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Abstract

We consider Rn skew-products of a class of hyperbolic dynamical
systems. It was proved by Niţică and Pollicott [NP] that for an Anosov
diffeomorphism φ of an infranilmanifold Λ there is (subject avoiding
natural obstructions) an open and dense set f : Λ → RN for which the
skew-product φf (x, s) = (φ(x), s + f(x)) on Λ×RN has a dense orbit.
We prove a similar result in the context of an Axiom A hyperbolic flow
on an attractor.

1 Introduction

There has been much recent interest in understanding the dynamical be-
haviour of partially hyperbolic dynamical systems, from both a measure-
theoretic and topological viewpoint. A particularly tractable class of par-
tially hyperbolic dynamical system is formed by constructing a group ex-
tension of a hyperbolic dynamical system, for example constructing a skew-
product. By hyperbolic we essentially mean a dynamical system that satis-
fies Smale’s Axiom A, restricted to a basic set.

We will be interested in hyperbolic flows (for example, Anosov flows on
compact manifolds such as geodesic flows on compact Riemannian mani-
folds with negative sectional curvature, suspensions of hyperbolic diffeomor-
phisms, etc). Let φt : Λ → Λ be a hyperbolic flow. Let f : Λ → R and
construct the skew product flow φf

t : Λ× R → Λ× R defined by

φf
t (x, v) =

(
φt(x), v +

∫ t

0
f(φu(x)) du

)
. (1)

More generally, we will consider an RN skew-product.
∗School of Mathematics, The University of Manchester, Oxford Road, Manchester,

M13 9PL, U.K.
†The results of this paper appeared in the first author’s PhD thesis and was financially

supported by EPSRC.

1



In discrete time, an R skew-product of a hyperbolic diffeomorphism φ :
Λ → Λ is defined by taking a function f : Λ → R and defining φf : Λ×R →
Λ× R by φf (x, v) = (φ(x), v + f(x)). More generally, one can consider RN

skew-products, or skew-products where RN is replaced by a connected Lie
group.

A dynamical system is said to be transitive if there exists a point whose
forward orbit under the dynamics is dense. We are interested in conditions
on f : Λ → RN that ensure that (1) is transitive. An obvious necessary
condition for (1) to be transitive is that

∫ t
0 f(φu(x)) du takes arbitrarily large

(both positive and negative) values; more generally a necessary condition
for transitivity is that f satisfies the inseparability hypothesis defined in §3
below.

Several authors [N, NP, MNT] have studied skew-products with a hy-
perbolic base and fibre RN , or more generally with fibre SO(N) n RN . In
[N], it was proved that R skew-products over a shift of finite type are sta-
bly transitive (in an appropriate category). In [NP], it was proved that
RN skew-products where the base transformation φ : X → X is an Anosov
diffeomorphism of an infranilmanifold is stably transitive in the Hölder cat-
egory. The crucial fact in the analysis in [NP] is that the induced map
φ∗ : H1(X, Z) → H1(X, Z) does not have 1 as an eigenvalue. This is known
to be the case for an Anosov diffeomorphism of an infranilmanifold and it
is an important open question as to whether this is the case for all Anosov
diffeomorphisms (cf [B2]) (indeed, it is an open question as to whether there
are Anosov diffeomorphisms on spaces other than infranilmanifolds). We
remark that there are examples [CPW] of hyperbolic attractors φ : X → X
that satisfy Smale’s Axiom A but which do have 1 as an eigenvalue of the
induced map φ∗ on the first Čech cohomology group H1(X, Z).

In this note we generalise the results of [NP] to the case of hyperbolic
flows, using ideas from [W]. Recall that a subset {aα} of an Abelian group
A is linearly independent (over Z) if

∑
nαaα = 0 (where nα ∈ Z and only

finitely many of the nα are non-zero) implies that all the nα are zero. The
rank of A is the maximum cardinality of a linearly independent set. We are
interested in hyperbolic flows φt : Λ → Λ for which H1(Λ, Z) has finite rank.
If Λ is an attractor then H1(Λ, Z) has finite rank [FP]; however there are
examples of hyperbolic flows on basic sets which do not have finite rank (for
example, a suspension of a Smale horseshoe [PT]). The assumption that
H1(Λ, Z) has finite rank will, essentially, allow us to embed H1(Λ, Z) in a
finite-dimensional vector space.

