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MUTUAL INFORMATION AND CAPACITY OF A LINEAR

DIGITAL CHANNEL

D. S. BROOMHEAD AND NIKITA SIDOROV

Abstract. In this paper we analyse a simple model of a digital communications
channel. This model proves to be closely related to an iterated function system
(IFS) related to the well-known Bernoulli convolution. We derive it from a randomly
forced first-order ordinary differential equation. This allows the parameter of the
Bernoulli convolution—the contraction rate, λ—to be related to the rate at which
symbols are input to the channel. It is shown that for a channel with equiprobable
binary inputs the mutual information between input and output distributions is the
stationary measure of the complement of the overlap region of the IFS. We show that
the mutual information is Hölder continuous with respect to λ and decreases hyper-
exponentially as λ → 1. We also study the case of non-equiprobable binary inputs
and show that the maximum of the mutual information—the channel capacity—
does not always correspond to equiprobable inputs.

Introduction

It is usual to model communications channels as linear filters [13]. Recently, a
different approach to modelling digital communications channels has been proposed
[2, 3, 4, 5] which exploits the discreteness of the symbol space. Here one lists the
responses of the channel, in one sampling interval, to each of the possible input
symbols. This approach combines the modelling of source and channel, which makes
it possible to establish useful results about the properties of the channel without the
need to assume a linear response.

These models are known as iterated function systems (IFS) (see, e.g., [1, 6, 11, 14] for
a definition). In a nutshell, the dynamics of an IFS is given by random composition
of a given collection of maps {fi : X → X | i ∈ S}, where the selection is made
according to some fixed probability distribution on a finite set S which we regard as
the set of inputs. This naturally leads to a unique invariant stationary measure on
X which in the present paper will be the Bernoulli convolution. The specific model
we shall consider involves: S = {0, 1} with probabilities p and 1 − p, and two affine
maps of the interval X = [0, 1]

f0(x) = λx,

f1(x) = λx + 1 − λ.

where λ ∈ (0, 1) is a parameter. (Physically, λ corresponds to the rate of transmission

of data through the channel—see Section 1.) The Bernoulli convolution, µ
(p)
λ , is the

measure corresponding to the distribution of the random variable (λ−1−1)
∑∞

n=1 εnλ
n
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2 D. S. BROOMHEAD AND NIKITA SIDOROV

where the εn are i.i.d. random variables assuming the values 0 and 1 with probabilities
p and 1 − p.

In this paper we use information theory to study the properties of this model.

The main quantity of interest is the mutual information R
(p)
λ [23, 18] between the

distribution of symbols input to the channel and the distribution of outputs (which
in the present paper will be identified with the states of the IFS). Roughly, the mutual
information quantifies the degree to which knowledge of the channel output allows
a correct inference to be made about the corresponding channel input. The channel
capacity is then the maximum of this quantity over all possible input distributions.

In most of this paper we shall assume that the input symbols are equiprobable; in

this case the mutual information is shown to be R
(1/2)
λ =: Rλ = 2µ

(1/2)
λ ([0, 1−λ])-bits

if λ ≥ 1/2 (Proposition 2.3). (Note that when λ < 1/2 there is a unique decoding
which relates the output to the input symbol. In this case the mutual information is
just log 2 or 1-bit.) Our main results are as follows:

• The function λ 7→ Rλ is strictly decreasing on (1/2, 1) (Lemma 3.1).
• The function λ 7→ Rλ is Hölder continuous at any λ ∈ (1/2, 1) (Theorem 3.3).
• We study the asymptotic behaviour of λ 7→ Rλ as λ → 1/2 and as λ → 1

and prove that whereas in the former case it tends to unity at a linear rate
(Proposition 3.5), in the latter it tends to zero at a rate which is faster than
any exponential (Theorem 3.9). The importance of these results is that they
show what happens physically as we try to increase the rate of transmission
of information through the channel. Near to λ = 1/2 (where the output of
the channel first becomes ambiguous) there is a linear rate in degradation.
However, as the we approach λ = 1 (where the transmission rate is infinite)
the degradation of information becomes catastrophic.

Section 4 is devoted to the case of general p. We show that:

• For any fixed p ∈ (0, 1/2) there exists λ ∈ ((
√

5−1)/2, 1) such that R
(p)
λ > Rλ

(Proposition 4.1). In other words at sufficiently large λ (surprisingly) the
equiprobable input distribution does not maximise the mutual information.

• The function p 7→ R
(p)
λ is real analytic for p ∈ (0, 1) and all λ ∈ (1/2, 1)

(Proposition 4.3).

1. The basic model

1.1. Derivation. The goal of this section is to explain the relevance of Bernoulli
convolutions to the digital channel problem by deriving the IFS from a continuous
time model of the channel. We use the simplest recursive linear channel model:

(1.1)
dx

dt
= −γx + s(t),

where x = x(t) represents both the state of the channel and its output at some time
t, γ > 0 characterises the damping of the channel, and s(t) represents the input.

Assume that the input to the channel consists of symbols taken from a binary
alphabet, {0, 1}, and write Σ =

∏∞
1 {0, 1}. We take this as a model of the signal

source. It will be assumed that each symbol choice is made independently of all the
others. This is incorporated by working with the product measure ν(p) =

∏∞
1 {p, 1−p}

on Σ. (Here p is the probability of choosing 0.) Often we shall assume that a coding
has been employed which maximises the entropy of the source; in which case p = 1/2.
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We represent physical pulses corresponding to the input symbols by two compactly
supported functions s0 : R → R and s1 : R → R:

(1.2) s0,1(t) =

{
ς0,1(t), t ∈ [0, τ)

0, otherwise,

where τ is the clock period (the inverse of the symbol input rate). The quantities ς0
and ς1 are bounded functions so that the integrals

∫ τ

0

eγtς0,1(t) dt

are finite. For any (ε1, ε2, . . . , εn, . . .) ∈ Σ, the corresponding input function s(t) can
then be written as

(1.3) s(t) =

∞∑

n=1

sεn
(t − nτ).

The IFS channel model corresponding to equation (1.1), given an input signal in
the form of equation (1.3), is found by integrating over a clock period; for xn = x(nτ)
and given the next input symbol, the state of the channel one clock period later is:

(1.4) xn+1 = λxn + bεn+1 , where εn+1 ∈ {0, 1}.
Here λ = e−γτ and

bεn+1 = e−γτ

∫ τ

0

eγtςεn+1(t) dt.

