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Abstract

We consider Hamiltonian systems with symmetry, and redagiguilibria with isotropy sub-
group of positive dimension. The stability of such relatagaiilibria has been studied by Ortega
and Ratiu [7] and by Lerman and Singer [3]. In both papers thas give sufficient conditions
for stability which require first determining a splitting afsubalgebra of, with different split-
tings giving different criteria. In this note we remove tkditting construction and so provide a
more general and more straightforward criterion for sigbiThe result is also extended to apply
to systems whose momentum maps are not coadjoint equivarian

Introduction Many Hamiltonian systems arising in nature possess syrgraatt in particular con-
tinuous symmetry—most commonly a group of rotations or igean motions, whether in the plane
or in space. In this note we consider relative equilibria tichs systems, which are motions that
coincide with 1-parameter symmetry transformations. @igach a relative equilibrium, it is of-
ten important to decide on its (nonlinear) stability, andréhare criteria for determining this based
on Dirichlet’s criterion for ordinary equilibria, but inling the velocity of the relative equilibrium
through an appropriate element of the Lie algebad the groupG.

If the action is locally free at the relative equilibrium (eréng the isotropy subgroup at any point
of the relative equilibrium is finite) then the “relative @ihlet criterion” is straightforward because
the velocity corresponds to a unique element of the Lie alpghbHowever, when the action fails to be
locally free the story is less clear because there will beynififerent “group velocities” for a given
physical velocity. In the late 1990s two papers were publisiby Ortega and Ratiu [7] and Lerman
and Singer [3], adapting the Dirichlet criterion to deallwiitis case, while a paper by the first author
[4] provides a more topological criterion, that of an “extr@ relative equilibrium”, which we will
use in the proof below. The method of Ortega-Ratiu and LerBiager involves having a splitting
of the Lie algebray, and showing there is a unique preferred group velocitytiveldo this splitting,
which they call the ‘orthogonal velocity’, and then usingstbrthogonal velocity to define a relative
Dirichlet criterion, analogous to the locally free case. rbtwver, Ortega and Ratiu give an example
showing how different choices of splitting may produce atiént critieria for stability so it may be
necessary to consider all possible splittings.

The purpose of this note is to dispense with the splittingstmigtion, and to show that the relative
Dirichlet criterion is sufficient to guarantee stabilitging any group veclocity, not merely those that
arise from a splitting. In the special case that the relatyalibrium is an equilibrium, the orthogonal



velocity is always zero, regardless of the splitting or inmeduct, and we give an example at the end
of this note showing that it can be necessary to use a nongrzeup velocity to establish the stability.

Since the proof is based on the idea of an extremal relatiudiledgum introduced in [4], we
need a technical assumption: that the momentum isotropyrsup is compact, rather than it merely
having a split subalgebra, as needed by Ortega-Ratiu amddreSinger. Of course, if the gro@pis
compact then this is no loss of generality.

Setup and background Let (P, w) be a connected symplectic manifold with a proper and Hamilto
nian action of a Lie groufs, with momentum mag : P — g* and an invariant Hamiltoniain: P — R.
Recall that a momentum map is a map satisfying the diffesieatindition

<de(V), E> - w(EP(p)v V)v 2)

forall pe Pve TP, & € g, and is therefore uniquely determined up to a constant. Byearem

of Souriau [11] there is an action & on g* for which a given momentum map is equivariant, and
any mention of isotropy groups and orbits of pointgjinrefers to this action. IG is compact, the
momentum map can be chosen so that this action is the cotdgion [4, 8], but in general it requires
an affine modification of the coadjoint action which we der@sadg:

Coadg p = Coadg 1 + 6(Q),

wheref : G — g* is a cocycle; details are in Souriau’s book [11], see also [8]

Throughout, we will be referring to a poipte P and we writeH = G, the isotropy subgroup at
p for the action orP, u = J(p) andK = G, the isotropy subgroup for the modified coadjoint action
on g*; in particular this means tha(k- p) = u for all k € K. We will also be assuming throughout
thatK = G, is compact, and this means that the momentum map can be choseat the cocyclé
vanishes orK, as pointed out in [5]. The Lie algebrastdfandK are denoted) andt respectively.

A point p € P is a relative equilibrium if the Hamiltonian vector field ais tangent to the group
orbit, or equivalently ifpis a critical point of the augmented Hamiltoniap= h—J; for someé < g,
whereJg (x) = (J(x),&). We call such an elemegta group velocityof the relative equilibrium, to be
contrasted with the actual/physical velocityTigP.

