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We develop and analyse a simple, two-compartment (chlorophyll and nitrate) model
of the surface mixed layer of the ocean. The mixed-layer depth is modulated inter-
mittently to simulate the e¬ects of storms. The optical properties of the water col-
umn are linked to changes in the chlorophyll biomass. The model can be treated
analytically. Mathematical bounds are found for the autotrophic biomass and the
residual nitrate in terms of the intensity and frequency of storms and the bio-optical
properties of the phytoplankton. The results are discussed in the context of the high-
nutrient, low-chlorophyll regimes, where unconsumed nitrate is a persistent occur-
rence.

Keywords: ocean modelling; high nutrient, low chlorophyll;
di®erence equations; coupled maps

1. Introduction

In the ocean, the chemical cycles of carbon and nitrogen are closely coupled. As
nitrogen is, in general, a limiting resource for the growth of new plant material in
the sea, any nitrate resupplied to the surface layer can be expected to be incor-
porated into autotrophic biomass (for which the operational index is concentration
of chlorophyll). However, regimes do exist where elevated nitrate concentrations and
depressed chlorophyll concentrations represent the quasi-permanent condition. These
are the so-called HNLC (high-nutrient, low-chlorophyll) regimes (Chisholm & Morel
1991).

In this context it is of interest to calculate the expected concentrations of chloro-
phyll and nitrate under di¬erent conditions of physical forcing. In particular, forcing
by storms is important. Here, we develop and analyse a simple model of autotrophic

Proc. R. Soc. Lond. A (2003) 459, 1063{1073

1063

c° 2003 The Royal Society

http://dx.doi.org/10.1098/rspa.2002.1079


1064 T. Platt and others

(b)

(a)

N B

z = 0

Zm(t)

t

z = Zm
0 -  a

z = Zm
0 + a

Zm
0 -  a

Zm
0 + a

Zm
0

Figure 1. Schematic for the model discussed. (a) Nitrate Ǹ ’ is supplied from below the mixed
layer and is converted to biomass B̀ ’ of phytoplankton. (b) The mixed-layer depth Zm (t) is
modulated intermittently in a series of steps of common amplitude 2a, but variable time interval.

biomass and nitrate in the mixed layer of the ocean. Nitrate is resupplied intermit-
tently through modulation of the mixed-layer depth, for example by the passage of
storms. The analysis leads to mathematical bounds on the autotrophic biomass and
residual nutrient concentration.

2. A simple phytoplankton{nutrient model

The model ( gure 1a) is the simplest possible representation of dynamics in the
pelagic ecosystem. Provided that there is su¯ cient nutrient (nitrate), growth of phy-
toplankton can occur in the mixed layer, possibly increasing the biomass (if growth
exceeds the sum of losses) with a related decrease in the optical transparency. Below
the mixed layer there is an in nite reservoir of nutrient at  xed concentration. Deep-
ening of the mixed layer entrains nutrients into it, replacing, at least partly, the
nutrients consumed by growth. Biomass of phytoplankton is assumed to be zero
below the mixed layer, such that a deepening dilutes the biomass in the mixed layer
with the entrained water, and therefore increases the transparency. Shallowing of the
mixed layer has no e¬ect on the concentrations of either phytoplankton or nutrients
in the layer, but does result in a loss of the total quantities of each entity within the
layer. Biomass lost by shallowing has no possibility of re-entering the mixed layer.

In the analysis, quantities are calculated on a daily basis. Let B(t), measured in
units of chlorophyll concentration, be the biomass of phytoplankton at the beginning
of day t. Let N d be the concentration of nutrients in the deep reservoir (independent
of time), and let N (t) be that in the mixed layer. Let Zm (t) be the depth of the
mixed layer; it will be modulated through simple step functions. Other quantities to
be de ned include the photosynthesis parameters ¬ B (initial slope of the production-
irradiance curve, where the superscript `B’ indicates normalization to biomass) and
P B

m (speci c production at saturating light), the daylength D, and the surface irra-
diance at noon, I m

0 (Platt & Sathyendranath 1993). The scaled noon irradiance I m
¤

is I m
¤ = I m

0 ¬ B=P B
m . The di¬use vertical attenuation coe¯ cient K depends on the

Proc. R. Soc. Lond. A (2003)



Phytoplankton biomass and residual nitrate 1065

biomass according to K(t) = Kw + kcB(t), where Kw is the attenuation due to
water and kc is the speci c absorption coe¯ cient of chlorophyll.