Note this provides an interpretation of λ in terms of τ .
We can reduce equation (1.4) to a canonical form. Assume that b0 6= b1; then, by

shifting the origin, x 7→ x + b0/(1 − λ), and rescaling x 7→ x(b1 − b0)/(1 − λ), we
indeed obtain the following family of maps on the interval [0, 1]

(1.5)
f0(x) = λx,

f1(x) = λx + 1 − λ.

Recall that the Bernoulli convolution µ
(p)
λ is defined as the invariant measure of the

IFS given by (1.5)—see, e.g., [21]. A more direct definition is given below.

1.2. General properties. In this section we shall summarise some salient properties
of the Bernoulli convolution (see [21, 27] for more details). It is relevant to our
application because its existence as a unique stationary measure is a consequence of
γ > 0 (equivalently 0 ≤ λ < 1) which constitutes a stable channel. The measure,

µ
(p)
λ , is supported on a compact set Aλ ⊆ [0, 1] (see, e.g., [6]). The set Aλ satisfies

the usual fixed point condition

(1.6) Aλ = f0(Aλ) ∪ f1(Aλ),

and the stationarity of the measure implies

(1.7) µ
(p)
λ (E) = p µ

(p)
λ ◦ f−1

0
(E) + (1 − p)µ

(p)
λ ◦ f−1

1
(E)

for any measurable subset, E, of Aλ. We use the superscript to indicate the de-
pendence of the measure on input distribution. When p = 1/2, we shall drop the
superscript.
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A more explicit formula for the measure can be given as follows. Let πλ be the
map from Σ onto Aλ defined as the following projection1:

(1.8) πλ(ε1, ε2, . . .) := (λ−1 − 1)
∞∑

n=1

εnλn.

This map is constructed by backward iteration [6]; since f0 and f1 are both contrac-
tions, the sequence fε1(x), fε1 ◦ fε2(x), fε1 ◦ fε2 ◦ fε3(x) . . . converges to a point in Aλ

which depends only on the sequence ε1, ε2, . . . Then, in terms of the product measure
on Σ,

(1.9) µ
(p)
λ (E) = ν(p)(π−1

λ E)

for any measurable subset E ⊆ Aλ. The map πλ can be thought of as a way of
addressing points in Aλ. The fact that it is a surjection means that every point in Aλ

corresponds to at least one infinitely long sequence of binary inputs to the channel.
There are two cases of interest:

1.2.1. 0 < λ < 1/2. In this case it is easy to see that Aλ is homeomorphic to the
middle thirds Cantor set (and, indeed, is the middle thirds Cantor set when λ = 1/3)
and πλ is injective. From the point of view of digital channels this is significant
since every point in Aλ can be associated uniquely with an input sequence. Thus
the channel output at any time is an unambiguous representation of all the symbols
that have been input. In practise, this property is of limited utility because the
increase in measurement precision required to resolve the symbol transmitted n steps
earlier scales exponentially with n. However, since the sets f0(Aλ) and f1(Aλ) are
disjoint, a much easier task is to establish the value of the last symbol transmitted
by determining which of these sets contains the current channel state.

1.2.2. 1/2 ≤ λ < 1. In this case we have a Bernoulli convolution with overlap; πλ is
not an injection2. In this parameter range Aλ = [0, 1] and the critical set f0(Aλ) ∩
f1(Aλ) is the closed interval [1 − λ, λ] =: EA. From the point of view of signal
processing, EA is the set of states of the channel which do not provide information
about the last symbol transmitted.

Much of the interest in Bernoulli convolutions has been focused on the “fine struc-
ture” of the stationary measure µλ for λ ∈ (1/2, 1). The law of pure types asserts that
for any given λ it is either absolutely continuous or purely singular [15]. This interest
dates back to original seminal work of P. Erdős [7] who showed that there exist val-
ues of λ in this range for which µλ is (surprisingly) singular (see Section 5 for more
detail). More recently, B. Solomyak [26] showed that these values are exceptional in
the sense that µλ is absolutely continuous for almost all values of λ ∈ (1/2, 1) (see
also the survey paper [21]).

1Note the abuse of notation in the summation on the right hand side of equation (1.8) where the
symbols εn ∈ {0,1} are interpreted as having numerical values.

2Actually, the second author has recently shown [24, 25] that for any λ > 1/2, the preimage
π−1

λ
{x} has the cardinality of the continuum for a.e. x ∈ (0, 1). In the opposite direction P. Glendin-

ning and the second author [12] have shown in particular that if λ < (
√

5 − 1)/2 ≈ 0.618 . . . , then
there always exist x such that π−1

λ
{x} is a single sequence.
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2. Some information theory

2.1. Input and output. The source for the channel is assumed to be modelled by Σ
equipped with the product measure ν(p) and the Bernoulli shift σ : Σ → Σ. Assuming
that the input to the channel is generated by an orbit of points in Σ: ε, σε, σ2

ε, . . .,
the input at time n is taken to be the first component of the nth point on the orbit,
(σn−1

ε)1 = εn. The model given by equation (1.1) with the input function in the
form of equation (1.3) is of this form.

Each output of the channel is assumed to be classified using no memory of any
previous output3. To do this, we form a disjoint partition of the possible output values
consisting of: the ambiguous set, EA = f0(Aλ)∩f1(Aλ); and the sets E0 = f0(Aλ)\EA

and E1 = f1(Aλ)\EA of output values which can be attributed unambiguously to
specific input symbols. Specifically, for the Bernoulli convolution, if 1/2 ≤ λ < 1,
EA = [1 − λ, λ], E0 = [0, 1 − λ) and E1 = (λ, 1]. The goal of this section is to derive
the explicit form of the mutual information for our model.

2.2. Mutual Information. The mutual information between the input distribution
and output distribution can be defined as the difference between the entropy of the
source and the entropy of the source conditioned on the output:

(2.1) R
(p)
λ = H

(p)
S − H(p)(in|out).

The two extremes in the relation between input and output are when:

a: The output is independent of the input. In this case the mutual information

is zero because H(p)(in|out) = H
(p)
S .

b: The input determines the output exactly. In this case H (p)(in|out) = 0 and
the mutual information is precisely the information contained in the input.

Of the two terms in equation (2.1), the entropy of the binary source is well known:

H
(p)
S = −(p log p + (1 − p) log(1 − p)).

