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Abstract

We consider iterated function schemes that contract on average
with place-dependent probabilities. We are interested in generalisa-
tions of the central limit theorem, particularly to observations with
infinite variance. By studying the spectral properties of an associated
one-parameter family of transfer operators acting on an appropriate
function space, we prove both a distributional and local limit law with
convergence to a stable distribution.

§1 Introduction

The study of the limiting behaviour of the sum of a sequence of observations
of random variables is a key problem in dynamical systems and probability
theory. For example, the ergodic theorem describes the average behaviour
of such sums. In the case where the observation has finite variance, the cen-
tral limit theorem then describes the how these sums are distributed around
their expected value, namely convergence in distribution to a normal distri-
bution. More generally, if the observation does not have a finite variance,
then one can ask about convergence in distribution to a stable law. Stable
limit laws have been well-understood for i.i.d. random variables [IL, for ex-
ample], however there has been much recent interest in analogues of such
results in dynamical systems, particularly in hyperbolic and non-uniformly
hyperbolic systems [AD2, Gou, for example] and for random walks on the
affine group of the real line [GP]. In this note we study iterated function
schemes (IFS) with place-dependent probabilities that satisfy a ‘contraction-
on-average’ condition. Central limit theorems, and generalisations thereof,

∗School of Mathematics, The University of Manchester, Oxford Road, Manchester,
M13 9PL, U.K.

†An earlier version of the results in this paper appeared in the first author’s PhD
thesis. Financially supported by Fundação para a Ciência e Tecnologia, Portugal, grant
SFRH/BD/6921/2001.

1



for IFSs that contract-on-average have been studied in [Pe, HH2, W]. Such
systems are of interest in a wide range of situations, see [DF] and the refer-
ences cited therein. We discuss stable limit laws in the context of IFSs that
contract on average. We also prove a local version of the stable limit law.
The methodology uses the spectral properties of a one-parameter family of
transfer operators Pt. By studying Pt on an appropriate function space,
motivated by [HH1, HH2, GP], we prove that Pt is a quasi-compact oper-
ator with a simple maximal eigenvalue λt. We then apply a result from
[AD1, AD2] to study the asymptotic expansion of λt, allowing us to relate
λt to the sums in question.

§2 Statement of results

Let (X, d) be a locally compact (but not necessarily compact) second count-
able metric space. Consider a finite or countable family of Lipschitz maps
Tj : X → X, 1 ≤ j < M (where M ≤ ∞). We are interested in studying the
statistical properties of the iterated function scheme (IFS) formed by ap-
plying the maps Tj chosen at random according to place-dependent Markov
transition probabilities.

Let pj : X → [0, 1] be continuous maps such that
∑

j pj(x) = 1 for each
x ∈ X. Define a Markov transition probability by

p(x,A) =
∑
j

pj(x)χA(Tjx)

for each Borel subset A ⊂ X. (Here χA denotes the characteristic function
of A.)

We say that the system contracts on average after 1 step if there exists
r ∈ (0, 1) such that

sup
x,y,z∈X,y 6=z

∑
j

pj(x)d(Tjy, Tjz) ≤ rd(y, z). (1)

Remark. More precisely, we could refer to (1) as arithmetic contraction
on average. It is strictly stronger than a logarithmic contraction on average
condition, namely

sup
x,y,z∈X,y 6=z

∑
j

pj(x) log d(Tjy, Tjz) ≤ r log d(y, z),

as assumed in [BDEG].

More generally, we will consider IFSs that contract on average after n0 steps;
see §3.1.

We also assume that the pj ≥ 0 are continuous and satisfy a Dini condi-
tion (cf. [E1]).
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With these assumptions, together with the mild technical assumptions in
§3.1, it is known [BDEG, Pe] that there exists a unique attractive stationary
Borel probability measure ν on X, i.e. for all Borel sets A∫

p(x,A) dν(x) = ν(A). (2)

Moreover, for any x0 ∈ X, we have that
∫

d(x, x0) dν(x) < ∞. Let

θ0 = sup
{

θ > 0 |
∫

d(x, x0)θ dν(x) < ∞ for all x0 ∈ X

}
.

Note that θ0 > 1 and that
∫

d(x, x0)θ dν(x) < ∞ for all θ < θ0.
Let Σ = {j = (j1, j2, . . .) | 1 ≤ jk < M} denote the one-sided full-shift.

Define a cylinder set by [j1, j2, . . . , jn] = {i = (ik) ∈ Σ | ik = jk, 1 ≤ k ≤ n}.
For each x ∈ X we define a probability measure µx on Σ by defining µx on
cylinder sets by

µx[j1, j2, . . . , jn] = pj1(x)pj2(Tj1x) · · · pjn(Tjn−1 · · ·Tj1x). (3)

For each x ∈ X and j = (j1, j2, . . .) ∈ Σ we define

Zn(x, j) = Tjn · · ·Tj1(x)

and set Z0(x, j) = x. Then Zn(x, j) is an X-valued Markov chain with re-
spect to µx, with initial state x and transition probability p. For convenience
if j = (j1, j2, . . .) ∈ Σ then we shall often write Tn(j) = Tjn · · ·Tj1 .

We can relate µx and ν as follows [E2]. Define πx(j) = limn→∞ Tj1Tj2 · · ·Tjn(x)
for µx-a.e. j ∈ Σ. Then for all x ∈ X we have π∗xµx = ν.