Biomass B increases through growth by photosynthesis and decreases by dilution
and by a suite of loss terms. In the simplest case, these can be taken to be a  xed
proportion ¶ of the biomass. The daily (new) primary production of the mixed layer
is P (t), calculated according to the canonical form

P (t) = P (B(t)) =
P B

m B(t)D

K(t)
[f(I m

¤ ) ¡ f(I m
¤ e¡K(t)Zm(t))]; (2.1)

where f(¢) is a known function of the normalized irradiance (Platt & Sathyendranath
1993). The rate of primary production does not depend on nitrate concentration,
except in so far as P (t) will be zero whenever N (t) is zero. The stoichiometric
equivalents of nitrogen and carbon, relative to chlorophyll, are ¸ and À , respectively.
The increment in biomass through photosynthesis in one day is then

P (t)

À Zm (t)
=

P B
m B(t)D

À ³ (t)
[f(I m

¤ ) ¡ f(I m
¤ e¡ ³ (t))]; (2.2)

where ³ (t) = Zm (t)K(t) is the optical thickness of the mixed layer.
The model is analysed through a coupled pair of iterative, non-autonomous maps,

one for chlorophyll and one for nitrate,

B(t + 1) =

·
(1 ¡ ¶ )B(t) +

P (t)

À Zm (t)

¸
(1 ¡ ¢(t)); (2.3)

N (t + 1) = N (t) ¡
µ

¸ P (t)

À Zm (t)

¶
(1 ¡ ¢(t)) + (N d ¡ N (t))¢(t); (2.4)

where modulation of the mixed-layer depth is represented by the quantity ¢(t),
which takes non-zero values only when the mixed layer deepens:

¢(t) =

8
<

:

Zm (t + 1) ¡ Zm (t)

Zm (t + 1)
; if Zm (t) < Zm (t + 1);

0; if Zm (t) > Zm (t + 1):
(2.5)

The value of Zm ®uctuates about a value Z0
m through a series of steps of common

amplitude 2a, but with arbitrary width and alternating signs ( gure 1b). These
changes in mixed-layer depth, when they occur, are assumed to occur at the end of
the day. We de ne an integer index ¹ to count the number of times the mixed layer
deepens:

¹ (t + 1) =

(
¹ (t) + 1; if Zm (t) < Zm (t + 1);

¹ (t); if Zm (t) > Zm (t + 1):
(2.6)

Then, the number of increases in the thickness of the mixed layer between time t1

and a later time t2 is just ¹ (t2) ¡ ¹ (t1). Successive deepening on successive time steps
is not allowed, such that ¹ (t) 6 [(t + 1)=2] 6 (t + 1)=2, where the square brackets
indicate the integer part of the quantity enclosed.

Equations (2.3) and (2.4) may be added together to yield the composite variable
Q(t) = B(t) + N (t)=¸ , which we may call the potential biomass, to be interpreted as
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the total of the standing biomass and the biomass equivalent of the residual nitrate.
It evolves according to

Q(t + 1) = (1 ¡ ¢(t))Q(t) + ¸ ¡1N d ¢(t) ¡ ¶ B(t)(1 ¡ ¢(t)): (2.7)

In what follows, we  rst solve equation (2.7) for Q(t) and deduce an explicit lower
bound for the nitrate N (t). Next, we examine the behaviour of B(t) in the intervals
between changes in mixed-layer depth: in particular, we solve the  xed-point equation
for B (in which the same value of B(t) recurs for repeated iterations of the map). A
stability analysis on the  xed points leads to an explicit upper bound for B.

3. Solutions: bounds on biomass and residual nutrient

For a given sequence of mixed-layer forcing f¢(t)g and corresponding sequence of
biomass fB(t)g, it can be shown by induction that the iterated map (2.7) has the
solution

Q(t) = Q(0)
t¡1Y

s = 0

(1 ¡ ¢(s)) +
t¡1X

s= 0

[ ¸ ¡1N d ¢(s) ¡ ¶ (1 ¡ ¢(s))B(s)]
t¡1Y

s 0 = s+ 1

(1 ¡ ¢(s0)):

(3.1)
A product

Q
is taken to be unity if the upper limit is smaller than the lower limit.

