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Abstract

Many real processes have stochastic features which seem to be representable in some intuitive sense
as ‘close to Poisson’, ‘nearly random’, ‘nearly uniform’ or with binary variables ‘nearly independent’.
Each of those particular reference states, defined by an equation, is unstable in the formal sense, but
it is passed through or hovered about by the observed process. Information geometry gives precise
meaning for nearness and neighbourhood in a state space of processes, naturally quantifying proximity
of a process to a particular state via an information theoretic metric structure on smoothly parametrized
families of probability density functions. We illustrate some aspects of the methodology through case
studies: inhomogeneous statistical evolutionary rate processes for epidemics, amino acid spacings along
protein chains, constrained disordering of crystals, distinguishing nearby signal distributions and testing
pseudorandom number generators.

Keywords: Families of probability densities, gamma distributions, information geometry, amino
acids, constrained disordering, evolution, epidemic, inhomogeneous rate process, entropy, analytic and
numerical computation.

1 Introduction

A question: “We already use statistical modeling, why should we bother with information geometry?”
Information geometry is concerned with the natural geometrization of smoothly parametrized families of
discrete probability or continuous probability density functions; the naturality stems from the fact that the
metric structure arises from the covariance matrix of gradients of probability. This metric yields a smooth
Riemannian structure on the space of parameters, so adding the geometric concepts of curvature and arc
length to the analytic tools for studying trajectories through probability distributions as statistical models
evolve with time or during changes of system conditions. The development of the subject over the past
65 years has been substantially due to the work of C.R. Rao and S-I. Amari and coworkers; see for exam-
ple [Rao, 1945], [Amari, 1963], [Amari, 1968], [Amari, 1985], [Amari et al, 1987], [Amari & Nagaoka, 2000]
and references therein. Information geometry and its applications remain vigorous research areas, as witness
for example the series of international conferences of the same name [IGA Conference, 2010]. In phenomeno-
logical modeling applications, information geometric methods complement the standard statistical tools with
techniques of representation similar to those used in physical field theories where the analysis of curved geo-
metrical spaces have contributed to the understanding of phenomena and development of predictive models.

∗To appear in: “Handbook of Research on Computational Science and Engineering: Theory and Practice” Eds. J Leng, W
Sharrock, IGI-Global, 2012 http://www.igi-global.com/bookstore/titledetails.aspx?TitleId=51940
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2 Information geometry in biology and physics

In many statistical models of practical importance there is a small range of probability density functions
that has very wide application as a result of general theorems, and the spaces of these families have
just a small number of dimensions. For example, the families of Gaussian and gamma distributions and
their bivariate versions are widely applied and moreover their information geometry is easily tractable,
[Arwini & Dodson, 2008]. In particular, the family of gamma distributions is ubiquitous in modeling natural
processes that involve scatter of a positive random variable around a target state, such as for inhomogeneous
populations or features of elements in a collection. The reason for this ubiquity is that a defining charac-
teristic of the gamma distribution is for the sample standard deviation to be proportional to the sample
mean. In practice, that property is commonly found to varying degrees of approximation; the case when the
standard deviation equals the mean corresponds to the exponential distribution associated with a Poisson
process, which is the fundamental reference process for statistical models. Sums of independent gamma ran-
dom variables (hence also sums of independent exponential random variables) follow a gamma distribution
and products of gamma random variables have distributions closely approximated by gamma distributions.
We shall provide below more details about the properties of the gamma family and its associated families
which include the uniform distribution, approximations to truncated Gaussians and a wide range of others.

Our case studies will show that gamma distributions model well the spacings between successive occurrences
of each of the 20 different amino acids which with differing abundances lie along a protein chain [Cai et al, 2002].
Figure 6 illustrates the information distance in the space of gamma distributions for amino acid spacings
along protein chains, measured from the exponential (Poisson) case κ = 1; intuitively we might expect that
they would be scattered around the reference exponential case. In fact they all lie on the clustered side of
the distribution, all have more variance than that expected by chance—the exponential case.

In typical real situations it is of interest to depict the changing state of a statistical model through the
trajectory its representative distribution follows in the appropriate family of distributions, under the influence
of external influences or some internal evolutionary imperative. An example is shown in Figure 1 for the
integral curves starting from different initial gamma distributions of the entropy (ie the ‘mean log probability
density’) gradient in the space of gamma distributions; there the unconstrained disordering means that the
asymptote coincides with the exponential distribution, when the standard deviation equals the mean and we
have maximal entropy (and hence maximal disorder). Information geometry provides the correct measures
of ‘information distance’ along or between such trajectories, and along any other arbitrary curves, and it
defines parallelism and perpendicularity as well as minimal distance curves (geodesics). Sometimes the
degeneration of order is constrained by conditions in the model and then the process does not tend to the
maximal entropy but only to a lower level. An example of a class of stochastic phenomena that involves the
degeneration of a structure from more orderly to less orderly, through an external application of disruptive
statistical influences, is the heating of a crystalline structure. Here there is what might be called a constrained
degeneration into disorder, where the constraints are the structural rules that define the material. We shall
discuss in the sequel the results from [Lucarini, 2009], which simulates the progression of the disordering
degeneration of 3D BCC crystal structure via surface area distributions of Voronoi cells.

Some applications require bivariate statistical models in which correlation is a parameter. Examples are
when these variables are lengths of adjacent polygon edges in stochastic fibre networks, and the void and
capillary size in stochastic porous media; [Arwini & Dodson, 2008] provides details for such cases. Here,
by extending an existing product epidemic model [Britton & Lindenstrand, 2009] we shall illustrate a sta-
tistically similar situation using a bivariate gamma representation of the random variables for periods of
latency and infectiousness; see [Andersson & Britton, 2000] for more details on the modeling of epidemics.
Epidemics in inhomogeneous populations have disease transmission susceptibilities and infectiousness that
vary within the population, so we have an inhomogeneous stochastic rate process and this admits interesting
representation through information geometric methods. In the sequel, Figures 4 and 5, show how we can
depict the parameters in the joint distribution of periods of latency and infectiousness as surfaces of dis-
tance, measured from the two reference cases for the evolution of the epidemic, namely starting from Poisson
processes for each variable. On such surfaces could be represented data on the progress of epidemics under



C.T.J. Dodson 3

different intervention schemes, or simulations of such scenarios.

Another situation where we encounter an inhomogeneous stochastic rate process is that of an evolutionary
development of a population through the stochastic de-selection of individuals with unfavourable features.
Here we are interested in how the distribution of features develops and what its effect is on the properties of
the population. Particular solutions for the cases of initial densities that were Poisson, gamma or uniform
were given by [Karev, 2003]. Elsewhere [Dodson, 2010b] reported a study of evolution from initial log-gamma
densities that determine a neighbourhood of the uniform distribution [Arwini & Dodson, 2008], so recovering
the solution for the uniform distribution as a special case. For a recent account of numerical methods in
modeling evolution see [Roff, 2010].

Pseudorandom number generators are common tools in software engineering and we can use information
geometry to compare them. Cryptological attacks on encryption/decryption devices may be defended
against by obscuring algorithms that overlay randomizing procedures; then there is a need to compare
nearby signal distributions and again the information metric can help. Tests for randomness of such se-
quences have been studied extensively and the NIST Suite of tests [Rushkin, Soto et al, 2001] for cryp-
tological purposes is widely employed. Information theoretic methods also are used, for example see
[Grzegorzewski & Wieczorkowski, 1999] also [Ryabko & Monarev, 2005] and references therein for recent
work. Here we add to the latter by outlining how pseudorandom sequences may be tested quickly and easily
using information geometry by computing distances in the gamma manifold to compare maximum likelihood
parameters for separation statistics of sequence elements.

Finally, we utilize the log-gamma family and compare nearby truncated Gaussian-like distributions of arbi-
trarily small variance and also perturbations of the uniform distribution, as illustrated in Figure 8. Such
comparisons are used in a variety of signal analytic applications and in particular we have applied them to
studies of cryptological security of smartcards [Dodson & Thompson, 2000], providing simple approximate
information distance formulae.

1.1 Software

In the case studies reported in this chapter we have used the computer algebra package Mathematica
[Wolfram, 1996] for the necessary analytic differential geometry, to perform computer simulations and to
represent graphically the typically important process features for a variety of phenomena. The analytic
mathematical and numerical computational methodology used here is supported by open source code in
the form of Mathematica interactive notebooks [Dodson, 2010c] which can be downloaded from the author’s
webpage http://www.maths.manchester.ac.uk/kd/mmaprogs/InfoGeomMMANotebooks/
Such notebooks allow interface and exchange of data with many other programs including C, C++ and Mat-
Lab as well as export in a variety of graphical, animated and tabular formats. The book [Rose & Smith, 2002]
provides a wide range of mathematical statistics coding in Mathematica. [Gray, 1998] provides Mathematica
code for the geometry of curves and surfaces.

1.2 Summary of properties of gamma distributions

We begin with some notes on properties of the family of gamma distributions, which has certain distinguishing
characteristics that give it a central role in a wide range of applications because it generalizes the duality
between the discrete Poisson event distribution and its complementary continuous exponential event spacing
distribution.
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Figure 1: Entropy function Sf from (2) for the gamma family with entropy gradient flow and integral curves
as a surface. On the surface, the dashed asymptote at κ = 1 is the exponential case of maximum disorder.