Let f : X → R be a continuous function on X. We are interested in the
distribution of the sequence of observations

Snf(x, j) =
n∑

k=1

f(Zk(x, j)). (4)

It is known [E1] that Snf satisfies a pointwise ergodic theorem: for all
x ∈ X and µx-a.e. j ∈ Σ,

lim
n→∞

1
n

Snf(x, j) = ν(f). (5)

Under the mild technical hypotheses stated in §3.1, a central limit theorem
is also known to hold [Pe, HH2]. Let f : X → R be a bounded Lipschitz
function and fix x ∈ X. Then

1√
n

Snf(x, ·) →d Nν(f),σ2(f), (6)
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provided that the variance σ2(f) > 0. Here Nν(f),σ2(f) denotes the normal
distribution with mean ν(f) and variance σ2(f) and→d denotes convergence
in distribution. The variance is given by

σ2(f) = lim
n→∞

1
n

∫
(Snf(x, ·)− nν(f))2 dµx.

If f is a bounded Lipschitz function then σ2(f) < ∞.
The space X is typically not compact and so it makes sense to consider

functions f which satisfy some degree of regularity (a Hölder condition, for
example) but which are not in L2 and which do not have a finite variance.
In this case, it is natural to conjecture that the sequence of observations (4),
when normalised by a sequence that grows like n1/p for a suitable parameter
p ∈ (0, 2) (called the order), converges in distribution to a stable distribution
Yp,β,b,c (where p ∈ (0, 2), β ∈ [−1, 1], b ∈ R, c > 0 are parameters described
in §5). Stable laws can be characterised as being generalisations of the
Gaussian distribution that keep the stability property: if X and Y are two
random variables with the same stable distribution (up to an affine rescaling)
then X + Y has the same distribution (up to an affine rescaling). Stable
laws of order p = 1 are technically more difficult to deal with [AD1] and
for simplicity we concentrate on the case p ∈ (0, 1) ∪ (1, 2). We give a brief
introduction to stable laws and their properties that we shall need in §5.

Let f : X → R ∈ L1(ν) be continuous. We assume that f satisfies a
Hölder condition that we make precise in §3.2. Assume in addition that for
some p ∈ (0, 2)

ν{x | f(x) > t} =
1
tp

(C1 + o(1)), ν{x | f(x) < −t} =
1
tp

(C2 + o(1)), (7)

for constants C1, C2 > 0. (This condition can be weakened to include a
slowly varying function—see §§5,7,8.)

Our main result is the stable limit theorem.

Theorem 2.1 (Distributional Stable Limit Theorem)
Suppose that the IFS (Tj , pj) contracts on average and satisfies the technical
hypotheses in §3.1. Suppose that f : X → R satisfies a Hölder condition
stated in §3.2 and that, for some p ∈ (0, 2), (7) holds. Then for all x ∈ X,

µx

{
j ∈ Σ

∣∣∣∣ Snf(x, j)− an

n1/p
< t

}
→
∫ t

−∞
dYp,

as n →∞, for some stable law Yp of order p, where

an =

{
0 if p < 1,
nν(f), if p > 1.

(8)
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Given an observation f , the key to our results is an analysis of the spec-
tral properties of a one-parameter family of transfer operators Pt acting on a
certain Banach space of functions. The expansion of the maximal eigenvalue
λt of Pt as a function of t is intimately related to the characteristic function
of the respective stable distribution. An observation f that essentially does
not take values in a lattice will produce a non-periodic perturbation of the
spectrum of the transfer operator P . In this case the only t for which Pt has
an eigenvalue of modulus 1 is t = 0. Lattice-valued observations f give rise
to periodicity in t of the spectrum of Pt.

For a non-arithmetic observation f we have the following local limit
theorem.

Theorem 2.2 (Non-arithmetic local stable limit theorem)
Suppose that the IFS (Tj , pj) contracts on average and satisfies the technical
hypotheses in §3.1. Suppose that f : X → R satisfies a Hölder condition
given in §3.2 and the non-arithmeticity assumption in §8.1, and that, for
some p ∈ (0, 2), (7) holds. Then there exists a stable law Yp of order p with
density yp such that for any a, b ∈ R, a < b and any x ∈ X we have

lim
n→∞

∣∣∣n1/pµx{j ∈ Σ | Snf(x, j)− an ∈ z + [a, b]} − yp(z/n1/p)(b− a)
∣∣∣ = 0

uniformly in z ∈ R, where an is given by (8).

In the case where the observation f has finite variance, the same method of
proof also provides a local central limit theorem.

Theorem 2.3 (Non-arithmetic local central limit theorem)
Suppose that the IFS (Tj , pj) contracts on average and satisfies the technical
hypotheses in §3.1. Suppose that f : X → R satisfies a Hölder condition
given in §3.2 and the non-arithmeticity assumption in §8.1, and 0 < σ2(f) <
∞. Then for any a, b ∈ R, a < b and any x ∈ X we have

lim
n→∞

∣∣∣(2πσ2(f)n)1/2µx{j ∈ Σ | Snf(x, j)− nν(f) ∈ z + [a, b]}

− e
−z2

2σ2(f)n (b− a)

∣∣∣∣∣ = 0

uniformly in z ∈ R.

