properties

• Each place has exactly one predecessor and one successor transition.

• The successive waiting times at a place i are an i.i.d. sequence [ti(n)]∞n=1

independent of the waiting times at all other places.

The first condition guarantees that the only non-determinism in the system comes
from the random waiting times and not from some ’higher’ controller as in the exam-
ple. The second condition enables us to describe the evolution of the dynamics with
a product of i.i.d max-plus matrices.

1.1 Example - Asynchronous production line

The following stochastic timed event graph can be used to model a fairly general
asynchronous production line. Consider a plant where we have a production line
consisting of N sites where each item being produced must pass from one site to the
next undergoing a different process at each site, each taking a random period of time.
Only one item may occupy a site at a time so that if one site is taking a long time to
process an item a queue may build up behind it.

Therefore whenever an item arrives at a site the processing begins. When it is
processed the item is either instantaneously moved for processing at the next site,
or if the next site is occupied, must wait until the next site is unoccupied when it is
instantaneously moved on.
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Figure 2: Evolution of asynchronous production line for N = 5. a) Transition T3 is
enabled, b) Transition T3 fires instantaneously enabling T2 which fires instantaneously
enabling T1 which also fires, c) Transition T6 is enabled, d) Transition T6 fires.

To model this queue with a timed event graph we divide the places up into two
groups {pi} and {qi} with i = 1, 2, ..., N . See fig 2. The {pi} represent the sites in the
production line so that a waiting token in place pi should be thought of as an item
undergoing a process at site i, likewise a ready token at place i should be thought of
as a processed item at site i. The waiting times at pi are a sequence of i.i.d. random
variables [ti(n)]∞n=1 with distribution given by the time that the ith process takes.

The {qi} are used to make sure that only one token occupies each pi at a time, a
token in place qi should be thought of as the ith site being empty and ready to receive
a new item for processing. The waiting times at qi are all zero so that all tokens in
{qi} are instantaneously ready.

Transitions Ti with i = 2, 3, ..., N − 1 represent a processed item a site i− 1 being
transferred to site i. The initiating transition T1 represents a new item being brought
into the line and the terminal transition TN represents the completion of a finished
product.

This system could be used to model all sorts of different production lines, most
interestingly it gives a very complete description of a bio-molecular process called
mRNA transcription, the process by which ribosomes build proteins coded for in
mRNA. For a thorough analysis of the deterministically timed version of the model
for this application see [8].
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1.2 Max-plus formulation

Given an initial distribution of tokens in a stochastic timed event graph (which we call
a marking) the evolution of the petri-net’s state can be completely determined by the
sequence of transition firing times. This statement is trivial to prove, suppose that
we start with some initial marking m0 and arrive after some time at a new marking
m′. If we are given the transition firing sequence but not the sequence of states that
the system moves through we can simply apply these transitions to m0 until we arrive
at m′.

The state variable for our max-plus model at stage n is then given by the firing
time vector X(n) = [xi(n)] where xi(n) is the time at which transition i fires for the
n’th time.

All stochastic timed event graph satisfy a max-plus linear equation which can
easily be obtained [1, 2]. Since all the systems we will consider have the special
property that each place only ever hold zero or one tokens the formulation is slightly
simpler. At each stage the firing time vectors satisfy

X(n) = A(n)⊗X(n)⊕B(n− 1)⊗X(n− 1) (2)

Where A(n) and B(n− 1) are max-plus matrices whose components are determined
by the random waiting times associated with the places in the petri net and Mo the
initial marking of tokens.

A(n)i,j =
⊕

{k:Tj→pk→Ti,m0(k)=0}

tk(n) (3)

B(n)i,j =
⊕

{k:Tj→pk→Ti,m0(k)=1}

tk(n) (4)

So that A(n)i,j is a random variable given by the maximum of a set of the nth place
waiting times. This maximum is taken over all the places that join Tj to Ti and
contain no tokens in the initial marking. Likewise B(n)i,j is a maximum but taken
over places that contain one token in the initial marking.

Since when we fix the random waiting times our system’s evolution is determin-
istic, it follows that X(n) exists and is unique. It can also be shown that (1) has a
unique solution [6]. Define the Kleene star of A(n) by

A(n)∗ = I ⊕ A(n)⊕ A(n)⊗2 ⊕ A(n)⊗3 ⊕ ... (5)

So that A(n)∗i,j should be thought of as the weight of the maximally weighted path
from j to i of any length through A(n)’s associated graph. Unless our petri-net’s
initial marking contains a circuit with no tokens in any of its places A(n)∗ will exist
since A⊗K = ε for all K > N . Any petri-net/initial marking with such a circuit will
have trivial dynamics since none of the transitions will be able to fire. We can use
the Kleene star to construct a solution to (1) by

X(n) = A(n)∗ ⊗B(n− 1)⊗X(n− 1) (6)

which on substitution to the RHS yields

A(n)⊗ A(n)∗ ⊗B(n− 1)⊗X(n− 1)⊕B(n− 1)⊗X(n− 1) (7)
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= [A(n)⊗ A(n)∗ ⊕ I]⊗B(n− 1)⊗X(n− 1) = A(n)∗ ⊗B(n− 1)⊗X(n− 1)

Therefore this is the unique solution to (1) and provides the unique evolution of
our system. The dynamics of our stochastic timed event graph are governed by the
max-plus linear system

X(n) = A(n)∗ ⊗B(n− 1)⊗X(n− 1) = [
n⊗
k=1

A(k)∗ ⊗B(k − 1)︸ ︷︷ ︸]⊗X(0) (8)

And since the components of A(k) and B(k− 1) are drawn from disjoint sets of edge
weights the underbraced terms form a sequence of i.i.d. random max-plus matrices.

