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HydraMP: Exploiting shared memory parallelism inHYDRA with OpenMPNi
holas J. DingleS
hool of Mathemati
s, University of Man
hester, Man
hester, M13 9PLni
holas.dingle�man
hester.a
.ukAbstra
t. Multi
ore CPUs are now found in desktops, servers and super
omputers butmany existing parallel performan
e analysis tools were designed for the single-
ore distributed-memory world. In this paper we investigate the pra
ti
ality of taking an existing tool, namelythe HYDRA response time analyser, and parallelising it with OpenMP to produ
e a multi-threaded implementation suitable for exe
ution on multi
ore shared-memory ma
hines. Wedis
uss the amount of software engineering work required to do this, and show that only asmall number of lines of 
ode need to be added to a
hieve dramati
 speed-ups over the serialversion. We also 
ompare the run-times of our OpenMP-parallelised version with existingMPI-parallelised 
ode on the same hardware.1 Introdu
tionIt is a truth universally a
knowledged that, for the foreseeable future at least, improvements toCPUs will fo
us on in
reasing the number of 
ores that they 
ontain rather than in
reasing the
ores' raw 
lo
k-speeds. This presents a new set of problems to software writers, and those workingin the performan
e analysis domain are not immune. Previously, performan
e improvements toexisting 
ode were granted simply by the new generation of single-
ore CPUs running faster thanthe previous generation, but exploiting the extra 
omputing power of multi
ore CPUs is a mu
hmore 
ompli
ated task that requires existing serial 
ode to be rewritten to take advantage ofopportunities for parallelism.Many existing parallel performan
e analysis tools, for example DNAma
a [1, 2℄ and HYDRA [3,4℄, date from turn of the 
entury when single-
ore pro
essors were the norm. Multi
ore versions ofthese tools, where they exist, were typi
ally written to run on distributed-memory nodes that ea
h
ontained a single 
ore, ne
essitating the ex
hange of data a
ross the network by means of librariessu
h as Message Passing Interfa
e (MPI) [5℄ or Parallel Virtual Ma
hine (PVM) [6℄. Running theseMPI-based solvers on a single modern shared-memory multi
ore ma
hine is possible but unwieldy:the built-in assumption that memory is distributed usually means that there is a data-partitioningstage that is unne
essary on a shared-memory ma
hine. The user must also rely on the underlying
ommuni
ation library to implement shared-memory operations e�
iently.Re
ent advan
es in shared memory parallel programming libraries su
h as OpenMP [7℄ give aneasy way to parallelise existing serial solvers for shared memory environments. They are typi
allyeasier to in
orporate into existing 
ode than MPI as they do not require the programmer toexpli
itly 
ode in the work-distribution and interpro
essor-
ommuni
ation steps. This raises thepossibility that it might be feasible to a
hieve good speed-ups of existing single-threaded toolssu
h as HYDRA on modern multi
ore CPUs for little programming e�ort.In this paper we investigate the speed-ups a
hieved in parallelising the existing performan
etool HYDRA using OpenMP. There are two opportunities for parallelism in this 
ode: the repeatedsparse matrix�ve
tor multipli
ations and the 
al
ulation of Erlang distribution terms. We 
onsiderthe e�ort required to parallelise both of these using OpenMP, and show the e�e
t that ea
h hason the overall run-time of the tool. We also 
ompare the resulting OpenMP-parallelised versionof HYDRA, whi
h we 
all HydraMP, with the serial HYDRA and with the MPI-parallelisedHYDRA running on a single multi
ore ma
hine, and highlight the run-time speed-ups a
hieved.The remainder of this paper is organised as follows. Se
tion 2 des
ribes OpenMP and the HY-DRA tool. The parallelisation of sparse matrix�ve
tor multipli
ation is addressed in Se
tion 3,