§3 Assumptions and function spaces

§3.1 Technical hypotheses

Let (X, d) be a locally compact second countable metric space. Choose and
fix a choice of origin x0 ∈ X.
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Let Tj : X → X be a finite or countable family of Lipschitz maps. If
T : X → X is Lipschitz then we define

‖T‖ = sup
x,y∈X,x 6=y

d(Tx, Ty)
d(x, y)

.

Let pj : X → [0, 1] be a countable family of probability functions such
that pj(x) ≥ 0 for all x ∈ X, j ∈ N and are Dini continuous. Define the
probability measure µx on Σ by (3). Define m(pj) = sup{|pj(x) − pj(y)| |
x, y ∈ X, d(x, y) ≤ 1}.

Definition. The IFS contracts on average after n0 steps if there exists
r ∈ (0, 1) such that

sup
x

Ex (‖Tn0(j)‖) ≤ r. (9)

We remark that there exist examples of IFSs (Tj , pj) that contract on average
after n0 steps, but which do not contract after 1 step and for which none of
the Tj are strict contractions [Pe].

We will assume the following technical conditions hold.

(i) We have

sup
x,y∈X

Ex

(
d(Tj(y), x0)
1 + d(y, x0)

)
< ∞. (10)

(ii) We have

sup
x∈X

Ex (max{1, ‖Tj‖}+ d(Tjx0, x0))m(pj) < ∞. (11)

(iii) We assume that for each x, y ∈ X there exists i = (i1, i2, . . .) ∈ Σ such
that for each m,

µx[i1, i2, . . . , im], µy[i1, i2, . . . , im] 6= 0. (12)

Assumption (10) can be viewed as a moment assumption on the Tj . Note
that (10), (11) are automatically satisfied if there are finitely many maps.
Assumption (12) is an irreducibility assumption that ensures that the trans-
fer operator below has 1 as the unique simple maximal eigenvalue.

§3.2 Function spaces

We assume that the continuous observation f : X → R satisfies a uniform
Hölder condition, namely for some α ∈ (0, 1]:

|f |(α) = sup
x,y∈X,x 6=y

|f(x)− f(y)|
d(x, y)α

< ∞. (13)
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For example, if X = R then f(x) = xα satisfies (13). In this case, σ2(f) = ∞
if 2α > θ0.

Choose ε, β, γ > 0 such that

0 < ε < ε + β < γ < ε + 2β < 1. (14)

For λ ∈ [0, 1] we define dλ(x) = 1 + λd(x, x0).
We will fix a choice of λ below. For a continuous function w : X → C

define
|w|γ = sup

x∈X

|w(x)|
dλ(x)γ

and
|w|ε,β = sup

x,y∈X,x 6=y

|w(x)− w(y)|
d(x, y)εdλ(x)βdλ(y)β

.

Then | · |γ is a norm and |w|ε,β is a semi-norm. We define a norm by

‖w‖ε,β,γ = |w|γ + |w|ε,β.

Then the spaces Cγ = {w : X → R | w is continuous and |w|γ < ∞} and
Cε,β,γ = {w ∈ Cγ | ‖w‖ε,β,γ < ∞} are Banach spaces with respect to the
norms | · |γ and ‖ · ‖ε,β,γ , respectively. Such function spaces have been well-
used in the study of IFSs and random walks on groups [GP, HH1, HH2, Pe].
Note that if λ1, λ2 ∈ (0, 1] then dλ1(x) ≤ λ−1

2 dλ2(x). Although different
values of λ ∈ (0, 1) give different norms | · |γ and ‖ · ‖ε,β,γ , it follows that the
norms are equivalent.

Let T : X → X be Lipschitz. Define

δλ(T ) = sup
x∈X

dλ(Tx)
dλ(x)

.

Lemma 3.1
If T : X → X is Lipschitz then δλ(T ) ≤ max{1, ‖T‖}+ λd(Tx0, x0).

Proof. Observe that

dλ(Tx)
dλ(x)

≤ 1 + λd(Tx, Tx0)
1 + λd(x, x0)

+
λd(Tx0, x0)
1 + λd(x, x0)

≤ 1 + λ‖T‖d(x, x0)
1 + λd(x, x0)

+ λd(Tx0, x0)

≤ max{1, ‖T‖}+ λd(Tx0, x0).

❏
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We now choose λ. Note that, as ε + 2β < 1 and taking n = qn0, it
follows from (9) that

sup
x

Ex

(
‖Tqn(·)‖ε(1 + ‖Tqn(·)‖)ε+2β

)
≤ sup

x
Ex (‖Tqn(·)‖ε) + sup

x
Ex

(
‖Tqn(·)‖ε+2β

)
≤ rqε + rq(ε+2β).

By fixing q sufficiently large we can ensure that rqε + rq(ε+2β) < 1. Let n′0 =
qn0 for this value of q. As dλ(Tn(j))2β < 1+‖Tn(j)‖2β +λ2βd(Tn(j)x0, x0)2β,
by choosing λ sufficiently small we can ensure that

sup
x

Ex

(
‖Tn′0

(·)‖εdλ(Tn′0
(·))2β

)
< r′ < 1 (15)

for some r′ < 1. We now fix λ as in (15).
The following result is well-known.

Lemma 3.2
The space Cε,β,γ is a Banach space with respect to the norm ‖ · ‖ε,β,γ .

Motivated by [HH1, HH2], we introduce the following norm: for w ∈
Cε,β,γ define

‖w‖(1)
ε,β =

∫
|w| dν + |w|ε,β.