1.3 Example

We can now construct the max-plus linear system associated with our asynchronous
production line model. We will use the initial making m0 where there are no tokens in
any of the pi and one token in each qi, this corresponds to starting the plant with no
items currently in processing. As outlined we choose to represent max-plus matrices
with their associated weighted graphs rather than as an array of numbers, see fig 3.

Figure 3: Graphs associated with A(n),B(n−1),A(n)∗ and A(n)∗B(n−1) respectively
for N = 4

We can now simulate our system by choosing an initial condition X(0) then ran-
domly generating a sequence of matrices [A(k)∗B(k−1)]nk=1 and max-plus multiplying
the state with them to obtain X(n), see section 2.1.
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2 Max-plus Lyapunov exponent

Our max-plus linear systems are evolved according to

X(n) = M(n)⊗X(n− 1) = [
n⊗
k=1

M(k)︸ ︷︷ ︸]⊗X(0) (9)

where the [M(k)]∞k=1 are a sequence of i.i.d. random max-plus matrices. Since the
associated graphs for these matrices have the same vertex and edge set each time,
just different edge weights, we can interpret the underbraced matrix product which
we denote P (n) as follows. P (n)i,j is given by the weight of the maximally weighted
path σ of length n through the associated graphs from j to i which accumulates
weight on its k’th step according to M(k) so that σ’s total weight is given by

W (σ) =
n∑
k=1

M(k)σ(k−1),σ(k) (10)

This maximally weighted path perspective is very natural to use in max-plus linear
algebra and is essential to the new theory presented in this paper. It also enables us
to give a new, simpler proof of the max-plus multiplicative ergodic theorem.

Theorem With probability-1 the limit

λ = lim
n→∞

1

n
P (n) = lim

n→∞

1

n

n⊗
k=1

M(k) (11)

exists and is a matrix with each element equal to the same constant, the max-
plus Lyapunov exponent which we shall also denote λ. Note that since con-
ventional multiplication acts like taking powers in max plus we are justified in
calling this an exponent.

Proof This proof is a slightly different to the standard treatment which follows from
Kingman’s sub-additive ergodic theorem [2].

Claim 1 λn = 1
n
E{maxi,j[

⊗n
k=1M(k)]i,j} is a decreasing sequence bounded above

by zero and therefore limn→∞ λn = λ exists.

Proof Consider (n + m)λn+m the expected weight of the maximally weighted path
of length n+m. Now suppose that to further maximize this weight we are able
to jump to any vertex in the graph between the nth and (n+ 1)th stages - since
we are able to do nothing if we so choose the weight of this new path must be
at least equal to the previous maximum so that

(n+m)λn+m ≤ nλn +mλm (12)

and the claim follows from this subadditivity.

Claim 2 [
⊗n

k=1 M(k)]i,j ≥ maxi′,j′ [
⊗n

k=1M(k)]i′,j′ − C for some C with bounded
expectation.
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proof Consider the path σ that attains the maximum weight in the right hand side
of the inequality. Provided the graph associated with M is irreducible and
aperiodic there exists a path ς from i to j that coincides with σ from the Nth
step to the n − Nth step. C is just the difference in weight between the two
paths whose expectation can easily be bounded by 2Nλ1.

Corollary Our theorem follows by considering a path of length n ×m from i to j.
Suppose that the maximally weighted path is σ then

lim
n,m→∞

1

nm
[
nm⊗
k=1

M(k)]i,j = lim
n,m→∞

1

m
(
1

n
[
n⊗
k=1

M(k)]i,σ(n)+ (13)

1

n
[

2n⊗
k=n+1

M(k)]σ(n+1),σ(2n) + ...+
1

n
[

nm⊗
k=n(m+1)+1

M(k)]σ(n(m−1)+1),j)

We can now use claim 2 to replace

1

n
[

n(t+1)⊗
k=tn+1

M(k)]σ(tn+1),σ(n(t+1) (14)

with

1

n
max
i′,j′

[

n(t+1)⊗
k=tn+1

M(k)]i′,j′ +
C

n
(15)

Taking the limit in m the first part of each term gives us λn by the law of large
numbers. Then taking the limit in n gives us λ and takes the C terms to zero.
If we can not factorize our path length in this way simply include a remainder
which when divided by n goes to zero.

Remark The proof for the special case of deterministic sequences is also simpler
from this maximally weighted path perspective. Consider

λ = lim
n→∞

1

n
A⊗n (16)

where A is any irreducible aperiodic max-plus matrix. Now take the cycle
C = c(1), ..., c(m) with maximum average weight and consider the component
A⊗ni,j which is the weight of the maximally weighted path of length n from i to
j. To construct a path attaining this weight (for large n) simply move from i
to c(1) in less than N steps, complete the cycle as many times as possible and
finally return to j in less than m+N steps. The average weight of this and any
other maximally weighted path will converge to C’s average weight.

The dynamics of our max-plus system are therefore dominated by λ. The remainder
of this paper is devoted to calculating and bounding the exponent for some examples
and developing a theory to link it with the classical eigenvalues of the adjacency
matrix of M ’s associated graph.