If b is nonzero, thedJ;(p) = 0 for all { < h. Consequently, i€ is a group velocity ap then so
is & + {. We begin with a lemma which is implicit in [7] (see their Them 2.8).

Lemmal Let pe P be a relative equilibrium, witld(p) = 4 and suppos€ < g is a group velocity
of p. Thené € n, wheren := Lie(Nk(H)).

PrROOF  Firstly, by conservation of momenturé,c ¢, and secondly by conservation of symmetry
& € Lie(Ng(H)), the Lie algebra of the normalizer i@ of H. Combining these, one deduces that
& € n. Here ‘conservation of symmetry’ refers to the fact that@ndy lie in the same trajectory of a
symmetric dynamical system, then their isotropy subgragiscide: Gy = Gy. O

We present some further details about the orthgonal vedsdit the end of the paper.
A central ingredient in the stability analysis is thgmplectic slice Nat a pointp € P, which is
defined to be
N :=kerdJ(p)/t- p.

If the action in a neighbourhood of a relative equilibriymis locally free, soh = 0, and ifK
is compact, then there is a well-known criterion for asgutime stability of the relative equilibrium,
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extending Dirichlet’s criterion for the Lyapounov stahilof an equilibrium. The criterion is that the
restrictiondzhg N of the Hessian to the symplectic slice should be definiteahtigular, it was shown
by Patrick [9] that under this assumption the relative ébilm is Lyapounov stable relative to the
subgroupK, which corresponds to the usual definition of Lyapounoviltatbut using K-invariant
neighbourhoods. The situation where the actionPois free butK fails to be compact, and more
generally wheregu is not ‘split’, is considered in [10].

There are several results in the literature giving critéoiathe stability of relative equilibria at
points where the action is not locally free (so at poiptsith h # 0). They all (as do we) require the
group action orP to be proper, at least in a neighbourhoodpofThe criteria of Lerman-Singer [3]
and Ortega-Ratiu [7] begin with requiring &hrinvariant splitting of the Lie algebrtin [3], or of n
in[7], as

tE=madh or n=pdh. (2)

These decompositions are constructed by using @mvariant inner product ofior n, which exist as
H is compact, wherél acts ont or n by the adjoint action. The two cases are related by noting tha
n is an invariant subspace under the actiortHhyso any invariant inner product encan be extended
to one onk, while any one ort restricts to one om, and consequently one can chogpse mNn. If
&1 € g is a group velocity of the relative equilibrium thén € n, as pointed out in Lemma 1 above,
and so the set of all velocities is the affine subspace b of n.

The criterion for stability in both papers is as before tdi?a15L|N should be a definite quadratic

form, where nowé" is the orthogonal velocitywhich is defined to be the unique group velocity
orthogonal tdy with respect to the chosen splitting, and hence containaddnp (and hence always
in p). Since the inner product (or splitting) ks-invariant, the uniqueness &f- shows that it is fixed
by the adjoint action oH.

There is some flexibility in this construction as there mayhmhoice of invariant inner product,
and usually a different choice of inner product leads tofedifit criterion. In particular if is Abelian,
then any inner product is allowed, and hence any splittiagf, p is not an equilibrium then any group
velocity can be realized as an orthogonal velocity. Notioedver, that ifp is an equilibrium then
the orthogonal velocity is always 0, regardless of the thpdjt(we give an explicit example at the end
of this note). More details are in Proposition 5. Furtherar is not hard to find situations where
there is a unigue splitting in which case there is again ausigrthogonal velocity; for example if
G = G; x G, with G; semisimpleH = G; andu = 0, thené+ = (0,&5).

Main result The aim of this note is to eliminate the splitting constratiso to be able to use any
group velocity for the criterion, not only orthogonal oné&'e show below (Lemma 3) that for any
group velocityé, the Hessiardzhg(p) induces a well-defined quadratic form on the symplectieslic
which we denote12h5|N. Note that in general this quadratic form is mbtinvariant, although it is if

¢ is the orthogonal velocity for some splitting.

Theorem 2 Let (P, w) be a symplectic manifold with a proper Hamiltonian actiorted Lie group G,
with momentum mag, and let the smooth invariant function: P — R define a symmetric Hamilto-
nian system on P. Let p be a relative equilibrium of this systnd suppose that & G, is compact,
whereu = J(p) and G acts org* so thatJ is equivariant. Le € g be a group velocity of p. If the
quadratic formdzh,f [ ON the symplectic slice at p is definite then p is Lyapoundslestalative to K.