We shall write |w|(1) =
∫
|w| dν.

Lemma 3.3
The space Cε,β,γ is a Banach space when equipped with the norm ‖ · ‖(1)

ε,β.

Moreover, the norms ‖ · ‖(1)
ε,β and ‖ · ‖ε,β,γ are equivalent.

Proof. We prove that Cε,β,γ is a Banach space with respect to ‖ · ‖(1)
ε,β. Let

wn ∈ Cε,β,γ be a Cauchy sequence with respect to ‖ · ‖(1)
ε,β. Let y0 ∈ X and

define vn(x) = wn(x)− wn(y0). Then

|vn(x)− vm(x)| = |(wn(x)− wm(x))− (wn(y0)− wm(y0))|
≤ |wn − wm|ε,βd(x, y0)εdλxβdλ(y0)β

so that

ν(|vn − vm|) ≤ |wn − wm|ε,βdλ(y0)β
∫

d(x, y0)εdλ(x, x0) dν. (16)

As the integrand in (16) is O(d(x, y0)ε+β) and ε + β < θ0, it follows that
ν(|vn − vm|) ≤ C|wn − wm|ε,β for some constant C > 0. Hence vn is a
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Cauchy sequence in the Banach space L1(ν) of L1 functions with respect to
ν. Hence vn converges in L1(ν) to, say, v ∈ L1(ν) and ν(vn) → ν(v).

As wn is a Cauchy sequence with respect to ‖ · ‖(1)
ε,β, we see that ν(wn)

is a Cauchy sequence of complex numbers, and so converges. Note that for
all x, wn(y0) = wn(x)−wn(x). Integrating this with respect to ν we obtain
wn(y0) = ν(wn) − ν(vn). Hence for each y0, wn(y0) converges. Hence wn

converges pointwise to some function, say w. As ν(wn) converges, it follows
from the Dominated Convergence Theorem that ν(wn) → ν(w).

It remains to check that w ∈ Cε,β,γ . Given ε > 0, choose N such that if
n, m ≥ N then |wn−wm|ε,β < ε. Letting m →∞ implies that |wn−w|ε,β ≤
ε. Also note that

|wn(x)− wn(x0)| ≤ |wn|ε,βd(x, x0)εdλ(x)β;

letting n →∞ and dividing by dλ(x)γ it follows that

|w(x)|
dλ(x)γ

≤ |w(x0)|
dλ(x)γ

+ |w|ε,β
d(x, x0)εdλ(x)β

dλ(x)γ
.

As ε + β < γ, we have that d(x, x0)εdλ(x)β/dλ(x)γ ≤ C, for some constant
C > 0. Hence |w|γ < ∞.

We prove that the two norms ‖ · ‖ε,β,γ , ‖ · ‖(1)
ε,β on Cε,β,γ are equivalent.

For w ∈ Cε,β,γ note that

|w(y)| ≤ |w(x)|+ |w|ε,βd(x, y)εdλ(x)βdλ(y)β

≤ |w(x)|+ |w|ε,βd(x, y)ε(d(x, x0)εdλ(x)βdλ(y)β

+ d(y, x0)εdλ(x)βdλ(y)β).

Hence there exists a constant C > 0 such that

|w(y)| ≤ ν(|w|) + |w|ε,βdλ(y)βC
(
ν(d(x, x0)ε+β + d(x, x0)β)

)
.

As β < γ, it follows that

|w(y)|
dλ(y)γ

≤ |w(y)|
dλ(y)β

≤ ν(|w|) + C ′|w|ε,β

for some constant C ′ > 0. Hence ‖w‖ε,β,γ ≤ ν(|w|) + (C ′ + 1)|w|ε,β ≤
(C ′ + 1)‖w‖(1)

ε,β.

As Cε,β,γ is a Banach space with respect to both ‖ · ‖ε,β,γ and ‖ · ‖(1)
ε,β

it follows from the Open Mapping Theorem that there exists a constant
C ′′ > 0 such that ‖w‖(1)

ε,β ≤ C ′′‖w‖ε,β,γ . ❏

We shall need the following result.
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Lemma 3.4
The inclusion ι : (Cε,β,γ , ‖ · ‖(1)

ε,β) ↪→ (Cε,β,γ , | · |(1)) is compact.

Proof. Let wn ∈ Cε,β,γ and suppose that ‖wn‖(1)
ε,β ≤ 1. As |wn|ε,β < 1,

it follows that wn is equicontinuous on every compact subset of X. By a
diagonalisation argument, there exists a subsequence nk →∞ such that wnk

converges uniformly to w ∈ Cε,β,γ , ‖w‖(1)
ε,β ≤ 1, on every compact set. As

|w(x)| ≤ dλ(x)γ , it follows from the Dominated Convergence Theorem that
|w − wnk

|(1) = ν(|wnk
− w|) → 0. ❏

§4 Spectral properties of a family of transfer operators

Define the operator P on continuous functions w by

Pw(x) =
∑
j

pj(x)w(Tjx).

Then P maps the space of continuous functions to itself and P1 = 1, so that
1 is an eigenvalue for P . For stronger spectral properties of P to hold we
need to restrict P to Cε,β,γ . The following result is proved in [Pe], albeit on
a slightly different function space; we sketch the argument in §4.1 below.