8



2.1 Example

Since the max-plus exponent acts in an arithmetic way as opposed to a classical
Lyapunov exponent’s geometric action it is very easy to approximate directly in a
numerically stable way. Returning to our asynchronous production line example we
choose all the waiting times to be i.i.d. mean-1 exponentials and simulate the max-
plus system as outlined in 1.3. The Max-plus exponent λ corresponds to the average
time between successive completions of finished products in the production line, it is
the reciprocal of the throughput.

Figure 4: Simulation of asynchronous production line for N = 4. a) Progression of
individual items through system, dashed black lines indicate jamming, b) Evolution
of Xi(n) variable, c) Convergence of X1(n)/n to max-plus Lyapunov exponent λ.
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2.2 Relation with principal adjacency eigenvalue

The max-plus exponent λ depends on both the waiting-time distributions and the
topology of the matrices associated graphs. By restricting our attention to matrices
whose waiting times are all i.i.d. mean-1 exponentials we can better explore the
relationship between λ and the graph’s topology.

Definition we say that an RN×N
max valued random variable M is componentwise expo-

nential iff
Mi,j =

⊕
k∈K(i,j)

tk (17)

Where (tk)
L
k=1 is a sequence of i.i.d. mean-1 exponentials andK(i, j) ⊂ {1, 2, ..., L}.

We will also require the second condition that (tK(i,j))
N
j=1 are independent for

each i.

Remark The graph associated with a componentwise exponential max-plus matrix
is therefore a directed weighted graph on N vertices with possibly multiple edges
between any two nodes. The weight of each edge is given by a mean-1 expo-
nential random variable and the different edge’s weights are either independent
or identical. The second condition guarantees that all edges out of a particular
vertex have independent weights.

Theorem Suppose that [M(n)]∞n=1 is a sequence of i.i.d. componentwise exponential
max-plus matrices. The max-plus exponent

λ = lim
n→∞

1

n

n⊗
k=1

M(k) (18)

satisfies
log Λ ≤ λ < α∗ (19)

where α∗ is the unique solution to

α = log Λ + log(1 + eα) (20)

and Λ is the principal eigenvalue of A(M), the adjacency matrix of M ’s asso-
ciated graph defied by A(M)i,j = k iff there are k edges from j to i in M ’s
graph.

Note The adjacency eigenvalue Λ tells us the rate at which the number of paths of
length n through the graph grows with n. In particular if χi(n) is the number
of paths of length n that end at vertex i then

χ(n+ 1) = A(M)χ(n) = A(M)n+1χ(0) (21)

and provided the adjacency matrix is irreducible and aperiodic there exists a
unique maximal eigenvalue Λ corresponding to a eigenvector u with non-zero
weight on all components so that

lim
n→∞

1

n
log ‖χ(n)‖ = log Λ (22)
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Lower Bound Recall that

λn =
1

n
E{max

i,j
[
n⊗
k=1

M(k)]i,j} (23)

is the expectation of the step averaged weight of the maximally weighted path of
length n through the graphs associated with [M(n)]∞n=1 and that λ = lim→∞ λn.
The max-plus exponent is therefore the step averaged weight of the maximally
weighted path and we can bound it below with the step averaged weight of any
other path we like. In particular we will devise a method for constructing a
highly weighted path and use the expectation of its step averaged weight as a
lower bound.

Our strategy constructs a path σ by choosing to move from one vertex to the
next at each stage by considering only the edge weights at that stage. Suppose
that at stage n our path is at vertex i so σ(n) = i. The edge weight to be
accumulated on the next step will be taken from the matrix M(n) and since we
must move from vertex i it will be one of M(n)i,j for j = 1, 2, ..., N . We will
always greedily choose to move along the maximally weighted edge accumulating
the maximum weight so that σ(n + 1) = k where M(n)i,k ≥ M(n)i,j for all
j = 1, 2, ..., N .

Since the edges out of each vertex are all i.i.d. the probability that any particular
edge has the maximum weight is the uniform fraction 1/di where di is the out
degree of the vertex i. The sequence of vertices in the path σ is therefore a
markov chain with

P[σ(n+ 1) = j|σ(n) = i] =
Ai,j
di

(24)

and stationary distribution π.

Now consider the weight of the first n edges in the path σ

W |n(σ) = max
k∈K[σ(1)]

tk(1) + max
k∈K[σ(2)]

tk(2) + ...+ max
k∈K[σ(n)]

tk(n) (25)

where K(i) = ∪j∈{1,2,...,N}K(j, i) are the indices for all waiting-times associated
with edges leaving vertex i. By the law or large numbers we have

lim
n→∞

1

n
W |n(σ) =

N∑
i=1

πi E[ max
k∈K(i)

tk]︸ ︷︷ ︸ (26)

where the underbraced term is the expectation of the maximum of di i.i.d.
mean-1 exponentials and is given by

∑di
k=1

1
k
. The step averaged weight of the

path is therefore given by

N∑
i=1

πi

di∑
k=1

1

k
≥

N∑
i=1

πi log di (27)

where we will use the log approximation as our lower bound.
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We now consider a cocycle on the markov chain σ defined by

C|n(σ) = [
n∏
k=0

dσ(k)]
−1 (28)

and by the multiplicative ergodic theorem, with probability one, we have

lim
n→∞

1

n
logC|n(σ) = −

N∑
i=1

πi log di (29)

The nth stage entropy of the cocyle is given by

Hn =
−1

n

∑
{σ|n:σ(0)=1}

C|n logC|n (30)

where the sum is taken over all paths of length n that begin at vertex 1. Note
that C|n(σ) is the probability of following exactly the path σ from σ(0) to σ(n)
taking the appropriate edge [σ(k + 1), σ(k)] whenever their are multiple edges,
we therefore say that our cocycle is stochastic and

lim
n→∞

Hn = −
∑

{σ|n:σ(0)=1}

C|n
N∑
i=1

πi log di = −
N∑
i=1

πi log di (31)