The family of gamma distributions with random variable x in event space Ω = R+ has a collection of
probability density functions given by

{f(x;µ, κ) =

(
κ

µ

)κ
xκ−1

Γ(κ)
e−xκ/µ | µ, κ ∈ R+} ≡ R+ × R+. (1)

These probability density functions depend in a smoothly differentiable way on parameters µ, κ ∈ R+, with

mean E[x] = µ and variance E[x2] − E[x]2 = σ2 = µ2

κ . The Shannon entropy Sf of (1) and some gradient
flow curves, satisfying ċ = ∇Sf , are shown in Figure 1 from the definition

Sf = −
∫ ∞

0

f log f dx : R2+ → R

: (µ, κ) 7→ κ− log

(
κ

µ

)
+ log(Γ(κ))− (κ− 1)

d log Γ(κ)

dκ
. (2)

At fixed κ, the entropy increases like logµ; at fixed mean µ, the maximum entropy is given by κ = 1, which
determines the exponential distribution case of maximal disorder or chaos. Integral curves are shown through
the space of parameters for gamma distributions to illustrate trajectories of unconstrained disordering pro-
cesses that converge to the line κ = 1. Constrained disordering, such as for heated crystals, converges not to
κ = 1 but to a higher value, as we shall see below. Given a set of identically distributed, independent data
values X1, X2, . . . , Xn, the ‘maximum likelihood’ or ‘maximum entropy’ parameter values µ̂, κ̂ for fitting the
gamma distribution (1) are computed in terms of the mean and mean logarithm of the Xi by maximizing
the likelihood function

Likf (µ, κ) =

n∏
i=1

f(Xi;µ, κ).

By taking the logarithm and setting the gradient to zero we obtain

µ̂ = X̄ =
1

n

n∑
i=1

Xi (3)

log κ̂− Γ′(κ̂)

Γ(κ̂)
= log X̄ − 1

n

n∑
i=1

logXi

= log X̄ − logX. (4)
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The smooth family of log-gamma distributions has probability density functions of form

h(a, ν, τ) =
aν−1ντ

∣∣log
(

1
a

)∣∣τ−1

Γ(τ)
(5)

for random variable a ∈ (0, 1] and parameters ν, τ > 0, see Figure 8. The mean and variance are given by

E(a) =

(
ν

1 + ν

)τ
(6)

σ2(a) =

(
ν

ν + 2

)τ
−
(

ν

1 + ν

)2τ

. (7)

In this family the locus of those with central mean E(a) = 1
2 satisfies

ν(2
1
τ − 1) = 1. (8)

The uniform density is the special case with τ = ν = 1. The log-gamma density (5) actually arises from the
gamma density

f(x, ν, τ) =
xτ−1 ντ

Γ(τ)
e−xν . (9)

via the change of variable x = − log a.

The gamma distribution can be characterized by an important uniqueness property which we have in the
form of the following theorem—the proof of which could be omitted in a first reading but the method of
proof is important:

Theorem 1 For independent positive random variables with a common probability density function f, having
independence of the sample mean and the sample coefficient of variation is equivalent to f being the
gamma distribution.

This characterization is one of the main reasons for the large number of applications of gamma distribu-
tions, because many near-random natural processes have observed standard deviation approximately pro-
portional to the mean, as we illustrate in [Arwini & Dodson, 2008]. A proof of the Theorem 1 was given in
[Hwang & Hu, 1999] but in fact the result seems to have been known much earlier and here we give a proof
partly based on the article [Laha, 1954], of interest for the methodology using Laplace Transforms, which
have a close relation to moment generating functions in statistics [Feller, 1971].

Proof of Theorem 1 Let f be a probability density function for a positive random variable x, so f is
positive and of unit measure: ∫ ∞

0

f(x) dx = 1.

The expectation operator E gives the mean m and variance σ2 <∞ by

E[x] =

∫ ∞
0

x f(x) dx = m and E[(x−m)2] =

∫ ∞
0

x2 f(x) dx−m2 = σ2.

The Laplace Transform of f is therefore the expectation of e−tx which we write as

φx(t) = E[e−tx] =

∫ ∞
0

e−tx f(x) dx. (10)
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Its nth derivative is

φ(n)
x (t) = (−1)n

∫ ∞
0

xn e−tx f(x) dx

and so in particular

φ′x(0) = −m, φ′′x(0) = σ2 +m2.

If y is another positive random variable, with probability density function g and y is independent of x
then from (10) the probability density function of z = x+ y has Laplace Transform

φz(t) = E[e−tz] = E[e−txe−ty] = E[e−tx]E[e−ty] = φx(t)φy(t)

It follows that if x1, x2, . . . , xn are independent random variables all with the same probability density
function f, then the pdf of the sum w =

∑n
j=1 xj has Laplace Transform φw(t) = (φx(t))n.

Now let x1, x2, . . . , xn be independent positive random variables all with the same probability density
function f. If the sum

∑n
j=1 xj is independent of the ratio

(

n∑
j=1

x2
j )/(

n∑
j=1

xj)
2,

then we have to show that f is a gamma probability density function.

By the hypothesis of independence,

E

 ∑n
j=1 x

2
j(∑n

j=1 xj

)2 (

n∑
j=1

xj)
2 et

∑n
j=1 xj

 = E

[ ∑n
j=1 x

2
j

(
∑n
j=1 xj)

2

]
E

(

n∑
j=1

xj)
2 et

∑n
j=1 xj

 .
Using the above result and dividing through by φn,

nφ′′x/φx = K
(
nφ′′x/φx + n(n− 1) (φ′x/φx)

2
)

Now put ψ(t) = log φx(t) and simplify to give

Aψ′′ +B(ψ′)2 = 0, with ψ(0) = 0, ψ′(0) = m,ψ′′(0) = σ2 so
ψ′′(t)

ψ′(t)2
= − σ

2

m2
. (11)

Put ξ(t) = ψ′(t) then rewrite (11) as

− ψ
′′(t)

ψ′(t)2
=

d

dt
1/ξ(t) =

σ2

m2
hence ξ(t) =

m

1 + (σ2/m)t
.

Integrating ξ(t) = ψ′(t) gives

ψ(t) = log φx(t) = (m2/σ2) log[1 + (σ2/m)t] finally φx(t) =
(
1 + (σ2/m)t

)m2/σ2

. (12)

It can be checked that this φx is the Laplace Transform of the gamma probability density function

f(x) =
(m
σ2

)(m/σ)2 e−mx/σ
2

Γ(m2/σ2)
x(m/σ)2−1

which completes the proof of Theorem 1.
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2 Background information geometry for stochastic processes

There are many books on differential geometry, we mention [Dodson, & Poston, 1991] and [Gray, 1998] which
introduce the ideas of Riemannian geometry and the synthesis of smooth n-manifolds by smoothly piecing
together subsets of Rn, and include many examples. Let Θ ⊆ Rn be the parameter space of a smooth family
of probability density functions defined on some fixed event space Ω (typically R, R+ or products thereof)

{pθ|θ ∈ Θ} with

∫
Ω

pθ = 1 for all θ ∈ Θ. (13)

The covariance matrix [gij ] is the expectation of the matrix of derivatives of the log-likelihood function
l = log pθ, with respect to parameters (θi), it is positive definite and hence defines a Riemannian in-
formation metric on the smooth n-manifold of probability density functions with coordinates these pa-
rameters (θi). The components of the Riemannian metric are, subject to certain regularity conditions,
cf. [Arwini & Dodson, 2008],

[gij ] =

[
E

(
∂l

∂θi
∂l

∂θj

)]
= −

[
E

(
∂2l

∂θi∂θj

)]
, giving arc length function ds2 =

∑
i,j

gij dθ
i dθj . (14)

We say that the family (13) is an exponential family if the pθ admit expression in terms of functions
{C,F1, ..., Fn} on Ω and a function ϕ on Θ as:

pθ(x) = e{C(x)+
∑
i θi Fi(x)−ϕ(θ)} , (15)

then we say that these (θi) are its natural parameters, and ϕ is the potential function. By normalization we
obtain: ∫

p(x; θ) dx = 1, so ϕ(θ) = log

∫
e{C(x)+

∑
i θi Fi(x)} dx . (16)

In this case the n-manifold of probability density functions can be represented by a natural affine immersion
(cf. [Dodson & Matsuzoe, 2003], [Arwini & Dodson, 2008]) in Rn+1 via

(θ) ∈ Rn 7→ ((θ), ϕ(θ)) ∈ Rn+1. (17)

For an exponential family (15) we have a simpler method to compute the information metric (14) from the
log-likelihood function l(θ, x) = log pθ(x) as follows.

∂il(θ, x) = Fi(x)− ∂iϕ(θ) (18)

and
∂i∂j l(θ, x) = −∂i∂jϕ(θ) . (19)

Then the information metric g on the n-dimensional space of parameters Θ ⊂ Rn, equivalently on the set
{pθ|θ ∈ Θ ⊂ Rn}, has components:

[gij ](θ) = −
∫

Ω

[∂i∂j l(θ, x)] pθ(x) dx = ∂i∂jϕ(θ) = [ϕij ](θ) . (20)

Surprisingly, (14) is tractable for many important smoothly parametrized distributions, in particular for
Gaussian, exponential and gamma, as well as their bivariate versions. For example, the space G of gamma
probability density functions (1) is a smooth 2-manifold (here a curved surface) with Riemannian metric

[gij ] (µ, κ) =

[
κ
µ2 0

0 d2

dκ2 log(Γ)− 1
κ

]
and arc length function ds2 =

κ

µ2
dµ2 +

(
d2

dκ2
log(Γ)− 1

κ

)
dκ2. (21)
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Figure 2: Tubular neighbourhood of the curve κ = 1 of all exponential random processes, in the surface
representing the gamma 2-manifold in R3 as an affine immersion φ(ν, κ) = log Γ(κ) − κ log ν in natural
coordinates ν = κ/µ, κ.