Proposition 4.1 ([Pe])
Under the technical hypotheses in §3.1, the operator P maps Cε,β,γ to itself,
has 1 as a simple maximal eigenvalue with associated eigenprojection ν, and
the remainder of the spectrum is contained within a disc of radius ρ < 1.

We will need to study the spectral properties of the following one-
parameter family of perturbed transfer operators. Fix a continuous function
f with |f |(α) < ∞. For each t ∈ R define

Ptw = P (eitfw) =
∑
j

pj(x)eitf(Tjx)w(Tjx).

We shall see below that Pt maps Cε,β,γ to itself. The relevance of Pt to the
sums of observations (4) is given by observing that

Pn
t w(x) = Ex

(
eitSnf(x,·)w(Zn(x, ·))

)
. (17)

We will prove that, for sufficiently small t, Pt has a unique simple maxi-
mal eigenvalue λt with corresponding eigenprojection πt and a spectral gap
so that the remainder of the spectrum is contained within a disc of radius ρt.
We will do this by establishing a Lasota-Yorke inequality for Pt and citing a
result of Hennion [H]. We also want to determine the continuity properties
of λt, πt, ρt, etc, as t varies. To do this, we will apply a theorem of Keller
and Liverani [KL].
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§4.1 A Lasota-Yorke inequality

We shall need the following estimates.

Lemma 4.2
(i) Let β ∈ (0, 1). Then

Bn(β) = sup
x,y

Ex

(
dλ(Zn(y, ·))β

dλ(y)β

)
< ∞.

(ii) We have

A(γ, ε) = sup
x,y∈X,x 6=y

∑
j

dλ(Tjx)γ

dλ(x)γ

|pj(x)− pj(y)|
d(x, y)ε

< ∞.

Proof. We prove (i). Let n0 be as in (9) and let

R = sup
`=0,...,n0−1

sup
x,y,z,y 6=z

Ex

(
d(Z`(y, ·), Z`(z, ·))

d(y, z)

)
< ∞.

Then Ex(d(Zn(y, ·), Zn(z, ·))) ≤ Rr

⌊
n

n0

⌋
= Rρn for some ρ ∈ (0, 1), increas-

ing R slightly if necessary. Then

Ex

(
dλ(Zk(y, ·))β

)
≤ 1 + λβ Ex (d(Zk(y, ·), Zk(x0, ·)))β + λβ Ex (d(Zk(x0, ·), x0))

β . (18)

Now

Ex (d(Zk(x0, ·), x0))
β

≤
k∑

`=1

∑
j`,···,jk

µTj`−1···Tj1
(x0)[j`, . . . , jk]d(Tjk

· · ·Tj`+1
(T`x0), Tjk

· · ·Tj`+1
(x0))β

≤
k∑

`=1

Rρk−` sup
x

Exd(Z1(x0, ·), x0),

which is bounded by a constant, by (10). The middle term in the right-hand
side of (18) is bounded by λβRβρnβd(y, x0)β . It follows that Bn(β) < ∞.

We prove (ii). If d(x, y) ≥ 1 then 1/d(x, y) ≤ 1 so that

A(γ, ε) ≤ sup
x,y∈X,x 6=y

∑
j

dλ(Tjx)γ

dλ(x)γ
pj(x) +

dλ(Tjx)γ

dλ(x)γ
pj(y)

≤ sup
x,y

Ex(δ(Tj)γ) + Ey(δ(Tj)γ)

≤ 2B1(γ).
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If d(x, y) ≤ 1 then, recalling that m(pj) = supx,y∈X,d(x,y)≤1 |pj(x)−pj(y)|/d(x, y),
we have∑

j

dλ(Tjx)γ

dλ(x)γ

|pj(x)− pj(y)|
d(x, y)ε

=
∑
j

dλ(Tjx)γ

dλ(x)γ

|pj(x)− pj(y)|
d(x, y)

d(x, y)1−ε

≤
∑
j

δλ(Tj)γm(pj).

Hence (ii) follows from (i) and (11). ❏

We can now prove a Lasota-Yorke inequality for Pt.

Proposition 4.3
There exist constants Rn > 0 such that for all w ∈ Cε,β,γ we have

|Pn
t w|ε,β ≤ sup

x
Ex

(
‖Tn(·)‖εδλ(Tn(·))2β

)
|w|ε,β + Rn|t|ε/α|w|γ .

Proof. Let w ∈ Cε,β,γ .
First note that

|Pn
t w(x)| ≤

∑
j1,...,jn

µx[j1, . . . , jn]|w(Zn(x, j))|

≤
∑

j1,...,jn

µx[j1, . . . , jn]|w|γdλ(Zn(x, j))γ

≤
∑

j1,...,jn

µx[j1, . . . , jn]|w|γδλ(Tn(j))γdλ(x)γ

so that
|Pn

t w|γ ≤ Ex (δλ(Tn(·))γ) |w|γ .

Note that

Ex (δλ(Tn(·))γ) ≤ 1 + Ex(‖Tn(·)‖)γ + λγ Ex (d(Tjx0, x0)γ) < ∞

as γ < 1 and (10). Hence there exists M > 0 such that |Pn
t |γ ≤ Mn.

