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Abstract

We consider Hamiltonian systems with symmetry, and relative equilibria with isotropy sub-
group of positive dimension. The stability of such relativeequilibria has been studied by Ortega
and Ratiu [7] and by Lerman and Singer [3]. In both papers the authors give sufficient conditions
for stability which require first determining a splitting ofa subalgebra ofg, with different split-
tings giving different criteria. In this note we remove thissplitting construction and so provide a
more general and more straightforward criterion for stability. The result is also extended to apply
to systems whose momentum maps are not coadjoint equivariant.

Introduction Many Hamiltonian systems arising in nature possess symmetry and in particular con-
tinuous symmetry—most commonly a group of rotations or Euclidean motions, whether in the plane
or in space. In this note we consider relative equilibria in such systems, which are motions that
coincide with 1-parameter symmetry transformations. Given such a relative equilibrium, it is of-
ten important to decide on its (nonlinear) stability, and there are criteria for determining this based
on Dirichlet’s criterion for ordinary equilibria, but involving the velocity of the relative equilibrium
through an appropriate element of the Lie algebrag of the groupG.

If the action is locally free at the relative equilibrium (meaning the isotropy subgroup at any point
of the relative equilibrium is finite) then the “relative Dirichlet criterion” is straightforward because
the velocity corresponds to a unique element of the Lie algebrag. However, when the action fails to be
locally free the story is less clear because there will be many different “group velocities” for a given
physical velocity. In the late 1990s two papers were published, by Ortega and Ratiu [7] and Lerman
and Singer [3], adapting the Dirichlet criterion to deal with this case, while a paper by the first author
[4] provides a more topological criterion, that of an “extremal relative equilibrium”, which we will
use in the proof below. The method of Ortega-Ratiu and Lerman-Singer involves having a splitting
of the Lie algebrag, and showing there is a unique preferred group velocity relative to this splitting,
which they call the ‘orthogonal velocity’, and then using this orthogonal velocity to define a relative
Dirichlet criterion, analogous to the locally free case. Moreover, Ortega and Ratiu give an example
showing how different choices of splitting may produce different critieria for stability so it may be
necessary to consider all possible splittings.

The purpose of this note is to dispense with the splitting construction, and to show that the relative
Dirichlet criterion is sufficient to guarantee stability, usinganygroup veclocity, not merely those that
arise from a splitting. In the special case that the relativeequilibrium is an equilibrium, the orthogonal
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velocity is always zero, regardless of the splitting or inner product, and we give an example at the end
of this note showing that it can be necessary to use a non-zerogroup velocity to establish the stability.

Since the proof is based on the idea of an extremal relative equilibrium introduced in [4], we
need a technical assumption: that the momentum isotropy subgroup is compact, rather than it merely
having a split subalgebra, as needed by Ortega-Ratiu and Lerman-Singer. Of course, if the groupG is
compact then this is no loss of generality.

Setup and background Let (P,ω) be a connected symplectic manifold with a proper and Hamilto-
nian action of a Lie groupG, with momentum mapJ : P→ g∗ and an invariant Hamiltonianh : P→R.
Recall that a momentum map is a map satisfying the differential condition

〈dJp(v), ξ 〉= ω(ξP(p), v), (1)

for all p ∈ P, v ∈ TpP, ξ ∈ g, and is therefore uniquely determined up to a constant. By a theorem
of Souriau [11] there is an action ofG on g∗ for which a given momentum map is equivariant, and
any mention of isotropy groups and orbits of points ing∗ refers to this action. IfG is compact, the
momentum map can be chosen so that this action is the coadjoint action [4, 8], but in general it requires
an affine modification of the coadjoint action which we denoteCoad

θ
g :

Coad
θ
g µ = Coadg µ +θ(g),

whereθ : G→ g∗ is a cocycle; details are in Souriau’s book [11], see also [8].
Throughout, we will be referring to a pointp∈ P and we writeH = Gp, the isotropy subgroup at

p for the action onP, µ = J(p) andK = Gµ , the isotropy subgroup for the modified coadjoint action
on g∗; in particular this means thatJ(k · p) = µ for all k ∈ K. We will also be assuming throughout
thatK = Gµ is compact, and this means that the momentum map can be chosenso that the cocycleθ
vanishes onK, as pointed out in [5]. The Lie algebras ofH andK are denotedh andk respectively.

