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Abstract. In this paper we propose a generalisation of results in [2,
7] on semantical characterisation of Σ-definability. We prove that over
every positive predicate structure a set is Σ-definable if and only if it is
definable by a disjunction of a recursively enumerable set of existential
formulas.

1 Introduction

This paper is a part of the work [2, 5, 6, 8, 7, 9, 10] on developing a logical frame-
work for studying computability over discrete and continuous data in a common
language. In order to archive this goal we represent data as a structure which
could not have effective equality and employ Σ–definability theory. Our ap-
proach is based on representations of data (discrete or continuous ) by a suitable
structure A = 〈A, σP , 6=〉, where A contains more than one element, and σP is
a set of basic predicates. We assume that all predicates Qi ∈ σP and 6= occur
only positively in Σ-formulas and do not assume that the language σP contains
equality. We call such structures as positive predicate structures. It turns out
that Σ-definability without equality is rather different from Σ-definability with
equality. It has been shown in [11] that there is no effective procedure which
given a Σ-formula with equality defining an open set produces a Σ-formula
without equality defining the same set. Therefore it is important to figure out
which properties of Σ-definability hold on structures with equality likewise on
structures without equality.

Some of the important properties of Σ-definability with respect to com-
putability, i.e., existence of a universal Σ-predicate and an algorithmic char-
acterisation of Σ-definability have been proven over structures with equality [2]
and over the real numbers [7]. In this paper we show that these properties hold
over every positive predicate structure. In order to do this we develop new tools
and techniques to overcome difficulties arising from possible absence of equality
and particular properties of the reals.
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2 Definition and Notations

We start by introducing basic notations and definitions. In this paper we are
mostly working with an arbitrary structure A = 〈A, σ0〉 = 〈A, σP , 6=〉, where A
contains more than one element, σP is a finite set of basic predicates.

Example 1. 1. (The natural numbers) IN = 〈IN, Q1, Q2, <〉, where Q1 and Q2

have the following meanings:

IN |= Q1(x)↔ x = 0; IN |= Q2(x, y)↔ x = y + 1.

2. (The real numbers) IR =
〈
IR,M∗E ,M∗H ,P

+
E ,P

+
H <,

〉
σP = {M∗E ,M∗H ,P

+
E ,P

+
H},

where M∗E ,M∗H are interpreted as the open epigraph and the open hypo-
graph of multiplication respectively, and P+

E ,P
+
H are interpreted as the open

epigraph and the open hypograph of addition respectively.
3. (The real-valued continuous function defined on compact intervals)
C[0, 1] = 〈C[0, 1], P1, . . . , P10, 6=〉 where the predicates P1, . . . , P10 have the
following meanings for every f, g ∈ C[0, 1]:
The first group formalises relations between infimum and supremum of two
functions.

C[0, 1] |= P1(f, g)↔ sup f < sup g;
C[0, 1] |= P2(f, g)↔ sup f < inf g;
C[0, 1] |= P3(f, g)↔ sup f > inf g;
C[0, 1] |= P4(f, g)↔ inf f > inf g.

The second group formalises properties of operations on C[0, 1].

C[0, 1] |= P5(f, g, h)↔ f(x) + g(x) < h(x) for every x ∈ [0, 1];
C[0, 1] |= P6(f, g, h)↔ f(x) · g(x) < h(x) for every x ∈ [0, 1];
C[0, 1] |= P7(f, g, h)↔ f(x) + g(x) > h(x) for every x ∈ [0, 1];
C[0, 1] |= P8(f, g, h)↔ f(x) · g(x) > h(x) for every x ∈ [0, 1].

The third group formalises relations between functions f and the identity
function λx.x.

C[0, 1] |= P9(f) ↔ f > λx.x;
C[0, 1] |= P10(f)↔ f < λx.x.

In order to do any kind of computation or to develop a computability theory
one has to work within a structure rich enough for information to be coded and
stored. For this purpose we extend the structure A by the set of hereditarily
finite sets HF(A).

The idea that the hereditarily finite sets over A form a natural domain for
computation is quite classical and is developed in detail in [1, 2] for the case
when σ0 contains equality.

We construct the set of hereditarily finite sets, HF(A), as follows:

1. HF0(A) 
 A,
2. HFn+1(A) 
 Pω(HFn(A)) ∪ HFn(A), where n ∈ ω and for every set B,
Pω(B) is the set of all finite subsets of B.
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3. HF(A) 

⋃
n∈ω HFn(A).

We define HF(A) as the following model:

HF(A) 
 〈HF(A), U, σ0,∈〉
 〈HF(A), σ〉 ,

where the binary predicate symbol ∈ has the set-theoretic interpretation. Also
we add the predicate symbol U for urelements (elements from A).