We prove the existence of an open and dense set of cocycles amongst
those satisfying the inseparability hypothesis for which φf

t is transitive. In-
deed, we prove

Theorem 1.1 Let φt be a hyperbolic flow on a basic set Λ. Suppose that
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H1(Λ, Z) has finite rank. Then the set of RN skew-products φf
t for which

f satisfies the inseparability hypothesis contains an open dense set in the
Hölder category (of fixed exponent).

We also prove the analogue of Theorem 1.1 in the case of a hyperbolic
diffeomorphism on a basic set Λ for which H1(Λ, Z) has finite rank. This
is a strictly weaker condition than that considered in [NP]. We remark
that [MNT] prove the existence of an open dense set of functions f : Λ →
RN satisfying the inseparability hypothesis for which the skew-product of a
hyperbolic diffeomorphism φ : Λ → Λ is transitive without any hypothesis
on the cohomology of Λ. The methodology in [MNT] involves considering
local perturbations of f in a neighbourhood of a certain set of homoclinic
orbits for the diffeomorphism φ. The difference in this note is that, at least
for Abelian skew-products, we can explicitly and globally describe the set
of functions f that give rise to transitive skew-products in terms of the
underlying homology of the set Λ (modulo natural obstructions).

2 Definitions

2.1 Hyperbolic dynamical systems

Let M be a smooth compact Riemannian manifold and let φt : M → M
be a C1 flow. A φt-invariant closed set Λ ⊂ M is called a basic set and
φt restricted to Λ is called a hyperbolic flow if: (i) the tangent bundle
TΛM of M restricted to Λ can be split continuously into a Whitney sum
Es ⊕ Eu ⊕ E0 of Dφt-invariant sub-bundles for which there exist constants
C > 0 and λ ∈ (0, 1) such that for t ≥ 0

‖Dφt(v)‖ ≤ Cλt‖v‖, for v ∈ Es

‖Dφ−t(v)‖ ≤ Cλt‖v‖, for v ∈ Eu;

and E0 is one-dimensional and tangent to the orbits of the flow; (ii) φt

restricted to Λ has a dense set of periodic points, is topologically transitive,
and is not a single orbit; (iii) Λ is locally maximal in the sense that there is
an open neighbourhood U ⊃ Λ such that

⋂∞
t=−∞ φt(U) = Λ.

Thus in defining a hyperbolic flow we are merely abstracting the prop-
erties of a basic set arising from the spectral decomposition of the non-
wandering set of an Axiom A diffeomorphism or flow.

If Λ = M then we call φt an Anosov flow.

2.2 Dynamic cohomology

A function f : Λ → RN is Hölder-continuous of exponent α ∈ (0, 1) if |f |α :=
supx 6=y ‖f(x)−f(y)‖/d(x, y)α < ∞. The vector space Cα(Λ, RN ) of all such
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functions is a Banach space with respect to the norm ‖ · ‖α = | · |∞ + | · |α
where |f |∞ = supx ‖f(x)‖.

Let K denote the unit circle in C and define Cα(Λ,K) to be the space of
Hölder-continuous, K-valued functions. This space is complete with respect
to the metric inherited from ‖ · ‖α.

Let φt be a flow on Λ. A function w : Λ → C is said to be flow-
differentiable if

w′
φ(x) = lim

t→0

w(φt(x))− w(x)
t

exists for each x ∈ Λ. We say that w is Cα flow-differentiable if w ∈
Cα(Λ, R), w′

φ exists and w′
φ ∈ Cα(Λ, R).

Let f : Λ → R be Hölder continuous. Define a dynamic cocycle Ft(x) =
F (t, x) : R× Λ → RN by setting

Ft(x) =
∫ t

0
f(φux) du (2)

so that
Ft+s(x) = Ft(φs(x)) + Fs(x). (3)

Any function Ft(x) that satisfies (3) and for which limt→0 t−1Ft(x) exists is
of the form (2).