A point p∈ P is a relative equilibrium if the Hamiltonian vector field atp is tangent to the group
orbit, or equivalently ifp is a critical point of the augmented Hamiltonianhξ = h−Jξ for someξ ∈ g,
whereJξ (x) = 〈J(x),ξ 〉. We call such an elementξ agroup velocityof the relative equilibrium, to be
contrasted with the actual/physical velocity inTpP.

If h is nonzero, thendJζ (p) = 0 for all ζ ∈ h. Consequently, ifξ is a group velocity atp then so
is ξ +ζ . We begin with a lemma which is implicit in [7] (see their Theorem 2.8).

Lemma 1 Let p∈ P be a relative equilibrium, withJ(p) = µ and supposeξ ∈ g is a group velocity
of p. Thenξ ∈ n, wheren := Lie(NK(H)).

PROOF: Firstly, by conservation of momentum,ξ ∈ k, and secondly by conservation of symmetry
ξ ∈ Lie(NG(H)), the Lie algebra of the normalizer inG of H. Combining these, one deduces that
ξ ∈ n. Here ‘conservation of symmetry’ refers to the fact that ifx andy lie in the same trajectory of a
symmetric dynamical system, then their isotropy subgroupscoincide:Gx = Gy. ❒

We present some further details about the orthgonal velocities at the end of the paper.
A central ingredient in the stability analysis is thesymplectic slice Nat a pointp ∈ P, which is

defined to be
N := kerdJ(p)/k · p.

If the action in a neighbourhood of a relative equilibriump is locally free, soh = 0, and if K
is compact, then there is a well-known criterion for assuring the stability of the relative equilibrium,
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extending Dirichlet’s criterion for the Lyapounov stability of an equilibrium. The criterion is that the
restrictiond2hξ N

of the Hessian to the symplectic slice should be definite. In particular, it was shown
by Patrick [9] that under this assumption the relative equilibrium is Lyapounov stable relative to the
subgroupK, which corresponds to the usual definition of Lyapounov stability but using K-invariant
neighbourhoods. The situation where the action onP is free butK fails to be compact, and more
generally whereµ is not ‘split’, is considered in [10].

There are several results in the literature giving criteriafor the stability of relative equilibria at
points where the action is not locally free (so at pointsp with h 6= 0). They all (as do we) require the
group action onP to be proper, at least in a neighbourhood ofp. The criteria of Lerman-Singer [3]
and Ortega-Ratiu [7] begin with requiring anH-invariant splitting of the Lie algebrak in [3], or of n
in [7], as

k=m⊕h or n= p⊕h . (2)

These decompositions are constructed by using anH-invariant inner product onk or n, which exist as
H is compact, whereH acts onk or n by the adjoint action. The two cases are related by noting that
n is an invariant subspace under the action byH, so any invariant inner product onn can be extended
to one onk, while any one onk restricts to one onn, and consequently one can choosep = m∩ n. If
ξ1 ∈ g is a group velocity of the relative equilibrium thenξ1 ∈ n, as pointed out in Lemma 1 above,
and so the set of all velocities is the affine subspaceξ1+h of n.

The criterion for stability in both papers is as before thatd2hξ⊥
N

should be a definite quadratic

form, where nowξ⊥ is the orthogonal velocitywhich is defined to be the unique group velocity
orthogonal toh with respect to the chosen splitting, and hence contained inm or p (and hence always
in p). Since the inner product (or splitting) isH-invariant, the uniqueness ofξ⊥ shows that it is fixed
by the adjoint action ofH.

