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Abstract

We show that the theory of the real field with a generic real power
function is decidable, relative to an oracle for the rational cut of the
exponent of the power function. We show the existence of generic
computable real numbers, hence providing an example of a decidable
o-minimal proper expansion of the real field by an analytic function.
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1 Introduction

In the 1930’s, Alfred Tarski proved that the theory of the real ordered field
R := 〈R; +,−, ·, 0, 1, <〉 is decidable. Subsequently, he asked whether his
result could be extended to the theory of the real exponential field Rexp :=
〈R, exp〉. This question remains open and has links with some questions in
transcendence theory. For example, given m,n ∈ Z, a decision procedure
for Rexp would tell us if mee − n = 0 holds in Rexp, and it is, at present,
not known whether ee is irrational. Similarly, it is not known if e, ee and
ee

e
are algebraically independent and a decision procedure would have to

determine, given a polynomial p ∈ Z[X, Y, Z], if p(e, ee, ee
e
) = 0. Now,

there is a famous conjecture due to Schanuel which, roughly, asserts that
no such algebraic relations hold between values of the exponential function
unless they are forced by the addition law (for the precise statement, and
much more information, see [Waldschmidt00]). Building on Wilkie’s model
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completeness result for Rexp [Wilkie96], Macintyre and Wilkie show that if
Schanuel’s conjecture is true then Rexp is decidable [MW96]. Unfortunately,
Schanuel’s conjecture is thought to be out of reach. Indeed, even the simple
cases mentioned above are major problems in transcendence theory.

Given this, it seems reasonable to look for any decidable expansion of the
real field by some transcendental analytic function. In this paper, we give an
example of such an expansion.

1.1 Theorem. Let α be a real number, and assume that α is not 0-definable
in Rexp. Let xα be the function from R to R which sends positive x to
exp(α log x) and is 0 elsewhere. Then the theory of the structure Rα :=
〈R, α, xα〉 is decidable, relative to an oracle for the cut of α in Q.

Theorem 1.1 gives some evidence for a positive answer to Tarski’s original
question, as it proves the decidability of a fragment of the theory of the
expansion of Rexp by a symbol for α.

The key to proving this is a recent Schanuel condition for certain power
functions, which is due to Bays, Kirby and Wilkie (see [BKW08] and Section
3). Given their result, the proof proceeds as in [MW96], using a theorem
of Miller’s [Miller94] in place of the model completeness of Rexp. In the
final section, we prove the existence of a computable number α which is
not 0-definable in Rexp, and so obtain a theory which is decidable without
any reference to an oracle. Unfortunately, this number is constructed by a
diagonalisation procedure, so is rather far from being explicit.

As this paper was being written, we found out that, independently and
by quite different methods, Dan Miller has also shown the existence of a
decidable proper o-minimal expansion of the real field.

In the proof of Theorem 1.1 we show that, if α is generic (i.e. α is not
0-definable in Rexp), then the theory T defined below is complete and hence
provides an (explicit) axiomatization for Th(Rα).

1.2 Definition. Let T be the subtheory of Th(Rα) axiomatized by the fol-
lowing axiom schemes:

• [OF] Axioms of ordered field;

• [DCB] Axioms of definably complete Baire structure;

• [DE(xα)] The differential equation ∀x > 0 x(xα)′ = αxα, ∀x ≤ 0 xα = 0
and (1)α = 1;

• [ L] Axioms ensuring that certain unary functions, definable using only
the restriction of xα to the interval [1, 2], have rational exponents at
+∞;
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• [CUT(α)] A set of sentences implying that the constant interpreted by
α in Rα, satisfies the Dedekind cut of α over Q.

Notice that T is recursive, relative to [CUT(α)].
Concerning [DCB], definably complete Baire structures were introduced

in [FS09] and are shown to admit a recursive axiomatization; together with
schemes [OF] and [DE(xα)], the scheme [DCB] ensures the o-minimality of
the models (see [FS09, Cor. 8.2]).

The scheme [ L] will be discussed in Section 2.