Let f = (f (1), . . . , f (N)) : Λ → RN be Hölder. Then we define Ft(x) =
(F (1)

t , . . . , F
(N)
t ) and define the skew-product flow φF

t : Λ × RN → Λ × RN

by φF
t (x, v) = (φt(x), v + Ft(x)).

We say that a Hölder cocycle Ft on RN is a coboundary if Ft(x) =
u(φt(x)) − u(x) for some Hölder continuous function u ∈ Cα(Λ, RN ). This
is equivalent to requiring that f = u′φ.

Let Bα(φ, RN ) denote the set of all coboundaries of Cα(φ, RN ) functions.
We will often write Bφ for Bα(φ, RN ) when α, N are fixed. Let Hα(φ, RN ) =
Cα(Λ, RN )/Bα(φ, RN ) denote the vector space of all dynamic cocycles.

2.3 Bruschlinsky cohomology

Typically the basic set Λ will have a very complicated topological structure
and will not be a manifold. Let N(Λ,K) = {e2πir | r : Λ → R is continuous}
denote the space of continuous circle-valued null-homotopic functions. The
Bruschlinsky group is defined to be the quotient group C(Λ,K)/N(Λ,K)
with pointwise multiplication; it is well-known [H] that the first Čech coho-
mology group H1(Λ, Z) is isomorphic to the Bruschlinsky group. It is easy
to see that a circle-valued continuous function may be replaced up to ho-
motopy by a circle-valued Hölder function; hence we may write H1(Λ, Z) =
Cα(Λ,K)/Nα(Λ,K) where Nα(Λ,K) denotes the space of Cα null-homotopic
functions. Write [w] for the homotopy class of w.
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2.4 Dynamic versus Bruschlinsky cohomology

Let φt : Λ → Λ be a hyperbolic flow. For each w ∈ C(Λ,K) it is clear
that wφt is homotopic to w. Hence for each t ∈ R there exists a continuous
function Gt : Λ → R such that

w(φt(x))
w(x)

= exp 2πiGt(x).

If w is flow-differentiable then g(x) = limt→0 Gt(x)/t exists and

w(φt(x))
w(x)

= exp 2πi

∫ t

0
g(φu(x)). (4)

If w is Cα flow-differentiable then g ∈ Cα(Λ, R).
Suppose that w1, w2 ∈ Cα(Λ,K) are flow-differentiable and homotopic.

Define g1, g2 by

w1(φt(x))
w1(x)

= exp 2πi

∫ t

0
g1(φu(x)) du,

w2(φt(x))
w2(x)

= exp 2πi

∫ t

0
g2(φu(x)) du.

(5)
If w1/w2 = exp 2πiu then it is easy to see that g1 = g2 +u′φ. That is, homo-
topic circle-valued functions give rise to cohomologous real-valued functions.
Thus we have a well-defined map

ι : H1(Λ, Z) → Hα(φ, R).

If w1, w2, g1, g2 satisfy (5) then

w1(φt(x))w2(φt(x))
w1(x)w2(x)

= exp 2πi

∫ t

0
(g1(φu(x)) + g2(φu(x)) du.

Hence ι([w1w2]) = ι([w1]) + ι([w2]) so that ι is a homomorphism.
If ι([w]) = 0 then there exists u ∈ Cα(Λ, R) such that w(φt(x))/w(x) =

exp 2πi(u(φt(x)) − u(x)). Hence w exp(−2πiu) is a φt-invariant continuous
function, and therefore constant by the transitivity of φt. Hence w is null-
homotopic and it follows that ι is injective.

For each [w] ∈ H1(Λ, Z), choose w ∈ Cα(Λ,K) in that homotopy class
and construct g as in (4) so that ι([w]) = g + Bφ. Let ZR denote the R-
linear span of the gs. Although ZR is not uniquely determined (due to the
choice of w up to a null-homotopic function in the homotopy class [w]), it
is well-defined up to the addition of coboundaries, i.e. one can write

ι(H1(Λ, Z))⊗ R = (ZR + Bφ)/Bφ. (6)

We shall need the following result.
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Proposition 2.1 Let φt : Λ → Λ be a hyperbolic flow. Suppose that
H1(Λ, Z) has finite rank. Then:

(i) Bφ is a closed subspace of Cα(Λ, R);

(ii) ZR + Bφ is a closed subspace of Cα(Λ, R);

(iii) ZR + Bφ has infinite codimension in Cα(Λ, R).