There is some flexibility in this construction as there may bea choice of invariant inner product,
and usually a different choice of inner product leads to a different criterion. In particular ifk is Abelian,
then any inner product is allowed, and hence any splitting, so if p is not an equilibrium then any group
velocity can be realized as an orthogonal velocity. Notice however, that ifp is an equilibrium then
the orthogonal velocity is always 0, regardless of the splitting (we give an explicit example at the end
of this note). More details are in Proposition 5. Furthermore, it is not hard to find situations where
there is a unique splitting in which case there is again a unique orthogonal velocity; for example if
G= G1×G2 with G1 semisimple,H = G1 andµ = 0, thenξ⊥ = (0,ξ2).

Main result The aim of this note is to eliminate the splitting construction, so to be able to use any
group velocity for the criterion, not only orthogonal ones.We show below (Lemma 3) that for any
group velocityξ , the Hessiand2hξ (p) induces a well-defined quadratic form on the symplectic slice,
which we denoted2hξ N

. Note that in general this quadratic form is notH-invariant, although it is if

ξ is the orthogonal velocity for some splitting.

Theorem 2 Let(P,ω) be a symplectic manifold with a proper Hamiltonian action ofthe Lie group G,
with momentum mapJ, and let the smooth invariant function h: P→ R define a symmetric Hamilto-
nian system on P. Let p be a relative equilibrium of this system, and suppose that K:=Gµ is compact,
whereµ = J(p) and G acts ong∗ so thatJ is equivariant. Letξ ∈ g be a group velocity of p. If the
quadratic formd2hξ N

on the symplectic slice at p is definite then p is Lyapounov stable relative to K.

Before proving this theorem, we recall the Witt-Artin decomposition of the tangent spaceTpP
using the group action and symplectic form, and the Marle-Guillemin-Sternberg normal form. Define

3



four sub-quotients ofTpP as follows,

T0 = g · p∩kerdJ(p) = k · p,
T = g · p/T0 ,
N = kerdJ(p)/T0 ,

N0 = TpM/(g · p+kerdJ(p)) .

(3)

The subspacesT andN are symplectic, whileT0 is isotropic, and paired withN0 by the symplectic
form. The group action defines isomorphismsk/h≃ T0 andg/k≃ T, so the symplectic form provides
an isomorphism

N0 ≃ (k/h)∗ ≃ k∗∩h◦ .

Herek∗ ∩ h◦ is the annihilator ofh within k∗; some authors denote it bym∗ (after the splittings de-
scribed above, though it is independent of the splitting).

Each space carries an action of the isotropy subgroupH, and as this group is compact there is an
isomorphism ofH-spaces

TpP≃ T0⊕T ⊕N⊕N0.

The vector spaceN with its symplectic structure and action ofH is the symplectic slice and has its
own homogeneous quadratic momentum mapJN : N → h∗.

The Witt-Artin decomposition determines the local geometry of the action, using the Marle-
Guillemin-Sternberg normal form. This states that there isan invariant neighbourhood ofp which
is G-symplectomorphic to an invariant neighbourhoodU of [e,0,0] in the symplectic spaceY with
momemtum mapJY : Y → g∗ given by,

Y = G×H ((k∗∩h◦)×N) ,

JY([g, ρ , v]) = Coad
θ
g(µ +ρ +JN(v)).

(4)

Here theH-action onG×(k∗∩h◦)×N is byh·(g, ρ , v) = (gh−1,Coadh ρ ,h·v) (recall we have chosen
θ to vanish onK, and hence onH). The notation[g, ρ , v] denotes theH-orbit of (g, ρ , v). TheG-
action is simplyg1 · [g, ρ , v] = [g1g, ρ , v]. Since a neighbourhood ofp in P is diffeomorphic toU ⊂Y,
the Hamiltonianh on P defines a Hamiltonian onU , which we also denote byh.