Before proving this theorem, we recall the Witt-Artin dequosition of the tangent spadgP
using the group action and symplectic form, and the Marldi&uin-Sternberg normal form. Define



four sub-quotients of,P as follows,

To = g-pnkerdd(p) = ¢ p,
N = kerdJ(p)/To,
No = ToM/(g-p+kerdd(p)).

The subspace$ andN are symplectic, whildy is isotropic, and paired withlp by the symplectic
form. The group action defines isomorphistyig ~ Top andg/¢ ~ T, so the symplectic form provides
an isomorphism

No =~ (£/h)" ~ € NhH°.

Heret* N h° is the annihilator of within £¢*; some authors denote it by* (after the splittings de-
scribed above, though it is independent of the splitting).
Each space carries an action of the isotropy subgkbuand as this group is compact there is an
isomorphism oH-spaces
ToP~To@®TE&N® No.

The vector spac#l with its symplectic structure and action bf is the symplectic slice and has its
own homogeneous quadratic momentum dgpN — §*.

The Witt-Artin decomposition determines the local geomaedf the action, using the Marle-
Guillemin-Sternberg normal form. This states that therarisnvariant neighbourhood qf which
is G-symplectomorphic to an invariant neighbourhdddf [e 0,0] in the symplectic spac¥ with
momemtum magy : Y — g* given by,

Y = Gxp((t"Nh°)xN),

0 (4)
Jv(lg,p.v]) = Coadg(u+p-+In(V)).

Here theH-action onG x (£ Nh°) x Nis byh- (g, p, v) = (gh~2, Coadn p, h-Vv) (recall we have chosen
6 to vanish orK, and hence o). The notation[g, p, v| denotes theéd-orbit of (g, p,v). The G-
action is simplyg: - [g, p, V| = [910, p, V]. Since a neighbourhood g@fin P is diffeomorphic tdJ C Y,
the Hamiltoniarh on P defines a Hamiltonian dd, which we also denote hy.

PROOF OFTHEOREM 2:  The proof is in three stages. Firstly we apply the crossice theorem
of Gullemin and Sternberg [2], as modified in [5] to deal wittnrcoadjoint actions. This reduces the
problem to a system on a smaller space with compact symmatnpd<. Secondly, we show that
the relative equilibrium is extremal in the sense of [4] asidceK is compact, we deduce that it is
Lyapounov stable relative td. And thirdly, we apply a result of Lerman and Singer [3] to deel
that the original relative equilibrium is also Lyapounoalde relative t.

(1) SinceK is compact, there is K-invariant sliceS, to the modified coadjoint orbiG - . It
is shown in [5, Section 3] that, in a neighbourhoodmfR := J‘l(S“) is aK-invariant symplectic
submanifold ofP, and that the momentum mdg : R — £* can be chosen to be the full momentum
mapJ restricted toR followed by the natural projectiog* — €. Furthermore, af is a union of
level sets of], it is invariant under the original dynamics, so the resitiit of h to R determines the
dynamics orR by the usual equations of Hamilton. Note that the Witt-Ad@composition opR is

TpR:T()@N@NQ

whereTp, N andNy are the same spaces as in eq. (3), andkgp) = To® N.
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(2) We want to show that the relative equilibriyms extremal [4]; this means that the correspond-
ing equilibrium point in the reduced space is a local extnenuf the reduced Hamiltonian. Let us
assume thaizh,f In is positive definite (it is well-defined by Lemma 3 below); tiegative definite case
proceeds similarly. We therefore want to show there is ahiigrhoodJ of pin J=1(u) = ng(u)
such thakk e U \ K- p= h(x) > h(p).

To this end we use the Marle-Guillemin-Sternberg normahfé4), with G replaced byK, thus:

Z = Kxp(b°xN),
Jz([9, p,V]) = p+Coadg(p+In(V)),

whereJz : Z — £*. (Sinceg € K we haveCoadg(1) = , and we now takg® to mean the annihilator
of h insidet*.)

From eq. (5), one sees thit' (1) = {[g, p, V] € Z | p = 0, In(V) = 0} (this can also be found in
[1, Proposition 13]), so that the reduced spacg &t this model is

Zy = 371 (W)/K = IGH0)/H.