First recall the well-known Livšic periodic data criteria for functions to be
coboundaries.

Lemma 2.2 ([L]) Let φt be a hyperbolic flow.

(i) Suppose f ∈ Cα(Λ, R) is such that fT (x) = 0 whenever φT (x) = x.
Then there exists u ∈ Cα(Λ, R) such that f = u′φ.

(ii) Suppose f ∈ Cα(Λ, R) is such that exp 2πi
∫ T
0 f(φu(x)) du = 1 when-

ever φT (x) = x. Then there exists w ∈ Cα(Λ,K) such that

w(φt(x))
w(x)

= exp 2πi

∫ t

0
f(φu(x)) du.

Proof of Proposition 2.1. Let hn = (un)′φ ∈ Bφ be such that hn → h

in Cα(Λ, R). Suppose that φT (x) = x. Then
∫ T
0 hn(φu(x)) du = 0, hence∫ T

0 h(φu(x)) du = 0. It follows from Lemma 2.2(i) that h ∈ Bφ.
To prove (ii) it is sufficient to prove that ZR + Bφ is finite dimensional.

Let β denote the rank of H1(Λ, Z) and choose a maximal set of integrally
independent elements [wj ] ∈ H1(Λ, Z), 1 ≤ j ≤ β. For each j, let wj ∈
Cα(Λ,K) be in the homotopy class [w] and define gj by (4). Then any
element of ZR + Bφ is a real linear combination of the gj + Bφ, so that
dimZR + Bφ ≤ β.

To prove (iii) it is sufficient to prove that Bφ has infinite codimension in
Cα(Λ, R). First note that if µ is a φ-invariant measure then

∫
u′φ dµ = 0.

Hence any invariant measure defines a linear functional on Cα(Λ, R)/Bφ.
If Cα(Λ, R)/Bφ were finite dimensional, then its dual space would be finite
dimensional. This is a contradiction as invariant measures supported on
periodic orbits generate an infinite-dimensional subspace. ❏

3 Criteria for topological transitivity

Throughout, φt will be a hyperbolic flow on a basic set Λ. Let f : Λ → RN

be a Hölder function. Let L denote the set of weights of periodic orbits of
φt:

L = {FT (x) | φT (x) = x} ⊂ RN .
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Let V = {
∑

mipi | mi ∈ Z+, pi ∈ L} denote the semigroup of RN generated
by L.

Definition. We say that f satisfies the inseparability hypothesis if f is
not cohomologous to a function that takes values in a half-space bounded
by a hyperplane in RN passing through the origin.

Remark. By the positive Livšic theorem for hyperbolic flows [PS], it fol-
lows that f satisfies the inseparability hypothesis if and only if, for all
v ∈ RN \ {0}, 〈V, v〉 takes both positive and negative values.

Definition. We say that V is co-lattice valued if there exists v ∈ RN \{0}
and a ∈ R such that 〈V, v〉 ⊂ aZ.

Exactly one of the following holds:

(i) the closure V̄ = RN ,

(ii) V̄ is co-latticed valued and there exists v ∈ RN \{0} such that 〈V, v〉 ⊂
R is not contained on one side of zero,

(iii) V̄ is co-latticed valued and there exists v ∈ RN \{0} such that 〈V, v〉 ⊂
R is contained on one side of zero.

Lemma 3.1 Suppose that L satisfies the inseparability hypothesis and is
not co-latticed valued. Then V̄ = RN .

Proof. In the above trichotomy, (iii) cannot happen by the inseparability
hypothesis. As (ii) cannot hold, it follows that V̄ = RN . ❏

We need the following result:

Lemma 3.2 ([PS]) Suppose that f ∈ Cα(Λ, R) generates a real-valued
cocycle Ft(x) =

∫ t
0 f(φu(x)) du such that FT (x) ≥ 0 whenever φT (x) = x.

Then F is bounded below: inft∈R,x∈X Ft(x) > −∞.

The following two results links transitivity to our hypotheses.

Proposition 3.3 The following are equivalent:

(i) L satisfies the inseparability hypothesis and is not co-lattice valued;

(ii) the skew-product flow φF
t is transitive.