The entropy of a probability measure on a set of k objects is maximized when
the measure is uniform. Since C|n can be thought of as a probability measure
on {σ|n : σ(0) = 1} and in the limit n → ∞ Cn becomes, essentially, uniform
we have

lim
n→∞

Hn −
1

n
Ĥn = 0 (32)

where Ĥ(n) is the entropy of the uniform probability distribution on {σ|n :
σ(0) = 1} which is given by

Ĥ(n) = −
∑

{σ|n:σ(0)=1}

1

Dn

logDn (33)

where Dn = ‖{σ|n : σ(0) = 1}‖ is the number of paths of length n that start at
vertex 1. Finally we have

N∑
i=1

πi log di = lim
n→∞

1

n
logDn = log Λ (34)

which completes the proof of our lower bound

log Λ < λ (35)
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Remark The use of the approximation

N∑
k=1

1

k
≈ logN (36)

is the reason that our bound is not sharp. This is in the sense that we can
construct a sequence of i.i.d. matrices whose maximally weighted path is the
same path chosen by our greedy strategy. If we set

M(n)i,j = ti(n) (37)

for i, j = 1, 2, ..., N then the choice of edge weights at each vertex are the same
for all the different vertices at each stage and the optimal strategy for choosing
a maximally weighted path is simply to choose the best available edge at each
stage, as in our greedy strategy. Therefore in this system

λ =
N∑
k=1

1

k
(38)

and we can express this in terms of Λ = N in the limit by

lim
N→∞

λ = log Λ + γ + εN (39)

where γ is the EulerMascheroni constant and εN → 0 like 1/N .

Upper bound The expected weight of the maximally weighted path of length n can,
of course, be expressed in terms of path weights

λn =
1

n
Emax

i,j
[
n⊗
k=1

M(k)]i,j =
1

n
Emax

σ|n
W |n(σ, [ti(k)]i=N,k=n

i=1,k=1 )︸ ︷︷ ︸ (40)

where the underbraced term is equal to the weight of the length-n path σ with
edge weights determined by the i.i.d. mean-1 exponentials [ti(k)]i=N,k=n

i=1,k=1 . It is
important that in evaluating this expression the same waiting times are used
for each different path. The maximum is then taken over all paths of length n.

The weight of each path of length-n is a sum of n i.i.d. mean-1 exponentials so
that all path weights are identically distributed. However different paths can
share edges which they traverse at the same step, accumulating the same waiting
time. Therefore the path weights are not independent. Since their dependence
arises from edge weight sharing it will only tend to make them more correlated.
We say that the edge weights are associated random variables.

Definition A sequence of random variables (xi)
N
i=1 are said to be associated if for all

f, g : RN 7→ R non-decreasing in each component we have

Cov[f(x1, x2, ..., xN), g(x1, x2, ..., xN)] ≥ 0 (41)

To see that the path weights are associated note that each W |n(σ) is a non-
decreasing function of the waiting-times. Thus if f and g are non-decreasing
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functions of the path weights they are non-decreasing functions of the waiting-
times which are all independent so the inequality holds.

Since this association means the random variables are positively correlated it
reduces their standard deviation and the expectation of their maximum. We
can therefore bound λ from above by taking the maximum in (39) while ignoring
the dependence and treating each path weight as an i.i.d. sum of i.i.d. mean-1
exponentials.

Claim Suppose that (xi)
N
i=1 and (yi)

N
i=1 are identically distributed random variables

and that (xi)
N
i=1 are associated but (yi)

N
i=1 are independent.

E N
max
i=1

xi ≤ E N
max
i=1

yi (42)

Proof For some i ∈ {1, 2, ..., N}, a subset J ∈ {1, 2, .., N} and any positive real
number t define the non-decreasing functions f and g by

f(x1, x2..., xN) =

{
−1 if xi < t
0 otherwise

(43)

g(x1, x2..., xN) =

{
−1 if maxj∈J xj < t
0 otherwise

Now to calculate the covariance of these two functions we need to consider four
events

• xi < t and maxj∈J xj < t occurs with probability P (f, g) = P[xi < t, xj <
t, j ∈ J ]

• xi < t but maxj∈J xj ≥ t occurs with probability P (f) − P (f, g) where
P (f) = P[xi < t]

• maxj∈J xj < t but xi ≥ t occurs with probability P (g) − P (f, g) where
P (g) = P[xj < t, j ∈ J ]

• xi ≥ t and maxj∈J xj ≥ t occurs with probability 1−P (f)−P (g)+P (f, g)

The covariance of f, g is then

Cov[f, g] = P (f, g)[P (f)P (g)−P (f)−P (g)+1]+[P (f)−P (f, g)][P (f)−1]P (g)
(44)

+[P (g)− P (f, g)][P (g)− 1]P (f) + [1− P (f)− P (g) + P (f, g)]P (f)P (g) ≥ 0

which simplifies to P (f, g) ≥ P (f)P (g) so that

P[xi < T |xj < T, j ∈ J ] ≥ P[xi < T ] (45)

Now consider

P[
N

max
i=1

xi < t] =
N∏
i=1

P[xi < t|xk < t; k = 1, 2, ..., i− 1] (46)
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and if we set J = {1, 2, ..., i− 1} then our previous result tells us that

P[
N

max
i=1

xi < t] ≥
N∏
i=1

P[xi < t] (47)

which is exactly equal to the probability that the maximum of the yi is less
than t. Finally

E N
max
i=1

xi =

∫ ∞
0

tρx(t)dt =

∫ ∞
0

∫ ∞
z

ρx(t)dtdz (48)

=

∫ ∞
0

1− P[
N

max
i=1

xi < z]dz ≤
∫ ∞

0

1− P[
N

max
i=1

yi < z]dz = E N
max
i=1

yi

so that the expectation of the maximum of the associated variables is less than
or equal to the expectation of the maximum of the independent variables as
claimed.

