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Infinite cascades of periodicity hubs were predicted and very recently observed experimentally
to organize stable oscillations of some dissipative flows. Here we describe the global mechanism
underlying the genesis and organization of networks of periodicity hubs in control parameter space
of a simple prototypical flow. We show that spirals associated with periodicity hubs emerge/accu-
mulate at the folding of certain fractal-like sheaves of Shilnikov homoclinic bifurcations of a common
saddle-focus equilibrium. The specific organization of hub networks is found to depend strongly on
the interaction between the homoclinic orbits and the global structure of the underlying attractor.

I. INTRODUCTION

To study the response of a system with respect to
changes in the processes involved is a basic problem in
physics and the quantitative sciences in general. For dis-
sipative systems, the problem is formulated in terms of
the attractors typically underlying the long-term dynam-
ical behavior, see e.g. [1, 2]. Here one aims to understand
the transitions (bifurcations) of the attractors under vari-
ation of the system’s control parameters.

Numerical computation of Lyapunov exponents pro-
vides a convenient tool to classify attractors and bifurca-
tions of dynamical systems. A positive or zero maximal
Lyapunov exponent usually indicates sensitivity with re-
spect to the initial conditions or, respectively, temporally
regular behavior (e.g. periodic or quasi-periodic) [1, 2].
With the development of fast throughput numerical ex-
periments, it becomes feasible to explore large ranges of
parameter space, classifying the system’s attractors by
their Lyapunov exponents. Lyapunov phase diagrams are
graphical summaries of these explorations, describing the
attractor type as a function of the control parameters
through color or gray scale codes. Such diagrams have
been obtained both numerically [3–16] and experimen-
tally [17] and may offer a wealth of information on the
the nature of the attractors and their bifurcations. Lya-
punov phase diagrams are useful since they code only the
stable dynamics and, hence, the dynamics which is likely
to be observable and relevant in any physical system.

A specific class of spiral-like structures has been iden-
tified in Lyapunov phase diagrams of dissipative flows as
diverse as piecewise-linear resistive electric circuits, elec-
trical circuits with smooth nonlinearities, certain lasers,
chemical oscillators and other paradigmatic flows [3–
7, 15, 16]. These structures consist of a double alterna-
tion of nested spirals converging to a central point: the
so-called periodicity hub. Fig. 1 shows a periodicity hub
in the (c, a)-parameter plane of Rössler’s oscillator [18]:

ẋ = −y − z, ẏ = x + ay, ż = (b + z)x− cz, (1)

where b = 0.3. Two groups of nested spiral-shaped re-
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FIG. 1. (Color online) Lyapunov phase diagram for Rössler’s
oscillator, with four dots marking periodicity hubs H1 and
H1j , j = 1, 2, 3 and with a curve h1 of Shilnikov homoclinic
bifurcations. Grey tones, identifying the periodicity spirals,
are proportional to the maximum nonzero Lyapunov expo-
nent. Color, identifying the chaoticity spiral, depends on the
maximum Lyapunov exponent, which is positive. The dia-
gram displays 24002 = 5.76 × 106 parameter points.

gions accumulate in the parameter plane around the pe-
riodicity hub H1: periodicity and chaoticity spirals. In-
dividual periodicity (chaoticity) spirals are characterized
by a zero (positive) maximum Lyapunov exponent, corre-
sponding to periodic (chaotic) stable oscillations in phase
space. Both groups seems to contain infinitely many spi-
rals. As parameters approach H1 within a single period-
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FIG. 2. (Color online) (a) Lyapunov phase diagram for Rössler’s oscillator showing two periodicity hubs, H1 and H2, with
their associated spirals and homoclinic loci. The box around H1 is magnified in Fig. 1. (b) Magnification of box around H2,
also showing Shilnikov bifurcation curves hi, i = 1, . . . , 5. Further magnifications would be required to visualize the self-similar
spiral-like structures near Hk, k ≥ 3. Parameter regions containing the letters (a) and (b) correspond to divergence of the
orbits. Each panel displays phase-space analysis of 24002 = 5.76 × 106 individual parameter points.

icity spiral, the waveforms of the stable oscillations evolve
continuously and their periodicity grows without bound.
Also, sequences of shrimps [19–21] occur along the peri-
odicity spiral arranged in consecutive pairs at each half-
turn around H1.