Because

t¡1Y

s = 0

(1 ¡ ¢(s)) = G ¹ (t) and

t¡1Y

s0 = s+ 1

(1 ¡ ¢(s0)) = G ¹ (t)¡ ¹ (s+ 1);

where G = (Z0
m ¡ a)=(Z0

m + a), equation (3.1) simpli es to

Q(t) = Q(0)G ¹ (t) +
t¡1X

s= 0

[ ¸ ¡1N d ¢(s) ¡ ¶ (1 ¡ ¢(s))B(s)]G ¹ (t)¡ ¹ (s+ 1): (3.2)

Furthermore,

t¡1X

s= 0

¢(s)G ¹ (t)¡ ¹ (s+ 1) = G ¹ (t)
t¡1X

s = 0

¢(s)G¡ ¹ (s + 1): (3.3)

From the de nitions of (2.5) and (2.6) we see that ¢(s) is non-zero, such that ¢(s) =
2a=(Z0

m + a), only when the mixed layer deepens between time-steps s and s + 1,
for which ¹ (s + 1) = ¹ (s) + 1; note that ¢(s) refers to a deepening that is about to
occur, whereas ¹ (s + 1) refers to a deepening that has just occurred. The number
of deepenings up to time t is, by de nition, ¹ (t), such that (using j to index the
deepenings)

G ¹ (t)
t¡1X

s= 0

¢(s)G¡ ¹ (s+ 1) = G ¹ (t) 2a

Z0
m + a

¹ (t)X

j = 1

G¡j

= G ¹ (t) 2a

Z0
m + a

G¡ ¹ (t) ¡ 1

1 ¡ G
; (3.4)
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where we have used the general result that the sum of a geometric series isPn
j = 1 G¡j = (G¡n ¡ 1)=(1 ¡ G). Since 1 ¡ G = 2a=(Z0

m + a), we can cancel and
then substitute

t¡1X

s = 0

¢(s)G ¹ (t)¡ ¹ (s + 1) = 1 ¡ G ¹ (t) (3.5)

into (3.2) to give

Q(t) = Q(0)G ¹ (t) + ¸ ¡1N d (1 ¡ G ¹ (t)) ¡ ¶ G ¹ (t)
t¡1X

s = 0

(1 ¡ ¢(s))B(s)G¡ ¹ (s + 1): (3.6)

Suppose that there is a maximum interval T , say, between deepening events, where
T > 2. Between time t = 0 and t > T , there must be at least [t=T ] deepening events,
and so ¹ (t) > [t=T ] > (t=T ) ¡ 1; [t=T ] is the integer part of t=T . Then, noting that
0 < G < 1, we see that G ¹ (t) < G(t=T )¡1, an upper bound for G ¹ (t) which goes to
zero for large t; then, to an arbitrarily good approximation,

Q(t) = ¸ ¡1N d ¡ ¶ G ¹ (t)
t¡1X

s = 0

(1 ¡ ¢(s))B(s)G¡ ¹ (s + 1): (3.7)

We are now in a position to set bounds on the residual concentration of nitrate.
Let us  rst assume that B(t) is bounded above, B(t) 6 B u . Then, given that Q(t) =
¸ ¡1N (t) + B(t), we have

N (t) + ¸ B(t) = N d ¡ ¸ ¶ G ¹ (t)
t¡1X

s= 0

(1 ¡ ¢(s))B(s)G¡ ¹ (s+ 1); (3.8)

N (t) = N d ¡ ¸

·
B(t) + ¶ G ¹ (t)

t¡1X

s= 0

(1 ¡ ¢(s))B(s)G¡ ¹ (s+ 1)

¸

> N d ¡ ¸ B u

·
1 + ¶ G ¹ (t)

t¡1X

s = 0

(1 ¡ ¢(s))G¡ ¹ (s+ 1)

¸

= N d ¡ ¸ B u

·
1 + ¶ G ¹ (t)

t¡1X

s = 0

G¡ ¹ (s + 1) ¡ ¶ G ¹ (t)
t¡1X

s = 0

¢(s)G¡ ¹ (s+ 1)

¸

= N d ¡ ¸ B u

·
1 + ¶ G ¹ (t)

t¡1X

s = 0

G¡ ¹ (s + 1) ¡ ¶ + ¶ G ¹ (t)

¸

> N d ¡ ¸ B u

·
1 + ¶ G ¹ (t)

t¡1X

s = 0

G¡ ¹ (s + 1) ¡ ¶

¸
: (3.9)

From the observation that ¹ (t) ¡ ¹ (s + 1) > (t ¡ s ¡ 1 ¡ T )=T , we obtain

G ¹ (t)¡ ¹ (s+ 1) < G(t¡s¡1¡T )=T ; (3.10)
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such that