where we dis
uss how this is implemented in HYDRA and 
ompare the performan
e of theOpenMP-parallelised implementation with that of the original MPI-parallelised HYDRA. Se
tion 4then dis
usses how HYDRA's 
al
ulation of the Erlang distribution terms 
an be parallelised andpresents results showing the performan
e improvement of so doing 
ompared with serial HYDRA.In Se
tion 5 we look at the overall e�e
t of 
ombining the two forms of OpenMP parallelisation ina single version of HYDRA. Se
tion 6 dis
usses related work and �nally Se
tion 7 
on
ludes anddis
usses opportunities for future work.2 Ba
kgroundThis se
tion presents a brief overview of OpenMP (Open Multi-Pro
essing) [7℄ and then dis
ussesthe uniformisation te
hnique for 
al
ulating full response time densities and distributions in Con-tinuous Time Markov Chains (CTMCs) before summarising its implementation in the HYpergraph-based Distributed Response-time Analyser (HYDRA) [3, 4℄.2.1 OpenMPOpenMP is a multithreading extension for C/C++ and Fortran that allows users to easily exploitshared-memory parallelism on a range of modern 
omputing ar
hite
tures. It follows a fork-joinmodel, with slave threads being spawned from a single master thread on demand. These threadsexe
ute spe
i�ed 
ode se
tions in parallel before syn
hronising at the end and returning 
ontrolto the master thread.OpenMP in
ludes a number of work-sharing 
onstru
ts. For the purposes of this paper themain one is omp for, whi
h divides loop iterations between parti
ipating threads. Unless expli
itlyspe
i�ed by the programmer there will be no �xed ordering of the iterations, whi
h means that
orre
tness will only be maintained if this is applied to a loop in whi
h there is no dependen
ebetween iterations; the work done in ea
h loop iteration must not rely on results 
omputed in aprevious (lower-numbered) iteration. OpenMP also has the omp se
tions 
onstru
t, whi
h allowsthe programmer to spe
ify di�erent blo
ks of 
ode to be exe
uted by ea
h parti
ipating thread.The work presented in this paper does not exploit se
tions, and so we do not dis
uss it further.The pro
ess of 
reating threads, dividing work between them and destroying them when theyare no longer required is automati
ally handled by the 
ompiler and run-time environment. Thisis in 
ontrast to libraries like MPI, where the programmer must en
ode not only the program logi
but also the division of data and the pattern of inter-pro
essor 
ommuni
ation.#pragma omp parallel forfor (int n=0; n<10; n++) {printf("%i ", n);}Fig. 1. Spe
ifying a parallel loop in OpenMP.In both C/C++ and Fortran, OpenMP programming is a
hieved through the use of 
ompilerdire
tives inserted into the sour
e-
ode. For example, Fig. 1 shows a fragment of C 
ode in
ludingthe use of the OpenMP dire
tive #pragma omp parallel for to parallelise a simple loop printingout the numbers 0 to 9. In the serial 
ase this loop will print out the numbers in-order, but whenmultiple threads are used this will no longer be the 
ase.It will be seen that parallelising existing 
ode with OpenMP 
an be very straightforward: ifthe program 
ontains suitable 
onstru
ts it is easy to 
onvert them into parallel 
onstru
ts andthis 
an lead to mu
h improved performan
e. Sometimes, however, further modi�
ations may beneeded to ensure 
orre
tness is maintained and that good multithreaded performan
e is a
hieved.



2.2 UniformisationResponse time densities and quantiles in CTMCs 
an be 
omputed through the use of uniformisa-tion (also known as randomization) [8�11℄. This transforms a CTMC into one in whi
h all stateshave the same mean holding time, 1/q, by allowing �invisible� transitions from a state to itself.This is equivalent to a dis
rete-time Markov 
hain, after normalisation of the rows, together withan asso
iated Poisson pro
ess of rate q. The one-step transition probability matrix P whi
h 
har-a
terises the one-step behaviour of the uniformised DTMC is derived from the generator matrix
Q of the CTMC as:

P = Q/q + I (1)where the rate q > maxi |qii| ensures that the DTMC is aperiodi
.The 
al
ulation of the �rst passage time density between two states has two main 
omponents.The �rst 
onsiders the time to 
omplete n hops (n = 1, 2, 3, . . .). Re
all that in the uniformised
hain all transitions o

ur with rate q. This means that the 
onvolution of n of these holding-timedensities is the 
onvolution of n exponentials all with rate q, whi
h is an n-stage Erlang densitywith rate q.Se
ondly, it is ne
essary to 
al
ulate the probability that the transition between a sour
e andtarget state o

urs in exa
tly n hops of the uniformised 
hain, for every value of n between 1 and amaximum value m. This is 
al
ulated by repeated sparse matrix�ve
tor multipli
ations. The valueof m is determined when the value of the nth Erlang density fun
tion drops below a thresholdvalue. After this point, further terms are deemed to add nothing signi�
ant to the passage timedensity and are disregarded.The density of the time to pass between a sour
e state i and a target state j in a uniformisedMarkov 
hain 
an therefore be expressed as the sum of m n-stage Erlang densities, weighted withthe probability that the 
hain moves from state i to state j in exa
tly n hops (1 ≤ n ≤ m). Theresponse time between the non-empty set of sour
e states i and the non-empty set of target states
j therefore has probability density fun
tion:

fij(t) =

∞
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 (2)where
π(n+1) = π(n)P for n ≥ 0 (3)2.3 HYDRAHYDRA is a performan
e analysis tool whi
h implements the uniformisation te
hnique to 
omputeresponse time densities and distributions in CTMC models spe
i�ed in a number of high-levelmodelling formalisms. HYDRA has proved to be parti
ularly popular with modellers who workwith the sto
hasti
 pro
ess algebra PEPA (Performan
e Evaluation Pro
ess Algebra) thanks tothe interfa
e provided by the International PEPA Compiler (ip
) [12℄ and has a

ordingly beenused to analyse a range of CTMC models, in
luding:� Software systems [13℄, and more spe
i�
ally assembly 
ode [14℄, 
ontent adaptation systems [15℄and a software retrieval servi
e derived from a UML model [16℄,� Wireless proto
ols [17℄,� Timing atta
ks on 
ommuni
ations proto
ols [18℄,� Servi
e Level Agreements (SLAs) [19, 20℄,� Grid 
omputing systems [21℄,� Role-playing games [22℄.
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hite
ture [4℄.� Sto
hasti
 Well-formed Network models of health
are organisations [23℄Fig. 2 shows the ar
hite
ture of the HYDRA tool. The pro
ess of 
al
ulating a response timedensity begins with a high-level model spe
i�ed in an enhan
ed form of the DNAma
a interfa
elanguage. Next, a probabilisti
, hash-based state generator uses the high-level model des
riptionto produ
e the generator matrix Q of the model's underlying Markov 
hain as well as a list of theinitial and target states. P is 
onstru
ted from Q a

ording to Eq. 1.The pipeline is 
ompleted by our response time 
al
ulator. Two versions of this exist, bothimplemented in C++: a serial implementation, and a distributed version whi
h uses MPI toparallelise the sparse matrix�ve
tor multipli
ations of Eq. 3. Both versions have essentially thesame stru
ture. First, the maximum number of hops m is 
al
ulated by 
omputing the Erlang termsfor highest value of t for whi
h fij(t) is required. When these terms fall below a spe
i�ed thresholdvalue then the maximum number of hops is deemed to have been rea
hed. The ve
tor π(n) is then
al
ulated for n = 1, 2, 3, . . . , m by repeated sparse matrix�ve
tor multipli
ations of the form ofEq. 3. In the parallel version of HYDRA it is ne
essary to map the non-zero elements of P ontopro
essors su
h that the 
omputational load is balan
ed and 
ommuni
ation between pro
essorsis minimised if this 
omputation is to be done e�
iently. To a
hieve this, we use hypergraphpartitioning to assign matrix rows and 
orresponding ve
tor elements to pro
essors [24℄. The sum
∑