The natural numbers 0, 1, . . . are identified with the (finite) ordinals in
HF(A) i.e. ∅, {∅}, {∅, {∅}}, . . . , so in particular, n+ 1 = n ∪ {n} and the set ω
is a subset of HF(A).
The atomic formulas include U(x), ¬U(x), x 6= y, x ∈ s, x 6∈s where s ranges
over sets, and also, for every Qi ∈ σP of the arity ni, Qi(x1, . . . , xni

) which has
the following interpretation:

HF(A) |= Qi(x1, . . . , xni
) if and only if

A |= Qi(x1, . . . , xni
) and, for every 1 ≤ j ≤ ni, xj ∈ A.

The set of ∆0-formulas is the closure of the set of atomic formulas under ∧,∨,
bounded quantifiers (∃x ∈ y) and (∀x ∈ y), where (∃x ∈ y) Ψ means the same
as ∃x(x ∈ y ∧ Ψ) and (∀x ∈ y) Ψ as ∀x(x ∈ y → Ψ) where y ranges over sets.
The set of Σ-formulas is the closure of the set of ∆0-formulas under ∧,∨,
(∃x ∈ y), (∀x ∈ y) and ∃x, where y ranges over sets.

Remark 1. We recall that all predicates Qi ∈ σP and 6= occur only positively in
Σ-formulas. Hence when σP does’t contain equality as a basic predicate, equality
on the urelements (elements from A) is not representable by a Σ-formula.

Remark 2. Through this paper we consider also existential formulas in the lan-
guage σ0 with positive occurrences of predicate symbols from σ0 without any
further references to this restriction.

We are interested in Σ-definability of sets on An which can be considered
as generalisation of recursive enumerability. The analogy of Σ-definable and
recursively enumerable sets is based on the following fact. Consider the structure
HF = 〈HF(∅),∈〉 with the hereditarily finite sets over ∅ as its universe and
membership as its only relation. In HF the Σ-definable subsetsof ω are exactly
the recursively enumerable sets [1].

The notion of Σ-definability has a natural meaning also in the structure
HF(A).

Definition 1. 1. A relation B ⊆ HF(A)n is Σ-definable, if there exists a Σ-
formula Φ(ā) such that

b̄ ∈ B ↔ HF(A) |= Φ(b̄).

2. A function f : HF(A)n → HF(A)m is Σ-definable, if there exists
a Σ-formula Φ(c̄, d̄) such that

f(ā) = b̄↔ HF(A) |= Φ(ā, b̄).
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In a similar way we introduce the notion of ∆0-definability. Let S(HF(A)) denote
the set of all sets in HF(A) and S′(HF(A)) denote the set of all nonempty sets
in HF(A).

Lemma 1. 1. The predicates S(x) 
 x is a set, ∅(x) 
 x is the empty set,
¬∅(x) 
 x is not the empty set and n ∈ ω are ∆0-definable.

2. The predicate S′(x) 
 x is a nonempty set is ∆0-definable.
3. The following predicates are ∆0-definable: x = y, x = y ∩ z, x = y ∪ z,

x = 〈y, z〉, x = y \ z where all variables x, y, z range over sets.
4. A function f : ωn → ωm is computable if and only if it is Σ-definable.
5. Let Fun(g) mean that g : S′(HF(A))→ S′(HF(A)) is a finite function i.e.

g ∈ S′(HF(A)) and
g = {〈x, y〉| for every x there exists a unique y }

then the predicate Fun(g) is ∆0-definable.
6. If HF(A) |= Fun(g) then the domain of g, denoted by dom(g), is ∆0-

definable.
7. The set {γ : ω → S′(HF(A))|γ is a finite function} is Σ-definable.

Proof. Proofs of all properties are straightforward except (4) which can be found
in [2].

For finite functions Fun(γ) let us denote γ(x) = y if 〈x, y〉 ∈ γ.

3 Gandy’s Theorem and Inductive Definitions

Let us recall Gandy’s Theorem for HF(A) which will be essentially used in all
proofs of the main results. Let Φ(a1, . . . , an, P ) be a Σ-formula, where P occurs
positively in Φ and the arity of P is equal to n. We think of Φ as defining an
effective operator Γ : P(HF(A)n)→ P(HF(A)n) given by

Γ (Q) = {ā| (HF(A), Q) |= Φ(ā, P )}.