2 Effective model-completeness in the restricted

case

In this section we consider a restricted power function

xαres :=

{
xα if x ∈ [1, 2]
0 otherwise

for some real number α, and the associated expansion of the real field Rα
res :=

〈R, α, xαres〉; let L be its underlying language. We show the effective model-
completeness of Th(Rα

res), i.e. we exhibit a recursively axiomatized subtheory
Tres, which is model-complete.

2.1 Definition. Given an L-structure K, expanding a field, and n, r in N, let
x = (x1, . . . , xn) range overKn and y = (y1, . . . , yr) range over the box (1, 2)r,
interpreted in K. We refer to the variables x and y as unbounded and bounded
respectively. Let M res

n,r(K) be the ring of functions on Kn × (1, 2)r which
can be expressed as polynomials (with coefficients in K) in the variables
x, y, y−1 = (y−1

1 , . . . , y−1
r ), yα = (yα1 , . . . , y

α
r ). We call such functions restricted

power polynomials.

We now state Axiom Scheme [ L] precisely.

2.2 Definition. Let τ be a recursive function taking triples of natural num-
bers to finite sets of rational numbers. Let K be an L-structure. We say that
K satisfies axiom scheme [ Lτ ] if, given a ∈ K; f1, . . . , fn+r−1, g ∈ M res

n,r(K)
of total degree at most m; φ = (φ2, . . . , φn+r) : (a,+∞)→ Kn+r−1 definable
continuous functions such that

for i = n+ 1, . . . , n+ r Imφi ⊆ (1, 2),

for i = 1, . . . , n+ r − 1 ∀t > a fi(t, φ2(t), . . . , φn+r(t)) = 0,

for t > a det
∂(f1, . . . , fn+r−1)

∂(x2, . . . , xn, y1, . . . , yr)
(t, φ(t)) 6= 0,
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either g(t, φ(t)) is identically zero or else there exists q ∈ τ(n, r,m) such
that limt→∞ t

qg(t, φ(t)) is finite and nonzero.

Axiom scheme [ Lτ ] asserts that, if C is a regular restricted power poly-
nomial curve and g is an restricted power polynomial function, then g � C
has rational exponent at +∞. Moreover, the recursive function τ finds such
an exponent (up to finitely many choices) independently of the parameters
defining g and C.

Notice that every Rα
res-definable unary function has a rational exponent

by [Dries86]; what we need to prove is that, in the situation described in
axiom scheme [ Lτ ], we can actually find such exponents recursively.

2.3 Theorem. There exists a recursive function τ as above such that the
axiom scheme [ Lτ ] is true in Rα

res.

Before proving the above theorem, we shall explain how the axiom scheme
[ L] is used.

2.4 Definition. Let Tres be the L-theory axiomatized by the following schemes:

• [OF] Axioms of ordered field;

• [DCBres] Axioms of definably complete Baire structure;

• [DE(xαres)] The differential equation ∀x ∈ [1, 2] x(xα)′ = αxα, ∀x /∈
[1, 2], xα = 0 and (1)α = 1.

• [ L] The axiom scheme [ Lτ ], where τ is as in Theorem 2.3.

2.5 Theorem. Tres is model-complete.

Proof. The reader can check that the proof of [Wilkie96, First Main Theorem]
goes through for the theory Tres. Axiom scheme [ L] is exactly what is required
to make the proof in Section 8 work. See also [MW96, pag.448].

In order to prove Theorem 2.3, we first show that, by a change of coordi-
nates, we can reduce to proving the following statement, where the roles of
zero and +∞ are interchanged, and we only consider the function g = xn.

2.6 Theorem. There is a recursive function τ ′ taking triples of natural
numbers to finite sets of rational numbers with the following property: given
n, r,m ∈ N, τ ′ returns τ ′(n, r,m) such that, given ε ∈ R+; g1, . . . , gn+r−1 ∈
M res

n,r(R) of total degree at most m; ψ = (ψ2, . . . , ψn+r) : (0, ε) → Rn+r−1

definable continuous functions such that

for i = n+ 1, . . . , n+ r Imψi ⊆ (1, 2),
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for i = 2, . . . , n lim
s→0+

ψi(s) = 0 and

for i = n+ 1, . . . , n+ r lim
s→0+

ψi(s) = 1,

for i = 1, . . . , n+ r − 1 and s ∈ (0, ε) gi(s, ψ2(s), . . . , ψn+r(s)) = 0,

for s ∈ (0, ε), det
∂(g1, . . . , gn+r−1)

∂(x2, . . . , xn, y1, . . . , yr)
(s, ψ(s)) 6= 0,

either ψn is identically zero, or else there exists q ∈ τ ′(n, r,m) such that
lims→0+ sqψn(s) is finite and nonzero.