The remaining term, the entropy of the source conditioned on the output, is obtained
from the following result (whose proof we leave to the reader as a simple exercise):

Proposition 2.1. The entropy—measured in bits per input symbol—of the source
conditioned on the output is

H(p)(in|out) = µ
(p)
λ (EA)H(p)(in|EA),

where the quantity

H(p)(in|EA) = −
∑

ε=0,1

µ
(p)
λ (ε|EA) log µ

(p)
λ (ε|EA)

is the entropy of the source conditioned on the output being ambiguous.
The conditional probabilities can be expressed as:

µ
(p)
λ (0|EA) =

p − µ
(p)
λ (E0)

µ
(p)
λ (EA)

, µ
(p)
λ (1|EA) =

1 − p − µ
(p)
λ (E1)

µ
(p)
λ (EA)

.

There is an explicit formula for the measure of E0

3In contrast, it is always possible to use consecutive pairs of outputs to make an unambiguous
characterisation the latest input symbol. This follows because the channel is an all-pole filter; that is,
it can be inverted, given xn and xn−1, by forming the combination xn −λxn−1 (see equations (1.5)).
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Lemma 2.2. We have

(2.2) µ
(p)
λ (E0) = pν(p)(Aλ),

where

(2.3) Aλ =

{
(ε1, ε2, . . .) ∈ Σ :

∞∑

n=1

εnλ
n ≤ 1

}
.

Proof. By equation (1.9)

π−1
λ (E0) =

{
(ε1, ε2, . . .) ∈ Σ : (λ−1 − 1)

∞∑

n=1

εnλn ≤ 1 − λ

}

=

{
(ε1, ε2, . . .) ∈ Σ :

∞∑

n=1

εnλ
n−1 ≤ 1

}

=

{
(ε1, ε2, . . .) ∈ Σ : ε1 +

∞∑

n=1

εn+1λ
n ≤ 1

}
.

Apart from the singleton (10̇) which has zero measure, the elements of this set all
have the form (0, ε2, . . .), and now the claim follows from the definition of ν(p). �

Thus, using the terminology of the paper [17], we shall be studying the subexpan-
sions of unity in base β = λ−1.

We can solve the channel capacity problem completely if µ
(p)
λ (EA) = 0, that is,

λ ≤ 1/2. In this case the conditional entropy vanishes—see Proposition 2.1—and the
mutual information is simply the entropy of the source. It follows that the maximum
of the mutual information—the channel capacity—occurs when p = 1/2 and is one bit

per symbol. When λ > 1/2, µ
(p)
λ (EA) 6= 0 and the problem becomes more complicated.

Our first goal is to study the equiprobable case p = 1/2. Here, in view of µλ(E0) =
µλ(E1), it follows from Proposition 2.1 that

H(in|EA) = log 2.

The mutual information is therefore related directly to the stationary measure by the
following

Proposition 2.3. The mutual information—measured in bits per input symbol—of
the channel specified above with uniform input distribution is

R
(1/2)
λ =: Rλ = µλ(E0 ∪ E1).

That is,

(2.4) Rλ = 2µλ([0, 1 − λ]).

The first expression given in Proposition 2.3 has a clear, intuitive appeal. Each
symbol transmitted either puts the channel into an ambiguous state (in which case
the channel state provides no information about the input) or it does not. In the
latter case—which occurs with probability µλ(E0 ∪ E1)—one bit of information is
conveyed.

In Section 3 we investigate how this picture varies as a function of the rate at which
symbols are transmitted. We shall state our results in terms of λ which is the natural
parameter for the mathematical development. The interesting physical parameter
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Figure 1. Plot of a numerical estimate of the mutual information,
Rλ, (measured in bits per symbol) as a function of λ. Note that when
λ < 1/2 (not shown), Rλ = 1.

could be argued to be the rate at which symbols are input to the channel, i.e., τ−1.
We note that τ−1 ∝ | log λ|−1, and in particular that λ tends to unity as τ−1 increases
to +∞. As well as Rλ, therefore, we shall also consider the quantity

(2.5) R̃λ :=
Rλ

τ
=

γRλ

| logλ|
which gives a scaled mutual information in units of information per unit time. For
ease of reference, we shall refer to this quantity as the information rate.

3. Main results

In this section we study the behaviour of the mutual information and the infor-
mation rate when p = 1/2. Our approach is based on reducing the problem to one
of making estimates of the product measure, ν, on the symbol space Σ. By equa-
tions (2.4) and (2.2) we have

(3.1) Rλ = ν(Aλ).

where Aλ is the set defined in equation (2.3). As we remarked earlier, this is the set
of the subexpansions of unity in base β = λ−1.

3.1. Monotonicity. Figure 1 shows a numerical estimate of Rλ which suggests that
Rλ is a decreasing function of the symbol input rate for λ ∈ (1/2, 1) (see the Appendix
to find out about numerical methods we used). The following assertion justifies this
suggestion:

Lemma 3.1. The function λ 7→ Rλ is strictly decreasing on (1/2, 1).
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Proof. From the equations (2.3) and (3.1) it follows immediately that Rλ is nonin-
creasing. To prove the claim, it suffices to show that for any λ and any λ′ > λ,

ν(Aλ \ Aλ′) > 0.

We need some facts from the theory of β-expansions. Namely, let (an)∞1 and (a′
n)∞1

be the greedy expansions of 1 in bases β = λ−1 and β ′ = (λ′)−1 respectively. More
precisely, put an = [τn−1

β (1)], (where τβ(x) = βx mod 1 is the β-shift on the interval
[0, 1)) and similarly for λ′. It is known [20] that (an)∞1 must be lexicographically
greater than (a′

n)∞1 , i.e., there exists n ≥ 2 such that aj ≡ a′
j for 1 ≤ j ≤ n − 1 and

an > a′
n (which means that an = 1, a′

n = 0).
Consider the cylinder C = [ε1 = a1, . . . , εn = an] ⊂ Σ. By the definition of the

greedy expansion (as the largest possible one),
n∑

j=1

aj(λ
′)j > 1,

whence C∩Aλ′ = ∅; let us show that ν(C∩Aλ) > 0. Without loss of generality we may
always assume that (an+1, an+2, . . . ) 6= (0, 0, . . . ) – it suffices to “adjust” the greedy
expansion in such a way that there will be no zero tail [20]. Then κ := 1−∑n

1 ajλ
j > 0.