Therefore we have the upper bound

λ ≤ lim
n→∞

1

n
E Dn

max
i=1

Xi(n) (49)

where [Xi(n)]Dn
i=1 is a sequence of i.i.d. sums of n i.i.d. mean-1 exponentials

and Dn is the number of paths of length n through our graph. Unfortunately
we can’t approximate the Xi(n) as Gaussians because the convergence in the
central limit theorem is not sufficiently uniform. Instead we will show directly
that as n → ∞ the ratio of the median to the mean of the maximum tends
to 1 so we can calculate the expectation by calculating the median, which is
naturally easier than the mean for the maximum of several random variables.

Given a sequence of probabilities (pn)∞n=1 we define the sequence of generalized
medians [µn(pn)]∞n=1 for our sequence of random variables [maxDn

i=1Xi(n)]∞n=1 by

P[
Dn

max
i=1

Xi(n) < µn(pn)] = P[X1(n) < µn(pn)]Dn = pn (50)

And using the identity

ex = lim
m→∞

(1 +
x

m
)m (51)

with x = log pn and m = Dn we have, approximately but verifiably in the limit
n→∞ for all sequences (pn)∞n=1 we consider

P[X1(n) < µn(pn)] = 1 +
log pn
Dn

(52)

P[X1(n) > µn(pn)] = − log pn
Dn

And since we know the distribution of the sum of n i.i.d. mean-1 exponentials
we can write down an integral for the LHS which we can then integrate by parts

=

∫ ∞
µn(pn)

xn−1e−x

(n− 1)!
dx = e−µn(pn)

n−1∑
k=0

µn(pn)k

k!︸ ︷︷ ︸ (53)
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where the underbraced term is a truncation of ex’s power series evaluated at
x = µn(pn). We can bound this sum with the inequality

(1 +
x

n
)n ≤

n∑
k=0

xk

k!
≤ (1 +

ex

n
)n (54)

which we prove by looking at the coefficient of xk

1

k!

n!

(n− k)!nk
≤ 1

k!
≤ 1

k!

n!ek

(n− k)!nk
(55)

Therefore in the limit n→∞ we have the inequality

e−µn(pn)(1 +
µn(pn)

n− 1
)n−1 ≤ − log pn

Dn

≤ e−µn(pn)(1 +
eµn(pn)

n− 1
)n−1 (56)

Claim Any sequence of medians µn(pn) satisfying

lim
n→∞

log log pn
n

= 0 (57)

including the sequence of proper medians [µn = µn(1
2
)]∞n=1 satisfy, in the limit

n→∞
log Λ ≤ µn

n
≤ log Λ + log(1 +

eµn
n

) ≤ C log Λ +D (58)

for some bounded C D that do not depend on Λ.

Proof substituting pn = 1
2

into inequality (55) then taking logs and dividing by n
gives the first sandwich inequality. That everything is less than or equal to
C log Λ +D follows from the fact that

F (α) = log Λ + log(1 + eα) (59)

is a contraction mapping whose unique fixed point α∗ bounds limn→∞
µn
n

from
above. Now

δα∗

δ log Λ
=

1 + eα∗

1 + e(α∗ − 1)
(60)

So that for any fixed finite Λ′ we have

α∗(Λ) ≤ α∗(Λ′) +
δα∗

δ log Λ
|α∗(Λ′) log Λ (61)

Claim For large n almost all the probability mass is close the median in the sense
that

lim
n→∞

µn(e
−1
n )− µn(e−n)

n
= 0 (62)
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Proof From equation (52) we have

µn(e
−1
n )

n
= log Λ +

log n

n
+ log(

n−1∑
k=0

µn(e
−1
n )k

k!
) (63)

and
µn(e−n)

n
= log Λ− log n

n
+ log(

n−1∑
k=0

µn(e−n)k

k!
) (64)

So that
µn(e

−1
n )− µn(e−n)

n
≤ 2 log n

n
(65)

+
µn(e

−1
n )− µn(e−n)

n
max

µn(e−n)≤x≤µn(e
−1
n )

d

dx
log(

n−1∑
k=0

xk

k!
)︸ ︷︷ ︸

using the result of the previous claim we bound the underbraced term by

max
log Λ≤α≤C log Λ+D

1−
(αn)n−1

(n−1)!∑n−1
k=0

(αn)k

k!

(66)

which gives

µn(e
−1
n )− µn(e−n)

n
≤ 2 log n

n
max

log Λ≤α≤C log Λ+D

(n− 1)!

(αn)n−1

n−1∑
k=0

(αn)k

k!︸ ︷︷ ︸ (67)

where the underbraced term can be bounded above by

max
log Λ≤α≤C log Λ+D

n−1∑
k=0

1

αn−k−1
≤ max

log Λ≤α≤C log Λ+D
(1− 1

α
)−1 (68)

So that
µn(e

−1
n )− µn(e−n)

n
<

2 log n

n
(1− 1

log Λ
)−1 → 0 (69)

as required.