Here are the details of the proof that Theorem 2.6 implies Theorem 2.3.

Proof. By o-minimality, all definable unary functions have a limit in R ∪
{±∞}. We may assume that limt→+∞ g(t, φ(t)) is either zero or ±∞, other-
wise we could take q = 0.

Let
S := {j ∈ N : 2 ≤ j ≤ n and limt→+∞ φj(t) = ±∞},
S ′ := {j ∈ N : 2 ≤ j ≤ n and limt→+∞ φj(t) = rj ∈ R},
K := {n+i ∈ N : 1 ≤ i ≤ r, φn+i is eventually decreasing and limt→+∞ φn+i(t) =
rn+i ∈ [1, 2]},
K ′ := {n+i ∈ N : 1 ≤ i ≤ r, φn+i is eventually increasing and limt→+∞ φn+i(t) =
rn+i ∈ [1, 2]}.

Let zL be a new variable, i.e. zL /∈ (x, y).
Let

x∗1 = x−1
1

x∗i =

{
1
xi

if i ∈ S
xi + ri if i ∈ S ′

z∗L =

{
1
zL

if limt→+∞ g(t, φ(t)) = ±∞
zL if limt→+∞ g(t, φ(t)) = 0

y∗i =

{
rn+iyi if n+ i ∈ K
rn+i

yi
if n+ i ∈ K ′

Let ρ1, . . . , ρn+r be polynomials such that fi(x, y) = ρi(x, y, y
−1, yα), for

i = 1, . . . , n+ r − 1, and g(x, y) = ρn+r(x, y, y
−1, yα). Define

hi(x, y) = ρi(x
∗, y∗, (y∗)−1, (y∗)α) , A(x, y) = xm1

∏
j∈S,n+l∈K′

xmj y
mα
l ,

gi(x, y) = A(x, y)hi(x, y) (i = 1, . . . , n+r) , gL(x, zL, y) = zL(A(x, y)z∗L−gn+r(x, y)).
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Note that gi ∈M res
n,r(R) and gL ∈M res

n+1,r(R).
Consider the system S of n+ r equations in n+ r + 1 variables given by

gL = g1 = . . . = gn+r−1 = 0.
We now define ψi(s) such that ψ∗i (s) = φi(s

−1). We set t = s−1.
Let

ψi(s) =

{ 1
φi(t)

if i ∈ S
φi(t)− ri if i ∈ S ′

ψL(s) =

{ 1
g(t,φ(t))

if limt→+∞ g(t, φ(t)) = ±∞
g(t, φ(t)) if limt→+∞ g(t, φ(t)) = 0

ψj(s) =

{
φj(t)

rj
if j ∈ K

rj
φj(t)

if j ∈ K ′

Let ψ(s) = (ψ2(s), . . . , ψn(s), ψn+1(s), . . . , ψn+r(s)) and
Ψ(s) = (ψ2(s), . . . , ψn(s), ψL(s), ψn+1(s), . . . , ψn+r(s)).

Notice that gi(s, ψ(s)) = A(t, φ(t))fi(t, φ(t)).
Arguing as in [MW96, pag.452], we can show that (s,Ψ(s)) is a nonsin-

gular solution of the system S for every s ∈ (0, ε), for some ε. Moreover, the
other hypotheses of 2.6 are satisfied. Hence we can find q ∈ τ ′(n + 1, r, 2m)
such that lims→0+ sqψL(s) is finite and nonzero. Now clearly g(t, φ(t)) (as in
Definition 2.2) has exponent ±q.

To prove Theorem 2.6, we need the following lemma.