PROOF OFTHEOREM 2: The proof is in three stages. Firstly we apply the cross-section theorem
of Gullemin and Sternberg [2], as modified in [5] to deal with non-coadjoint actions. This reduces the
problem to a system on a smaller space with compact symmetry group K. Secondly, we show that
the relative equilibrium is extremal in the sense of [4] and,sinceK is compact, we deduce that it is
Lyapounov stable relative toK. And thirdly, we apply a result of Lerman and Singer [3] to deduce
that the original relative equilibrium is also Lyapounov stable relative toK.

(1) SinceK is compact, there is aK-invariant sliceSµ to the modified coadjoint orbitG · µ . It
is shown in [5, Section 3] that, in a neighbourhood ofp, R := J−1(Sµ) is a K-invariant symplectic
submanifold ofP, and that the momentum mapJR : R→ k∗ can be chosen to be the full momentum
mapJ restricted toR followed by the natural projectiong∗ → k∗. Furthermore, asR is a union of
level sets ofJ, it is invariant under the original dynamics, so the restriction of h to R determines the
dynamics onRby the usual equations of Hamilton. Note that the Witt-Artindecomposition ofTpR is

TpR= T0⊕N⊕N0

whereT0, N andN0 are the same spaces as in eq. (3), and kerdJR(p) = T0⊕N.
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(2) We want to show that the relative equilibriump is extremal [4]; this means that the correspond-
ing equilibrium point in the reduced space is a local extremum of the reduced Hamiltonian. Let us
assume thatd2hξ N

is positive definite (it is well-defined by Lemma 3 below); thenegative definite case

proceeds similarly. We therefore want to show there is a neighbourhoodU of p in J−1(µ) = J−1
R (µ)

such thatx∈U \K · p⇒ h(x) > h(p).
To this end we use the Marle-Guillemin-Sternberg normal form (4), withG replaced byK, thus:

Z = K×H (h◦×N) ,

JZ([g, ρ , v]) = µ +Coadg(ρ +JN(v)),
(5)

whereJZ : Z → k∗. (Sinceg∈ K we haveCoadg(µ) = µ , and we now takeh◦ to mean the annihilator
of h insidek∗.)

From eq. (5), one sees thatJ−1
Z (µ) = {[g, ρ , v] ∈ Z | ρ = 0, JN(v) = 0} (this can also be found in

[1, Proposition 13]), so that the reduced space atµ in this model is

Zµ = J−1
Z (µ)/K ≃ J−1

N (0)/H.

Now let q̄∈ Zµ be a point distinct from ¯p, and letq∈ N be a corresponding point inJ−1
N (0). We wish

to showhξ (q)> hξ (p).
We are assumingd2hξ N

to be non-degenerate. By the Morse Lemma there is therefore adiffeo-

morphismφ of N (preservingp) such thathξ = hξ (p)+ d2hξ N
◦ φ . It follows, using the fact that

d2hξ N
is positive definite, thathξ (q) = hξ (p)+d2hξ N

(φ(q)) > hξ (p), as required.

(3) Finally, Proposition 2.3 of Lerman and Singer [3] statesthat if p is a relative equilibrium on
R which is Lyapounov stable relative toK, then p is also Lyapounov stable relative toK in the full
G-invariant system onP. ❒

The theorem is proved modulo the lemma below, required for part (2) of the proof.

Lemma 3 If p is a relative equilibrium andξ ∈ g is a group velocity, then the restriction of the
quadratic formd2hξ (p) to kerdJ descends to a well-defined quadratic form on the symplectic slice N.

PROOF: Since the Hamiltonian vector field is equivariant, the point g · p is a relative equilibrium
with group velocityAdgξ , and hence for allg∈ G, the corresponding differential vanishes:

dhAdg ξ (g· p) = 0.