Proof. If (i) holds then, by Lemma 3.1, V̄ = RN . The proof that V̄ = RN

in the case of discrete time is, by now, well-known [NP], and use proper-
ties of orbit-shadowing for hyperbolic diffeomorphisms. The modifications
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required to prove the result for hyperbolic flows are standard, but notation-
ally cumbersome. For the benefit of the reader we briefly sketch the main
ideas; the complete details can be found in [M]. Choose a countable dense
set X of points in Λ and construct a sequence x1, x2, x3, . . . of points where
xk ∈ D and each point in D occurs infinitely often in this sequence. Choose
a dense set vk ∈ RN . Let εk ↘ 0. The aim is to construct a point x ∈ Λ
and a sequence of times tk such that, for each k, d(φtj (x), xk) < εk and
‖Ftk(x) − vk‖ < εk (here d denotes the metric on Λ). It then follows that
the orbit of (x, 0) ∈ Λ× RN under φf

t is dense.
To construct x we use the shadowing property of hyperbolic flows: given

collection of orbit segments, one can construct a single orbit that shadows,
at various times, these orbit segments to a pre-assigned degree of accu-
racy. Specifically: given periodic orbits q1, . . . , q`, with corresponding pe-
riods τ(q1), . . . , τ(q`), and points z1, z2, we use a shadowing argument (cf
[B1]) to construct a point y whose orbit shadows: (i) firstly the orbit of z1

for some prescribed amount of time, then (ii) the periodic orbits q1, . . . , q`,
then (iii) the orbit of z2 for some prescribed period of time (the amount of
time it takes the orbit of y to travel from z1 to q1, from q1 to q2, etc, depends
only on the degree of accuracy required, and not on the orbits).

The point x is constructed inductively as follows. Suppose we have con-
structed x so that we know its orbit for time 0 < t < tk−1. Further, suppose
that we have chosen periodic points q1, . . . , q` of periods τ(q1), . . . , τ(q`) such
that the semi-group of RN generated by Fτ(q1), . . . , Fτ(q`) is εk+1-dense. We
assume that x has been constructed so that for time tk−1 < t < t′k, the orbit
of x shadows the periodic orbits q1, . . . , q` in turn.

Consider Ft′k
(x)−vnk

. One can find m1, . . . ,m` ∈ Z+ such that ‖Fty(y)−
vnk

−
∑`

j=0 mjFτ(qj)(qj)‖ = o(εk). One now constructs a new point x′ that
shadows x for time 0 < t < tk−1, then shadows q1 with multiplicity m1, q2

with multiplicity m2, etc. One then checks that with, tk = t′k+
∑`−1

j=1(mj−1)
(i.e. t′k plus the extra amount of time taken to travel the qj with multiplicity),
one has ‖Ftk(x)− vnk

‖ = O(εk).
We prove (ii) implies (i). Suppose L does not satisfy the inseparability

hypothesis. Then there exists 0 6= v ∈ RN such that 〈L, v〉 ⊂ R+. Let
fv = 〈f, v〉 : Λ → R. Then Lemma 3.2 implies that Fv is bounded below
and so φFv

t , hence φF
t , cannot be transitive.

Finally, suppose that φF
t is transitive with dense orbit (x0, v0) ∈ Λ×RN

but 〈L, v〉 ⊂ aZ for some 0 6= v ∈ RN and a > 0. Choose a′ ∈ (0, a). Let
ε > 0. Then there exists T > 0 such that d(φF

T (x0, v0), (x0, v0 + a′v)) < ε.
By the Anosov Closing Lemma [KH, p.548] (cf [B1]) there exists a periodic
point p close to x0 such that φT ′(p) = p for some T ′ close to T . Moreover, the
estimate ‖FT ′(p)− FT (x0)‖ ≤ Cε holds, for some constant C > 0. One can
then estimate |〈FT ′(p), v〉 − a′| ≤ C ′ε, for some constant C ′ > 0 depending
only on F and φt. As ε is arbitrary, it follows that a′ ∈ L, a contradiction.
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❏

Proposition 3.4 Let f = (f (1), . . . , f (N)) ∈ Cα(Λ, RN ). Suppose that f is
linearly independent mod ZR + Bφ. Then L is not co-lattice valued.