A curve in the space G of gamma distributions

c : [0, 1]→ G : t 7→ {c1(t), c2(t)} (22)

has tangent vector {ċ1(t), ċ2(t)} where the dot signifies differentiation by t and its information length up to
t = T is

L(T ) =

∫ T

0

√∑
i,j

ċi(t)ċj(t) gij(c1(t), c2(t)) dt (23)

It is easy to show that (ν = κ/µ, κ) are natural parameters for the gamma distribution and its potential
function is

ϕ(ν, κ) = log Γ(κ)− κ log ν. (24)

In these coordinates the components of the metric are given by

[gij ] (ν, κ) =

[ κ
ν2 − 1

ν

− 1
ν

d2

dκ2 log(Γ)

]
. (25)

Figure 2 shows the corresponding affine immersion in R3 of the 2-manifold G of gamma distributions,
together with a tubular neighbourhood of the curve κ = 1 which contains all exponential distributions. This
is significant because exponential distributions are in one-to-one correspondence with Poisson processes—
Poisson processes on a line have exponentially distributed intervals between events and exhibit maximal
disorder.

By inspection of (14), the same information geometry arises from the logarithmic version in each case. Also,
among the gamma distributions is included the exponential distribution as a special case so among the log-
gamma distributions we have also the uniform distribution, as well as approximations to truncated Gaussians
of arbitrarily small variance, among other asymmetric unimodal distributions.



C.T.J. Dodson 9

The log-gamma family yields a smooth Riemannian 2-manifold with coordinates (ν, τ) ∈ R+×R+ and metric
tensor given by

[gij ] (ν, τ) =

[ τ
ν2 − 1

ν

− 1
ν

d2

dτ2 log(Γ)

]
, with ds2 =

τ

ν2
dν2 +

d2

dτ2
log[Γ] dτ2 − 2

ν
dνdτ. (26)

In fact, this 2-manifold of log-gamma densities is an isometric diffeomorph (smooth 1 to 1 correspon-
dence) of the 2-manifold of gamma densities (9), via natural coordinates (ν, τ) (cf. [Amari & Nagaoka, 2000],
[Arwini & Dodson, 2008]) for which τ = 1 corresponds to the subfamily of exponential densities with mean
1
ν . So the information geometry of gamma and log-gamma families coincide and the correspondence maps
the exponential distribution with unit mean to the uniform distribution which has (ν = 1, τ = 1).

2.1 Characterization of important neighbourhoods of process states

Some other useful general results that arise in this context and have wide application are given by the fol-
lowing theorems from [Arwini & Dodson, 2008]

Theorem 2 Every neighbourhood of a Poisson process contains a neighbourhood of processes subordinate to
gamma probability density functions.
A Poisson process defines a unique exponential distribution, the exponential distributions are special
cases of gamma distributions and the information geometry of the gamma family determines a metric
structure for neighbourhoods. Figure 2 shows a tubular neighbourhood in R3 of the curve of exponential
distributions in an immersion of the 2-dimensional space of gamma distributions.

Theorem 3 Every neighbourhood of a uniform process contains a neighbourhood of processes subordinate to
log-gamma probability density functions.
The log-gamma distributions contain the uniform distribution as a special case; logarithmic transfor-
mation of random variables leaves unaltered the information geometry so this follows from Theorem
2. Thus a spherical neighbourhood in R3 centred on the the uniform distribution in an immersion of
the space of log-gamma distributions provides a neighbourhood of uniformity.

Theorem 4 Every neighbourhood of an independent pair of identical Poisson processes contains a neighbour-
hood of bivariate processes subordinate to Freund bivariate exponential probability density functions.
The 4-dimensional space of Freund bivariate mixtures of exponential distributions [Freund, 1961] con-
tains subfamilies that include correlated identical exponential distributions, so the Freund information
geometry provides a metric structure for neighbourhoods of independent exponential distributions and
consequently for their corresponding complementary Poisson distributions.

Theorem 5 The 5-dimensional space of bivariate Gaussians admits a 2-dimensional subspace through which
can be provided a neighbourhood of independence for bivariate Gaussian processes.
The information geometry of the bivariate Gaussian family determines a 2-dimensional subfamily that
contains the space of independent Gaussians, so determining a neighbourhood of independence.

Theorem 6 Via the Central Limit Theorem, by continuity, the tubular neighbourhoods of the curve of zero
covariance for bivariate Gaussian processes will contain all limiting bivariate processes sufficiently close
to the independence case for all processes with marginals that converge in probability density function
to Gaussians.

These results are rather general and their qualitative features make them widely applicable. We shall
illustrate some aspects in this chapter through several case studies in the following sections for processes that
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have stochastic features which seem to be representable in some intuitive sense as ‘close to Poisson’, ‘nearly
random’, ‘nearly uniform’ or with binary variables ‘nearly independent’. Those particular reference states,
being defined by an equation, are unstable in the mathematical statistical sense, but are passed through or
hovered about by many important observed processes and hence we need to consider neighbourhoods. The
fact that we have the topological property of geometrical ‘nearness’ means that qualitative results remain
true even if the actual models (choice of distribution family) is only an approximation. We look in some detail
at inhomogeneous statistical rate processes for epidemics and evolution, and outline applications to amino
acid spacings, constrained disordering, distinguishing nearby signal distributions and testing pseudorandom
number generators. This should not be viewed as a substitution for other methods of study but rather as
an additional methodology that may be useful in representation or evaluation of phenomena.

3 Case Study 1: Modeling a stochastic epidemic rate process

Epidemiology is a big subject with a long history and a large literature; standard texts on modeling in-
clude [Bailey, (1975)], [Andersson & May, 1991], [Diekmann & Heesterbeek, 2000], note also the new volume
on numerical methods [Andersson & Britton, 2000].

The spreading of an infectious disease involves a (large) population in which an initially small number of
individuals are infected. Each infected individual is for a period of latency L not yet infectious but at the
end of the latent period the individual becomes infectious for a period I; models provide distributions for the
random variables L and I. The rest of the population is susceptible to infection from infectious individuals;
this susceptibility is often taken to be a constant but later we shall consider a population with an evolving
inhomogeneous distribution of susceptibilities to infection. An infectious individual has random infectious
contacts at a rate λ and contact with a susceptible individual results in infection and then the latent period
of that individual commences. The so-called basic reproduction number is R0 = λµI , the product of the
rate of infectious contacts and the mean period of infectiousness µI .

[Lloyd, 2001] discussed the sensitivity of dynamical properties of an epidemic model to the choices of for-
mulation and made use of a gamma distribution for the period of infectiousness and allowed for optional
seasonality. [Cauchemez & Ferguson, 2008] introduced a new approach to the analysis of epidemic time series
data to take account of partial observation of latency and the temporal aggregation of observed data. They
showed that homogeneous standard models can miss key features of epidemics in large populations. Also,
[Nishiura et al, 2009] devised an estimate of reproduction number in terms of coarsely reported epidemic
data, showing that an ideal reporting interval is the mean generation time rather than a fixed chronologi-
cal interval. See also recent work by [He et al, 2009] for related results on partially observed data and by
[Miller et al, 2009] on general distributions of generating intervals.

[Chowell et al, 2009] have edited a new collection of articles on mathematical and statistical approaches to
epidemic modelling and Chapter 2 there, by G. Chowell and F. Bauer, gives a detailed study of the basic
reproduction rate in a variety of epidemic models. [Wallinga & Lipsitch, 2007] addressed the sensitivity of
the reproduction number to the shape of the distribution of generation intervals and obtained upper bounds
even in the situation of no information on shape.

Recently [Britton & Lindenstrand, 2009] described a model where the period of latency L and the period
of infectiousness I have independent gamma distributions. They found that variability in these random
variables had opposite effects on the epidemic growth rate. That rate increased with greater variability in L
but decreased with greater variability in I. Here we extend their result by using the McKay bivariate gamma
distribution [McKay, 1934] for the joint distribution of L and I, recovering the above effects of variability but
allowing in case it may be of relevance the possibility of correlation. One might imagine that in the case of a
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disease in which the physical changes during latency lead to longer future infectiousness if the period of their
development is longer, then the random variables L and I may have a positive correlation. We use methods
of stochastic rate processes to obtain explicit solutions for the growth of the epidemic and the evolution of
the inhomogeneity and information entropy. This admits a closed analytic solution to the evolution of the
distribution of the number of uninfected individuals as the epidemic proceeds, and a concomitant expression
for the decay of entropy. The family of McKay bivariate gamma distributions has a tractable information
geometry which provides a framework in which the evolution of distributions can be studied as the outbreak
grows, with a natural distance structure for quantitative tracking of progress.