Hence [ε1 = a1, . . . , εn = an, εn+1 = · · · = εn+L = 0] ⊂ Aλ for L sufficiently large; it
suffices to take

L =

[
log κ(1 − λ)

log λ

]
.

�

3.2. Hölder continuity. From the formula (2.4) and the continuity of µλ it follows
immediately that the function λ 7→ Rλ is also continuous (as a composition of two
continuous functions). Returning to Figure 1, one might wonder whether Rλ is in
fact Lipschitz. In particular, it appears that something happens for values of λ in the
region (1/2, g), where g := (

√
5 − 1)/2 ≈ 0.618, i.e., the smaller golden ratio4. The

plots of R̃λ shown in Figures 2 and 3 also suggest that something complicated going
on in this region (see Section 5 for precise open questions). It turns out, however,

that Rλ—and, therefore, R̃λ—is Hölder continuous (but not necessarily Lipschitz) on
the whole interval (1/2, 1). To prove this, we need some preliminaries.

Let

Γ(λ) :=

{
(εn)

∞
1 ∈ Σ :

∞∑

n=1

εnλ
n = 1

}
.

The set Γ(λ) has been intensively studied in the 1990’s by Hungarian mathematicians
led by P. Erdős [8, 9, 10], see also [16, 17]. Note that Γ(λ) 6= ∅ for all λ (use the greedy
algorithm described above). In some cases card Γ(λ) = 1; actually, it was shown in
[9] that for any ℓ ∈ N ∪ ℵ0 there exists λ such that card Γ(λ) = ℓ.

Let Γn(λ) denote the set of 0–1 words of length n that can be extended to sequences
from Γ(λ). As is easy to see, since πλ(Σ) = [0, 1],

(3.2) Γn(λ) =

{
(ε1 . . . εn) ∈ Σn : 1 − λn+1

1 − λ
≤

n∑

j=1

εjλ
j ≤ 1

}
.

4It is worth mentioning [10, Theorem 3] that if λ ∈ (g, 1), then π−1

λ
{x} has the cardinality of the

continuum for every x ∈ (0, 1).
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Finally, let
γn(λ) := #Γn(λ)

and
γ(λ) = lim sup

n→∞
γn(λ)1/n ∈ [1, 2].

The quantity γ(λ) indicates “how many” λ-expansions of unity there are. Below we
will show that γ(λ) < 2 for each λ ∈ (1/2, 1).

Proposition 3.2. For any 1/2 < λ < λ′ < 1,

(3.3) Rλ − Rλ′ = O((λ′ − λ)α), α =
log 2 − log γ(λ)

2 log 1/λ
.

Proof. Obviously, the claim is about “close” λ and λ′, so without loss of generality
one may take the subsequence λ′ = λ′

n = λ + (1 − λ)2λ2n−1 starting with some n.

Indeed, λ̃ − λ ≍ λ2n for any λ̃ ∈ (λ′
n, λ

′
n−1) and it suffices to note that the estimate

in (3.3) depends only on logarithms.
Assume (εj)

∞
1 ∈ Aλ \ Aλ′ . Our goal is to show that (εj)

n
1 ∈ Γn(λ) unless εn+1 =

· · · = ε2n = 1. Since (εj)
∞
1 /∈ Aλ′ , we have

∑∞
1 εj(λ

′)j > 1. Hence

∞∑

1

εj(λ + (1 − λ)2λ2n−1)j ∼
∞∑

1

εjλ
j + (1 − λ)2λ2n−1

n′∑

1

jεjλ
j ≥ 1

(all other binomial terms are negligible). Thus,
n∑

1

εjλ
j ≥ 1 − (1 − λ)2λ2n−1

∞∑

1

jεjλ
j −

∞∑

n+1

εjλ
j

≥ 1 − (1 − λ)2λ2n−1 · λ

(1 − λ)2
−

∞∑

n+1

εjλ
j

= 1 − λ2n −
∞∑

n+1

εjλ
j .

Since εn+1 . . . ε2n 6= 1 . . . 1,
∞∑

n+1

εjλ
j ≤ λn+1

1 − λ
− λ2n,

whence
n∑

1

εjλ
j ≥ 1 − λn+1

1 − λ
,

which by (3.2) implies (εj)
n
1 ∈ Γn(λ). Finally,

ν(Aλ \ Aλ′) = ν((Aλ \ Aλ′) ∩ [εn+1 = · · · = ε2n = 1])

+ ν((Aλ \ Aλ′) ∩ [εn+1 . . . ε2n 6= 1 . . . 1])

≤ 2−n +
γn(λ)

2n
≤ 2 · γn(λ)

2n
.

Now the claim follows from the fact that λ′ − λ ≍ λ2n. �

Theorem 3.3. The function λ 7→ Rλ is Hölder continuous at any λ ∈ (1/2, 1) with

the exponent (2λ−1) log 2
2 log 1/λ

.
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Figure 2. Plot of a numerical estimate of the information rate, R̃λ,
(measured in bits per second and assuming γ = 1) as a function of λ.

Note that when λ < 1/2 (not shown), R̃λ = log λ−1.

Proof. Let m denote the minimal j such that λ + λ2 + · · ·+ λj > 1. Then a sequence
from Γ(λ) cannot begin with m unities, whence

γ(λ) ≤ 2
2m−1

2m < 2.

Finally, by (3.3),

α ≥ 2−m−1 log 2

log 1/λ
>

(2λ − 1) log 2

2 log 1/λ
.

�

Corollary 3.4. The function λ 7→ R̃λ is Hölder continuous at any λ ∈ (1/2, 1).

Proof. It suffices to apply (2.5). �

3.3. Asymptotic behaviour. If the mutual information is a strictly decreasing func-
tion of the symbol input rate when λ > 1/2, what about the information rate? Is it
possible to increase the information transmitted by increasing the symbol input rate?
The numerical estimate of R̃λ (see Figure 2 and Figure 3), suggests that this is not

possible in any absolute sense, but that locally it may be possible because R̃λ appears
not to be monotone over the whole of (1/2, 1). The numerical work does suggest a
decrease in the immediate neighbourhood of λ = 1/2. Moreover, for large enough

values of λ, both Rλ and R̃λ appear to decrease catastrophically (which will be shown
rigidly below). The non-monotone region appears to be associated with the interval
of λ in which singular measures are known to exist5.