G ¹ (t)
t¡1X

s= 0

G¡ ¹ (s+ 1) <

t¡1X

s = 0

G(t¡s¡1¡T )=T

= G(t¡T )=T
t¡1X

s= 0

G(¡s¡1)=T

= Gt=T ¡1
tX

s= 1

G¡s=T

= Gt=T ¡1(G¡t=T ¡ 1)=(1 ¡ G1=T )

= (G¡1 ¡ Gt=T ¡1)=(1 ¡ G1=T )

< G¡1=(1 ¡ G1=T ); (3.11)

where the last inequality will be almost an equality as t gets large enough, such that
Gt=T ¡1 is arbitrarily small. Then (3.9) becomes

N (t) > N d ¡ ¸ B u

·
1 + ¶

µ
1

G(1 ¡ G1=T )
¡ 1

¶¸
: (3.12)

The term multiplying ¶ is strictly positive: therefore, the lower bound for the resid-
ual nitrate concentration will be higher for smaller maximum biomass and shorter
intervals between storms.

Next, we consider conditions during the intervals between excursions of the mixed
layer, and we  nd the equation for the  xed-point values B ¤ of the biomass B. From
equation (2.3) it is

B ¤ = (1 ¡ ¶ )B ¤ +
P B

m DB ¤

À ³ ¤
[f(I m

¤ ) ¡ f(I m
¤ e¡ ³ ¤ )]; (3.13)

where we have set ³ ¤ = (Kw + kcB ¤ )Zm . Thus, there will be a  xed point at B ¤ = 0.
If we now cancel B ¤ and rearrange equation (3.13) to put

³ ¤ =
P B

m D

À ¶
[f(I m

¤ ) ¡ f(I m
¤ e¡ ³ ¤ )]; (3.14)

we see that there will be another (positive)  xed point, provided that the initial
slope of the right-hand side of equation (3.14), with ³ ¤ replaced by ³ , is greater than
unity ( gure 2a). This condition is equivalent to (P B

m D=À ¶ )I m
¤ f 0(I m

¤ ) > 1, where the
prime indicates di¬erentiation. The  xed-point value is then

B ¤ =
³ ¤

KcZm

¡ Kw

Kc

: (3.15)

For this  xed point to have physical meaning, we require that B ¤ be positive, so
that ³ ¤ > KwZm . Equation (3.15) shows that the greater the mixed-layer depth, the
smaller the steady-state biomass ( gure 2b). Furthermore, from equation (3.14), it is
clear that a (unique) solution can be found for ³ ¤ in terms of the biological quantities
P B

m D=( À ¶ ) and I m
¤ only. In particular, this solution will not depend on Zm , kc or

Kw.
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Figure 2. Solutions for the ¯xed points. (a) The right-hand side of equation (3.14) as a function
of the optical thickness ³ of the mixed layer. The dotted line is the one-to-one line ³ = ³ . The
intersection of the two lines de¯nes the positive ¯xed point ³ ¤. (b) The ¯xed-point biomass B¤
as a function of Zm .

4. Stability analysis

Next, we examine the stability of the  xed points in the intervals between changes
in mixed-layer depth, that is, during periods when ¢(t) = 0. This will be the case
for most of the time when the coupled maps are iterated for many time steps. At
such times, equation (2.3) can be rewritten as

B(t + 1) = B(t) £ F (B(t)); (4.1)

where

F (B(t)) = 1 ¡ ¶ +
P B

m D

À ³ (t)
[f(I m

¤ ) ¡ f(I m
¤ e¡ ³ (t))]: (4.2)

The  xed points will now lie at B ¤ = 0 and at some B ¤ > 0 such that F (B ¤ ) = 1.
The condition for the existence of the positive  xed point is F (0) > 1, which is
also the condition for the  xed point at B ¤ = 0 to be unstable (see, for exam-
ple, Drazin 1992; Edwards & Bees 2001). For large B, it can be shown that
BF (B) ¹ (1 ¡ ¶ )B + (P B

m D=À kcZm )f(I m
¤ ), that is, a straight line with slope

(1 ¡ ¶ ) < 1 ( gure 3a). Therefore, the positive  xed point is stable and, moreover,
because BF (B) is increasing, the  xed point must be globally attracting: convergence
to the  xed point will be non-oscillatory (Drazin 1992).

The resulting dynamics are as follows ( gure 3b). From equation (3.15), we know
that as Zm increases, the value of B ¤ at the positive  xed point decreases. Hence, the
 xed-point value for Zm = (Z0

m ¡ a) will be greater than that when Zm = (Z0
m + a).