3.1 Inhomogeneous Malthusian epidemic models

In their discussion of epidemic modelling, [Britton & Lindenstrand, 2009] highlighted aspects when stochas-
tic features are more important than deterministic ones. In particular, they described the importance of
admitting random variables to represent the period of latency L and the period of infectiousness I, Their
standard susceptible-exposed-infectious-removed (SEIR) epidemic model was elaborated using independent
gamma distributions for L and I with means µL, µI and standard deviations σL, σI . The basic (mean)
reproduction number is given by

R0 = λµI (27)

where λ is the rate of infectious contacts and µI is the mean length of infectious period. An epidemic
becomes a major outbreak if R0 > 1 and then the number infected increases exponentially,

nI(t) ∼ ert (28)

where the Malthusian parameter r satisfies the equation

E
(
e−rtλ Prob{L < t < L+ I}

)
= 1. (29)

Their independent bivariate model expresses r
R0

in terms of the parameters of the two gamma distributions.
They used means, µL, µI and coefficients of variation τL = σL

µL
, τI = σI

µI
to deduce

r =
R0

µI

(
1 + rτ2

LµL
)−1/τ2

L

(
1−

(
1 + rτ2

I µI
)−1/τ2

I

)
. (30)

Then [Britton & Lindenstrand, 2009] found from numerical analysis of (30) that, at fixed R0, the growth
rate r is monotonically decreasing with µL, µI and τI , but it is increasing with τL. So increased variability in
latency period increases the epidemic growth rate whereas increased variability in infectious period decreases
the epidemic growth rate.

3.2 Bivariate gamma distribution of periods of latency and infectiousness

The model described here adds to the work of [Britton & Lindenstrand, 2009] in which they used independent
univariate gamma distributions for the periods of latency and infectiousness in an epidemic model that they
illustrated with data from the SARS outbreak [WHO, 2003]. They used numerical methods to obtain
approximate solutions. Our contribution is to use a bivariate gamma distribution which allows positive
correlation between the random variables representing the periods of latency and infectiousness. That could
represent a situation where physical changes during the latency period lead to longer future infectiousness
if the period of their development is longer. We obtain a closed analytic solution and show that the same
qualitative features persist in the presence of such correlation. This makes available the analytic information
geometry of the space of probability densities, allowing comparison of possible trajectories for the epidemic
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against, for example, exponential distributions for periods of infectiousness or of latency, corresponding to
underlying Poisson processes.

Somewhat surprisingly, it is rather difficult to devise bivariate versions of Poisson, exponential distributions or
more generally gamma distributions that have reasonably simple form [Arwini, 2004], [Arwini & Dodson, 2008]
and indeed only Freund bivariate exponential [Freund, 1961] and McKay [McKay, 1934] bivariate gamma
distributions seem to have tractable information geometry. The family of McKay bivariate gamma density
functions is defined on 0 < x < y <∞ with parameters α1, σ12, α2 > 0 and probability density functions,

f(x, y;α1, σ12, α2) =
( α1

σ12
)

(α1+α2)
2 xα1−1(y − x)α2−1e

−
√

α1
σ12

y

Γ(α1)Γ(α2)
. (31)

Here σ12, which must be positive, is the covariance of x and y and f(x, y) is the probability density for the
two random variables x and y = x+ z where x and z both have gamma density functions.

We obtain the means, standard deviations and coefficients of variation by direct integration:

Means : µx =
√
α1σ12, µy =

(α1 + α2)
√
σ12√

α1
, µz =

α2
√
σ12√
α1

(32)

SDs : σx =
√
σ12, σy =

√
σ12(α1 + α2)

α1
, σz =

√
α2σ12

α1
(33)

CVs : τx =
1
√
α1
, τy =

1√
α1 + α2

, τz =
1
√
α2

(34)

The correlation coefficient, and marginal probability density functions of x and y are given by

ρ =

√
α1

α1 + α2
> 0 (35)

f1(x) =
( α1

σ12
)
α1
2 xα1−1e

−
√

α1
σ12

x

Γ(α1)
, x > 0 (36)

f2(y) =
( α1

σ12
)

(α1+α2)
2 y(α1+α2)−1e

−
√

α1
σ12

y

Γ(α1 + α2)
, y > 0 (37)

The marginal probability density functions of latency period x and infectiousness period y are gamma with
shape parameters α1 and α1 + α2, respectively. It is not possible to choose parameters such that both
marginal functions are exponential, so the two random variables cannot both arise from Poisson processes
in this model.

3.3 Stochastic rate processes

For a detailed monograph on stochastic epidemic models see [Andersson & Britton, 2000]. We consider here
a class of simple stochastic rate processes where a population N, of uninfected individuals, is classified by a
smooth family of time-dependent probability density functions {Pt, t ≥ 0} with random variable a > 0, having
at time t mean Et(a) and variance σ2(t). This situation was formulated by [Karev, 2003], [Karev, 2010b] in
the following way. Let lt(a) represent the frequency at the a-cohort, then we have

N(t) =

∫ ∞
0

lt(a) da and Pt(a) =
lt(a)

N(t)
(38)

dlt(a)

dt
= −alt(a) so lt(a) = l0(a)e−at (39)
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Figure 3: Left: Plot of the Malthusian parameter r against the coefficients of variation of periods of latency
τx and infectiousness τy with means µx = 3, µy = 2 and R0 = 2.2 from [Britton & Lindenstrand, 2009]
for the SARS data [WHO, 2003]. So the exponential growth rate of infection decreases with variability in
latency period (τx) but increases with variability in infectiousness period (τy). Right: Plot of the Malthusian
parameter r against the means of periods of latency µx and infectiousness µy with coefficients of variation
τx = τy = 4/7 and R0 = 2.2 from [Britton & Lindenstrand, 2009] for the SARS data [WHO, 2003]. So the
exponential growth rate of infection decreases with mean latency period (µx) and with mean infectiousness
period (µy).

General solutions for these equations were given in [Karev, 2003], from which we obtain

N(t) = N(0)L0(t) where L0(t) =

∫ ∞
0

P0(a)e−at da (40)

dN

dt
= −Et(a)N where Et(a) =

∫ ∞
0

aPt(a) da = −d logL0

dt
(41)

dEt(a)

dt
= −σ2

t (a) = (Et(a))2 − Et(a2) (42)

Pt(a) = e−at
P0(a)

L0(t)
and lt(a) = e−atL0(t) (43)

dPt(a)

dt
= Pt(a)(Et(a)− a). (44)

Here L0(t) is the Laplace transform of the initial probability density function P0(a) and so conversely P0(a) is

the inverse Laplace transform of the population (monotonic) decay solution N(t)
N(0) . See [Feller, 1971] for more

discussion of the existence and uniqueness properties of the correspondence between probability densities
and their Laplace transforms. In this section we shall use N(t) to represent the decreasing population of
uninfected individuals as an epidemic grows. In our context of an epidemic model we might view the random
variable a as a feature representing susceptibility to infection in the population; in general this distribution
will evolve during the epidemic. The model can be reformulated for a vector (N i(t)) representing a composite
population with a vector of distributions (P it ) and a matrix of variables [aij ].

In [Dodson, 2010b] a similar situation was used in an evolutionary selection process, where the random
variable a represents unfitness and the population N(t) declines with time as Pt(a), the distribution of
unfitness, evolves towards greater mean fitness. There solutions were found for several initial distributions
from the log-gamma family, so investigating a neighbourhood of the uniform initial case.

It is easy to deduce the rate process for entropy from Karev’s model. The Shannon entropy at time t is

St = −Et (logPt(a)) = −Et
(

log
P0(a)e−at

L0(t)

)
(45)
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which reduces to
St = S0 + logL0(t) + Et(a) t. (46)

By using Ėt(a) = −σ2(t), the decay rate is then

dSt
dt

= −t σ2(t). (47)

This result shows how the variance controls the entropy change during quite general inhomogeneous pop-
ulation processes. In fact equation (47) and further related results were given also in subsequent pa-
pers [Karev, 2010a], [Karev, 2010b]. We note that the reverse process of population growth may have
applications in constrained disordering type situations [Dodson, 2010a].

Initial growth rate
We follow the method of [Britton & Lindenstrand, 2009] in their §3.2, to compute the initial exponential
growth rate of the epidemic from equation (29) which we write for bivariate x, y in the form∫ ∞

0

∫ x

y

e−r(y−x) λ f(x, y) dy dx = 1 (48)

Here, from [Britton & Lindenstrand, 2009], R0 = λµx for the average number of infections per infective, so
λ is the contact rate; this gives the Malthusian parameter analytically in explicit form as

r =
1

µxτ2
x

((
R0

µy

)τ2
y

− 1

)
. (49)

Thus, r is monotonically decreasing with µx, µy and τx but increasing with τy; typical values from the
SARS epidemic [WHO, 2003] as used by [Britton & Lindenstrand, 2009] are µx = 3 and r = 0.053. So
the bivariate gamma model reveals that the result of [Britton & Lindenstrand, 2009] for the dependence of
growth rate on variability in the periods of latency and infectiousness in the independent case persists also
in the presence of correlation between these two random variables. Such a correlation may be relevant in
particular applications, when physical changes evolve during the latent period and influence the length of
the subsequent infectiousness period.