Similar spiral structures have been recently observed
experimentally [17] in a slight variation of the same elec-
tric circuit where they were first anticipated by means
of Lyapunov phase diagrams [3]. For applications, peri-
odicity hubs are appealing because in their vicinity the
control parameter space is organized into a predictable
pattern of regular and chaotic regions. Hence, at a pe-
riodicity hub it is possible to selectively switch param-
eters between distinct periodicity spirals (characterized
by periodic orbits with distinct waveforms and periods)
without the need of ever crossing any of the surrounding
chaoticity spirals and vice versa.

Initially, the research focused on an isolated periodic-
ity hub [3]. In general, however, periodicity hubs are not
isolated points but seem to always occur in infinite se-
quences (cascades), several of which can coexist, forming
complex networks of self-similar structures in parameter
space [6]. All the work so far has presented qualitative
descriptions of the organization induced around periodic-
ity hubs in the parameter space without explaining their
origin. The aim of this paper is to remedy this situation
by describing a global mechanism producing both ‘iso-
lated’ cascades and large networks of periodicity hubs,
responsible for organizing distinct overlapping sets of sta-

ble oscillations in Lyapunov phase diagrams of dissipative
flows. In particular we show how local results of Gaspard
et al. [22, 23] (see also Ref. [24]) for Shilnikov homoclinic
bifurcations can manifest themselves globally in the Lya-
punov phase diagrams and comment on the additional
detail that this interpretation allows us to deduce.

II. GENESIS OF HUB CASCADES

As a convenient working example, we consider again
Rössler’s oscillator, one of the most paradigmatic dis-
sipative flows described in textbooks [18]. This model
has the advantage of having many aspects of the local
homoclinic phenomena arising from Shilnikov’s scenario
[25–30] as already described in early pioneering work by
Gaspard et al. [22, 23] (see also Ref. [24]). Here we focus
on global aspects connected with homoclinic phenomena
and, more importantly, on their relation with the organi-
zation of networks of periodicity hubs in Lyapunov phase
diagrams of dissipative flows. For terminology and gen-
eral background material about homoclinic phenomena
we refer to Refs. [2, 31, 32]. Without loss of generality
we fix b = 0.3, following Gaspard et al. [22, 23]. For
b = 0.4, the value considered by Fraser and Kapral [33],
we observe the same global scenario which is the subject
of this paper, see [6] for Lyapunov phase diagrams in that
case.

As indicated by Figs. 1 and 2, periodicity hubs influ-
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FIG. 3. (Color online) Illustration of homoclinic bifurcations
in Rössler’s oscillator. Left column: primary intersections of
the manifolds W s(O) (dot) and Wu(O) (curve) with the plane
Σ for a = 0.35 fixed and: (a) c = 5.2, (b) c = 4.88722732, (c)
c = 4.6, showing the transit of W s(O) across Wu(O) when
the parameter c is changed. Right column: sketches magni-
fying the folding region F1 of the unstable manifold Wu(O).
(d) and (g): sketches of (a) and (c), respectively. What looks
like a single curve in the left column panels is a pair of curves,
which are narrowly spaced due to strong compression in the
normal direction. Two distinct homoclinic bifurcations h1,+

and h1,− take place for nearby parameter values, due to the
folding and compression (panels (e,f)). These two configura-
tions cannot be distinguished from each other at the scale of
panel (b).

ence extended portions of the parameter space. Figure
1 suggests that an infinite sequence of periodicity hubs
H1j converges to H1: most of the periodicity spirals at-
tached to the H1j can only be seen in magnifications of
the Lyapunov phase diagram. However, a few shrimps
along these periodicity spirals are visible at the scale of
Fig. 1, where they are highlighted by circles. Additional
hubs Hk are revealed by examining a larger parameter
domain (see Fig. 2(a)). The infinite alternation of spirals
near H2 is shown magnified in Fig. 2(b). By special-
ized numerical methods [32], we find several loci hk of
Shilnikov homoclinic bifurcations [22–24] which, at the
scale of Fig. 2 (b), seem to terminate at each hub Hk, for
k = 1, . . . , 5.