Let x, y ∈ X and assume, without loss of generality, that dλ(y) ≤ dλ(x).
We can write

|Pn
t w(x)− Pn

t w(y)|

=

∣∣∣∣∣∣
∑

j1,...,jn

(
µx[j1, . . . , jn]eitSnf(x,j)w(Zn(x, j))− µy[j1, . . . , jn]eitSnf(y,j)w(Zn(y, j))

)∣∣∣∣∣∣
≤ Σ(n)

w + Σn
f + Σn

µ

12



where

Σ(n)
w =

∣∣∣∣∣∣
∑

j1,...,jn

µx[j1, . . . , jn]eitSnf(x,j) (w(Zn(x, j))− w(Zn(y, j)))

∣∣∣∣∣∣ ,
Σ(n)

f =

∣∣∣∣∣∣
∑

j1,...,jn

µx[j1, . . . , jn]
(
eitSnf(x,j) − eitSn(y,j)

)
w(Zn(y, j))

∣∣∣∣∣∣ ,
Σ(n)

µ =

∣∣∣∣∣∣
∑

j1,...,jn

(µx[j1, . . . , jn]− µy[j1, . . . , jn]) eitSnf(y,j)w(Zn(y, j))

∣∣∣∣∣∣ .
Now

Σ(n)
w ≤

∑
j1,...,jn

µx[j1, . . . , jn]|w(Zn(x, j))− w(Zn(y, j))|

≤
∑

j1,...,jn

µx[j1, . . . , jn]|w|ε,βd(Zn(x, j), Zn(y, j))εdλ(Zn(x, j))βdλ(Zn(y, j))β

≤ |w|ε,β Ex

(
‖Tn(·)‖εδλ(Tn(·))2β

)
d(x, y)εdλ(x)βdλ(y)β . (19)

We can write

Σ(n)
f ≤

∑
j1,...,jn

µx[j1, . . . , jn]
∣∣∣eitSnf(x,j) − eitSnf(y,j)

∣∣∣ |w(Zn(x, j))|

≤ |w|γ
∑

j1,...,jn

µx[j1, . . . , jn]
∣∣∣eit(Snf(x,j)−Snf(y,j)) − 1

∣∣∣ dλ(Zn(y, j))γ

≤ |w|γ
n∑

k=1

Σ(n),k
f

where

Σ(n),k
f =

∑
j1,...,jn

µx[j1, . . . , jn]
∣∣∣eit(f(Zk(x,j))−f(Zk(y,j))) − 1

∣∣∣ dλ(Zn(y, j))γ .

Recall that for any η > 0 we have that |eix − 1| < max{2, |x|η} ≤ 2|x|η.
Recalling that |f |(α) < ∞, by taking η = ε/α we can bound

Σ(n),k
f ≤ 2|t|ε/α|f |ε/α

(α)

∑
j1,...,jn

µx[j1, . . . , jn]d(Zk(x, j), Zk(y, j))εdλ(Zn(x, j))γ

≤ 2|t|ε/α|f |ε/α
(α)

∑
j1,...,jk

µx[j1, . . . , jk]d(Zk(x, j), Zk(y, j))εdλ(Zk(x, j))γ

×
∑

jk+1,...,jn

µZk(x,j)[jk+1, . . . , jn]
dλ(Tjn · · ·Tjk+1

(Zk(y, j)))γ

dλ(Zk(y, j))γ

≤ 2|t|ε/α|f |ε/α
(α) Bn−k(γ) Ex (d(Zk(x, ·), Zk(y, ·))εdλ(Zk(y, j))γ)

≤ 2|t|ε/α|f |ε/α
(α) Bn−k(γ) Ex (‖Tk(·)‖εδλ(Tk(·))γ) d(x, y)εdλ(y)γ .

13



As dλ(y) ≤ dλ(x) and γ < 2β it follows that

Σ(n),k
f ≤ 2|t|ε/α|f |ε/α

(α) Bn−k(γ) Ex (‖Tk(·)‖εδλ(Tk(·))γ) d(x, y)εdλ(x)βdλ(y)β.

(20)
We can write

Σ(n)
µ ≤

∑
j1,...,jn

|µx[j1, . . . , jn]− µy[j1, . . . , jn]| |w(Zn(y, j))|

≤ |w|γ
n∑

k=1

Σ(n),k
µ

where

Σ(n),k
µ =

∑
j1,...,jn

µZk(x,j)[jk+1, . . . , jn] |pjk
(Zk−1(x, j))− pjk

(Zk−1(y, j))|

× µy[j1, . . . , jk−1]dλ(Zn(y, j))γ

=
∑

j1,...,jk−1

 ∑
jk+1,...,jn

µZk(x,j)[jk+1, . . . , jn]
dλ(Tjn · · ·Tjk+1

(Zk(x, j)))γ

dλ(Zk(x, j))γ


×
∑
jk

dλ(Tjk
(Zk−1(x, j))γ)

dλ(Zk−1(x, j))γ

|pjk
(Zk−1(x, j))− pjk

(Zk−1(y, j))|
d(Zk−1(x, j), Zk−1(y, j))ε

µy[j1, . . . , jk−1]d(Zk−1(x, j), Zk−1(y, j))εdλ(Zk−1(x, j))γ

≤ Bn−k(γ)A(γ, ε)
∑

j1,...,jk−1

µy[j1, . . . , jk−1]d(Zk−1(x, j), Zk−1(y, j))εdλ(Zk−1(x, j))γ

≤ Bn−k(γ)A(γ, ε) Ey (‖Tk−1(·)‖εδλ(Tk−1(·))γ) d(x, y)εdλ(y)γ .