We can estimate also the evolution of an inhomogeneous distribution of susceptibility a, as the population
N(t) of uninfected individuals declines with time t. For example, the case when the initial distribution P0(a)
is a gamma distribution with parameters s, k was solved in [Karev, 2003] giving the result

Pt(a) =
P0(a)

L0(t)
e−at =

(s+ t)k ak−1

Γ(k)
e−a(s+t), for time t ≥ 0. (50)

Then the time dependences of mean, standard deviation and coefficient of variation are given by

µa(t) =
k

s+ t
(51)

σa(t) =

√
k

s+ t
(52)

τa(t) =
1√
k
. (53)

From (47), we can see that the rate of entropy decrease is greater for more variability in susceptibility.

3.4 Information geometry of the space of McKay bivariate gamma distributions

Information geometry of the smooth family M of McKay bivariate gamma probability density functions,
which is of exponential type, has been studied in detail in [Arwini & Dodson, 2008] Chapter 4. This
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Figure 4: Approximate information distances dEM =
√
EM (equation (54)) in the McKay manifold, mea-

sured from distributions T0 with exponential marginal distribution for x so α1 = 1 and τx = 1. So the surface
represents distances from an exponential process for periods of latency.

provides a Riemannian metric on M, yielding a curved 3-manifold so the affine immersion is a 3-dimensional
object in R4, which we can only represent in R3 through its 2-dimensional submanifolds. Here we illustrate
how the geometry may nevertheless be used to provide a natural distance structure on the space of the
McKay distributions used in our epidemic model.

First we measure distances from distributions with exponential marginal distributions—those for which
α1 = 1, τx = 1 when the latency periods are controlled by a Poisson event process. The derivation of a
distance from distribution T0 is given in [Arwini & Dodson, 2008], and yields in terms of τx and ρ

EM (τx, ρ)|[T0:α1=1] =

(
ρ2 + 1

)2
16ρ6

∣∣∣∣ 1

τ2
x

− 1

∣∣∣∣
+

1

4

∣∣∣∣(1− 1

τ2
x

)(
1− 1

ρ2

)
+ 3 log

(
τ2
x

)∣∣∣∣
+

∣∣∣∣ψ( 1

τ2
x

1

ρ2
− 1

)
− ψ

(
1

ρ2
− 1

)∣∣∣∣
+

∣∣∣∣ψ( 1

τ2
x

)
+ γ

∣∣∣∣ (54)

where ψ(u) = d log Γ(u)
du is the digamma function and γ is the Euler gamma constant—with numerical value

about 0.577. Figure 4 shows a plot of dEM =
√
EM (τx, ρ) from equation (54). This is an approximation to

the Riemannian distance but it represents the main features of the information distance of arbitrary latency
period distributions T1 from the curve of distributions T0 with α1 = 1, τx = 1.

Repeating the above procedure for the case when T0 has (α1 +α2) = 1, which corresponds to an exponential
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Figure 5: Approximate information distances dEM =
√
EM (equation (55)) in the McKay manifold, mea-

sured from distributions T0 with exponential marginal distribution for y, so α1 + α2 = 1 and τy = 1. So the
surface represents distances from a Poisson process for infectivity.

infectiousness period distribution (and a Poisson process of infections) we obtain

EM (α1, α2)|[T0:α1+α2=1] = |ψ (α2)− ψ (1− α1)|

+
1

4

∣∣∣∣ (2α1 + α2) 2

4α1
− 1

2
(α1 + 1)

∣∣∣∣ . (55)

This is plotted in Figure 5. The two graphics, Figures 4 and 5, show how we can depict the parameters
in the joint distribution of periods of latency and infectiousness as surfaces of distance, measured from the
two reference cases for the evolution of the epidemic starting from Poisson processes, respectively. On such
surfaces could be represented data on the progress of epidemics under different intervention schemes, or
simulations of such scenarios.

Geodesic curves in Riemannian manifolds give minimal arc length and examples are given in [Dodson, 2010a]
for manifolds of Weibull, gamma and McKay bivariate gamma distributions, together with gradient flow
curves for entropy. More details of the information geometry of uniform, exponential, gamma, Gaussian,
and bivariate versions with applications are provided in [Arwini & Dodson, 2008].

[Britton & Lindenstrand, 2009] highlighted aspects when stochastic features are important and used inde-
pendent gamma random variables to represent inhomogeneity of latency and infectiousness periods. In this
papersection we have a bivariate inhomogeneous epidemic process, modeled by correlated gamma distribu-
tions and we can use similar methods to depict and quantify departures from exponential periods of latency
and infectiousness. This shows that the result of [Britton & Lindenstrand, 2009] for the dependence of
growth rate on variability in the periods of latency and infectiousness in the independent case persists also
in the presence of correlation between the two random variables. Moreover, the information theoretic dis-
tance from the two reference scenarios of exponential distributions of periods latency and infectiousness,
Figures 4 and 5, provide natural quantitative representations for comparing different parametric data.

[Britton & Lindenstrand, 2009] used independent gamma distributions for periods of latency and infectious-
ness, from which the reproduction rate can be estimated, with applications for example to the SARS out-
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Figure 6: Distances D in the space of gamma models, using a geodesic mesh [Arwini & Dodson, 2008]. The
surface height represents upper bounds on distance D from the grand mean point (µ, κ) = (18, 1), the Poisson
random case with mean µ = 18. Depicted also are the 20 data points for the amino acid sequences from a
large database of 6294 proteins with sequence lengths up to 4092. All amino acids show clustering to differing
degrees by lying to the left of the Poisson random curve κ = 1, some very substantially so.

break [WHO, 2003]. Here we have used a bivariate gamma distribution which allows a corresponding repro-
duction rate to be computed. Also, we considered the case when the susceptibility to infection is not uniform
and illustrated with the case when it begins as a gamma distribution then evolves as the epidemic proceeds.
Other models could be used for the initial distribution of susceptibilities, including asymmetric distributions.
A wide range of such other cases using log-gamma distributions was considered in [Dodson, 2010b], for a
similar rate process applied to an evolutionary model when the random variable a represents unfitness (like
susceptibility to infection) in a population.

4 Case Study 2: Amino acids self-cluster along protein chains

[Cai et al, 2002] analysed for each of the 20 amino acids X the statistics of spacings between consecutive
occurrences of X within the Saccharomyces cerevisiae genome, from protein chains with differing sequence
lengths n. The process as modelled is like having beads of colours labelled i = 1, 2, . . . , 20, each colour i
having a relative abundance pi. We string the beads onto a long line of total length n beads, then count
for each colour i the spacing lengths between successive occurrences in the sequence of beads, yielding 20
empirical distributions which of course depend on the rules used to make the bead choices along the line.
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Amino Acid i Occurrences Abundance pi Mean separation µi Variance σ2
i κi

A Alanine 163376 0.055 17 374 0.81
C Cysteine 38955 0.013 55 5103 0.59
D Aspartate 172519 0.058 16 346 0.77
E Glutamate 192841 0.065 15 292 0.73
F Phenylalanine 133737 0.045 21 554 0.78
G Glycine 147416 0.049 19 487 0.74
H Histidine 64993 0.022 39 1948 0.79
I Isoleucine 195690 0.066 15 222 0.95
K Lysine 217315 0.073 14 240 0.74
L Leucine 284652 0.095 10 122 0.85
M Methionine 62144 0.021 46 2461 0.85
N Asparagine 182314 0.061 16 277 0.87
P Proline 130844 0.044 21 587 0.77
Q Glutamine 116976 0.039 24 691 0.81
R Arginine 132789 0.045 21 565 0.78
S Serine 269987 0.091 11 136 0.85
T Threonine 176558 0.059 16 307 0.85
V Valine 166092 0.056 17 315 0.93
W Tryptophan 31058 0.010 62 6594 0.58
Y Tyrosine 100748 0.034 27 897 0.79

Table 1: Experimental data from [Cai et al, 2002] for amino acid occurrences in sequences from 6294 protein
chains of the Saccharomyces cerevisiae genome of length up to n = 4092. This gives relative abundance,
mean spacing, variance of spacing, and maximum likelihood gamma parameter κi for each amino acid i =
1, 2, . . . , 20. The grand mean relative abundance was pi ≈ 0.05 and the grand mean interval separation was
µi ≈ 18. Surprising is that the range 0.59 ≤ κi ≤ 0.95 lies below unity, which is expected by chance.

Analytically, we derived the solution if the beads were chosen completely at random after mixing in a large
bag; this gave us a reference Poisson case and the effects of the number n of amino acids in the sequence
and the relative abundance of each type [Arwini & Dodson, 2008]. In these reference cases the standard
deviation was approximately equal to the mean spacing, increasing with sequence length and decreasing with
abundance. So again we have a family of distributions contained approximately in a small neighbourhood
of the exponential distributions in the space of gamma distributions. Intuitively, in real proteins with 20
types of amino acids distributed at different abundances along a chain, it might be expected that some
would be more clustered (κ < 1) and others would be more evenly spread (κ > 1) compared to a Poisson
process—which latter case would have exponential spacings and κ = 1. From a large database with mean
spacing µi ≈ 18, the observed spacing distributions of the amino acids, though discrete of course, were all
well approximated by gamma distributions (1), cf. [Cai et al, 2002] for details of goodness of fit. We might
have expected that the 20 amino acids would have spacing distributions scattered more or less isotropically
around the Poisson case, like that for a pseudorandom number generator in Figure 7. Table 1 summarizes
some 3 million experimentally observed occurrences of the 20 different amino acids within the Saccharomyces
cerevisiae genome from the analysis of 6294 protein chains with sequence lengths up to n = 4092. Listed
also for each amino acid are the relative abundances pi and mean separation µi; the grand mean relative
abundance was p ≈ 0.05 and the grand mean interval separation was µ̄i ≈ 18. The gamma parameter range
0.59 ≤ κi ≤ 0.95, revealed that each amino acid was more clustered and so had higher variance of spacings
than expected by chance (κ = 1).