Since the predicate symbol P occurs only positively we have that the corre-
sponding operator Γ is monotone, i.e., for all sets B and C, from B ⊆ C follows
Γ (B) ⊆ Γ (C), and continuous with respect to Scott topology on P(HF(A)n).
By monotonicity, the operator Γ has a least (w.r.t. inclusion) fixed point which
can be described as follows. We start from the empty set and apply operator Γ
until we reach the fixed point:

Γ 0 = ∅, Γn+1 = Γ (Γn), Γ γ = ∪n<γΓn,

where γ is a limit ordinal.
One can easily check that the sets Γn form an increasing chain of sets: Γ 0 ⊆

Γ 1 ⊆ . . . . By set-theoretical reasons, there exists the least ordinal γ such that
Γ (Γ γ) = Γ γ . This Γ γ is the least fixed point of the given operator Γ .
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Theorem 1 (Gandy’s Theorem for HF(A)).
Let Γ : P(HF(A)n)→ P(HF(A)n) be an effective operator. Then the least fixed-
point of Γ is Σ-definable and the least ordinal such that Γ (Γ γ) = Γ γ is less or
equal to ω.

Proof. See [8].

Definition 2. A relation B ⊂ An is called Σ-inductive if it is the least-fixed
point of an effective operator.

Corollary 1. Every Σ-inductive relation is Σ-definable.

4 Universal Σ-predicate

In order to obtain a result on the existence of a universal Σ-predicate we first
prove Σ-definability of the predicate TR∀ introduced below.

We fix a standard effective Gödel numbering of formulas of the language σ by
finite ordinals which are elements of HF(∅). Let dΦe denote the codes of a formula
Φ. It is worth noting that the type of an expression is effectively recognisable by
its code. We also can obtain effectively from the codes of expressions the codes of
their subexpressions and vice versa. Since equality is ∆0-definable in HF(∅), we
can use the well-known characterisation which states that all effective procedures
over ordinals are Σ-definable. Thus, for example, the following predicates

Codeelem0(n, j) 
 n = dU(xj)e,
Codeelemi

(n, j1, . . . , jni
) 
 n = dQi(xj1 , . . . , xjni

)e,
Code∧(n, i, j) 
 n = dΦ ∧ Ψe ∧ i = dΦe ∧ j = dΨe

are Σ-definable. Hence, in Σ-formulas we can use such predicates.

Proposition 1. For every A of cardinality > 1 there exists a Σ-definable set
TR∀ ⊆ ω × [ω → S′(HF(A))] with the following properties.

1. If n is the Gödel number of a Σ-formula Φ and γ : ω → S′(HF(A)) is
a finite function defined by an assignment function f : FV (Φ)→ HF(A) as
γ(i) = {f(xi)} for all i : xi ∈ dom(f) then 〈n, γ〉 ∈ TR∀.

2. If 〈n, γ〉 ∈ TR∀ then n is the Gödel number of a Σ-formula Φ and γ :
ω → S′(HF(A)) is a finite function such that, for every assignment function
f : FV (Φ)→ HF(A) with the property f(xi) ∈ γ(i), HF(A) |= Φ[f ].

Proof. The predicate TR∀ is the least fixed point of the operator defined by the
following formula:

Ψ(n, γ, P ) 
 Gödel(n) ∧ Correct(n, γ) ∧ (Ψelem(n, γ) ∨ Ψ∧(n, γ, P )∨
Ψ∨(n, γ, P ) ∨ Ψ∃∈(n, γ, P ) ∨ Ψ∀∈(n, γ, P ) ∨ Ψ∃) ,

where n, γ are free variables and P is a new predicate symbol. The formula
Ψ(n, γ, P ) represents the inductive definition of the predicate TR∀ where the
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immediate subformulas have the following meaning. The first two formulas recog-
nise the properties of n and γ. The formula Gödel(n) represents that n is the
Gödel number of a Σ-formula Φ; the formula Correct(n, γ) represents than γ
is a finite function from ω to S′(HF(A)) such that i ∈ dom(γ) if and only if
xi ∈ FV (Φ). The formula Ψelem(n, γ) defines the basis of the inductive defi-
nition and captures the cases when n is the Gödel number of an atomic for-
mula. The remaining formulas represent inductive steps for conjunctions, dis-
junctions, bounded quantifiers, and existential quantifiers. By Lemma 1, the
formulas Gödel(n) and Correct(n, γ) are equivalent to Σ-formulas. We illustrate
constructions of the rest of the formulas. The basis of the inductive definition is
given by the formula

Ψelem(n, γ) 
 ΨU (n, γ) ∨ Ψ¬U (n, γ) ∨ Ψ∈(n, γ) ∨ Ψ6∈(n, γ),

where the subformulas can be done in the following way.