We now address the fundamental question of this pa-
per: what is the mechanism responsible for generating
hubs and hub networks in Lyapunov phase diagrams and
what is its relation with Shilnikov homoclinic bifurca-
tions? A key concept here is that the hub network seen
in parameter space is intimately related to the interac-
tion in phase-space between the homoclinic orbits and
the global structure of the Rössler attractor. Hence the
discussion will now be focused on the structures in phase
space.

To see how hub networks arise, we consider a sub-
set of Rössler’s (a, c)-parameter plane where the origin
O ≡ (0, 0, 0) is a saddle focus with a 1D stable manifold
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FIG. 4. (Color online) Homoclinic orbits in Rössler’s oscil-
lator, for parameter values at the periodicity hubs H1 and
H2 as in Fig. 1. (a) A segment of W s(O) (green, solid)
connects to an orbit segment in Wu(O) (red, dashed) at a
point on Σ (green dot), for (c, a) = (4.93029864, 0.3301), cor-
responding to H1. (b) A primary intersection point of Wu(O)
with Σ (blue triangle) is mapped to the primary intersection
point of W s(O) with Σ (green dot) by the Poincaré map, for
(c, a) = (4.18195201, 0.4436), corresponding to H2.

W s(O) and a 2D unstable manifold Wu(O), see e.g. [22,
Figure 1]. In this setting, the structure of the Rössler
strange attractor is essentially determined by the geome-
try of Wu(O). This geometry is analyzed as usual [2], in
a Poincaré section of Wu(O) by a surface Σ, taken here
as the plane z = 3:

Σ = {(x, y, z) ∈ R3 | z = 3}. (2)

As usual [2, 31, 32], we examine the primary intersec-
tions of W s(O) and Wu(O) with Σ: loosely speaking,
these consist of the points where orbits starting in the
corresponding local manifolds hit Σ for the first time [35].

The left column of Fig. 3 illustrates the process gen-
erating a homoclinic bifurcation, seen from within the
Poincaré section Σ. The figure shows sections of the sta-
ble and unstable manifolds of the origin for three values
of the parameter c, with a fixed. For c = 5.2 and c = 4.6,
the stable manifold WS(O) lies at different sides with re-
spect to Wu(O). The intermediate value of c is chosen
such that W s(O) actually enters Wu(O): this condition
identifies a single point in the parameter plane for which
a homoclinic bifurcation occur. Loosely speaking, to de-
crease the parameter c with constant a is equivalent to
move W s(O) across Wu(O). Figure 4 shows the homo-
clinic orbits occurring for parameter values (c, a) at H1

and H2 in Fig. 1.
The manifold Wu(O) has a region of strong curvature

where it folds onto itself. This region, labeled by F1 in
Fig. 3, is very hard to visualize in the original (x, y) co-
ordinates of Σ. This is due to strong compression in the
normal direction to the unstable manifold Wu(O), which
in turn is due to the dissipativity of the system. To visu-
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FIG. 5. (Color online) (A) Parameter plane sketch of the
homoclinic loci h1, h11, h12, h13 (green, solid lines) with fold-
ing points at the hubs H1, H11, H12, H13. (B) Sketch within
the Poincaré section Σ of the primary (red, solid line) and
secondary (green, dashed line) intersection of Wu(O) with Σ,
see [35], highlighting regions with strong curvature of Wu(O),
namely F1 for the primary intersection and F11, F12 for the
secondary intersection. Such regions of folding of the unstable
manifold correspond to the hubs H1, H11, F12 in panel (A).

alize the folding region we resort to hand-made sketches
in the right panels of Fig. 3. The sketches clarify that
a pair of homoclinic bifurcations h1,+ and h1,− actually
takes place near the folding region F1. Since the width
of the folding region is about 10−10, the two homoclinic
bifurcations occur for values of the parameter c which are
very close to each other.