k∈j π
(n)
k is 
al
ulated from ea
h ve
tor π(n).The program then loops over all values of t for whi
h fij(t) is required, 
al
ulating the 
or-responding Erlang density/distribution terms and multiplying them with the ve
tor sums. In theparallel version of HYDRA this pro
edure only takes pla
e on the master pro
essor. The resultingpoints are written to a disk �le and are displayed using the GNUplot graph plotting utility.3 The Hard Bit: Sparse Matrix�Ve
tor Multipli
ationHYDRA uses DNAma
a's sparse matrix representation, summarised in Fig. 3, to store P in amemory-e�
ient fashion. Individual matrix elements are not stored as distin
t doubles, but ratherunique matrix element values are kept in the Store and the matrix maintains pointers into thisStore for ea
h element. The AVLTree is used to e�
iently sear
h the Store when new elementsare added to the matrix. For matri
es derived from high-level modelling formalisms su
h as Petrinets, this s
heme 
an redu
e the amount of memory required as the matrix entries will often berates (or fun
tions of rates) taken from the high-level model des
ription, and these will often havefar fewer distin
t values than the number of states or transitions in the underlying CTMC.Sparse matrix�ve
tor multipli
ation in HYDRA is a

omplished using the SparseMatrix 
lass'stransMultiply() method, whi
h is summarised in Fig. 4. This loops over the 
olumns of thematrix and multiplies ea
h entry with the 
orresponding ve
tor element, storing the result in theresult ve
tor. This method would seem to be a likely 
andidate for parallelisation with OpenMPas the iterations are independent of ea
h-other. Doing this is as simple as adding two lines of 
ode:#in
lude "omp.h"goes at the beginning, and:#pragma omp parallel for default(none) private(_
ol,t,sum) shared(x,result)s
hedule(guided,1)



Fig. 3. DNAma
a's sparse matrix representation [1℄.
void SparseMatrix::transMultiply(Ve
tor<double> &x, Ve
tor <double> &result) 
onst {double sum;long i,t;SparseMatrixCol *_
ol;for (i=0; i<n; i++) {_
ol = &
ol(i);sum = 0;for (t=0; t<_
ol->getEntries(); t++) {sum += (*(_
ol->getIndex(t)))*x(_
ol->getRow(t));}result[i℄ = sum;}}Fig. 4. The transMultiply() method from DNAma
a's SparseMatrix 
lass for a matrix with n 
olumns.



double data[nz℄;long row[nz℄;long offset[n+1℄;double pi[n℄;double result[n℄;for (long i=0; i<n; i++) {double sum = 0;long begin = offset[i℄;long end = offset[i+1℄;for (long t=begin; t<end; t++) {sum += data[t℄ * pi[row[t℄℄;}result[i℄ = sum;}Fig. 5. CSR representation and matrix�ve
tor multipli
ation routine for a matrix with n rows and nznon-zero entries and a ve
tor pi with n entries.is pla
ed before the loop indexed by long i in Fig. 4. The �nal addition is to tell the 
ompiler touse OpenMP by means of the -fopenmp �ag.We 
ontrast DNAma
a's SparseMatrix 
lass with the well-known Compressed Sparse Row(CSR) [25℄ s
heme. This stores the matrix in three arrays: one 
ontaining the matrix elementvalues, one 
ontaining the 
olumn indi
es of ea
h element and one 
ontaining the o�sets into the�rst two arrays marking the start of ea
h row. Matrix element values are stored expli
itly ratherthan as pointers into a list of distin
t values, however, whi
h in
reases the amount of memoryused 
ompared with the SparseMatrix s
heme. The advantages of CSR are that there are fewerindire
t memory a