ΨU (n, γ) 
 ∃i (n = dU(x)e ∧ i = dxe ∧ ∀z ∈ γ(i)U(z)) ;

Ψ¬U (n, γ) 
 ∃i (n = d¬U(x)e ∧ i = dxe ∧ ∀z ∈ γ(i)¬U(z)) ;

Ψ∈(n, γ) 
 ∃i∃j∃a(n = d¬x ∈ ye ∧ i = dxe ∧ j = dye ∧
S′(a) ∧ γ(j) = {a} ∧ γ(i) ⊆ A);

Ψ6∈(n, γ) 
 ∃i∃j(n = d¬x ∈ ye ∧ i = dxe ∧ j = dye ∧ ∃a(S′(a) ∧
γ(j) = {a} ∧ γ(i) ∩A = ∅) ∨ ∀z ∈ γ(j)U(z) ∨ ∀z ∈ γ(j)∅(z)).

Now we construct the formulas for the inductive steps. For conjunctions and
disjunctions:

Ψ∧(n, γ, P ) 
 ∃m∃k (n = dΦ ∧ Ψe ∧m = dΦe ∧ k = dΨe ∧ P (m, γ) ∧ P (k, γ)) ;

Ψ∨(n, γ, P ) 
 ∃m∃k (n = dΦ ∧ Ψe ∧m = dΦe ∧ k = dΨe ∧ (P (m, γ) ∨ P (k, γ))) ;

For bounded quantifiers:

Ψ∃∈(n, γ, P ) 
 ∃i∃j∃a∃v∃γ∗∃m (n = d∃x ∈ yΦe ∧ i = dxe ∧ j = dye ∧m = dΦe∧
S′(A) ∧ γ(j) = {A} ∧ γ ∪ {〈i, v〉} = γ∗ ∧ i /∈ dom(γ) ∧
P (m, γ∗) ∧ v ⊆ a) )) ;

Ψ∀∈(n, γ, P ) 
 ∃i∃j∃a∃γ∗∃m (n = d∀x ∈ yΦe ∧ i = dxe ∧ j = dye ∧m = dΦe∧
∀z ∈ γ(j)U(z) ∨ ∀z ∈ γ(i)∅(z) ∨ (S′(a) ∧ γ(j) = {a} ∧
P (m, γ∗) ∧ i ∈ dom(γ∗) ∧ γ ⊆ γ∗ ∧ γ∗(i) ⊆ a )) .
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The formula Ψ∃(n, γ, P ) can be given as follows.

Ψ∃(n, γ, P ) 
 ∃i∃m∃v∃w (n = d∃xΦe ∧ i = dxe ∧m = dΦe ∧ i6∈dom(γ)∧
S′(v) ∧ w = γ ∪ {〈i, v〉} ∧ P (m,w)) .

From Gandy’s theorem (c.f. Section 2.2) it follows that the least fixed point
TR∀ of the effective operator defined by Ψ is Σ-definable.

Theorem 2. For every n ∈ ω there exists a Σ-formula Univn+1(m,x0, . . . , xn)
such that for any Σ-formula Φ(x0, . . . , xn)

HF(A) |= Φ(r0, . . . , rn)↔ Univn+1(dΦe, r0, . . . , rn).

Proof. It is easy to see that the following formula defines a universal Σ-predicate
for the Σ-formulas of arity n+ 1.

Univn+1(m,x0, . . . xn) 
 ∃y0 . . . ∃yn∃γ(S′(y0) ∧ · · · ∧ S′(yn) ∧
γ = {〈0, y0〉 , . . . , 〈n, yn〉} ∧ TR∀(m, γ) ∧

∧
0≤i≤n

xi ∈ yi)

5 Semantic characterisation of Σ-definability

In this section we prove that a relation over A is Σ-definable if and only if it is
definable by a disjunction of a recursively enumerable set of existential formulas
in the language σ0.

Definition 3. Let a set of distinct variables X = {xi|i ∈ ω} and an injective
function (assignment) f : X → A be given. For z ∈ HF(X), define sp(z) and
[z]f as follows:

(i) if z is a variable, then sp(z) = {z} and [z]f = f(z);
(ii) if z is the set {z1, . . . , zk} then sp(z) =

⋃
i≤k sp(zi) and

[z]f = {[z1]f , . . . , [zk]f}.

Definition 4. We say that z ∈ HF(X) structurally represents y ∈ HF(A) if
[z]f = y for an assignment f : X → A.

