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The differential form of Maxwell equations on a 3-manifold have the in-
variant formulation

dE = −∂tB (1)

dH = ∂tD + J (2)

Where E is 1-form, B a 2-form, H a twisted 1-form and D and J twisted 2-
forms. The distinction between 1-forms for fields evaluated as line integrals,
and 2 forms for fluxes over surfaces is self evident, the treatment of H,D and
J as twisted is perhaps more subtle and can be seen from the orientation in-
dependence of the magnetic field around a loop. See Tonti [1] and Bossavit[2]
for more details. A twisted differential form is a differential form taking its
values in the orientation line bundle. Note that the forms have dimensions
free of length as the formulation is metric independent, for example J is in
Amperes rather than A/m2.

For isotropic materials the material properties are treated as scalar mul-
tiples of the Hodge star operator from 1 to 2 forms, with respect to the flat
metric on R3. However Maxwell’s equations are independent of metric and
this fails to account for anisotropic materials. While material properties can
be considered as symmetric matrices in preferred bases, or as seperate Rie-
mannian metrics, it is more natural to consider them as operators analogous
to Hodge stars in their own right.

Recall that for an orientable (pseudo)-Riemannian n-manifold the Hodge
star from 1-forms to n− 1-forms is defined by the property

∗α ∧ β = 〈α, β〉gVg

for any 1-forms α and β, where 〈 ·, ·〉g is the inner product on one-forms
and Vg the volume form associated with the metric and the orientation.
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This is clearly non-degenerale as a bilinear map and positive definite for a
Riemannian metric, where positivity is defined by the orientation.

We can retain the essential properties defining an abstract Hodge star as
a linear map ∗ : Λ1 → Λn−1 which satisfies

∗α ∧ β = ∗β ∧ α

which is non-degenerate in the sense that

∗α ∧ α 6= 0

for α 6= 0. The energy density stored by the electric or magnetic field has to
be a twisted 3-form so it can be integrated over a volume and is independent
of orientation. The electric energy density is 1

2
E∧D, the magnetic −1

2
H ∧B

and the Ohmic power dissipated is E ∧ J .
For media which are linear (eg Ohmic), reciprocal (which means they are

not actively producing energy), stationary (response depend on field at this
time not on its history), and not chiral (B depends only on H, D only on
E) the material properties permeability µ, permittivity ε and conductivity σ
are generalized Hodge stars and the constituent laws are

D = εE (3)

B = µH (4)

J = σE. (5)

(The J here is the conduction current, there may be current sources as well).
We now have Maxwell’s equations as

dE = −∂tµH (6)

dH = ∂tεE + σE (7)

To see the relation between material properties and energy we consider
the derivative of the Poynting form E∧H which gives the power flux through
a surface

d(E ∧H) = E ∧ ε∂tE −H ∧ µ∂tH + E ∧ σE

=
1

2
∂t (E ∧ εE −H ∧ µH) + E ∧ σE

hence by Stokes theorem∫
∂M

i∗(E ∧H) =
1

2
∂t

(∫
M

E ∧ εE −H ∧ µH
)

+ E ∧ σE
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We notice that the material properties all take either twisted forms to
straight, or straight to twisted, so that the energy densities are twisted forms
as required. This means that the material properties define a metric 1 but
not an orientation. This is quite right as materials (except chiral materials)
are invariant under a change of orientation.

Chiral, or more generally bi-anisotropic, materials have an additional
material property which (for a fixed angular frequency) replaces 3 and 4 by

D = εE + αHB = βE + µH (8)

where now α and β map twisted to twisted and straight to straight forms.
Having produced a metric independent invariant formulation of Maxwell’s

equations in an inhomogenious anisotropic medium considered as a three-
manifold, what of the space time formulation. The Faraday 2-form formula-
tion on space time is traditionally done on a homogeneous medium in units
where epsilon and mu are one. This is clearly undesirable as it disguises the
geometric nature of the equations.

We consider frame in which the medium is at rest, and we have a chart
(x1, x2, x3, t). Define a 2-form on the 4-manifold by

F = E ∧ dt+B

as usual so that
dF = 0

is simultaneously dE = −∂tB when projected onto the subspace of 3 forms
containing dt (time-like forms) and dB = 0 when projected on two forms
not involving dt (space-like) (is time/space-like the right way to describe this
decomposition?) . Similarly we define

F̃ = H ∧ dt−D

so that
dF̃ = J ∧ dt+ ρ

is simultaneously dH = ∂tD and dD = ρ where ρ is the charge density. We
now now seek a linear material map γ, perhaps a Hodge star, so that

F̃ = γF. (9)

1but not on a 2-manifold, Hodge stars on the middle dimensional forms, such as 1
forms on a two manifold, always have determinant one. A constraint we don’t impose on
material properties, also any scalar multiple of a metric produces the same Hodge on a
two manifold
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Clearly γ maps straight 2-forms to twisted ones. Let E =
∑
Eidx

i and
D =

∑
Eiεdx

i and so on, we see by equating coefficients of E and D in Eq 9
that

γ(dxi ∧ dt) = εdxi

and
γ(µdxi) = −dxi ∧ dt

which is sufficient to define the action of γ on both time-like and space-like
forms. Unlike the Hodge star associated with a metric our γ is not generally
idempotent. As a matrix on the space-like and time-like components we have

γ =

(
0 ε
−µ−1 0

)
and its inverse

γ−1 =

(
0 −µ
ε−1 0

)
and Maxwell’s equations are now

dF = 0 (10)

dγF = J ∧ dt+ ρ (11)

Note that for chiral and biansiotropic media the zero blocks in my ex-
pression for γ may be non-zero.
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