esses and also more regular memory a

ess patterns (as we are iterating over1-dimensional arrays) whi
h 
an lead to improved performan
e.This CSR data stru
ture and the 
ode used to perform sparse matrix�ve
tor multipli
ationwith a ve
tor pi is shown in Fig. 5. The multipli
ation 
an also be parallelised with OpenMP bypla
ing a #pragma omp parallel for outside the loop indexed by long i.Model # States Serial Parallel transMultiply() Parallel CSRtransMultiply() 1 2 3 4 1 2 3 4
ourier 11 700 0.35 0.36 0.20 0.14 0.11 0.38 0.21 0.14 0.12fms 537 768 61.27 61.84 43.43 38.38 36.52 20.44 15.92 15.09 15.62
1 639 440 202.64 202.83 142.15 127.55 119.98 70.76 54.90 53.85 53.33
4 459 455 576.84 579.96 405.43 359.09 341.52 209.82 164.14 156.81 156.32Table 1. Run-times in se
onds for repeated sparse matrix�ve
tor multipli
ation for SparseMatrix andCSR formats parallelised with 1 to 4 OpenMP threads.Tab. 1 presents the time taken to perform 1000 sparse matrix�ve
tor multipli
ations using theOpenMP parallelisation of SparseMatrix::transMultiply() and also the parallelised CSR for arange of matrix sizes and number of threads, and 
ompares these results against the single-threadedperforman
e of the original serial SparseMatrix::transMultiply(). Results were produ
ed onan Intel Core2 3.0GHz quad-
ore CPU workstation with 8GB RAM using between 1 and 4 threads.Ea
h entry in Tab. 1 is the average of 5 runs. The models used are the well-known Courier [26℄and Flexible Manufa
turing System (FMS) [27℄ Generalised Sto
hasti
 Petri nets (GSPNs).



It 
an be seen that both parallelisation s
hemes o�er performan
e improvements over theserial transMultiply() in DNAma
a, but that parallel CSR is between 2 and 3 times faster thanparallel transMultiply() in all but the smallest example (
ourier). This is to be expe
ted, forthe reasons we dis
ussed above. The performan
e gained purely from moving from SparseMatrixto CSR format 
an be seen by 
omparing the run-times with only 1 OpenMP thread.When it 
omes to de
iding whi
h of these s
hemes should be in
orporated into HYDRA weare for
ed to trade o� performan
e again 
onvenien
e. Parallel transMultiply() is the simplestto implement as it requires little more than adding #pragma omp parallel for around the loopover i in Fig. 4. Swit
hing HYDRA's storage format from the SparseMatrix 
lass to CSR hasthe potential to result in even better performan
e but requires far more work: HYDRA 
urrentlyexploits all the 
lass methods for reading in the matrix and doing the multipli
ation, and all thesewould need to be rewritten to take advantage of CSR format.3.1 Comparison with MPI-Parallelised Sparse Matrix�Ve
tor Multipli
ationAs dis
ussed above, the original HYDRA parallelises the sparse matrix�ve
tor multipli
ationswith MPI. It is interesting therefore to 
ompare its run-time with that of the OpenMP-parallelisedtransMultiply() version on a shared-memory ma
hine. On
e again, we use an Intel Core2 3.0GHzquad-
ore CPU workstation with 8GB RAM.Model # States # iterations Serial OpenMP MPI (row-striped) MPI (hypergraph)
ourier 11 700 1 329 0.38 0.19 0.10 0.10fms 537 768 712 26.4 16.4 15.1 13.9
1 639 440 712 83.9 51.7 52.2 49.9
4 459 455 712 234.5 142.7 154.9 152.5Table 2. Run-times in se
onds for serial, OpenMP and MPI sparse matrix�ve
tor multipli
ation on ashared-memory ma
hine. All parallel results used 4 threads/pro
esses.Tab. 2 presents the run-times for serial and parallel sparse matrix�ve
tor multipli
ations for arange of model sizes and number of iterations. Note that ea
h entry in the table is the average of 5runs. We 
onsider two data-partitioning s
hemes for the MPI-parallelised 
ase: row-striping, whereea
h pro
essor is allo
ated a blo
k of 
ontiguous rows su
h that ea
h pro
essor has approximatelythe same number of non-zeros, and hypergraph, where 
omputational load is again balan
ed but
ommuni
ation between pro
essors is minimised. In a distributed-memory setting the latter s
hemeis very mu
h more e�
ient than the former, and it is interesting to note that the same applies in ashared-memory setting. Presumably this is be
ause hypergraph partitioning results in less 
opyingof data between the pro
esses' address spa
es.The results presented in Tab. 2 show that the performan
e of parallel sparse matrix�ve
tormultipli
ation is essentially the same for OpenMP and MPI. When the matrix is small then usingMPI is faster, but as the matrix size in
reases then OpenMP be
omes the qui
ker of the two. Wetheorise that this 
an be attributed to the overhead of 
reating and destroying thread groups inOpenMP: when the matrix is small then this pro
ess dominates the solution time, but for largermatri
es the start-up 
ost be
omes insigni�
ant 
ompared to the time required to perform thea
tual 
omputations.In the 
ases where the MPI version of HYDRA is faster, we must a
knowledge that it issigni�
antly more 
ompli
ated to use: it requires us to exe
ute a separate partitioning program(possibly a third-party hypergraph partitioner) and to apply the results to the matrix before we
an even begin to exe
ute the response time analyser, while the OpenMP version is exe
uted inexa
tly the same way as the serial version. It is entirely 
on
eivable that the run-time improvementsseen in the MPI results in Tab. 2 will be overshadowed by these extra data-partitioning stages.We therefore 
on
lude that in a shared-memory environment the use of OpenMP to parallelise thesparse matrix�ve
tor multipli
ations is preferable to the use of MPI.