Specifically, we found that maximum-likelihood estimates of parametric statistics show that all 20 amino
acids tend to cluster (κi < 1), some substantially, and so had greater variance than would result from a
Poisson process. In other words, the frequencies of shorter gap lengths tends to be higher and the variance
of the gap lengths is greater than expected by chance. This may be because localizing amino acids with
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the same properties may favour secondary structure formation or transmembrane domains [Cai et al, 2002].
Figure 6 represents the information distance in the space of gamma distributions for amino acids along
the protein chains, measured from the Poisson case (κ = 1) at the grand mean value µ = 18, with data
points superimposed. This finding revealed and quantified an important qualitative property: a universal
self-clustering that is stable over long sequences for all of these amino acids. The biological significance
is yet to be elaborated but it is intriguing to consider the phenomenon as providing a long-range rule
that acts as a check during DNA synthesis. Clearly, the maximum likelihood gamma distributions fit only
stochastic features and in that respect view the data as exhibiting transient behaviour at small gap sizes;
other methods are available for interpretation of such deterministic features and we concentrate here on
representation of whole sequences as a stochastic process. Our approach contributes to the characterization
of whole sequences by extracting and quantifying stable stochastic features. More detail concerning the data
and further discussion is provided in [Cai et al, 2002] and [Arwini & Dodson, 2008].

5 Case Study 3: Constrained degeneration of crystalline order

The degeneration of crystal order was simulated in [Lucarini, 2009] through perturbations of the simple 3D
cubic crystal lattices simple, body-centred, face-centred (SC, BCC, FCC) by an increasing spatial Gaussian
noise applied to vertices. Physically, the perturbing spatial noise intensity corresponds to a lattice tem-
perature in the structural symmetry degeneration. The statistical parameters of the evolving changes were
analyzed through those of the (convex) cells in the Voronoi tessellations, which are optimal partitions of the
space from the given set of generating vertices of the structure. In all cases the gamma distribution (1) was an
excellent model for the observed probability density functions of all metric and topological properties. With
the onset of noise, quite quickly the three tessellations became indistinguishable. With intense noise they all
converged to the 3D Poisson-Voronoi tessellations, for which exact analytic results are known [Finch, (2003)].
The observations showed the evolution of the mean and standard deviation of these properties as they con-
verge asymptotically towards the Poisson-Voronoi case, illustrating the rapid degeneration of crystallinity
from κ ∼ ∞ for crystalline structures to much lower values as the noise increased, meanwhile the mean area
of Voronoi cells reduced only by some ten percent.

Of course, the constraint of remaining tessellations, albeit highly disordered ones, precludes convergence
down to the maximum entropy limit κ = 1. In fact the Poisson Voronoi limiting values are κ ≈ 16 for
number of vertices and the same for number of edges and κ ≈ 22 for the number of faces; actually these
are discrete random variables and the gamma model is not strictly appropriate. However, for the positive
real random variables, polyhedron volume in the Poisson Voronoi limit has κ ≈ 5.6 and polygon face area
κ ≈ 16. The constrained degeneration process descends much more rapidly from high κ values than is the
case for entropy gradient flow curves shifted to the same asymptote.

[Lucarini, 2008] had reported similar findings for the 2D case of perturbations of the three regular tessellations
of the plane: square, hexagonal and triangular. There also the gamma distribution gave a good fit for the
distributions during the degeneration of the regular tessellations to the 2D Poisson-Voronoi case; the limiting
values were κ ≈ 16 for the perimeter of polygons and κ ≈ 3.7 for areas. These lower limiting values reflect the
fewer constraints in the 2D tessellations than in the 3D case. For comparison with other natural apparently
constrained disordered structures, κ ≈ 4.25 is the gamma fitted value to the spacings of eigenvalues in
the spectrum of Gaussian unitary infinite random matrices (GUE), which model quantum chaotic spacings
between energy levels of complex nuclei and is a very good fit also to the spacings between the zeros of the
Riemann zeta function [Dodson, 2008].
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Figure 7: Distances in the space of gamma models, using a geodesic mesh. The surface height represents
upper bounds on distances from (µ, κ) = (511, 1) from equation (56). Also shown are data points from
simulations of Poisson random sequences of length 100000 for an element with expected separation µ = 511.
In the limit as the sequence length tends to infinity and the element abundance tends to zero we expect the
gamma parameter κ to tend to 1.

6 Case Study 4: Testing pseudorandom number generators

In a variety of contexts in cryptology for encoding, decoding or for obscuring procedures, sequences of pseu-
dorandom numbers are generated. Tests for randomness of such sequences have been studied extensively
and the NIST Suite of tests [Rushkin, Soto et al, 2001] for cryptological purposes is widely employed. In-
formation theoretic methods also are used, for example see [Grzegorzewski & Wieczorkowski, 1999] also
[Ryabko & Monarev, 2005] and references therein for recent work. Here we can show how pseudorandom
sequences may be tested using information geometry by using distances in the gamma manifold to compare
maximum likelihood parameters for separation statistics of sequence elements.

Mathematica [Wolfram, 1996] simulations were made of Poisson random sequences with length n = 100000
and spacing statistics were computed for an element with abundance probability p = 0.00195 in the sequence.
In the data from 500 simulations the ranges of maximum likelihood gamma distribution parameters were
419 ≤ µ ≤ 643 and 0.62 ≤ κ ≤ 1.56. The surface height in Figure 7 represents upper bounds on information
geometric distances from (µ, κ) = (511, 1) in the gamma manifold:

Distance[(511, 1), (µ, κ)] ≤
∣∣∣∣d2 log Γ

dκ2
(κ)− d2 log Γ

dκ2
(1)

∣∣∣∣+

∣∣∣∣log
511

µ

∣∣∣∣ . (56)
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This employs the geodesic mesh function we described in [Arwini & Dodson, 2008]. Also shown in Figure 7
are data points from the Mathematica simulations of Poisson random sequences of length 100000 for an
element with expected separation µ = 511. As expected, the simulated data scatters more or less isotropically
around the grand mean.

In the limit, as the sequence length tends to infinity and the abundance of the element tends to zero, we
expect the gamma parameter τ to tend to 1. However, finite sequences must be used in real applications and
then provision of a metric structure allows us, for example, to compare real sequence generating procedures
against an ideal Poisson random model.

7 Case Study 5: Comparing nearby signal distributions and drifts
from uniformity

The typical application context here is in the protection of public-key encryption methods involving variations
of the RSA procedure, which employs modular arithmetic with a very large modulus. It is necessary to
compute

R ≡ ye (modm) or R ≡ yd (modm) (57)

for, respectively, encoding or decoding a message y. The very large modulus m and the encryption key e are
made public; the decryption key d is secret. The modulus m is chosen to be the product of two large prime
numbers p, q, also secret, then choose d, e such that

ed ≡ 1 (mod (p− 1)(q − 1)). (58)

Encoding and decoding computations both involve repeated numerical exponentiation procedures. Then,
some knowledge of the design of an implementation and information on the timing or power consumption dur-
ing computational stages could yield clues to the decryption key d. [Canvel, 1999], [Canvel & Dodson, 2000]
showed how timing analyses of the modular exponentiation algorithm quickly reveal the private key, re-
gardless of its length. An obscuring procedure could mask the timing information but that may not be
straightforward for some small memory devices. It is important to be able to assess departures from Pois-
son randomness of underlying or overlaid procedures that are inherent in devices and here we outline some
information geometric methods to add to the standard tests [Rushkin, Soto et al, 2001].

In cryptographic attacks, differential Power Analysis (DPA) methods and Statistical Zero-Knowledge (SZK)
proofs depend on discrimination between noisy samples drawn from pairs of closely similar distributions.
In many cases the distributions resemble truncated Gaussians; sometimes one distribution is uniform. A
log-gamma family of probability density functions provides a 2-dimensional metric space of distributions
on (0, 1], ranging from the uniform distribution to symmetric unimodular distributions of arbitrarily small
variance. Illustrative calculations are provided here; more discussion is given in [Arwini & Dodson, 2008].

In practical signal comparison situations, we obtain statistical data for an observable that is defined on
some finite interval. We shall use as our model the family (5) of log-gamma probability density functions
defined for random variable a ∈ (0, 1]. The choice of log-gamma model is due to the fact that it contains
a neighbourhood of the uniform distribution, for parameter values (ν, τ) = (1, 1) in (5), and for parameter
values τ >> 1 it has approximations to Gaussians truncated to domain (0, 1] and with arbitrarily small
variance. Figure 8 illustrates symmetric such cases with mean value E(a) = 1

2 . From the information metric
(26) on the space of these probability density functions we can obtain information distances between nearby
distributions as follows.

Suppose that we record data on amplitude a ∈ (0, 1] for two cases with parameters (ν0, τ0) and (ν0 +∆ν, τ0 +
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Figure 8: Examples from the log-gamma family of probability densities with central mean E(a) = 1
2 . Left:

near to uniform, τ = 0.99, 1, 1.1. Right: approximations to truncated Gaussians, τ = 20, 40, 100.