2.7 Lemma. Let D0 = {z ∈ C : |z| < 1} and D1 = {z ∈ C : |z − 1| < 1}
and D := Dn

0 × Dr
1. There exists a recursive function µ : N2 → N such

that if h1(z), . . . , hn+r(z) : D → C can be expressed as polynomials in zi
(i = 1, . . . , n+ r) and zαi (i = n+ 1, . . . , n+ r) of total degree ≤ m, then the
system h1 = . . . = hn+r = 0 has at most µ(n+ r,m) nonsingular solutions in
D.

Proof. The proof proceeds as in [MW96, Lemma 3.2], using Khovanskii the-
ory [Khovanskii91] and the fact that the real and imaginary parts of the
functions hj are Pfaffian maps with respect to a Pfaffian chain obtained by
composition of the functions 1/x,

√
x, arctanx, expx, log x and sinx, cosx re-

stricted to a bounded interval.

Proof of Theorem 2.6. Let µ be as in Lemma 2.7. We claim that there exist
c ∈ Z, d ∈ N+ such that d ≤ µ(n + r − 1,m) and lims→0+ sc/dψn(s) is finite
and nonzero.
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The proof of the claim can be taken word by word from [MW96, pp.
454–455]. We recall the main ideas. Since every ψi has a Puiseux expansion
at zero, we can choose the smallest d such that for all i there is an analytic
function θi and an ε > 0 such that for s ∈ (0, ε), ψi(s) = θi(s

1/d). The
denominator of the exponent of ψn is smaller than d, so it’s enough to bound
d. To do this, let g = (g1, . . . , gn+r−1) and θ = (θ1, . . . , θn+r). Consider the
change of variable t = s1/d. Choosing ε to be sufficiently small, we may
assume that g(td, θ(t)) = 0 for all t ∈ (0, ε). We refer to the notation of the
statement of the previous lemma. Let θ̂ be the analytic continuation of θ on
the domain D = {z ∈ C : |z| < ε} and suppose that ε was chosen small
enough to guarantee that θ̂n+i(D) ⊆ D1 for i = 1, . . . , r; let ĝ be the analytic
continuation of g on the domain D. Then for all u ∈ D, ĝ(ud, θ̂(u)) = 0. Fix
u0 ∈ D and consider the following function.

h : Dn−1
0 ×Dr

1 → Cn+r−1

z 7→ ĝ(ud0, z)

obtained from ĝ by fixing the first variable. By Lemma 2.7, the system h = 0
has at most µ(n+ r − 1,m) regular solutions in D.

Let ω1, . . . , ωd be distinct dth-roots of unity and let ui = u0ωi for i =
1 . . . , d. We can choose u0 such that θ̂(u1), . . . , θ̂(ud) are distinct (see [MW96,
pag. 455]). Note that θ̂(ui) are d distinct regular solutions of h = 0, since
h(θ̂(ui)) = ĝ(ud0, θ̂(ui)) = ĝ(udi , θ̂(ui)) = 0 (an easy calculation shows the
regularity). This concludes the proof of the claim.

Now we can conclude as in [MW96, pag. 456] and observe that, after
possibly replacing xn with −xn in g, ψn is a bijection from (0, ε) to some
interval (0, ε′). Define ηn = ψ−1

n and ηi = ψi ◦ ψ−1
n for i 6= n; after swapping

xn and x1 in g, we obtain that (s, η(s)) satisfies the hypotheses of the claim we
just proved. Hence there exist c′ ∈ Z, d′ ∈ N+ such that d′ ≤ µ(n+ r− 1,m)
and lims→0+ sc

′/d′
ηn(s) is finite and nonzero. It follows that it must be cc′ =

dd′, so that we can set τ ′(n, r,m) = {(u, v) ∈ Z : |u|, |v| ≤ µ(n+ r − 1,m)}

3 Reduction to and decidability of the exis-

tential fragment

In this section we first show that, in order to prove the decidability of Th(Rα),
it is enough to recursively axiomatize its existential fragment ∃Th(Rα). Sub-
sequently, we proceed to prove that, if α is generic, then T axiomatizes
∃Th(Rα), thus concluding the proof of Theorem 1.1.
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3.1 Proposition.
T ∪ ∃Th(Rα) ` Th(Rα).