Proposition 2. Suppose ϕ(y1, . . . , ys) is a ∆0-formula and z1, . . . , zs struc-
turally represent y1, . . . , ys with the same assignment f : X → A. Then we can ef-
fectively construct a quantifier-free formula ψ such that FV (ψ) ⊆ sp({z1, . . . , zs})
and

A |= ψ[f ]⇔ HF(A) |= ϕ([z1]f , . . . , [zs]f ).

The choice of ψ depends on the tuple z̄ = (z1, . . . , zs) and ψ, and does not depend
on f .
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Proof. In order to simplify the proof, without loss of generality, we assume that
all assignments are injective and every formula has subformulas distinguishing
free variables. Using induction on the structure of a ∆0-formula ϕ, we show
how to obtain a required formula ψ. Let > denotes a logical truth which can be
represented by the formula ∃x∃y x 6= y and ⊥ denotes a logical false which can
be represented by the formula ∃xx 6= x.
Atomic case.
1. If ϕ(ȳ) 
 P (ȳ) and P ∈ σP or ϕ(yi, yj) 
 yi 6= yj , and x̄ structurally
represent ȳ, then ψ(x̄) 
 ϕ(x̄).
2. Suppose ϕ(y1, y2) 
 y1 ∈ y2 and z1, z2 structurally represent y1, y2. If z1 ∈ z2
then ψ 
 > else ψ 
 ⊥. The subcase ϕ(y1, y2) 
 y1 6∈ y2 can be considered by
analogy.
Disjunction and Conjunction. If ϕ 
 ϕ1τϕ2, where τ is ∨ or ∧, and ψ1, ψ2 are
already constructed for ϕ1, ϕ2 then ψ 
 ψ1τψ2.
Bounded quantifier cases.
Suppose ϕ(ȳ) 
 (∃v ∈ yj)ν(v, ȳ) and zj structurally represents yj . If zj ∈ X,
then the formula ϕ is false, so ψ 
 ⊥. Suppose zj = {z1

j , . . . , z
k
j }. By inductive

assumption, for every ∆0-formula ν(zij , ȳ), where 1 ≤ i ≤ k, there exists a
required ψi. Put ψ 


∨
1≤i≤k ψi. For the subcase ϕ(y1, y2) 
 (∀v ∈ yj)ν(v, ȳ),

we put ψ 

∧

1≤i≤k ψi.

Theorem 3. A set B ⊆ An is Σ-definable if and only if there exists an effective
sequence of existential formulas in the language σ0, {ϕs(x̄)}s∈ω, such that

(x1, . . . , xn) ∈ B ↔ A |=
∨
s∈ω

ϕs(x1, . . . , xn).

Proof. →) Without loss of generality suppose B is Σ-definable by the formula
∃yψ(y, x̄). It worth noting that for every y ∈ HF(A) there exists z ∈ HF(X)
which structurally represents y, and we can effectively enumerate HF(X). Using
Proposition 2 we effectively construct the set of formulas ψj(x̄j , x̄) such that

HF(A) |= ∃yψ(y, x̄)↔ A |=
∨
j∈ω
∃x̄jψj(x̄j , x̄).

←) Let B ⊂ An be definable by
∨
s∈ω ϕs(x1, . . . , xn). By Theorem 2, there

exists a universal Σ-predicate Univn(m, x̄) for Σ formulas with variables from
{x1, . . . , xn}. Let the computable function f : ω → ω enumerate the Gödel
numbers of the formulas ϕi, i ∈ ω. It is easy to see that the following formula is
required.

Φ(x̄) 
 ∃iUnivn(f(i), x̄).

It is worth noting that both of the directions of this characterisation are impor-
tant. The right-to-left direction revels an algorithmic property of Σ-definability,
i.e., gives us an effective procedure which generates existential formulas approxi-
mating Σ-relations. The converse direction provides tools for descriptions of the
results of effective infinite approximating processes by finite formulas. Now we
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consider a structure A with the topology τAΣ formed by a base which is the set
of subsets definable by existential formulas in the language σ0.

Theorem 4. Every subset of A is effectively open in the topology τAΣ if and only
if it is Σ-definable.

Proof. The claim follows from Theorem 3.

6 Future work

In this paper we have shown that over every positive predicate structure Σ-
definability has algorithmic properties, i.e., a set is Σ-definable if and only if
it is definable by a disjunction of a recursively enumerable set of existential
formulas. In [5] we proved the Uniformity principle for Σ-definability over the
real numbers. We employed the Uniformity principle to show that quantifiers
bounded by computable compact sets, rational numbers, polynomials, and com-
putable functions as well can be used in Σ-formulas without enlarging the class
of Σ-definable sets. It will be interesting to find requirements on a positive pred-
icate structure under which the Uniformity principle holds.
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