∆τ) for small ∆ν,∆τ. Then the information distance ∆s between these distributions is approximated from

∆s2 ≈ τ0
ν2

0

∆ν2 − 2

ν0
∆ν∆τ +

d2 log Γ

dτ2
(τ0) ∆τ2. (59)

Two particular cases are of interest:

Near to the uniform distribution Here we have (ν0 = 1, τ0 = 1) and (59) reduces to

∆s2 ≈ ∆ν2 − 2∆ν∆τ + 1.645∆τ2. (60)

Two nearby unimodular distributions Here we have τ0 >> 1 and (59) reduces to

∆s2 ≈ τ0
ν2

0

∆ν2 − 2

ν0
∆ν∆τ + ∆τ2. (61)

For example,some data on power measurements from a smartcard leaking information during processing of a
‘0’ and a ‘1’, at a specific point in process time, yielded two data sets C, D. These had maximum likelihood
parameters (νC = 2.506, τC = 1.816) and (νD = 4.527, τD = 1.757).

8 Conclusions

Information geometry allows us to formulate precise meaning for nearness and neighbourhood in a state space
of processes and it quantifies the proximity of a process to a particular state by means of a natural information
theoretic metric structure on smoothly parametrized families of probability density functions. Information
geometric methods complement standard statistical tools with techniques of representation similar to those
used in physical field theories where the analysis of curved geometrical spaces have contributed to the
understanding of phenomena and development of predictive models. The role of information theory itself
is important, attributing significance to the geometry and giving access to the concepts of entropy and
likelihood. In many statistical models of practical importance there is a small range of probability density
functions that has very wide application as a result of general theorems, and the spaces of these families
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have just a small number of dimensions. Families of Gaussian and gamma distributions and their bivariate
versions are widely applied and moreover their information geometry is easily tractable. Gamma distributions
are ubiquitous in modeling natural processes that involve scatter of a positive random variable around a
target state, such as for inhomogeneous populations or features of elements in a collection. A defining
characteristic of the gamma distribution is for the sample standard deviation to be proportional to the
sample mean, commonly found to varying degrees of approximation; the case when the standard deviation
equals the mean corresponds to the exponential distribution associated with a Poisson process which is the
fundamental reference process. We have described some general theorems about information neighbourhoods
of randomness, independence, and uniformity for processes and their qualitative features make them widely
applicable, as our case studies illustrate.

The case of an inhomogeneous statistical rate processes for epidemics showed how a bivariate process may
be involved, to reveal and quantify qualitative features. For example, we demonstrated a stable property
that persisted in the presence of correlation between infectiousness and latency periods. The epidemic
exponential growth rate increased with variability of infectiousness period but decreased with variability of
latency period. The information metric provided a distance structure to quantify proximity to the natural
reference states—those for exponential distributions for one of the two variables. A gamma model for
amino acid spacings along protein chains revealed the qualitative stable property that all 20 of the amino
acids are more clustered together than would be expected at random, over a range of abundances and
lengths of protein chains. Simulations of the constrained disordering of crystals in two and three dimensions
again revealed the dominance of the gamma family of distributions for features such as polygon areas,
polygon perimeters and polyhedral volumes; this means that the progress of degeneration of order may be
tracked through the information geometry of the space of gamma distributions. Distinguishing nearby signal
distributions is important in a variety of contexts, particularly now in cryptological studies. The family of log-
gamma distributions provides a neighbourhood of the uniform distribution as well as good approximations
to truncated Gaussians of arbitrarily small variance; such distributions are commonly needed for testing
purposes.

Clearly, there is plenty of scope for further applications of information geometry in the modeling of real
phenomena, and in particular for the elaboration of inhomogeneous biological rate processes. One example of
the latter is in the neural modeling of the process of neuron and synapse evolution during early development.
Typically, embryo brains seem to create a large number of neurons very rapidly [Hamburger, 1975] but some
die out to reduce the adult number to about 60% of the maximum. In humans, there is a rise in number
of synapses that seem randomly created during the first two years; this is followed by a decline to 60% of
the maximum by the time of adolescence [Huttenlocher, 1984]. This gives rise to a large neural net model
for populations of nodes (neurons) and edges (synapses) declining through a rate process controlled by early
usage statistics from neuronal stimulation and activity [Izhikevich, 2003]; such a study is in progress. In
another direction, modern small chip-controlled interactive devices, that need encryption to protect data but
have limited computational capability, could benefit from ‘quick and rough’ software applications that can use
information geometry to detect patterns in fraudulent attempts at access. Similarly, in the development of
devices it could be useful to monitor externally detectable non-random process activity statistics, informing
the need for shielding or obscuring procedures [Canvel & Dodson, 2000]. Constrained disordering on a small
scale may be viewed as a minor degradation in a structure, a device or a service; this may be as a result
of ageing or externally caused damage and may be amenable to automatic monitoring through information
geometry associated with the defining structural features and through which the degradation is detectable
and measurable. More developments in the theory and applications of information geometry can be gleaned
from the papers presented at the latest international conference, [IGA Conference, 2010].

References

[Amari, 1963] Amari, S-I. (1963). Diakoptics of Information Spaces. Doctoral Thesis, University of Tokyo.



24 Information geometry in biology and physics

[Amari, 1968] Amari, S-I. (1968). Theory of Information Spaces—A Geometrical Foundation of the Analysis
of Communication Systems. Research Association of Applied Geometry Memoirs 4, 171-216.

[Amari, 1985] Amari, S-I. (1985). Differential Geometrical Methods in Statistics. Berlin Springer Lecture
Notes in Statistics 28, Springer-Verlag.

[Amari et al, 1987] Amari, S-I., Barndorff-Nielsen, O.E., Kass, R.E., Lauritzen, S.L. & Rao, C.R. (1987).
Differential Geometry in Statistical Inference. Lecture Notes Monograph Series, Institute of Mathemat-
ical Statistics, Volume 10, Hayward California, Springer-Verlag.

[Amari & Nagaoka, 2000] Amari, S-I. & Nagaoka, H. (2000). Methods of Information Geometry. Oxford,
American Mathematical Society, Oxford University Press.

[Andersson & May, 1991] Andersson, H. & May, R.M. (1991). Infectious Diseases of Humans: Dynamics
and Control. Oxford University Press, Oxford.

[Andersson & Britton, 2000] Andersson, H. & Britton, T. (2000). Stochastic epidemic models and their sta-
tistical analysis. Lecture Notes in Statistics Volume 151, Springer-Verlag, New York.

[Arwini, 2004] Arwini, K. (2004). Differential geometry in neighbourhoods of randomness and independence.
PhD thesis, Department of Mathematics, University of Manchester Institute of Science and Technology.

[Arwini & Dodson, 2008] Arwini, K. & Dodson, C.T.J. (2008). Information Geometry Near Randomness
and Near Independence. Lecture Notes in Mathematics. New York, Berlin, Springer-Verlag.

[Britton & Lindenstrand, 2009] Britton, T. & Lindenstrand, D. (2009). Epidemic modelling: aspects where
stochasticity matters. Mathematical Biosciences 222, 2 109-116. Cf. also http://arxiv.org/abs/0812.3505
3 January 2009.

[Baake & Georgii, 2006] Baake E. & Georgii, H.-O. (2006). Mutation, selection, and ancestry in branching
models: a variational approach. http://arxiv.org/abs/q-bio/0611018 3 December 2006.

[Bailey, (1975)] Bailey, N.T.J. (1975). The Mathematical Theory of Infectious Diseases and its Applications.
London, Griffin.

[Cai et al, 2002] Cai, Y. Dodson, C.T.J. Wolkenhauer O. & Doig, A.J. (2002). Gamma Distribution Analysis
of Protein Sequences shows that Amino Acids Self Cluster. Journal Theoretical Biology 218, 4 409-418.

[Canvel, 1999] Canvel, B. (1999). Timing Tags for Exponentiations for RSA. MSc Thesis, Department of
Mathematics, University of Manchester Institute of Science and Technology, Manchester.

[Canvel & Dodson, 2000] Canvel, .
¯

& C.T.J. Dodson, C.T.J. (2000). Public Key Cryptosystem Timing Anal-
ysis. CRYPTO 2000, Rump Session Santa Barbara, 20-24 August 2000.
http://www.maths.manchester.ac.uk/ kd/PREPRINTS/rsatim.ps 27 August 2000.

[Cauchemez & Ferguson, 2008] Cauchemez, S. & Ferguson, N.M. (2008). Likelihood-based estimation of
continuous-time epidemic models from time-series data: application to measles transmission in Lon-
don. Journal Royal Society Interface 5 885-897.

[Chowell et al, 2009] Chowell, G., Hyman, J. M., Bettencourt, L. M. A. & Castillo-Chavez, C. (2009). Edi-
tors. Mathematical and Statistical Estimation Approaches in Epidemiology. Springer Dordrecht, Heidel-
berg, London, New York.

[Cziko, 1995] Cziko, G. (1995). Without Miracles: Universal Selection Theory and the Second Darwinian
Revolution. MIT Press, Cambridge, Massachusetts.

[Diekmann & Heesterbeek, 2000] Diekmann, O. & Heesterbeek, J.A.P. (2000). Mathematical Epidemiology
of Infectious Diseases: Model Building, Analysis and Interpretation. John Wiley, Chichester.