Having described how the homoclinic bifurcations oc-
cur for a fixed value of a, we now vary both parameters
(c, a) in order to locate the homoclinic loci hi in the pa-
rameter plane. These loci are obtained by tuning pa-
rameters so that W s(O) (the dot in the left column of
Fig. 3) lies along Wu(O) (the curve). We refer again to
the sketches in the right column of Fig. 3: to decrease
a corresponds to shifting the pair of points h1,± towards
the left (decreasing x). Hence, a pair of homoclinic bi-
furcation curves will occur in the parameter plane.

Again we see here the idea that structures in phase
space have a close correspondence with structures in the
parameter plane: the folding region of the unstable man-
ifold Wu(O) corresponds to a folding region for the ho-
moclinic locus h1 in Fig. 1. Hence, locus h1 actually
consists of a pair of narrowly spaced bifurcation curves,
to which bifurcation points h1,+ and h1,− of Fig. 3 (e,f)
respectively belong. This pair of curves cannot be re-
solved at the scale of Fig. 1: as for Fig. 3, we must turn
to a sketch in Fig. 5 (a) to illustrate the configuration of
h1. We now see that the periodicity hub H1 occurs at
the folding region of h1 in Fig. 1.

It is worth to emphasize that, for a concrete system,
the periodicity hub H1 is not a single point in parameter
space, rather a small region of strong curvature of the
homoclinic locus h1. Indeed, a single point is obtained
only in the limit of infinite contraction for a local return

map near the homoclinic orbit, see [23, Sec. 4]. However,
contraction (due to dissipation) is usually so large that
that periodicity hubs can be regarded as points for all
practical purposes in many systems encountered in the
applications.

Local analysis near the homoclinic orbit at the folding
points reveals the basic structure of the periodicity spirals
in a neighborhood of the hubs [23]. The standard theory
of simple Shilnikov homoclinic bifurcations without fold-
ing points [24] shows that there is an infinite sequence
of subsidiary homoclinic orbits accumulating on a prin-
cipal homoclinic orbit. This yields an accumulation of
homoclinic loci in parameter space from one side of the
principal homoclinic locus. This theory can be adapted
to the folding points to show that an infinite sequence
of subsidiary folding points accumulates on a principal
folding point with a geometrical rate. The position of the
subsidiary foldings relative to the principal folding (i.e.
outside or inside the principal folding point) depends on
the sign of two normal form coefficients [36].

For the Rössler system (1), we find the subsidiary fold-
ing points to lie inside the principal folding at F1, see
Fig. 5 (b). The fourth largest periodicity hub H11 in
Fig. 1 is generated by a similar mechanism as H1, with
the difference that a subsidiary branch of Wu(O) is in-
volved – namely that giving rise to F11 in Fig. 5 (b) – in-
stead of the principal branch of Fig. 4 (a), involved in H1.
Accordingly, H11 is the folding region of a homoclinic lo-
cus h11, which is nested within the principal folded locus
h1. Analogous considerations imply that folded homo-
clinic loci h1j emerge from hubs H1j , j = 2, 3, . . . and are
nested into one another, see the sketch in Fig. 5 (a). The
whole process repeats ad infinitum: Subsidiaries within
subsidiaries will also show up nearby, giving rise to a
sheaf of homoclinic loci nested within h1 in Fig. 1. This
sheaf is tightly packed, due to contraction in phase space:
the distance between the two branches of h1 is less than
10−8, see the sketch in Fig. 5 (a).

A very similar bifurcation structure was analyzed in
detail by de Feo et al. [15, 16] for the Colpitts oscillator,
by means of both numerical continuation of bifurcations
of periodic orbits and direct integration. Our analysis in
the next section, however, clarifies the link between the
multi-branch structure of the attractor and the global
organization of the hub network. We also link the normal
form coefficients of the return map to the position of
the subsidiary folding points [36]. More importantly, the
arrangement reported in our Fig. 5 is quite different from
what is described in Fig. 13 of de Feo et al. [15].