5Recall that the maximal λ, for which µλ is known to be singular, is the root of x3 + x2 = 1,
i.e., the reciprocal of the smallest Pisot number [7, 22] (see Section 5). The numerical value is
λmax = 0.75488 . . .
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Figure 3. A detail of Figure 2, showing the irregular “plateau” region.

In the following, we shall look at asymptotic behaviour in the two limiting cases

where numerically R̃λ appears to be a decreasing function of symbol input rate. In the
next section, we consider at the behaviour of Rλ and R̃λ as λ → 1/2+0, that is, near
(and after) the transition to ambiguous transmission. In the subsequent sections, we

investigate the behaviour of Rλ and R̃λ as the symbol input rate tends to infinity—as
λ → 1−0. In both cases our goal is to estimate the product measure, ν, of the set Aλ.
Our tool consists essentially of counting the number of 1’s that is consistent with the
channel state being in the set E0. This can provide—through relation (2.3)—upper
and lower bounds on the value of ν(Aλ).

3.3.1. Asymptotic behaviour as λ → 1/2 + 0.

Proposition 3.5.

1 − Rλ ≍ 2λ − 1 as λ → 1/2 + 0.

Proof. By (3.1), it suffices to estimate 1−ν(Aλ) as λ → 1/2+0. Consider the minimal
integer, m, and the maximal integer, r, which satisfy the following inequalities

λ + λ2 + · · ·+ λm > 1 ≥ λ + λ2 + · · · + λr

or, equivalently
λr+1 ≥ 2λ − 1 > λm+1.

In other words,

(3.4) m = m(λ) := min
{
l ∈ N : λl+1 < 2λ − 1

}
=

[
log(2λ − 1)

log λ

]
+ 1

and
r = r(λ) := max

{
l ∈ N : λl+1 ≥ 2λ − 1

}
= m − 1.

Let C(q) denote the set of all possible cylinders of length q in Σ, i.e.,

C(q) = {[ε1 = i1, ε2 = i2, . . . , εq = iq] : ij ∈ {0, 1}}.
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Obviously, C(q) is a disjoint partition of Σ, whence

ν(Aλ) =
∑

C∈C(m)

ν(Aλ ∩ C).

The cylinder [ε1 = ε2 = · · · = εm = 1] has an empty intersection with Aλ, because
λ + λ2 + · · ·+ λm > 1. Since the measure of this cylinder is 2−m, we have

ν(Aλ) ≤ 1 − 2−m ∼ 1 − (2λ − 1) = 2(1 − λ),

whence 1 − ν(Aλ) ≥ const · (2λ − 1).
For a lower bound, we observe that the cylinder [ε1 = 0] together with any cylinder

of the form [ε1 = ε2 = · · · = εl−1 = 1, εl = 0] lies in Aλ for any l ≤ r. Therefore,

ν(Aλ) ≥
r∑

j=1

2−j = 1 − 2−r ∼ 1 − (2λ − 1) = 2(1 − λ),

whence 1 − ν(Aλ) = O(2λ − 1), and we are done. �

This result characterises the decay of the channel capacity, Rλ, as λ exceeds 1/2. If

we write | logλ| = log 2−O(2λ−1), it is easy to show that R̃λ also decreases. Locally,
at least, λ = 1/2 gives the maximum rate at which information can be transmitted
by the channel if we assume that the input distribution is uniform.

Corollary 3.6.

0 <
1

log 2
− R̃λ ≍ 2λ − 1 as λ → 1/2 + 0.

3.3.2. Asymptotic behaviour as λ → 1 − 0. We turn now to the other limit—cor-
responding to arbitrarily large symbol input rates—and ask what is the asymptotic

behaviour of Rλ and R̃λ as λ → 1 − 0? To begin with we can use the method above
to obtain a simple—but revealing—estimate. Put

k = k(λ) = max
{
l ∈ N : λl > 1/2

}
=

[
− log 2

log λ

]
,

N = N(λ) = max {l ∈ N : λ + λl > 1} =

[
log(1 − λ)

log λ

]
.

We have ν(Aλ) =
∑

C∈C(k) ν(Aλ ∩ C); observe that Aλ ∩ C is nonempty for some

C ∈ C(k) if and only if C contains not more than one unity; this follows from the
definition of k, as λj + λj′ > 1 for j, j′ ≤ k. Since there are only k + 1 cylinders
containing not more than one unity,

ν(Aλ) ≤
k + 1

2k
= O

(
1

1 − λ
· 2− log 2

1−λ

)
.

and hence, the mutual information tends to zero as the symbol input rate tends
to infinity. Indeed, this simple bound shows that the mutual information vanishes
quickly enough for the following assertion to be true:

Corollary 3.7. R̃λ → 0 as λ → 1 − 0.

This estimate can be easily tightened up to get a good picture of just how rapidly
the mutual information vanishes. Let ℓ ≥ 1 be an arbitrary natural number. Using
the same argument and the fact that λℓk > 2−ℓ, we deduce that the total number
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of unities in the cylinders from C(ℓk) whose intersection with Aλ is nonempty, cannot
exceed 2ℓ. Therefore,

ν(Aλ) ≤ 2−ℓk
2ℓ∑

j=0

(
ℓk

j

)
= O(2−ℓkk2ℓ

).

Since ℓ is arbitrary, we conclude that

ν(Aλ) = O
(
ak

)

for any a ∈ (0, 1), whence follows

Proposition 3.8.

Rλ = O
(
a

1
1−λ

)
, λ → 1 − 0,

R̃λ = O
(
a

1
1−λ

)
, λ → 1 − 0,

for any a ∈ (0, 1).

We have thus shown that both Rλ and R̃λ decay faster than any exponential func-
tion of 1

1−λ
. The next step is to establish a more precise description of the behaviour

of their logs.
The lower bound for the mutual information is straightforward. Since

λN+1 + λN+2 + · · · =
λN+1

1 − λ
< 1

(by the definition of N), the cylinder [ε1 = 0, ε2 = 0, . . . , εN = 0] ⊂ Aλ, whence

(3.5) ν(Aλ) ≥ 2−N ≥ const · (1 − λ)
log 2
1−λ ,

and a similar bound is valid for R̃λ. Our goal is to show that in the “logarithmic
sense” the upper bound is the same.

Theorem 3.9. We have

lim
λ→1−0

(1 − λ) log Rλ

log(1 − λ)
= log 2.