Proof. The complete theory Th(Rα
res) of Rα

res is model complete [Wilkie96]
and o-minimal. It is also of rational type (see [Miller94] and [Wilkie96]).
Since it is o-minimal, Th(Rα

res) has definable Skolem functions, hence we can
expand the original language to a language L′ which contains a symbol for
every Skolem function. Take the L′-expansion by definition Rα

res(L
′) and its

complete theory Tαres(L
′), which admits universal axiomatization. Notice that

Tαres(L
′) is still of rational type. Let Tα(L′) be the theory of the L′-expansion

Rα(L′) of Rα (where the symbols of L′ are interpreted as the Skolem functions
of the restricted power function, as above). [Miller94, 3.2] implies that Tα(L′)
is axiomatized by Tαres(L

′) and a recursive scheme P of universal axioms à la
Ressayre. It follows that Th(Rα

res) ∪ P ` Th(Rα).
By [FS09], T is an o-minimal subtheory of Th(Rα), which proves the

axioms in the scheme P (one only needs to use the uniqueness of solutions of
the differential equation defining a power function). By model completeness
of Tres, we have that Th(Rα

res) is axiomatized by Tres and the existential
fragment ∃Th(Rα

res) of Th(Rα
res). Putting everything together, we obtain

that T ∪ ∃Th(Rα
res) ` Th(Rα), hence, in particular, the conclusion.

3.2 Definition. Let K |= T and R be a subring of K; Let Mn(R) be the
ring of polynomials in the variables x1, ..., xn, x

α
1 , ..., x

α
n, with coefficients in

R.

The following lemma, the proof of which is easy, reduces the existential
formulas we must study to a simple form.

3.3 Lemma. Every existential sentence is K-equivalent to a sentence of the
form ∃x g(x) = 0, for some n ∈ N and g ∈Mn(Z[α]).

We will first discuss the existence of regular zeroes (Theorem 3.7) and
subsequently the general case (Theorem 3.11).

3.4 Definition. For x = (x1, . . . , xn) ∈ Kn we denote by ‖x‖ := max |xi| the
norm of x . For a definable C1 map F : Kn → Kn, the maps F ′ and F ′′ (and
their operator norms) are defined in the obvious way (see [Servi08, Remark
1.3.2]). Let JF (x) := detF ′(x) and let V reg(F ) := {x ∈ Kn : F (x) =
0 ∧ JF (x) 6= 0}.

Let B(x0, r) = {x ∈ Kn : ‖x− x0‖ < r} be the open ball centered in x0

and with radius r.

3.5 Lemma. There is an effective procedure which, given n,N ∈ N and
F = (f1, . . . , fn) ∈ (Mn(Z[α]))n, produces θ = θ(n,N, F ) ∈ N such that:
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T |= ∀x0 (‖x0‖ < N, ‖F (x0)‖ < θ−1, |JF (x0)| > N−1 ⇒
∃x ∈ B(x0, N

−1) ∩ V reg(F )).

Proof. By [Servi08, Theorem 1.4.1] we have that the following holds in every
model K of T . Let a0, a1, a2 ≥ 1 and m = (4n3a3

0a1a2)
−1, r = (2n3a2

0a1a2)
−1.

For all x0 ∈ Kn,
If ‖F (x0)‖ < m and

∀y ∈ B(x0, r) |F ′(y)−1| < a0 and |F ′(y)| < a1 and |F ′′(y)| < a2,
Then ∃x F (x) = 0 and x ∈ B(x0, r).

Notice that, if h ∈ Mn(Z[α]), then in K we can effectively bound the
norm of h(x) for x ∈ B(0, N + 1). For example, if α > 0 and h(x) =∑
|I|,|J |≤k bIJx

I(xα)J (where I, J are multi-indices of length n), then we can

use [CUT(α)] to find M ∈ N such that α < M and obtain

|h(x)| ≤
∑
|bIJ ||x‖|I|‖x‖|J |M ≤ k2 max |bIJ |(N + 1)k(M+1).