Proof. Suppose that L is co-lattice valued. Then there exists 0 6= v ∈ RN

and a ∈ R such that 〈L, v〉 ⊂ aZ, that is 〈v, FT (x)〉 ∈ aZ whenever φT (x) =
x. Hence

exp 2πi
〈v

a
, FT (x)

〉
= 1

whenever φT (x) = x. By Lemma 2.2(ii), it follows that exp 2πi〈v/a, Ft〉 is a
circle-valued coboundary, i.e. there exists w ∈ Cα(Λ,K) such that

exp 2πi
〈v

a
, Ft(x)

〉
=

w(φt(x))
w(x)

.

Equivalently, ι[w] = 〈v/a, f〉. Hence, 〈v/a, f〉 ∈ ZZ +Bφ so that f is linearly
dependent mod ZR + Bφ. ❏

Theorem 3.5 Suppose that H1(Λ, Z) has finite rank. Let f = (f (1), . . . , f (N)) ∈
Cα(Λ, RN ). Suppose that f is linearly independent mod ZR +Bφ. Then the
following are equivalent:

(i) φF
t is transitive,

(ii) φF
t is stably transitive,

(iii) φF
t has orbits that are unbounded in all directions,

(iv) L satisfies the inseparability hypothesis.

Proof. Note that the hypothesis on f ensures that L is not co-lattice
valued. Recall from Proposition 2.1 that ZR + Bφ is a closed subspace;
hence the hypothesis on f is an open condition.

(i) implies (iii) is clear. That (ii) is equivalent to (iv) follows from Propo-
sitions 3.3 and 3.4, noting that the inseparability hypothesis is an open
condition on f .

To see that (iii) implies (iv) note that if the inseparability hypothesis
is not satisfied then there exists 0 6= v ∈ RN such that 〈f, v〉 takes only
non-negative or non-positive values on periodic orbits. By Lemma 3.2, φF

t

cannot have orbits that are unbounded in the v-direction.
That (iv) implies (i) follows from Proposition 3.3. ❏

Corollary 3.6 Suppose that H1(Λ, Z) has finite rank. Then, amongst the
cocycles in Cα(Λ, RN ) that satisfy the inseparability hypothesis, there exists
an open dense set of transitive cocycles.
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Proof. By Proposition 2.1, ZR + Bφ is a closed, infinite-codimension sub-
space of Cα(Λ, RN ). Hence the set of f ∈ Cα(Λ, RN ) that are linearly
independent mod ZR + Bφ is open and dense. ❏

4 Discrete time

One can prove analogous results to Theorem 3.5 and Corollary 3.6 for hy-
perbolic flows using the methodology of [FP] to construct the analogue of
the inclusion ι : H1(Λ, Z) → H1(φ, R) as follows. Let φ : Λ → Λ be a hy-
perbolic diffeomorphism on a basic set Λ. The map φ : Λ → Λ induces an
automorphism φ∗ : H1(Λ, Z) → H1(Λ, Z) on the Bruschlinsky group defined
by φ∗[w] = [wφ]. Let [w] ∈ ker(φ∗ − id). Then there exists a continuous
function g : Λ → R such that

w(φ(x))
w(x)

= exp 2πig(x). (7)

One then defines ι : ker(φ∗ − id) → Cα(Λ, R) by ι([w]) = g + Bφ, where
Bφ = {uφ − u | u ∈ Cα(Λ, R)} denotes the set of coboundaries. The above
arguments then go through, with the hypothesis that H1(Λ, R) has finite
rank replaced by the hypothesis that ker(φ∗ − id) has finite rank. One then
finds a subspace ZR + Bφ of Cα(Λ, RN ) defined by the analogue (6) such
that the corresponding versions of Theorem 3.5 and Corollary 3.6 hold (with
ker(φ∗ − id) replacing H1(Λ, Z)).

Remark. In the case of a hyperbolic diffeomorphism we only require ker(φ∗−
id) to have finite rank. (Note that 1 is not an eigenvalue of φ∗ precisely when
ker(φ∗ − id) is trivial.)
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