4 The Easy Bit: Erlang Term Parallelisationfor (int 
ount=0; 
ount < (int)(t_top/t_step); 
ount++) {double pdf_answer = 0.0;double 
df_answer = 0.0;for (int n=1; n <= m; n++) {pdf_answer += log_erlang(n, _q, (
ount+1)*t_step) * sum_pi_target[n℄;
df_answer += log_erlang_
df(n, _q, (
ount+1)*t_step) * sum_pi_target[n℄;}pdf_result_output << (
ount+1)*t_step << " " << pdf_answer << endl;
df_result_output << (
ount+1)*t_step << " " << 
df_answer << endl;} Fig. 6. HYDRA loop for 
al
ulating fij (t) at all required values of t.HYDRA's loop over the values of t at whi
h fij(t) is required is summarised in Fig. 6. The innerloop (from n = 1 to m) 
orresponds to the outer summation in Eq. 2, while the sum_pi_targetarray holds the pre
omputed ∑

k∈j π
(n)
k terms (the inner summation in Eq. 2) that are 
al
ulatedby repeated sparse matrix�ve
tor multipli
ation as dis
ussed in the previous se
tion. Note thatthe outer loop iterations are independent of ea
h-other, whi
h makes it an ideal 
andidate forOpenMP parallelisation. Doing this is again easily a
hieved by adding:#pragma omp parallel for shared(max_hops,sum_pi_target) s
hedule(guided)before the loop indexed by int 
ount in Fig. 6.Model # States # t-points Serial Mx�Ve
 Serial Erlang Serial Time (s) OpenMP Time (s) Speed-up
ourier 11 700 100 1.7% 97.1% 22.1 6.1 3.6

1 000 0.2% 99.7% 216.5 55.3 3.9
10 000 0.02% 99.9% 2 149.9 541.2 4.0fms 537 768 100 79.9% 18.7% 33.1 28.3 1.1
1 000 29.7% 69.7% 88.8 42.1 2.1