The linear map F ′(x) can be represented as the n × n matrix A, whose
entries are ∂fi

∂xj
. If A is invertible, then there is an n × n matrix adA such

that A−1 = adA
JF (x)

. The entries cij of adA are (−1)i+j detMji, where Mij is

the (n − 1) × (n − 1) minor of A obtained from A by eliminating the i-th
row and the j-th column. In particular, the entries of adA are polynomials
in the entries of A.

Choose θ0 ∈ N such that the following holds:

∀x ∈ B(0, N + 1) |F ′(x)|, |F ′′(x)|,max
i,j
|cij(x)|,max

i
|∂JF/∂xi(x)| < θ0.

Let a0 = 2nNθ0 and a1 = a2 = θ0. Letm = (4n3a3
0a1a2)

−1 = (32n6N3θ5
0)−1

and r = (2n3a2
0a1a2)

−1 = (8n5N2θ2
0)−1. Finally put θ = m−1.

We claim that the hypotheses of the above statement are satisfied with
this choice of a0, a1, a2. The only nontrivial thing to check is that for all
y ∈ B(x0, r) |F ′(y)−1| < a0. We first observe that for all y ∈ B(x0, r),
JF (y) 6= 0. In fact from the mean value theorem it follows that |JF (y)| ≥
|JF (x0)| − ‖y − x0‖nmaxx∈B(0,N+1) maxi |∂JF/∂xi(x)|. Hence it is enough
to check that N−1 − rnθ0 > (2N)−1. Now,

|F ′(y)−1| ≤ |JF (y)|−1nmax
i,j
|cij(y)| < 2Nnθ0 = a0.

Hence [Servi08, Theorem 1.4.1] applies and gives us the required conclu-
sion.

3.6 Lemma. Let h ∈ Mn(Z[α]), q ∈ Qn and suppose that Rα |= h(q) < 0.
Then T ` h(q) < 0.
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Proof. Using [CUT(α)] and the Taylor expansion of xα (which, by axiom
[DE(xα)], coincides with the Taylor expansion of xα in Rα), we can find, for
every n ∈ N, semi-algebraic functions fn, gn such that

T |= fn(q) < h(q) < gn(q) ∧ |fn(q)− gn(q)| < 1/n.

Now, there exists an n ∈ N such that Rα |= gn(q) < 0. Since T contains the
theory of real closed fields, the truth of the last statement can be transferred
to every model of T .

3.7 Theorem. Let F = (f1, . . . , fn) ∈ (Mn(Z[α]))n. Suppose that Rα |=
∃x ∈ V reg(F ). Then T ` ∃x ∈ V reg(F )

Proof. Let x0 ∈ Rn such that x0 ∈ V reg(F ). Choose N ∈ N such that
‖x0‖ < N and |JF (x0)| > N−1. Compute θ = θ(n,N, F ) as in Lemma 3.5
and notice that ‖F (x0)‖ = 0 < θ−1. By continuity, we can find q ∈ Qn such
that in Rα the following holds:

‖q‖ < N ∧ |JF (q)| > N−1 ∧ ‖F (q)‖ < θ−1. (*)

By Lemma 3.6, in every model of T the inequalities in (*) hold. We conclude
the proof by Lemma 3.5.

The following result is an easy consequence of the Noether normalization
lemma.

3.8 Proposition. Let R be a domain. Let m ∈ N, Q ⊆ R[x1, ..., xm] a

prime ideal such that Q ∩R = {0} and let r = trdegR Frac(R[x1,...,xm]
Q

). Then

there exists q0 ∈ R[x1, ..., xm]\Q such that the ideal q0Q is generated by m−r
polynomials.

3.9 Definition. A real number α is exponentially algebraic if the following
holds: there exist n ∈ N, α2, . . . , αn ∈ R, f1, . . . , fn ∈ Z[x1, . . . , xn, e

x1 , . . . , exn ]
such that (α, α2, . . . , αn) ∈ V reg(f1, . . . , fn). Otherwise, α is said to be expo-
nentially transcendental. It is well known (see for example [JW]) that a real
number is generic if and only if it is exponentially transcendental.