Now letq € Z,, be a point distinct fronp, and letq € N be a corresponding point iml(O). We wish

to showh; (q) > hg (p).
We are assuming:jzh,fh\I to be non-degenerate. By the Morse Lemma there is therefdiféea-

morphismg of N (preservingp) such thath; = hz (p) +d2h€|N o @. It follows, using the fact that
d2h(5|N is positive definite, thalt; () = hg (p) +d2h€|N((p(q)) > hg(p), as required.
(3) Finally, Proposition 2.3 of Lerman and Singer [3] states if p is a relative equilibrium on

R which is Lyapounov stable relative t6, thenp is also Lyapounov stable relative koin the full
G-invariant system oR. O

(5)

The theorem is proved modulo the lemma below, required fadr(@aof the proof.

Lemma3 If p is a relative equilibrium and € g is a group velocity, then the restriction of the
quadratic formd?h; (p) to kerdJ descends to a well-defined quadratic form on the sympldatieN.

PrROOF  Since the Hamiltonian vector field is equivariant, the pgjnp is a relative equilibrium
with group velocityAdq €, and hence for alj € G, the corresponding differential vanishes:

dhag,z(9-p) = 0.
Write g = exp(tn) for n € g, and differentiate with respect tatt = 0 to obtain
d*hg(n-p.—) —dJjp 6 =0,
where the differentials are takengtlt follows that for anyv € kerdJ(p) we have
d?hg(n - p,v) =0.
It then follows that, given any € ¢ (so thatn - p € kerdJ(p))
d?he (v+n - p,v+n - p) = d%hg (v, v),

as required. O



Example4 Let P = $ x & x § with symplectic formw = wy © wp © —awp, whereay is the stan-
dard symplectic form or¥?. The groupG = SO(3) acts diagonally orP, and has momentum map
J(X1,X2,X3) = X1 +X2 — X3 (after identifyingso(3)* with R3). The pointp = (e3, €3,€3) € P (the North
poles) has isotropy subgro@, = SO(2), given by rotations about tteaxis, and momentum value
H = J(p) = e3. The momentum isotropy subgroup satisfigs= G, sot =0 and

N = kerde = {()?1,)?2,)’23) S Tpp | )’Zl—{—)’\(z —)?3 = 0}

Now, p is necessarily an equilibrium point for a@¢invariant Hamiltonian (for example, it is isolated
in Fix(SO(2),P)). Now consider the Hamiltoniah(x1,X2,X3) = X2 - X3+ X3 - X1 — 2X1 - X2, which is
G-invariant. Writingk; = (a,b,0) andX, = (c,d,0) we haveX; = (a+c,b+d,0), and the Hessian in
the coordinatega, c,b,d) turns out to be

1 —2-¢ 0 0

o 211 _ | —2-¢ 1 0 0
[d*h de}p_ 0 0 1 —2-¢

0 0 -2-¢ 1

This is positive definite fo€ € (—3,—1), and so by Theorem 2 the equilibrium pojmts Lyapounov
stable relative t&O(2) (which in fact means it is Lyapunov stable). However, as @xgld earlier,
the criteria of Lerman-Singer and Ortega-Ratiu do not guaea stability as the unique orthogonal
velocity is 0 anci?h(0) is not definite.

A different proof of Theorem 2, using the so-called bundlaaipns, will be given in [6], with a
different example.

Orthogonal velocities Although we do not need this for the main result, we preseihiaaacterisa-
tion of those group velocities which can be orthogonal viikx for some suitably chosen invariant
splitting; this is helpful for comparing our theorem witlote of Ortega-Ratiu and Lerman-Singer.

Proposition 5 (1) For any H-invariant splitting, the orthogonal velocityin p™.

(2) If p is an equilibrium, therd - = 0 for any splitting.

(3) If pis a relative equilibrium but not an equilibrium, ardg is any group velocity fixed by H under
the adjoint action, then there is an H-invariant splittiray fvhich &+ = &.

Parts (1) and (3) show that for a relative equilibrium whismot an equilibrium, a group velocity
is an orthogonal velocity for some invariant splitting ifdaanly if it is fixed by the adjoint action of
H.

PROOF. (1) is proved above (it follows from the uniquenes<of), (2) is obvious and (3) requires
a little more analysis. Refine a given invariant splitting= h & p (see Equation (2) above) into the
H-fixed parts and their invariant complements (under theiadgztion ofH onn):

n=0"ap)e (" ap).

By hypothesisé&y € h™ @ p™. Now on the subspadg’ @ pH the action oH is trivial, so any quadratic
form is invariant. Sincefy ¢ h we can choose an inner product on this subspace sofghiat
orthogonal toh". Now extend this chosen inner product to an invariant ona and we still have
& < ()L, Since the inner product is invariant one has moreoverghat(h')* so thaté € h* as
required. O
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