We can now express the mean as an integral over a series of intervals bounded
by generalized medians

E Dn
max
i=1

Xi =

∫ µn(e−n)

0

xρ(x)dx+

∫ µn(e
−1
n )

µn(e−n)

xρ(x)dx︸ ︷︷ ︸ (70)

+

∫ µn(e
−1
mn )

µn(e
−1
n )

xρ(x)dx+
∞∑
m=2

∫ µn(e
−1

(m+1)n )

µn(e
−1
mn )

xρ(x)dx

Where the underbraced term is equal to µn(1
2
) + o(n). All that remains is to

show that the sum of the remaining terms grows slower than n.
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The first integral is easy∫ µn(e−n)

0

xρ(x)dx ≤ e−nµn(e−n) ≤ e−nn(C log Λ +D) (71)

We treat the remaining integrals in the same way, bounding them above by the
probability associated with their interval multiplied by an upper bound on the
value of their upper boundary. Using the upper bound in inequality (55) we
obtain

µn(e
−1
mn )

n
< log Λ− 1

n
log log e

1
mn + log(1 + e

µn(e
−1
mn )

n
) (72)

So that
µn(e

−1
mn )

n
< logmΛ + log(1 + e

µn(e
−1
mn )

n
) (73)

and as in (59) we have

µn(e
−1
mn )

n
< C logmΛ +D (74)

So the sum of the remaining integrals is bounded by

n(e
−1
2n − e

−1
n )(C log 2Λ +D) + n

∞∑
m=3

(e
−1
mn − e

−1
(m−1)n )[C logmK(n) +D] (75)

And in the limitn→∞ this expression is bounded above by

(1− e−n)n(C log 2Λ +D) + n
∞∑
m=3

C logm

(m− 1)n
(76)

≤ Cn
∞∑
m=3

1

(m− 1)n−1
→ 0

Therefore the mean really does look like the median and we can use the bound
obtained for the median on the mean.

Corollary Suppose that [MN(n)]∞n=1 is a sequence of i.i.d. componentwise exponen-
tial max-plus matrices parameterized by N ∈ N.

• If maxN ΛN = Λ exists then maxN λN = Λ exists.

• If on the other hand ΛN →∞ then limN→∞
λN

log ΛN
= 1

• Moreover if, as in all our examples, MN(n) can be realized as submatrix
of MN+K(n) for all N,K ≥ 0 then either limN→∞ ΛN exists and so does
limN→∞ λN or limN→∞

λN
log ΛN

= 1

Proof The final item comes from the fact that if MN is a submatrix of MN+K then
any path through its associated graph can also be found in the graph of MN+K

so that ΛN ≤ ΛN+K and λN ≤ λN+K . Everything else follows directly from the
main theorem.
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3 Examples

Our result relating the max-plus exponent to the adjacency matrix eigenvalue is
restrictive in the sense that it only applies to componentwise exponential matrices.
The max-plus matrix product systems associated with stochastic event graphs are not
typically in this form. For example in 1.3 the graph associated with A∗(n)B(n − 1)
has edges with zero weight as well as edges whose weight are conventional sums of
more than one i.i.d. mean-1 exponential.

However we shall see that this and other matrices associated with a generalization
of our original production line model can be modified in such a way that preserves the
max-plus exponent and provides us with a componentwise exponential form. Thus we
can apply our edge weight redistribution procedure to obtain a new system which has
the same asymptotic properties as the original stochastic event graph but is amenable
to our new theory.

3.1 Asynchronous production trees

The production line model outlined in 1.1 requires the N different process to be
carried out in the total order 1 > 2 > ... > N to produce a finished product. We
can generalize our production model to allow for a class of partial orders on these
processes.

Definition A tree order�,� is a partial order on {1, 2, ..., N} with a unique maximal
element such that {k � i} ∩ {k � j} = ∅ whenever {i, j} is an anti-chain. We
associate the graph G(�,�) with vertex set {1, 2, ..., N} and an edge (i, j)
whenever j is a maximal element of {k � i}. The graph associated with a tree
metric is therefore a rooted tree and for each rooted tree on {1, 2, ..., N} there
exists a unique partial order associated with it as such.

The requirement that incomparable processes do not share predecessors is necessary
to obtain a stochastic even graph description as otherwise some places will have more
than one succeeding transition. It is also a fairly reasonable assumption for a generic
asynchronous production line, if we interpret each process as taking the products of
its direct predecessors and amalgamating them in some way then there is no reason
why parallel processes should be dependent in any way on each others predecessors.

We construct the stochastic event graph associated with a tree order �,� as
follows. For each i ∈ {1, 2, ..., N} we include a pair of places pi and qi, and a transition
Ti. As before a token in pi represents as an item being processed at site i with i.i.d.
mean-1 exponential waiting times [ti(n)]∞n=1. A token in qi represents site i being
unoccupied with zero waiting times. Transition Ti represents the products of process
i’s predecessors being completed and moved into site i for processing.

We include an edge from qi to Ti and from Ti to pi, in addition we include an edge
from pi to Tj where j is i’s unique direct successor in G(�,�) and an edge from Tj
to qi.

Finally we include a terminal transition TN+1 which represents the completion of
a finished product, we include a edge from TN+1 to qk where k is the root of G(�,�)
and an edge from pk to TN+1. See example 3.4.
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3.2 Edge weight redistribution

The graphs associated with A(n) and B(n − 1) for the stochastic event graph of an
asynchronous production line with partial order G(�,�) are as follows.