We now state the Schanuel condition, proved in [BKW08, Theorem 1.1],
that is needed to conclude our proof.

3.10 Theorem. Let α be exponentially transcendental and a = (a1, . . . , an) ∈
(R+)n and suppose the coordinates of a are multiplicatively independent.
Then,

trdegQ(α) Q(α)(a, aα) ≥ n.

We are ready to prove the last step of our main result.
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3.11 Theorem. Assume that α is generic. Let g ∈ Mn(Z[α]) be such that
Rα |= ∃x g(x) = 0. Then T ` ∃x g(x) = 0.

Proof. By [Wilkie96, Theorem 5.1] there exist F ∈ (Mn(Z[α])[x−1])n and
a ∈ Rn such that g(a) = 0 and a ∈ V reg(F ). By multiplying the components
of F by suitable powers of x, we may assume that x−1 does not appear in F .
By Theorem 3.7, F has a regular zero in every model of T . The problem is
that this need no longer be a zero of g.

We first show that we may assume that the coordinates of a are multi-
plicatively independent. So, suppose not, then there exist b1, . . . , bn ∈ Z such
that

∏n
i=1 a

bi
i = 1. Hence, an = (

∏n−1
i=1 a

bi
i )−1/bn . Define

h(x1, . . . , xn−1) =
n−1∏
i=1

xbimi g(xbn1 , . . . , x
bn
n−1, (

n−1∏
i=1

xbii )−1),

where m is the total degree of g viewed as a polynomial in 2n variables.
Notice that (a

1/bn
1 , . . . , a

1/bn
n−1 ) ∈ Rn−1 is a zero of h, which can be completed

to a zero in Rn of h ∈ Mn(Z[α]), with the last coordinate independent from
the others. Moreover, in every model of T every zero (c1, . . . , cn−1) of h
gives rise to a zero (cbn1 , . . . , c

bn
n−1, (

∏n−1
i=1 c

bi
i )−1) of g. Hence we can repeat the

process until we obtain that the coordinates of the zero are multiplicatively
independent.

Secondly, we may assume that the coordinates of a are all positive.
In fact, suppose (by reordering the variables) that the first k coordinates
of a are negative. Then (−a1, . . . ,−ak, ak+1, . . . , an) is a zero of g∗(x) :=
g(−x1, . . . ,−xk, xk+1, . . . , xn). If we prove that in every model K of T the
function g∗ has a zero γ = (c1, . . . , cn) ∈ Kn, then we also obtain that g has
a zero γ′ = (−c1, . . . ,−ck, ck+1, . . . , cn) ∈ Kn.

Let x = (x1, . . . , xn), y = (y1, . . . , yn), z = (z1, . . . , zn). For h ∈Mn(Z[α]),
define h̃(y, z) ∈ Z[α][y, z] as the unique polynomial such that for all x, h(x) =
h̃(x, xα). Put x̃ = (x, xα).

Using the fact that a is a regular zero, it is easy to see that trdegQ(α) Q(α)(a, aα)
is at most n. Since a is multiplicatively independent, we may apply Theorem
3.10 to conclude that

trdegQ(α) Q(α)(a, aα) = n.

Let P := {q ∈ Z[α][y, z] : q(ã) = 0}. Then P is a prime ideal and hence
by Proposition 3.8, there exists p0 ∈ Z[α][y, z]\P such that the ideal p0P
is generated by n polynomials p1, ..., pn. Let hi(x) := pi(x, x

α) ∈ Mn(Z[α])
for i = 0, . . . , n and hn+1(x, xn+1) := xn+1h0(x) − 1 ∈ Mn+1(Z[α]). Let
H =: (h1, . . . , hn+1) ∈ (Mn+1(Z[α]))n+1.
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Using the fact that a ∈ V reg(F ), we easily see that (a, h0(a)−1) ∈ Rn+1 is
a regular solution of the system H = 0; in particular V reg(H) 6= ∅ in Rn+1,
hence, by Theorem 3.7, for every model K of T there exists (γ, γn+1) ∈ Kn+1

which is a regular solution of H = 0 in K. In particular,

K |=
n∧
i=1

hi(γ) = 0 ∧ h0(γ) 6= 0 (1)