Moreover,

(3.6)

∣∣∣∣
(1 − λ) log Rλ

log(1 − λ)
− log 2

∣∣∣∣ = O

(
log | log(1 − λ)|
| log(1 − λ)|

)
, λ → 1 − 0.

The same is true for log R̃λ.

Proof. It suffices to prove the second statement for Rλ. We are going to follow the
same line of ideas as in the previous items. Let us show first that

(3.7) λN−k−1 + λN−k + · · ·+ λN > 1.

Indeed, the inequality is equivalent to

λN+1

1 − λ + λN+1
> λk+2,

which in turn is equivalent to

k > N − 1 − logλ(1 − λ + λN+1).
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By the definition of N , we have λN+1 < 1 − λ, whence it would suffice to show that

k ≥ N − 1 − logλ(2(1 − λ)).

Since k + logλ 2 ∈ (−1, 0] and N − logλ(1 − λ) ∈ (−1, 0], we are done.
We consider the cylinders of length N and, similarly to the above, utilise the fact

that ν(Aλ) =
∑

C∈C(N) ν(Aλ ∩ C). By (3.7), if Aλ ∩ C 6= ∅ for some C ∈ C(N), then
the number of unities in C cannot exceed k + 2. Therefore,

(3.8) ν(Aλ) ≤ 2−N

k+2∑

j=0

(
N

j

)
.

To simplify this estimate, we would like to show that for any λ > 0.93,

(3.9)

(
N

j

)
≤ 1/2

(
N

j + 1

)
, j = 0, 1, . . . , k + 1.

Indeed, we have
(

N
j

)
= j+1

N−j

(
N

j+1

)
, and it suffices to show that j+1

N−j
< 1/2 for j ≤ k+1.

In turn, this is equivalent to the inequality N > 3k+5. Now in view of the definitions
of k and N , we have N ≥ logλ(1 − λ) − 1 and k < − logλ 2. Now the last-mentioned
inequality will follow from λ6 > 8(1 − λ), which actually holds for λ > 0.93.

Thus, from (3.8) and (3.9) it follows

(3.10) ν(Aλ) ≤ 2−N+1

(
N

k + 2

)
.

Using Stirling’s Formula, we get

log

(
N

k + 2

)
∼ N log N − N − (N − k − 2) log(N − k − 2)

+ N − k − 2 − (k + 2) log(k + 2) + k + 2,

whence

log

(
N

k + 2

)
∼ N log

N

N − k
+ k log

N

k
∼ k log

N

k
, λ → 1 − 0.

By (3.10) and (3.5), −N log 2 ≤ log νAλ ≤ (−N + 1) log 2 + log
(

N
k+2

)
, whence

∣∣∣∣
log Rλ

N
+ log 2

∣∣∣∣ = O

(
k

N
log

N

k

)
.

To obtain (3.6), it suffices to use the definitions of N and k. �

4. Channel Capacity

So far we have confined ourselves to considering the symmetric case p = 1/2. What

happens when we allow p to vary? We noted in Section 2.2 that when µ
(p)
λ (EA) = 0

(i.e., when λ ≤ 1/2), the vanishing of the conditional entropy, according to Propo-
sition 2.1, implies that the mutual information is simply the entropy of the source.
In this case we can say that the channel capacity—the maximum of the mutual
information—is one bit per symbol and that the channel achieves this maximum
when p = 1/2. If we consider the capacity measured in bits per unit time—found
by scaling the channel capacity with τ = | log λ|—we find that in this region, this
quantity increases with the rate at which symbols are input.
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Figure 4. Plot of a numerical estimate the mutual information, R
(p)
λ ,

as a function of λ (abscissæ) and p (ordinates). The shading represents
the value of the mutual information with dark representing small values
and light representing large values. The range of the plot is from ∼ 0.3
to ∼ 0.7 bits per symbol.
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Figure 5. Plot of a numerical estimate of the second derivative of the
mutual information with respect to p at p = 1/2 plotted as a function of
λ. This suggests a complex transition between the mutual information
having a local maximum and local minimum at p = 1/2.
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When λ > 1/2, we have µ
(p)
λ (EA) 6= 0, and the situation is not so clear cut and

so far we have been content to study the mutual information in the case of p = 1/2.
Wherever the maximum of the mutual information occurs at p = 1/2 we can carry
over the results of Section 3 to make statements about the channel capacity of the
simple model. Unfortunately, we are not able to obtain rigorous expressions for the
range of λ over which the maximum of the mutual information occurs at p = 1/2.

Figure 4 shows a contour plot of a numerical estimate of the mutual information,

R
(p)
λ , as a function of λ and p. To obtain the channel capacity from this figure, draw

a vertical line at the value of λ which represents the channel and find the maximum
value of the mutual information along this line. The figure suggests that for values
of λ sufficiently close to 0.5 (the left hand side of the figure), the maximum in the
mutual information occurs at p = 1/2. Also evident is the fact that at the right hand
side of the figure the maximum of the mutual information has shifted to p ≈ 0.3. As
we increase λ going from left to right in the figure the transition seems to be quite
complicated.

Figure 5 show a plot, as a function of λ, of numerical estimates of the second
derivative of the mutual information evaluated at p = 1/2 (for the result on the

smoothness of p 7→ R
(p)
λ see Proposition 4.3 below). This suggests that for sufficiently

small λ (λ / 0.59), the mutual information does have a local maximum at p = 1/2.
Figure 4 and direct plots of the mutual information against p in this region indicate
that this maximum is actually the global maximum.

Conversely, Figure 5—in conformity with Figure 4—also suggests that for suffi-
ciently large values of λ (λ ' 0.625), the mutual information actually is locally a
minimum at p = 1/2. The following inequality supports this suggestion.

Proposition 4.1. For any fixed p ∈ (0, 1/2) there exists λ ∈ (g, 1) such that R
(p)
λ >

Rλ.

Proof. Let us recall that

R
(p)
λ = H

(p)
S − H(p)(in|out) = H

(p)
S − µ

(p)
λ (EA)H(p)(in|EA).

Note that as λ → 1 − 0, we have µ
(p)
λ (0|EA) → p. This is because, according to

Proposition 2.1 and Lemma 2.2,

µ
(p)
λ (0|EA) =

p − µ
(p)
λ (E0)

µ
(p)
λ (EA)

=
p − pν(p)(Aλ)

1 − pν(p)(Aλ) − (1 − p)ν(1−p)(Aλ)
→ p, λ → 1 − 0,

since ν(q)(Aλ) → 0 for any q ∈ (0, 1) (similarly to the symmetric case).