At a deepening event, Zm (t) = (Z0
m ¡ a) and then Zm (t + 1) = (Z0

m + a), with the
term ¢(t)B(t) reducing the biomass by a factor 2a=(Z0

m + a). The value of B(t)
then converges to the deep  xed point. On the other hand, when the layer shallows,
there is no dilution of the biomass: the solution will start to converge to the shallow
 xed point, but will not exceed it. This provides a value for the upper bound on the
biomass,

B u =
³ ¤

kc(Z0
m ¡ a)

¡ Kw

kc

: (4.3)
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Figure 3. Stability analysis for the biomass. (a) Asymptotic solution for the biomass is a straight
line with slope (1¡ ¶ ) < 1, showing that the positive ¯xed point is stable. (b) Convergence of the
biomass to the ¯xed points corresponding to the two values of the mixed-layer depth. Deepening
of the mixed layer dilutes the biomass to below its value at the deep ¯xed point, which it then
approaches in a ¯nite number of steps. Shallowing of the mixed layer causes the biomass to
increase towards its value at the shallow ¯xed point.

Conversely, if the initial biomass exceeds the value of B ¤ at the shallow  xed point,
it will be reduced to this value within a  nite number of iterations.

Another striking conclusion follows. Under conditions where the positive  xed
point exists, consider the relative magnitudes of the growth term and the loss term,
integrated over the mixed layer: they are exactly balanced when Zm is the critical
depth Zcr

m (in the sense of Sverdrup 1953). That is,

À ¶ B(t)Zcr
m (t) = P (t); (4.4)

where P (t) is evaluated from equation (2.1) by substituting Zcr
m (t) for Zm (t). We

can now de ne a quantity ³ cr(t) = (Kw + kcB(t))Zcr
m (t). Given equations (2.1) and

(4.4), ³ cr(t) must satisfy a relation analogous to equation (3.14), for which there
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was a unique solution in terms of biological quantities. Therefore, we must have
³ cr(t) = ³ ¤ . Eliminating ³ ¤ from equation (3.15) yields the simple result

Zcr
m (t) = Zm

µ
Kw + kcB ¤

Kw + kcB(t)

¶
: (4.5)

The importance of this result is that, if the positive  xed point is attracting such
that B(t) ! B ¤ (and we have demonstrated that it is so), then the critical depth
will be attracted to the mixed-layer depth.

5. Interpretation

We have presented a very simple model for the use of nitrate by phytoplankton in
the upper mixed layer of the ocean. We have stressed the qualitative analysis of the
equations rather than the simulations of many particular state-variable trajectories,
partly to emphasize the generality of the solutions, but also in adherence to the view
that analysis of progressively more complex cases is the key to understanding.

The simpli cations that we have introduced are many, but we claim that our
results would not be materially a¬ected if these simpli cations were removed at the
expense of including more detail. Thus, we include no explicit grazing term. Grazing
that is linear in the biomass would imply no more than a scale change in ¶ . Nonlinear
grazing (see, for example, Fasham et al. 1990) would raise the possibility that the
positive  xed point might become unstable, with the result that the sequence B(t)
could become oscillatory or even chaotic (Drazin 1992; Kuznetsov 1998). This is the
opposite of what has been found for simple plankton ecosystem models that consist
of di¬erential equations, whereby changing the (zooplankton) loss term from a linear
to a quadratic term tends to reduce the occurrence of oscillations (Edwards & Yool
2000; Steele & Henderson 1992). The critical depth would no longer be attracted to
the mixed-layer depth if the (positive)  xed point were unstable. However, we have
analysed the model with a quadratic loss term and used parameters corresponding
to the Eastern Equatorial Paci c (Edwards et al. 2003); the  xed point does remain
stable for all plausible values of the loss term.

Primary production is represented as independent of nitrate concentration unless
nitrate concentration is zero, in which case primary production becomes zero. Inclu-
sion of a Michaelis{Menten term to represent a reduction of primary production at
low but positive nitrate concentrations would not a¬ect the qualitative nature of the
solutions. We have included no mechanism through which phytoplankton can grow on
recycled nutrients. Thus, the analysis deals only with new production. By de nition,
regenerated production is the production required to sustain the metabolic demands
of the entire pelagic community (Platt et al. 1989); in and of itself it cannot lead
to an increment in biomass. However, the standing biomass utilizing reduced nitro-
gen will contribute to the optical density of the mixed layer, and it would therefore
modify the quantitative solutions if not their qualitative nature.