We claim that K |= g(γ) = 0.
Notice that g̃ ∈ P , hence

Rα |= ∀y, z p0(y, z)g̃(y, z) =
∑

bj(y, z)pj(y, z) (2)

Now, the above is a polynomial identity with coefficients in Z[α]. Let us
rewrite (2) as

Rα |= ∀y, z
∑

ci(y, z)αi = 0, ci ∈ Z[y, z] (3)

Since α is exponentially transcendental (in particular, transcendental), for
all i and for all y, z we have ci(y, z) = 0. By Tarski’s decidability result for
Th(R), the latter holds in every real closed field, hence in particular (3) holds
in K. Hence,

K |= h0(γ)g(γ) =
∑

b̂j(γ)hj(γ), (4)

(where b̂j(x) = bj(x, x
α)). Putting equations (1) and (4) together, we obtain

that K |= g(γ) = 0. This concludes the proof of Theorem 3.11.

4 Existence of a computable generic number

In this section we show the existence of computable generic numbers. Let
I = [−1, 1]. Fix, by [Servi08, Theorem 4.4.2], a recursive enumeration E of
the tuples (m, f1, . . . , fm) such that m ∈ N, fi ∈ Z[x, ex] are exponential
polynomials in m variables and there exists x ∈ Im ∩ V reg(f1, . . . , fm).

We describe an algorithm which at stage n ∈ N outputs an ∈ {1, 2}
which is different from the nth decimal place of the first coordinate of some
regular zero of the nth tuple (m, f1, . . . , fm) in the above enumeration (more
precisely, an = 1, unless the mentioned decimal place is already equal to 1,
in which case an = 2).

Once we have exhibited such an algorithm, we claim that the number
α =

∑
i≥1 ai10−i is a computable generic number. In fact, suppose for a
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contradiction that α is not generic, i.e. there exist m ∈ N and y ∈ Rm such
that y = (α, y2, . . . , ym) and fi ∈ Z[x, ex] such that y ∈ V reg(f1, . . . , fm).
Suppose, for now, that y ∈ Im. Then there exists m′ ≥ m and a system
g1, . . . , gm′ of exponential polynomials in m′ variables such that (y, z) is the
only regular common zero of the gis (for some z). This new system occurs
at stage n (for some n ∈ N) in the above mentioned enumeration. But then
an 6= an, a contradiction.

It remains to show that we may suppose y is in Im. This can be achieved
by replacing any occurrence of yi with an appropriate integer multiple of that
variable (this will also not change the fact that the Jacobian is nonzero).

We now exhibit the algorithm. For every m,n ∈ N, fix an enumeration
Em,n of the mn-tuples cm,n = (c1,1, . . . , c1,n, c2,1, . . . , cm,n) ∈ {0, . . . , 9}mn.

1. We consider the nth tuple (m, f1, . . . , fm) in the enumeration E men-
tioned above. Let f = (f1, . . . , fm).

2. Let cm,n ∈ Em,n and k ∈ N. For i = 1, . . . ,m, let qi =
∑n

j=1
ci,j
10j and

q = (q1, . . . , qm) ∈ Im ∩Qm.

3. Compute θ = θ(m, 10k·n, f), where θ is as in [MW96, Theorem 4.1].

4. Verify if ‖f(q)‖ < θ−1 and | Jac f(q)| > 10−k·n.

5. If this is not the case, then consider the next tuple (cm,n, k) in Em,n×N.
Otherwise, output an = 1 if c1,n 6= 1 and an = 2 if c1,n = 1.

We prove that the procedure always stops, giving an output an on input
n with the required properties. Notice first that if the procedure stops for a
given tuple (q, k), then by [MW96, Theorem 4.1] there exists γ ∈ Rm such
that γ ∈ V reg(f) and ‖γ − q‖ < 10−k·n. In particular, we output an which is
different from the nth decimal place of γ1, as required.

Viceversa, since f = 0 does have some regular solution γ ∈ Im, by con-
tinuity there exist (q, k) such that the inequalities at step 4 are satisfied.
Hence the procedure always stops.
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