Therefore, H(p)(in|EA) → H
(p)
S and

R
(p)
λ ∼ H

(p)
S (µ

(p)
λ (E0) + µ

(p)
λ (E1)).

Comparing this with the form of Rλ given in Proposition 2.3 we see that it suffices
to show the following relation:

H
(p)
S (p ν(p)(Aλ) + (1 − p) ν(1−p)(Aλ)) ≫ ν(Aλ)
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as λ approaches 1. We will show that in fact

(4.1) ν(1−p)(Aλ) ≫ ν(Aλ).

We will use the notation of Section 3. Recall that it was shown that the cylinder
[ε1 = ε2 = · · · = εN = 0] ⊂ Aλ, whence

ν(p)(Aλ) ≥ (1 − p)N .

Furthermore, we know that

ν(Aλ) ≤ 2−N+1

(
N

k + 2

)

(see the relation (3.10)). It is left to show that 2−N
(

N
k+2

)
= o

(
(1 − p)N

)
, which follows

from

log

(
N

k + 2

)
= o(N),

which in turn is a consequence of the fact that log
(

N
k+2

)
∼ k log N

k
. Since N/k → ∞

as λ → 1 − 0, this proves (4.1) and thus the claim. �

4.1. Other properties of R
(p)
λ . In this subsection we are going to describe and give

brief proofs of the properties of R
(p)
λ that are analogous to the ones of Rλ given in

Section 3.
Firstly, the function λ 7→ ν(p)(Aλ) is Hölder continuous for each p ∈ (0, 1) (the

proof is exactly the same as in Section 3), whence so is the function λ 7→ R
(p)
λ .

Secondly, the following claim about the asymptotic behaviour of R
(p)
λ holds:

Proposition 4.2. We have (assuming p ≤ 1/2):

(4.2) H
(p)
S − R

(p)
λ ≍ (2λ − 1)log2 p−1

, λ → 1/2 + 0,

and

(4.3) lim
λ→1−0

(1 − λ) log R
(p)
λ

log(1 − λ)
= − log(1 − p).

Proof. Since the cylinders involved in the proof of Proposition 3.5 and Theorem 3.9
are very simple, their product measure can be estimated for a general p in the same
way as for p = 1/2. We thus omit the proof of (4.3) and give a sketch of the proof of
(4.2).

Put

(4.4) P =
p − pν(p)(Aλ)

1 − pν(p)(Aλ) − (1 − p)ν(1−p)(Aλ)
.

Then by Proposition 2.1 and Lemma 2.2,

(4.5) R
(p)
λ = H

(p)
S − µ

(p)
λ (EA) · H(P )

S ,

and H
(P )
S ∼ H

(p)
S . Relation (4.2) follows (by the same method as in Section 3) from

the inequality

p(1 − p)m−1

p(1 − p)m−1 + (1 − p)pm−1
≤ P ≤ p(1 − p)m

p(1 − p)m + (1 − p)pm
,
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where m is given by (3.4). Indeed, we have 1 − P ≍ αm, where α = p
1−p

, provided

p < 1/2. Now a straightforward computation yields H
(p)
S − R

(p)
λ ≍ pm, which is the

same as (4.2). �

Figure 4 indicates that the function λ 7→ R
(p)
λ is decreasing for each p. Unfortu-

nately, we have not succeeded in proving this rigorously. The behaviour of R
(p)
λ as a

function of p is given by

Proposition 4.3. For any fixed λ ≥ 1/2, the function p 7→ R
(p)
λ is real analytic for

p ∈ (0, 1).

Proof. By (4.4), (4.5) and the fact that µ
(p)
λ (EA) = 1− pν(p)(Aλ)− (1− p)ν(1−p)(Aλ),

it suffices to show that the function p 7→ ν(p)(Aλ) is analytic for all p ∈ (0, 1). By
definition of the product measure,

ν(p)([ε1 = j1, . . . , εn = jn]) = p#{k:jk=0}(1 − p)#{k:jk=1}.

Since we need to take into account only the cylinders of the form [ε1 = j1, . . . , εn =
jn] ⊂ Aλ with jn = 0 such that [ε1 = j1, . . . , εn = 1] 6⊂ Aλ, we have

ν(p)(Aλ) =
∞∑

n=1

n∑

j=0

Cn,j(λ)pj(1 − p)n−j,

where Cn,j(λ) is the number of such cylinders with precisely j zeros. Thus, we have
an infinite sum of polynomials, Mn(p), say (we omit the index λ). It suffices to prove
that one can rearrange this sum in such a way that it becomes

∑∞
n=0 an(λ)pn, which

would imply the analyticity.
To do so, it is in turn sufficient to show that deg Mn(p) is nondecreasing in n, and

that for any n ≥ 1 there exists n′ ≥ 1 such that deg Mn+n′(p) > deg Mn(p)—then each
an would be a finite sum of some Ck,j(λ), which would make such a rearrangement
possible.

In other words, we need to show that for any k there exists n such that Γn(λ) (see
(3.2)) does not contain words with less than k unities. This is obvious unless there
exists an expansion of 1 (= an element of Γ(λ)) with the tail 1∞; this set is countable
and thus does not affect the measure ν(p) (which is continuous).

�

5. Concluding remarks and open questions

At a basic level, our calculations have shown that the model behaves in a physically
reasonable manner. We have found that locally, at least, there is an optimum rate
at which equiprobable symbols can be input to the channel and that an attempt to
push data through the channel at rates significantly greater than this will result in a
catastrophic loss of information which is more than sufficient to defeat the purpose
(Theorem 3.9 and Corollary 3.7). To an extent it appears that the information loss
at high data rates can be offset by use of an asymmetric code in which one symbol
is more likely than the other. Thus we find—even for such a very simple channel
model—an unusual symmetry-breaking effect. It can be argued that this is a result
of the link which exists, via the stationary measure, between the input distribution
and the conditional measures which relate input to output.
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Figure 6. As with Figure 1, a plot of a numerical estimate of Rλ as
a function of λ showing more detail in the region of λ = g. The two
curves show upper and lower bounds obtained by approximating Aλ

using cylinders.