10 000 4.0% 95.9% 647.0 182.0 3.6
1 639 440 100 91.9% 6.8% 91.6 86.4 1.1

1 000 57.2% 41.9% 147.2 100.5 1.5
10 000 12.0% 87.9% 704.5 239.8 2.9

4 459 455 100 95.9% 2.5% 245.8 238.9 1.0
1 000 78.3% 20.5% 301.7 252.8 1.2

10 000 27.6% 71.9% 858.2 392.3 2.2Table 3. Run-times for serial and 4-thread OpenMP versions of the loop in Fig. 6.The result of applying these seemingly minor 
hanges 
an be seen in Tab. 3, whi
h 
omparesthe run-time for the original serial version of HYDRA with that of the modi�ed version whi
huses OpenMP with 4 threads. Results were produ
ed on an Intel Core2 3.0GHz quad-
ore CPUworkstation with 8GB RAM for a range of CTMC sizes and number of t-points. The 
orrespondingspeed-ups are also shown. Ea
h entry in Tab. 3 is the average of 5 runs. Note that all matrix�ve
tormultipli
ations here are 
ondu
ted in serial; the e�e
t of in
orporating parallel matrix�ve
tormultipli
ation will be 
onsidered in the next se
tion.



As we would expe
t the largest speed-up that is observed is 4 as this problem is triviallyparallelisable. The size of the speed-up a
ross the di�erent problem sizes and number of t-pointsobviously depends on the amount of work that 
an be parallelised; in those 
ases where therun-time is dominated by the time required to do the sparse matrix�ve
tor multipli
ations, theimprovement from speeding up the t-point loop is 
orrespondingly limited. This is Amdahl's lawin a
tion [28, 29℄.The number of t-points is independent of the size of the matrix and is instead spe
i�ed by theuser in the initial performan
e query. This means that in general it is hard to reason about therelative amount of work that the matrix�ve
tor multipli
ations and the Erlang term 
al
ulationwill require � for any model it depends entirely on the performan
e query being asked. The resultsin Tab. 3 suggest that parallelising the loop shown in Fig. 6 is worthwhile, however. For very littlesoftware engineering e�ort we 
an gain some speed-up in exe
ution time, and the overhead fromOpenMP seems to be su�
iently small that even in 
ases where there is limited opportunity forparallelism (e.g. in the 100 t-point 
ase for the 4 459 455-state CTMC) we are no worse o�.One slight drawba
k of the OpenMP version is that ea
h thread outputs the pdf/
df valueat a parti
ular value of t as it is 
omputed, but be
ause the iterations are divided a
ross theparti
ipating threads the overall output will be out of order. This is a minor problem, however, asit does not prevent GNUplot from displaying the 
orresponding graph 
orre
tly, and if text outputin in
reasing order of t is required the data �le 
an easily be sorted on
e exe
ution is 
omplete.5 Putting It All TogetherModel # States # t-points Serial Time (s) OpenMP Time (s) Speed-up
ourier 11 700 100 22.1 5.9 3.7
1 000 216.5 54.3 4.0

10 000 2 149.9 547.0 3.9fms 537 768 100 33.1 18.5 1.8
1 000 88.8 32.4 2.7

10 000 647.0 171.3 3.8
1 639 440 100 91.6 54.6 1.7

1 000 147.2 68.6 2.1
10 000 704.5 207.6 3.4

4 459 455 100 245.8 148.2 1.7
1 000 301.7 162.1 1.9

10 000 858.2 301.6 2.8Table 4. Run-times for serial HYDRA and 4-thread OpenMP version with both sparse matrix�ve
tormultipli
ation and t-point loop parallelisation.We now look at the e�e
t of bringing the two parallelisation opportunities des
ribed in Se
-tions 3 and 4 together in a single implementation. Table 4 
ompares the run-time of the originalserial HYDRA with a parallel version that uses OpenMP to parallelise both the sparse matrix�ve
tor multipli
ations and the t-point loop. Results were produ
ed on an Intel Core2 3.0GHzquad-
ore CPU workstation with 8GB RAM for a range of CTMC sizes and number of t-points.The 
orresponding speed-ups are also shown. Ea
h entry in Tab. 4 is the average of 5 runs.What is striking from Tab. 4 is that for very little software engineering e�ort we have produ
eda version of HYDRA that runs between 1.7 and 4.0 times faster on a modern multi
ore desktop.The exa
t speed-up a
hieved depends on the problem size and number of t-points required, butin all 
ases we do observe a marked improvement for the in
orporation of OpenMP into HYDRA.