• A(n) is a graph on {1, 2, ..., N + 1} with an edge (i, j) of weight tj(n) whenever
(i, j) is an edge in G(�,�), in addition there is an edge (N + 1, k) of weight
tk(n) where k is the maximal element.

• B(n− 1) has the same vertex set but with the opposite edge set, so that (i, j)
is an edge of weight zero in B(n− 1) whenever (j, i) is an edge in A(n).

• A∗(n)B(n − 1) is a graph on {1, 2, ..., N + 1} where for each i there are self
loops (i, i) of weight tj(n) and zero weight edges (j, i) for each j that is directly
succeeded by i and for each k � i there is an edge of weight tj(n) +Wk,i where
the second term is the weight of the unique path from i to k.

Definition The componentwise exponential matrix Â(n) whose graph on {1, 2, ..., N+
1} contains for each i edges (j, i) and (i, k) of weight tj(n) for each j a direct
predecessor of i and any k � i. The matrices components are given by

Â(n)i,j =


ti if j is a direct predecessor of i⊕

k∈P (i) tk if j � i

ε otherwise
(77)

where P (i) is the set of i’s direct predecessors.

Claim The max-plus exponent of the edge weight redistributed system

λ̂ = lim
n→∞

1

n
[
n⊗
k=1

Â(n)]N+1,N+1 (78)

is equal to that of the original stochastic event graph system

λ = lim
n→∞

1

n
[
n⊗
k=1

A∗(n)B(n− 1)]N+1,N+1 (79)

Note that we will be calculating these exponents by looking just at the (N +
1, N+1)th component of the product which should be thought of as the averaged
weight of the maximally weighted path of length n from the maximal vertex to
itself.

Proof Again we can express the exponent in terms of path weights.

λ̂n =
1

n
Emax

i,j
[
n⊗
k=1

Â(k)]i,j =
1

n
Emax

σ̂|n
W |n(σ̂, [t̂i(k)]i=N,k=n

i=1,k=1 )︸ ︷︷ ︸ (80)

and since the t̂i(n) and tj(m) are all i.i.d. we can obtain a statistically valid
description of this system by setting t̂i(n) = ti[n+ d(i)] where d(i) is the depth
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of i in the partial order, i.e. the length of the longest chain from the maximal
element to i. We shall now show that there is a map between the sets of
paths such that any sequence of edge weights in the original system can be
accumulated by a different path in the redistributed system and that therefore
the two exponents are the same.

Paths from N + 1 to N + 1 in the original system must step down the tree
one vertex at a time and are then able to jump back up. In the redistributed
system paths jump down the tree then step back up. We define a map R from
the paths in the original system to paths in the redistributed system by reading
σ and simultaneously writing R(σ). Let i be the latest step to be read from σ
and j the latest step written to R(σ).

• Start with R(σ)1 = σ1 = N + 1

• Whenever σ steps down the tree so that d(σi) < d(σi+1) < ... < d(σi+k) ≥
d(σi+k+1) we set R(σ)j = σi R(σ)j+1 = σi+k

• whenever σ jumps back up the tree (including when it stays at the same

level) so that d(σi) ≥ d(σi+1) we setR(σ)j = σi, R(σ)j+1 = σ
(1)
i , ...,R(σj+k) =

σ
(k)
i = σi+1 where σ

(t)
i is σi’s unique tth successor.

Therefore if σ is a length n path from N +1 to N +1 in the original graph R(σ)
is a length n path from N + 1 to N + 1 in the redistributed graph, and

ŴR(σ) = W (σ) (81)

So that we have a measure preserving map between the t̂i(n) and tj(m) and
a bijection between the paths in the maximum. Therefore when we take the
expectation we can integrate over the tj(m) and have an identical integrand for
each exponent. Thus the exponents are the same as claimed.

3.3 Asynchronous production line

We have already calculated A(n), B(n− 1) and A∗(n)B(n− 1), see section 1.3. Fol-
lowing the definition in 3.2 we construct the redistributed componentwise exponential
matrix Â for this system

Figure 5: Graph associated with Â(n) for N = 4
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Ignoring the minimal vertex with no connections the adjacency matrix for this
graph is given by

Ai,j =

{
1 if i ≤ j + 1
0 otherwise

(82)

where we have identified each vertex with its depth for the index in the adjacency
matrix. Now A is irreducible and aperiodic so Λ exists and is unique. Also there
exists u with ui > 0 for all i such that Au = Λu. Examining the first row of this
equation gives u1 + u2 = Λu1 so that u2 = Λ− 1 the nth row says

n+1∑
j=1

uj = Λun−1 + un+1 = Λun (83)

Which gives us a second-order, liner, constant-coefficient recurrence relation on the
un that we use to obtain

un = A+µ
n−1
+ + A−µ

n−1
− (84)

where

µ± =
Λ±
√

Λ2 − 4Λ

2
(85)

and

A± =
1

2
± Λ− 2

2
√

Λ2 − 4Λ
(86)

We now require uN = uN−1 in order for the eigenvalue/vector pair to be valid. Sup-
pose that Λ > 4 then both exponents are real and positive with µ+ > µ− also
A+ > |A−| so that un is an increasing function of n and it is impossible to satisfy
the final condition. Therefore Λ ≤ 4 which proves that there is a finite limit in the
exponent as the length of the production line grows N → ∞. In fact Λ → 4 very
quickly and this can be seen in the convergence of the upper and lower bounds with
N .
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Figure 6: Max-plus exponent of production trees (blue) with bounds (black).
a)Asynchronous production line, b)Asynchronous production binary tree, c)Partially
synchronous production tree

3.4 Asynchronous production binary tree

We can construct an asynchronous production tree around a partial order derived
from a binary tree.
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Figure 7: Petri-net and initial marking for asynchronous production binary tree for
N = 3.