III. LYAPUNOV PHASE DIAGRAMS AND
HOMOCLINIC LOCI

So what can we learn from the Lyapunov phase dia-
gram? Is it possible to somehow guess the location of
homoclinic loci from Lyapunov phase diagrams? Before
proceeding, we invite the reader to try to use the knowl-
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FIG. 6. (Color online) Two additional examples to illustrate the genericity of the global structure of hub networks. (a) hub
network for a chemical oscillator [6, 22]. (b) hub network in a simple electronic circuit with a tunnel diode [7]. White boxes
mark the location of the two largest hub networks, many more exist. Lyapunov phase diagrams provide a quick guide about
where to find homoclinic loci in control space of flows. Panels display 24002 = 5.76 × 106 parameter points.

edge won by reading the previous Section to guess where
homoclinic loci are to be expect in the pair of Lyapunov
phase diagrams shown in Fig. 6.

With hindsight, without resorting to computation of
homoclinic bifurcations, the diagrams indeed show clear-
cut signatures which allow us to deduce the existence of
homoclinic loci and locate their folding points. For ex-
ample, the detection of the hub H2 (Fig. 2) led us to
try to explain this as part of the evolution of the Rössler
attractor when changing parameters. The result of this
investigation is shown in Fig. 7. Depending on the pa-
rameters, the intersection of the Rössler attractor (or,
equivalently, of Wu(O)) with an appropriately chosen re-
turn plane develops well-separated bands. Each band has
a fractal onion-like structure arising from the expanding,
folding and return of the manifold Wu(O) to the Poincaré
section Σ. Also, each band has a point Fj of strong cur-
vature, where Wu(O) is folded onto itself, just like F1 in
Fig. 3. According to Ref. [23], each folding contributes
one periodicity hub through the mechanism illustrated
in Figs. 3 and 5. Again, periodicity hubs centered at
H2 and H3 in parameter plane (Fig. 2(b)) are induced
by folding regions F2 and F3 of the unstable manifold
in phase space (Fig. 7). Each periodicity hub Hk is the
folding point of a homoclinic locus hk, with an associ-
ated sequence of subsidiary homoclinic loci hkj and their
folding points Hkj . Since homoclinic loci have an infinite
number of subsidiaries, we see nothing preventing the
existence of an infinite number of such new independent
hubs, as anticipated by numerical simulations [6].
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FIG. 7. (Color online) Intersection of Wu(O) with the plane
Σ for c = 4 and: (a) a = 0.4, (b) a = 0.46, (c) a = 0.475, (d)
a = 0.485. Folding of Wu(O) occurs near each Fj , compare
with Fig. 3. Periodicity hubs arise at such foldings of the
manifold, thus giving origin to an infinite network of hubs in
control parameter space.

We emphasize that the existence of the extra folding
points Fj , with j > 1 is a novel and general feature that
depends on specific details of the attractor of the system
being considered: it does not follow from the local un-
folding of a higher codimension bifurcation point in any
obvious way (although there may still be a relationship
with mixed-mode oscillation theory [37], see for exam-
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ple [38]). Correspondingly, the homoclinic orbits at the
various hubs have a rather different structure (Fig. 4).

Seen in this light, periodicity hubs become a useful
tool for the quick detection and understanding of global
features of the parameter space. Features such as homo-
clinic folding points and their subsidiary bifurcations are
normally only found by using specialized numerical meth-
ods, whilst a theoretical understanding of the Lyapunov
phase diagrams allows the existence of these features to
be deduced from the structure of the diagram itself.

The mechanism described here for the occurrence of
periodicity hub networks involves Shilnikov homoclinic
bifurcations. The latter are codimension-one phenom-
ena, meaning that they are stably observed in systems
depending on one parameter [2]. In the present scenario,
individual cascades of periodicity hubs require at least
two parameters, since a region of strong curvature is also
needed along a curve of Shilnikov bifurcations. Hence,
periodicity hubs can be considered as codimension-two
phenomena, to be expected in systems with Shilnikov bi-
furcations when at least two parameters are varied. Tech-
nically speaking, a codimension-two condition is only ob-
tained in the idealized situation of infinite contraction
discussed above, see [23, Sec. 4].