As an aside, it is worth emphasising the crucial role of the stationary measure. For
example, the Lebesgue measure of E0 ∪ E1, is 2(1 − λ) and, although this behaves
reasonably in the sense that it decreases from unity to zero as λ is varied from 1/2
to unity, the use of it in an approximation of the information rate would lead to the

erroneous conclusion that R̃ is a strictly increasing function of the symbol input rate.
There are some mathematical questions for the future that arise from this work and

which invite interesting speculations about the physics of digital data transmission.

1. Is it possible to improve the Hölder exponent in (3.3)? For example, let λ = g.
Then taking any subsequence (gn) such that |g − gn| ≍ gn, one may show that
|Rgn

− Rg| ≍ n2−n. The idea of the proof is in the explicit description of Ag: from
the relations g2 + g3 + g4 + · · · = g + g2 = g + g3 + g4 = · · · = 1 it follows that

(5.1) Ag =

∞⋃

j=0

[(10)j0] ∪ a countable set,

where [i1 . . . is] denotes the cylinder [ε1 = i1, . . . , εs = is]. Then taking the sub-
sequences gn and g′

n which are the roots of the equations x + x2 + xn = 1 and
x2 + x3 + · · · + xn = 1 respectively, one can easily estimate the measure of Agn

\ Ag

and Ag \ Ag′n . We leave the details to the reader.
Thus, in this case,

|Rg′ − Rg| = O(|g′ − g|α), α =
log 2

log 1/λ
≈ 1.44,

whence dRλ

dλ
(g) = 0 (see Figure 6 for numerical results which suggest this claim).

Note that since γn(g) = n + 1 (see [8]), γ(λ) = 1. This means that the actual Hölder
exponent of Rλ at λ = g is in reality a factor of two larger than the estimate given in
(3.3).
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Is this true for all λ? If it is, this would have some interesting implications; recall
that in [8] it is shown that there exists an uncountable set of λ ∈ (1/2, g), for which
γn(λ) ≡ 1 (i.e., 1 has a unique expansion in base λ). Hence if one can actually drop
2 in the denominator of α in (3.3), then there will be 2ℵ0 points of inflection for Rλ!

On the other hand, it would be interesting to find λ, at which Rλ is not Lipschitz.

2. Is it true that the function λ 7→ R̃λ has an infinite number of intervals of mono-
tonicity, as Figure 3 suggests?

3. Figure 3 also suggests that there exists λ∗ such that R̃λ strictly decreases on [λ∗, 1).
What is the minimal possible value of such λ∗?

4. Is it possible to “improve” the behaviour of Rλ by considering a nonlinear model?
More precisely, we recall that by the famous Erdős theorem, for any λ which is
the reciprocal of a Pisot number (an algebraic integer greater than 1 whose Galois
conjugates are all less than 1 in modulus), µλ is singular [7]. It is conceivable that

the intervals of monotonicity for the rate capacity R̃λ are somehow related to these
specific values (see Figure 3).

Appendix: A few words about numerics

The numerical calculations reported in this paper were largely obtained by evalu-
ating truncations of the formula

(5.2) Rλ = 2λ − 2

π

∞∑

k=1

sin(2πkλ)

k
φλ(k),

where φλ(k) is the Fourier transform of µλ and is given by the infinite product

(5.3) φλ(k) = Re

∞∏

j=0

1/2
(
1 + e2πikλj(1−λ)

)
.

Formula (5.2) is obtained by integrating the Fourier series for the characteristic func-
tion of EA = [1−λ, λ] with respect to µλ. Equation (5.3) is a well-known formula for
the moment generating function of the Bernoulli convolution (on [0, 1]).

Convergence of finite truncations of these two formulae is a delicate issue. This
approach was unsophisticated. We studied the effect of various truncations by com-
paring the different numerical results obtained. We also checked the numerical accu-
racy against known values of Rλ (for example, Rλ = 2/3 when λ = g—see (5.1)). In
practise we used 5000 terms in the summation and 200 terms in the product.

In addition to the Fourier series method, we used a numerical technique which is
based on the analytical tools used in Section 3 to study Aλ. The idea is use an algo-
rithm to generate systematically cylinder sets which are subsets of Aλ. Each iteration
of the computation produces a set of strings of given length which are “suspects”;
that is, cylinders which are not subsets of Aλ but have a nonempty intersection with
it (see (3.2)). Given a suspect of length n, say (ε1ε2 . . . εn), we test it by computing
the following quantities

s< =

n∑

k=1

εkλ
k

and

s> = s< +
λn+1

1 − λ
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which we compare with unity. This comparison will yield one of three outcomes:

(1) if s> ≤ 1, then [ε1ε2 . . . εn] ⊆ Aλ;
(2) if s< ≤ 1 < s>, then [ε1ε2 . . . εn] 6⊆ Aλ and [ε1ε2 . . . εn] ∩ Aλ 6= ∅;
(3) if 1 < s< , then [ε1ε2 . . . εn] ∩ Aλ = ∅.

In the case of the first outcome the string we have tested corresponds to a cylinder
which is a subset of Aλ. In this case we save it and remove it from the list of suspects.
If the test gives the second outcome, the string does not correspond to a subset of Aλ

but it is a suspect and so should be retained in the set of suspects. If the string gives
the third outcome it is neither a subset nor a suspect and so we remove it from the
list of suspects. Each string that remains in the list of suspects is used to generate
two new strings by appending a 0 and a 1. This new set of strings of length n + 1 is
then tested in the same way.

This recursive process is initiated by testing the two strings: (0) and (1). The pro-
cess is stopped when all cylinders up to some string length nstop have been considered.
We then calculate a lower bound for ν(p)(Aλ) using the cylinders we have found to be
subsets of Aλ and the product measure. An upper bound can be found be calculating
the measure of the remaining suspects and adding it to the lower bound.

As far as the images shown in the paper are concerned these two methods are
indistinguishable. In principle, the cylinder based method seems better because it
provides its own error bounds. In practise however, as the value of λ tends towards
unity the number of suspects begins to grow rather quickly with nstop and this limits
the utility of the method in this parameter region. On the other hand when λ = g the
number of suspects grows linearly with nstop and the method provides highly accurate

results. Figure 7 shows estimates of R̃λ made using this approach. This figure should
be compared with Figure 3 which was produced using the Fourier technique. The
comparison suggests that even the small detail of Figure 3 is significant. The curves
plotted in Figure 6 were also computed using this technique.
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Sect. Math. 35 (1992), 129–132.
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