As dλ(y) ≤ dλ(x) and γ < 2β it follows that

Σ(n),k
µ ≤ Bn−k(γ)A(γ, ε) Ey (‖Tk−1(·)‖εδλ(Tk−1(·))γ) d(x, y)εdλ(x)βdλ(y)β.

(21)
As ε + γ < ε + 2β < 1 and by Lemma 4.2, the right-hand sides of (19),

(20), (21) are finite. Hence there exists a constant Rn > 0 such that

|Pn
t w|ε,β ≤ sup

x
Ex

(
‖Tn(·)‖εδλ(Tn(·))2β

)
|w|ε,β + Rn|t|ε/α|w|γ .

❏

Remark. By taking n = 1 in Proposition 4.3 we see that Pt maps Cε,β,γ

into itself.

Consider the case t = 0. Taking n = n′0 in Proposition 4.3 we have that

|Pn′0
t w|ε,β ≤ r′|w|ε,β + R′|t|ε/α|w|γ (22)
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for some R′ > 0. It follows from Hennion’s improvement [H] of the classi-
cal Ionescu-Marinescu-Tulcea theorem that Pn′0 , and hence P , is a quasi-
compact operator. Hence we can decompose

P =
∑
λ∈G

λπλ + Q (23)

where G is a finite group of eigenvalues of modulus 1, πλ is the eigenpro-
jection onto the corresponding eigenspace, Q is the eigenprojection onto
the remainder of the spectrum with ρ(Q) < ρ for some ρ ∈ (0, 1), and
πλQ = Qπλ = 0. The following result shows that, under (12), 1 is the only
eigenvalue of modulus 1 for P .

Lemma 4.4
The only eigenvalue λ of modulus 1 of P : Cε,β,γ → Cε,β,γ is λ = 1 and the
only eigenfunctions are constants.

Proof. This is proved in [Pe], albeit on a slightly different function space.
For completeness we sketch the argument. Clearly P1 = 1, so that 1 is an
eigenvalue of P and the constants are eigenfunctions. We decompose P as
in (23) and we show that π1(w) =

∫
w dν and πλ = 0 for λ 6= 1.

Suppose that Pw = w, where w ∈ Cε,β,γ is bounded.

Sub-lemma 4.5
For each x ∈ X we claim that there exists a set Σx ⊂ Σ such that for all
j ∈ Σx we have:

(i) limn→∞ w(Zn(x, j)) exists,

(ii) lim infn→∞ d(x0, Zn(x, j)) < ∞,

(iii) for all m ≥ 1 and all i1, . . . , im, we have that w(Zn(x, j)) = w(Tim · · ·Ti1Zn(x, j))
whenever µZn(x,j)[i1, . . . , im] 6= 0.

Let x, y ∈ X. For each j ∈ Σx, by (ii) we can choose a sequence nk =
nk(j) such that Znk

(x, j) → xj for some xj ∈ X. As w is continuous,
by (iii) we have that w(xj) = w(Tim · · ·Ti1xj) whenever µxj

[i1, . . . , im] 6=
0. Similarly, for each j′ ∈ Σy, we can find yj′ ∈ X such that w(yj′) =
w(Tim · · ·Ti1yj′) whenever µyj′ [i1, . . . , im] 6= 0.

By (12), choose i = (i1, i2, . . .) ∈ Σ such that for all m, µxj
[i1, . . . , im],

µyj′ [i1, . . . , im] 6= 0. Then, as the pj are continuous, (iii) is satisfied for
sufficiently large nk. Hence

|w(xj)− w(yj)|
= |w(Tim · · ·Ti1xj)− w(Tim · · ·Ti1yj′)|
≤ |w|ε,β‖Tim · · ·Ti1‖εdλ(Tim · · ·Ti1)

2βd(xj, yj′)εdλ(xj)βdλ(yj′)β

≤ C(xj, yj′) Ex

(
‖Tm(i)‖εδλ(Tm(i))2β

)
.
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Taking m = qn′0 where n′0 is given by (15) we see that this expression
is bounded by C(xj, yj′)(r′)q. Letting q → ∞ shows that w(xj) = w(yj′)
whenever j ∈ Σx and j′ ∈ Σy. As w(xj) = limnk

w(Znk
(x, j)) and w(x) =

Ex(w(xxj
)), and similarly for y, it follows that w(x) = w(y). Hence w is

constant.
Let Mn = n−1∑n−1

k=0 P k. Then ‖Mn − π1‖ → 0 as n → ∞ (here ‖ · ‖
denotes the operator norm on Cε,β,γ). As |Mnw|∞ ≤ |w|∞, it follows that
π1w is bounded. By the above, π1w is constant.

If Pw = w and w ∈ Cε,β,γ is not bounded, then define wc(x) = w(x)
if |w(x)| ≤ c and wc(x) = cw(x)/|w(x)| if |w(x)| > c. Then wc ∈ Cε,β,γ

is bounded. Hence π1wc is constant. Note that |Mnwc(x) − π1wc(x)| ≤
‖Mn − π1‖‖wc‖ε,β,γdλ(x)γ . By dominated convergence, Mnwc → Mnw as
c →∞. Hence π1wc → π1w as c →∞, so that π1w is constant.

It remains to prove Sublemma 4.5.

Proof of Sublemma 4.5. Let Bn denote the sub-σ-algebra of Σ gener-
ated by cylinder sets of length n. Then it is straightforward to check from
the definitions that if Pw = w then

Ex(w(Zn(x, j)) | Bn) = P (w(Zn(x, j))) = w(Zn(x, j)).