Write g= exp(tη) for η ∈ g, and differentiate with respect tot at t = 0 to obtain

d
2hξ (η · p,−)−dJ[η ,ξ ] = 0,

where the differentials are taken atp. It follows that for anyv∈ kerdJ(p) we have

d
2hξ (η · p, v) = 0.

It then follows that, given anyη ∈ k (so thatη · p∈ kerdJ(p))

d
2hξ (v+η · p, v+η · p) = d

2hξ (v, v),

as required. ❒
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Example 4 Let P = S2 ×S2×S2 with symplectic formω = ω0 ⊕ω0⊕−ω0, whereω0 is the stan-
dard symplectic form onS2. The groupG = SO(3) acts diagonally onP, and has momentum map
J(x1,x2,x3) = x1+x2−x3 (after identifyingso(3)∗ with R

3). The pointp= (e3,e3,e3)∈P (the North
poles) has isotropy subgroupGp = SO(2), given by rotations about thez-axis, and momentum value
µ = J(p) = e3. The momentum isotropy subgroup satisfiesGµ = Gp sok= 0 and

N = kerdJp = {(x̂1, x̂2, x̂3) ∈ TpP | x̂1+ x̂2− x̂3 = 0}.

Now, p is necessarily an equilibrium point for anyG-invariant Hamiltonian (for example, it is isolated
in Fix(SO(2),P)). Now consider the Hamiltonianh(x1,x2,x3) = x2 · x3+ x3 · x1 −2x1 · x2, which is
G-invariant. Writingx̂1 = (a,b,0) andx̂2 = (c,d,0) we havex̂3 = (a+c,b+d,0), and the Hessian in
the coordinates(a,c,b,d) turns out to be

[

d
2h−d

2Jξ
]

p
=









1 −2−ξ 0 0
−2−ξ 1 0 0

0 0 1 −2−ξ
0 0 −2−ξ 1









.

This is positive definite forξ ∈ (−3,−1), and so by Theorem 2 the equilibrium pointp is Lyapounov
stable relative toSO(2) (which in fact means it is Lyapunov stable). However, as explained earlier,
the criteria of Lerman-Singer and Ortega-Ratiu do not guarantee stability as the unique orthogonal
velocity is 0 andd2h(0) is not definite.

A different proof of Theorem 2, using the so-called bundle equations, will be given in [6], with a
different example.

Orthogonal velocities Although we do not need this for the main result, we present a characterisa-
tion of those group velocities which can be orthogonal velocities for some suitably chosen invariant
splitting; this is helpful for comparing our theorem with those of Ortega-Ratiu and Lerman-Singer.

Proposition 5 (1) For any H-invariant splitting, the orthogonal velocityis in pH .
(2) If p is an equilibrium, thenξ⊥ = 0 for any splitting.
(3) If p is a relative equilibrium but not an equilibrium, andξ0 is any group velocity fixed by H under
the adjoint action, then there is an H-invariant splitting for whichξ⊥ = ξ0.

Parts (1) and (3) show that for a relative equilibrium which is not an equilibrium, a group velocity
is an orthogonal velocity for some invariant splitting if and only if it is fixed by the adjoint action of
H.

PROOF: (1) is proved above (it follows from the uniqueness ofξ⊥), (2) is obvious and (3) requires
a little more analysis. Refine a given invariant splittingn = h⊕ p (see Equation (2) above) into the
H-fixed parts and their invariant complements (under the adjoint action ofH onn):

n= (hH ⊕h′)⊕ (pH ⊕p′).

By hypothesis,ξ0 ∈ hH ⊕pH . Now on the subspacehH ⊕pH the action ofH is trivial, so any quadratic
form is invariant. Sinceξ0 6∈ hH we can choose an inner product on this subspace so thatξ0 is
orthogonal tohH . Now extend this chosen inner product to an invariant one onn and we still have
ξ0 ∈ (hH)⊥. Since the inner product is invariant one has moreover thatξ0 ∈ (h′)⊥ so thatξ0 ∈ h⊥ as
required. ❒
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