6 Related WorkSparse matrix�ve
tor multipli
ation is the kernel of a wide range of s
ienti�
 te
hniques, and assu
h its e�
ient implementation has been widely studied. Its performan
e is usually 
onstrainedby available memory bandwidth rather than instru
tion pro
essing speed (see [30℄ for a fullerdis
ussion), and this is exa
erbated by the poor temporal lo
ality of a

esses to the ve
tor whi
hredu
es the e�e
tiveness of 
a
hes. There has therefore been a great deal of work on improvedmatrix storage formats to over
ome these limitations, in
luding numerous variants of Blo
k CSR(BCSR) and matrix reordering [31�33℄.There has similarly been a great deal of work on the performan
e of sparse matrix�ve
tormultipli
ation on shared-memory ar
hite
tures. The work in [34℄, whi
h analyses performan
eon a variety pro
essors in
luding Intel, AMD and Cell, is parti
ularly relevant as it in
ludes a
omparison of a Pthreads implementation with an MPI implementation. It is observed that thePthreads version is more than twi
e as fast as the MPI version.There has also been a number of papers investigating good matrix storage formats for OpenMPparallelised sparse matrix�ve
tor multipli
ations. In [35℄ the authors investigate the relative per-forman
e of standard CSR versus BCSR under OpenMP's standard work partitioning s
hemesand their own load-balan
ing approa
h, and 
on
lude that blo
k partitioning that balan
es thenumber of non-zeros a
ross parti
ipating pro
essors gives the best performan
e. Similarly, [36℄looks at the performan
e of sparse matrix�ve
tor multipli
ation using OpenMP with CSR, BCSRand diagonal matrix formats on a range of ar
hite
tures. The authors 
on
luded that the bestformat was ar
hite
ture dependent.Based on this existing literature, we 
on
lude that if we want to a
hieve the best possibleperforman
e for parallel sparse matrix�ve
tor multipli
ation we should investigate storage formatsother than those 
onsidered in this paper. Implementing blo
k storage s
hemes in HYDRA wouldrequire a major rewrite of the existing 
ode, however, and must therefore be a topi
 for futurework: the fo
us of the 
urrent paper is on the bene�ts that 
an be gained with as little modi�
ationto the existing program as possible.7 Con
lusionWe have taken the existing performan
e tool HYDRA and investigated how its 
ore 
al
ulations
an be parallelised for modern multi
ore pro
essors by using OpenMP. We have shown that thereare two opportunities for parallelism, namely in the repeated sparse matrix�ve
tor multipli
ationsand in 
al
ulating the values of fij(t) for ea
h required value of t, and that in both 
ases theuse of OpenMP 
an give performan
e improvements over serial HYDRA at the 
ost of adding a3 or 4 extra lines of 
ode. To give some idea of the relative s
ale of e�ort versus developing theoriginal software, the serial version of HYDRA (in
luding all headers and 
lass �les) 
omprisesover 12 000 lines of 
ode. If further 
ode refa
toring work is a

eptable then repla
ing the existingSparseMatrix 
lass from DNAma
a with a matrix stored in a more e�
ient format has thepotential to yield even further redu
tions in run-time.There are a number of opportunities for further work. This paper has fo
used entirely on the�nal stage in the HYDRA pipeline of Fig. 2, but there has been other work on parallelising theearlier stages (parti
ularly the state generation and steady-state solution phases) for distributed-memory ma
hines by using MPI [2℄. It would be interesting to see if these stages are also suitablefor parallelisation with OpenMP.Finally, it should be noted that MPI and OpenMP are not mutually ex
lusive. Multi
orema
hines form the building-blo
ks of almost all modern 
lusters and super
omputers, and sothere is s
ope for a hybrid implementation of HYDRA where OpenMP is used to parallelise the
al
ulations within the parti
ipating nodes and MPI is used to parallelise the problem a
rossmultiple nodes.
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