C.T.J. Dodson 25

[Dodson, 2008] Dodson, C.T.J. (2009). A note on quantum chaology and gamma manifold approximations
to eigenvalue spacings for infinite random matrices. In C. H. Skiadas and I. Dimotikalis and C. Skiadas
(Eds.) Topics in Chaotic Systems: Selected Papers From Chaos 2008, World Scientific, Singapore 2009,
pp 96-103.

[Dodson, 2009] Dodson, C.T.J. (2009). Information geometry and entropy in a stochastic epidemic rate
process. http://arxiv.org/abs/0903.2997 17 December 2010.

[Dodson, 2010a] C.T.J. Dodson, (2010). On the entropy flows to disorder. In C. H. Skiadas and I. Dimotikalis,
(Eds.), Chaotic Systems: Theory and Applications World Scientific, Singapore, 2010 pp 75-84.

[Dodson, 2010b] Dodson, C.T.J. (2010). An inhomogeneous stochastic rate process for evolution from
states in an information geometric neighbourhood of uniform fitness. Invited paper at 3rd
Conference on Information Geometry and its Application, Leipzig 2-6 August 2010. Cf also:
http://arxiv.org/abs/1001.4177v1 . 18 January 2010.

[Dodson, 2010c] Dodson, C.T.J. (2010). Mathematica Notebooks.
http://www.maths.manchester.ac.uk/kd/mmaprogs/InfoGeomMMANotebooks/ . 19 October 2010.

[Dodson & Matsuzoe, 2003] Dodson, C.T.J. & Matsuzoe, H. (2003). An affine embedding of the gamma
manifold. Applied Sciences (5) 1 1-6.
http://www.maths.manchester.ac.uk/ kd/PREPRINTS/affimm.pdf 3 November 2003.

[Dodson, & Poston, 1991] Dodson, C.T.J. & Poston, T. (1991) Tensor Geometry. Second Edition, Springer-
Verlag, Berlin, New York, Graduate Texts in Mathematics 120.

[Dodson & Thompson, 2000] Dodson, C.T.J. & Thompson, S.M. (2000). A metric space of test distributions
for DPA and SZK proofs. Poster Session, Eurocrypt 2000, Bruges, 14-19 May 2000.
http://www.maths.manchester.ac.uk/ kd/PREPRINTS/mstd.pdf 14 May 2000.

[Feller, 1971] Feller, W. (1971). An Introduction to Probability Theory and its Applications. Volume II 2nd

Edition, Wiley, New York.

[Finch, (2003)] Finch, S.R. (2003). Mathematical Constants. Cambridge University Press, Cambridge.

[Fisher, 1958] Fisher, R.A. (1958). The Genetical Theory of Natural Selection. 2nd Edition, Dover, New
York.

[Frank, 2009a] Frank, S.A. (2009). Natural selection maximizes Fisher information. Journal of Evolutionary
Biology 22(2) 231-244.

[Frank, 2009b] Frank, S.A. (2009). The common patterns of nature. Journal of Evolutionary Biology 22(8)
1563-1585.

[Freund, 1961] Freund, R.J. (1961). A bivariate extension of the exponential distribution. Journal of the
American Statistical, 56, 971-977.

[Gray, 1998] Gray, A. (1998). Modern Differential Geometry of Curves and Surfaces. 2nd Edition, Boca
Raton, CRC Press.

[Grzegorzewski & Wieczorkowski, 1999] Grzegorzewski, P. & Wieczorkowski, R. (1999). Entropy-based
goodness-of-fit test for exponentiality. Communications Statististical Theory and Methodology 28(5)
1183-1202.

[Hamburger, 1975] Hamburger, V. Cell-death in the development of the lateral motor column of the chick
embryo. J. Comparative Neurology 160, 535-546.

[He et al, 2009] He, D. Ionides, E. L. & King, A. A. (2009). Plug-and-play inference for disease dynam-
ics: measles in large and small populations as a case study. Journal Royal Society Interface doi:
doi:10.1098/rsif.2009.0151



26 Information geometry in biology and physics

[Huttenlocher, 1984] Huttenlocher, P.R. Synapse elimination and plasticity in developing human cerebral
cortex. American J. Mental Deficiency 88, 5 488-496.

[Hwang & Hu, 1999] Hwang, T-Y & Hu, C-Y. (1999). On a characterization of the gamma distribution: The
independence of the sample mean and the sample coefficient of variation. Annals Institute Statistical
Mathematics 51(4) 749-753.

[IGA Conference, 2010] Information Geometry and its Applications III. Max-Planck-Institut fr Mathematik
in den Naturwissenschaften, Leipzig, 2-6 August 2010.
http://www.mis.mpg.de/calendar/conferences/2010/infgeo.html 2 August 2010.

[Izhikevich, 2003] Izhikevich, E.M. Simple model of spiking neurons. IEEE Transactions on Neural Networks
14, 6 1569-1572.

[Karev, 2003] Karev, G.P. (2003). Inhomogeneous models of tree stand self-thinning. Ecological Modelling
160 23-37.

[Karev, 2010a] Karev, G.P. (2010). Replicator equations and the principle of minimal production of infor-
mation. Bulletin Mathematical Biology 72 (5) 1124-1142. DOI: 10.1007/s11538-009-9484-9 5 21 March
2009.

[Karev, 2010b] Karev, G.P. (2010). On mathematical theory of selection: continuous time population dy-
namics. Journal Mathematical Biology 60 107-129.

[Laha, 1954] Laha, R.G. (1954). On a characterization of the gamma distribution. Annals of Mathematical
Statistics 25 784-787.

[Lloyd, 2001] Lloyd, A.L. (2001). Destabilization of epidemic models with the inclusion of realistic distribu-
tions of infectious periods. Proceedings Royal Society London B 268 985-993.

[Lucarini, 2008] Lucarini, V. (2008). From Symmetry Breaking to Poisson Point Processes in 2D Voronoi
Tessellations: the Generic Nature of Hexagons. Journal Statistical Physics, 130 1047-1062.

[Lucarini, 2009] Lucarini, Valerio (2009). Three-dimensional Random Voronoi Tessellations: From Cubic
Crystal Lattices to Poisson Point Processes. Journal Statistical Physics, 134(1) 1047-1062.

[McKay, 1934] McKay A.T. (1934). Sampling from batches. J. Royal Statist. Soc. 2 207-216.

[Miller et al, 2009] Miller, Joel C., Davoudi, B., Meza, R., Slim, A & Pourbohloul, B (2009). Epidemics with
general generation interval distributions. http://arxiv.org/abs/0905.2174v2.pdf

[Nishiura et al, 2009] Nishiura, H. Chowell, G. Heesterbeek H. and Wallinga, J. (2009). The ideal reporting
interval for an epidemic to objectively interpret the epidemiological time course. Journal of Royal Society
Interface. 10.1098/rsif.2009.0153

[Rao, 1945] Rao, C.R. (1945). Information and accuracy attainable in the estimation of statistical parame-
ters. Bull. Calcutta Math. Soc. 37, 81-91.

[Roff, 2010] Roff, D.A. (2010). Modeling evolution. An introduction to numerical techniques. Oxford, Oxford
University Press.

[Rose & Smith, 2002] Rose, C. & Smith, M.D. (2002). Mathematical Statistics with Mathematica. Berlin,
Springer texts in statistics, Springer-Verlag.

[Rushkin, Soto et al, 2001] Rushkin, A. Soto, J. et al. (2001). A Statistical Test Suite for Random and
Pseudorandom Number Generators for Cryptographic Applications. National Institute of Standards &
Technology, Gaithersburg, MD USA.

[Ryabko & Monarev, 2005] Ryabko, B.Ya. & Monarev, V.A. (2005). Using information theory approach to
randomness testing. arXiv:CS.IT/0504006 v1, 3 April 2005.



C.T.J. Dodson 27

[Wallinga & Lipsitch, 2007] Wallinga J. & Lipsitch, M. (2007). How generation intervals shape the relation-
ship between growth rates and reproductive numbers. Proceedings Royal Society London B, 274 599-604.

[WHO, 2003] WHO (2003). Cumulative Number of Reported Probable Cases of Severe Acute Respiratory
Syndrome (SARS). http://www.who.int/csr/sars/country/en/ 26 September 2003.

[Wolfram, 1996] Wolfram, S. (1996). The Mathematica Book. 3rd edition, Cambridge University Press, Cam-
bridge.

9 Key Terms and Definitions

Information metric: Riemannian distance structure and hence arc length function, defined by the covari-
ance matrix function of a smooth family of probability density functions.

Information entropy: The negative of the expectation of the logarithm of a probability density function.

Inhomogeneous rate process: A first order differential process defined on a population where the rate
of change of a cohort is proportional to the local density of that cohort.

Constrained disordering: A structure defined by a probability distribution of its features may be per-
turbed but the structural rules control the degree to which total disorder may be approached.

Pseudorandom number generator: An algorithm that generates numbers from a given set with each
interval of the set having a probability of occurrence in proportion to its total length, so approximating
a uniform distribution.

Random variable: A variable that follows a well-defined discrete probability distribution, or continuous
probability density distribution.

Integral curve of a gradient field: A curve for which the rate of change with time at a point is equal to
the gradient vector of a field at that point.

Voronoi cells: Given a set of nodes in the plane R2, for each point in the plane there is one node closest
to it or at most two closest nodes equidistant from it. The Voronoi cell for a node is the interior of
the convex polygon of nearest points. This definition extends to higher dimensions—leading to convex
polyhedra in R3.