Calculation of the matrix product system and redistributed componentwise expo-
nential matrix is as outlined previously.
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Figure 8: Graphs associated with A, B, A∗B and Â respectively for N = 3.

To compute the adjacency eigenvalue of the graph for Â we first quotient the
vertex set so that we consider sets of depth i vertices. The adjacency matrix for this
quotient is then given by

Ai,j =


1 if i = 1, j = 1, 2
2 if j ≤ i+ 1 ≥ 3
0 otherwise

(87)

which will have the same principal eigenvalue as the whole adjacency matrix. Note
that this adjacency matrix is less than (componentwise) the adjacency matrix asso-
ciated with the production line of length N multiplied by 2. Therefore the apparent
asymptotes in the bound and the exponent definitely do exist.

3.5 Partially synchronous production binary tree

We can generalize our production line model further by requiring some anti-chains
of processes to be completed synchronously. In terms of the production line model
this means demanding that some processes that do not share any precursors must
start at exactly the same time, so that one process may have to wait for the other
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to be ready in order for it to begin. Formally we take a partition of {1, 2, ..., N} into
disjoint subsets then define a tree order on this set of subsets.

We consider a binary tree system in which all the processes of depth d are synchro-
nized. This is equivalent to defining a total order on the partition taken by grouping
together processes of the same depth in the binary tree.

Figure 9: Petri net and initial marking for partially synchronous production binary
tree for N=3.

Within this slightly more general framework the edge weight redistribution process
still works in the same way.
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Figure 10: Graphs associated with A, B, A∗B and Â respectively for N = 3, bold
edges represent sets of more than one edge whose weights are listed in the figure.

The adjacency matrix associated with the redistributed system is given by

Ai,j =

{
2i−1 for j ≤ i+ 1
0 otherwise

(88)

and using
N

min
j=1

N∑
i=1

Ai,j ≤ Λ ≤ N
max
j=1

N∑
i=1

Ai,j (89)

we have the inequality

2N−2 + 2N−1 = 3× 2N−2 ≤ Λ ≤
N∑
j=1

2j−1 = 2N − 1 (90)

so that

lim
N→∞

λ

N
= log 2 (91)

Conclusion

3.6 Examples

Our simulations and bounds confirm that the asynchronous production tree has
slightly lower throughput than the production line but that individual products are
produced much faster. Enforced synchrony reduces throughput catastrophically but
individual items are produced in a reasonable amount of time. We summarize our
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results in the following table which shows throughput and production time in the
limit N →∞, so for very large production trees. [λ1 ≈ 2.5] < [λ2 ≈ 3.5].

Production model Throughput Production time
Asynchronous Line λ−1

1 λ1N
Asynchronous tree λ−1

2 λ2 log2N
Partially synchronous tree (logN)−1 logN log2N

3.7 Theory

For smaller values of Λ our bounds are not too sharp which is why we are unable to
use them to approximate λ with much accuracy, however they still prove essential for
proving the existence of the asymptote in λ as N →∞. For the partially synchronous
case where Λ→∞ the bounds gives us an approximation of λ that converges in ratio
as N →∞. The availability of such results is formalized in the corollary to our main
theorem which we recall here.

Corollary Suppose that [MN(n)]∞n=1 is a sequence of i.i.d. componentwise exponen-
tial max-plus matrices parameterized by N ∈ N.

• If maxN ΛN = Λ exists then maxN λN = Λ exists.

• If on the other hand ΛN →∞ then limN→∞
λN

log ΛN
= 1

• Moreover if, as in all our examples, MN(n) can be realized as submatrix
of MN+K(n) for all N,K ≥ 0 then either limN→∞ ΛN exists and so does
limN→∞ λN or limN→∞

λN
log ΛN

= 1

The ideas used in the proof of the bounds rest heavily on the maximally weighted
path persecutive. In the proof of the lower bound we use a Markovian strategy to
obtain a highly weighted path and in the proof of the lower bound we show exploit
the special Association between different paths weights. These ideas could form the
basis of a similar result for further classes of Max-plus matrices, indeed a similar
upper bound can easily be obtained for Componentwise Gaussian matrices where we
have

λ �
√

log Λ (92)

The classical theory of graph eigenvalues gives us a useful toolbox for investigating the
value of Λ in our examples which made its calculation fairly easy. In less structured
systems it could still be obtained numerically with great accuracy much faster than
any Max-plus exponent approximation.

3.8 Scope

The Max-plus formulation of a timed even graph will work for any such system with
any sort of waiting time distribution. Our main theorem relied on a Componentwise
exponential form which we obtained through a sort of combinatorial change of vari-
ables, this transformation will clearly not work for any timed event graph but similar
techniques will no doubt be of use in other examples.
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3.9 Further work

In further work we hope to generalize our result to a more general class of matrices,
clearly the tail characteristics of the waiting time distributions play an important role
here so something like the Perato distribution whose tail weight can be parameterized
would be particularly interesting. It would also be interesting to investigate what
else can be said about the dynamics of a timed event graph from the maximally
weighted path perspective, in particular the importance of the maximally weighted
path’s path, that is the sequence of vertices it visits. A statistical result would be
especially desirable here.
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