For a given mixed-layer depth, our analysis shows that there will be a preferred
value of biomass to which the simulated biomass will converge. Moreover, this pre-
ferred value is bounded, such that if the initial biomass is less than this bound, the
biomass will approach but not exceed it. On the other hand, if the initial biomass
is above the preferred value, it will be reduced to it within a  nite number of steps.
The magnitude of the preferred value for biomass is lower the greater the mixed-layer
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depth. Thus, the upper bound on mixed-layer biomass will coincide with the pre-
ferred value of the biomass at the minimum value of mixed-layer depth typical of the
system. The solutions will go to the  xed points regardless of the initial conditions.

Corresponding to the upper bound on the biomass, there is an expected lower
bound on the residual nutrient concentration. It will be higher for smaller upper
bounds on the biomass (that is, deeper mixed layers), shorter intervals between
storms, larger dynamic ranges for modulation of the mixed layer depth, and lower
loss rates.

Regimes with residual (unconsumed) nitrate and relatively low phytoplankton
biomass (that is HNLC regimes) may be expected whenever the local physical forcing
so dictates. They need not be regarded as anomalies caused by the regional lack of
some growth factor. Although there may be instances where evolution of the biologi-
cal dynamics is constrained by the absence of some essential resource (such as iron),
the unavailability of such a factor does not appear to be a necessary condition for
the existence of HNLC regimes.

An unexpected result (albeit an understandable one with the bene t of hindsight),
is that the Sverdrup critical depth is attracted to the mixed-layer depth. This means
that, for given growth characteristics of the phytoplankton (and given loss rates),
the biomass adjusts so that the Sverdrup criterion is just satis ed. If biomass would
tend to increase beyond this point, the resultant change in the optical properties of
the layer would decrease the critical depth relative to the mixed-layer depth, such
that biomass would then tend to decrease. The converse would be true if biomass
were reduced below the level that satis es the Sverdrup condition. The important
part played by the optical properties of the layer is clear.

That the critical depth is attracted to the mixed-layer depth raises the possibility,
in particular applications, that the generalized loss term LB could be quanti ed.
Typically, the loss terms are much more di¯ cult to assess than the growth terms
(Platt et al. 1994). Assuming that the growth term were known, and that the critical
depth could be taken to coincide with the mixed-layer depth, a solution for the loss
terms would, in principle, be directly obtainable.

Recognition of the appearance of the Sverdrup critical depth (e¬ectively, a state-
ment of the conservation of mass on integrals over depth) in this analysis allows
us to relate the results to those of earlier work. The Sverdrup criterion is a condi-
tion for the net growth of biomass in the mixed layer to be positive. It has been
extended (Platt et al. 1991) to yield a time-scale for accumulation of bloom biomass,
such that, despite the Sverdrup condition having been met, blooms will not occur
unless this time is less than the typical interval between storms. We can now see that
even though, according to some objective criterion (say, an increase in the biomass
by a factor of ten), a bloom may occur, the maximum biomass attained could be
constrained by the physical structure of the water column.

Now we should consider how the dynamics might respond if the physiology of the
phytoplankton were perturbed, for example, by the addition of some putative limit-
ing factor. We must distinguish (Banse 1990) between perturbation of the biomass-
normalized rate P=B and that of the absolute rate of production P . Observe that
P = B £ P=B. Thus, an increase in the biomass-normalized rate, which would be
expected as a  rst-order response to addition of a previously limiting growth factor,
will not lead to an inde nite increase in biomass if the new  xed-point biomass is
at some relatively low level and if it is prevented from straying away from this level
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by purely physical factors. It may be that the response would be to reach the  xed-
point biomass faster than in the unperturbed case. Depending on the taxa that would
respond to the perturbation, another possible outcome is that the speci c absorption
coe¯ cient kc could change (Sathyendranath et al. 1999), leading to an increase in
the upper bound B u on the biomass through equation (4.3). These possibilities are
explored in Platt et al. (2003), where we also show how the model applies to di¬erent
oceanic regions.

The results presented here provide a common basis for the understanding of appar-
ently disparate dynamics, and this work has shown the value of the analytic approach
to the study of ocean biogeochemistry.

This work was initiated while the authors were in residence at the Isaac Newton Institute for the
Mathematical Sciences, Cambridge. A.M.E. was supported by an NSERC Visiting Fellowship in
a Canadian Government Laboratory and by the Department of Fisheries and Oceans Strategic
Science Fund, project number 21778.
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