Hub networks are indeed found in several physical
models [6]: Fig. 6 shows Lyapunov phase diagrams for a
chemical oscillator first introduced and analyzed by Gas-
pard et al. [6, 23] and for a circuit containing a tunnel
diode [7], illustrating the similarity with the hub struc-
ture in Fig. 1. Hitherto, most work has concentrated
on describing the features of the parameter space near
the periodicity hubs found in these diagrams. Here we
have complemented such understanding by showing how
periodicity hubs are globally related to folding points of
homoclinic loci described locally in Ref. [23], and have
explained further properties of hubs close to a principal
hub in terms of homoclinic bifurcation theory.

IV. CONCLUSIONS AND OUTLOOK

In this paper we have described the global mechanism
underlying the genesis and organization of networks of
periodicity hubs in the control parameter space of a sim-
ple prototypical flow. We have clarified the relation be-
tween periodicity hubs and the presence of two distinct
types of spiral-like regions, respectively characterized by
families of periodic or chaotic oscillations. The link is
made clear by Lyapunov phase diagrams, which give a
fairly complete view of the dynamics and show the key
role of periodicity hubs in organizing extended portions
of the parameter space. Periodicity and chaoticity spi-
rals in the parameter plane emerge from and accumu-
late at periodicity hubs: these are small regions of strong
curvature of homoclinic bifurcation curves of a common
saddle-focus equilibrium. These homoclinic bifurcation
curves are arranged in fractal-like sheaves in the param-
eter plane.

The specific organization of hub networks was shown
to depend strongly on the interaction between the ho-
moclinic orbits and the global structure of the underly-
ing attractor. Based on considerations of genericity in
dynamical systems [2, 31], we argued that the mecha-
nism described here, responsible for hub networks, might
be found in a wide class of dissipative flows, namely a
subset of those where Shilnikov’s homoclinic scenario oc-
curs [2, 18, 22–31]. At the same time, we do not exclude
the possibility that periodicity hubs occur in systems
with other non-Shilnikov reinjection mechanisms, see
e.g. [5]. Furthermore, there exist examples of Shilnikov’s
scenario in the literature, without detectable periodicity
hubs.

Lyapunov phase diagrams are efficient and useful ex-
ploratory tools for applications, to understand global fea-
tures of complex attractors. For Rössler’s system, the
homoclinic locus h2 was first computed using specialized
numerical methods to detect homoclinic phenomena [22].
However, the existence of h2 and the several additional
homoclinic loci hk with folding points has been read off
here directly from Lyapunov phase diagram like Fig. 2,
a fact that greatly simplified their precise numerical cal-
culation. This led to the discovery of the global banded
structure of Rössler’s attractor (Fig. 7) and of the addi-
tional hubs related to this structure. We believe that the
use of Lyapunov phase diagrams can significantly aug-
ment and speed-up the understanding of physical mod-
els: such diagrams, focused on experimentally measur-
able features, reveal the occurrence of many global bifur-
cations without recourse to more specialized numerical
techniques. They are therefore a very powerful way to
begin the analysis of nonlinear systems and can also be
applied to laboratory experiments which, of course, only
detect stable structures. A complementary tool that may
be useful in analyzing dynamical systems is the direct
study of the oscillations as parameters are tuned [37].

In conclusion, although our emphasis here was on
Shilnikov’s homoclinic scenario, periodicity hubs have
been reported very recently for a semiconductor laser
with optoelectronic feedback [5], which is an excitable
system with multiple time-scale dynamics [39, 40]. As an-
ticipated theoretically by Marino et al. [39], such consid-
erably richer scenarios are possible in higher-dimensional
systems, particularly when period-doubling cascades fol-
low a Hopf bifurcation and subsequent canard explosion,
producing alternations of periodic and chaotic oscilla-
tions. As the amplitude of the chaotic attractors grows
one observes a spiking regime consisting of large pulses
separated by irregular time intervals in which the system
displays small-amplitude chaotic oscillations. This sce-
nario, reminiscent of Shilnikovs homoclinic chaos despite
the fact that no homoclinic connections are involved, has
already been observed very recently in ground-breaking
experimental studies of a semiconductor laser [41, 42].
An interesting challenge now is to uncover the mecha-
nism generating networks of hubs for such non-Shilnikov
systems [5].
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