Hence w(Zn(x, ·)) is a martingale with respect to Bn. Property (i) then
follows from standard properties of martingales.

Property (ii) is a simple consequence of the contraction on average as-
sumption and (10).

Note that

Ex

 ∞∑
n=0

∑
i1,...,im

µZn(x,·)[i1, . . . , im] (w(Tim · · ·Ti1Zn(x, ·))− w(Zn(x, ·)))2


=
∞∑

n=0

Ex

 ∑
i1,...,im

µZn(x,·)[i1, . . . , im] (w(Tim · · ·Ti1Zn(x, ·))− w(Zn(x, ·)))2


=
∞∑

n=0

Ex(w(Zn+m(x, ·))2)− Ex(w(Zn(x, ·))2)

≤ 2m|w|∞

where we have used the fact that Ex((w(Zn+m(x, ·)) − w(Zn(x, ·)))2) =
Ex(w(Zn+m(x, ·))2)− Ex(w(Zn(x, ·))2). Hence the first integrand in the ex-
pression above is finite µx-a.e., hence the summand converges to zero µx-a.e.

❏

Now suppose that Pw = λw where λ ∈ G, w ∈ Cε,β,γ . Introduce a new
operator P̂ defined on X × N by

P̂W (x, n) =
∑
j

pj(x)W (Tjx, n + 1).
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By taking W (x, n) = λ−nw(x), we see that P̂W = W if and only if Pw =
λw. A similar argument to that above then shows that w is zero. ❏

§4.2 Perturbation of the spectrum of Pt

We want to study how the spectrum of Pt behaves for t in a neighbourhood
of 0. To do this, we use the following perturbation result of Keller and
Liverani:

Theorem 4.6 ([KL])
Suppose that (B, ‖ · ‖) is a Banach space equipped with a second norm
| · | ≤ ‖ · ‖ (we do not require (B, | · |) to be complete). Let Pt be a one-
parameter family of bounded linear operators. Suppose that

(i) the inclusion ι : (B, ‖ · ‖) ↪→ (B, | · |) is compact;

(ii) there exists an interval J ′, 0 ∈ J ′, and n0 > 0 such that for t ∈ J ′,
Pn0

t satisfies a uniform Lasota-Yorke condition: there exists ρ ∈ (0, 1)
and R > 0 such that for all w ∈ B, t ∈ J ,

‖Pn0
t w‖ ≤ ρ‖w‖+ R|w|;

(iii) |||Pt − P0||| → 0 as t → 0 (here, if Q : B → B is a bounded linear
operator, then |||Q||| = supw∈B |Qw|/‖w‖).

Then there exists an interval J ⊂ J ′ containing 0 such that if t ∈ J then Pt

is quasi-compact. Suppose in addition that P0 has a unique simple maximal
eigenvalue at 1. Then Pt has a unique simple maximal eigenvalue λt with
corresponding eigenprojection πt. For t ∈ J , the dependence t 7→ λt is
continuous, and |||πt − π0||| → 0. Moreover, there exists ρ0 < 1 such that
if Qt denotes the projection onto the remainder of the spectrum of Pt, then
Qt has spectral radius ρ(Qt) ≤ ρ0, for all t ∈ J .

To apply Theorem 4.6, we need to study how Pt−P varies in an appro-
priate norm. As is observed in a similar context in [HH2],

|Ptw(x)− w(x)| ≤
∑
j

pj(x)|eitf(Tjx) − 1||w(Tjx)|

≤
∑
j

pj(x)|t|ε|f(Tjx)|ε|w|γδλ(Tj)γdλ(x)γ .

If X is not compact, then dλ(x) is unbounded. Hence t 7→ Pt is not a priori
continuous in the | · |γ-topology. For this reason we work with the norms
‖ · ‖(1)

ε,β and | · |(1).
By Lemma 3.4, hypothesis (i) of Theorem 4.6 holds.
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For an operator Q : Cε,β,γ → Cε,β,γ we define

|||Q||| = sup

 |Qw|(1)

‖w‖(1)
ε,β

| w ∈ Cε,β,γ

 .

Lemma 4.7
There exists a constant C > 0 such that

|||Pt − P ||| ≤ C|t|ε.

Proof. Note that if w ∈ Cε,β,γ then

|Ptw − Pw| ≤
∑
j

pj(x)|eitf(Tjx) − 1||w(Tjx)|

≤
∑
j

pj(x)|t|ε|f(Tjx)|ε|w|γδλ(Tj)γdλ(x)γ .

From (13) we have that

|f(Tjx)|ε ≤ |f(x0)|ε + |f |ε(α)d(Tjx, x0)εα ≤ Cδλ(Tj)εαdλ(x)εα

for some constant C > 0. Hence

ν(|Ptw − w|) ≤ C|w|γ |t|ε Ex (δ(Tjx)εα+γ)
∫

dλ(x)εα+γ dν. (24)

By definition, |w|γ < ‖w‖ε,β,γ . By Lemma 3.3 and the fact that (14) implies
that εα + γ < 1 so that the two integrals in (24) are finite, it follows that
ν(|Ptw − w|) ≤ C ′|t|ε‖w‖(1)

ε,β. ❏

Hence hypothesis (ii) of Theorem 4.6 holds.
By Lemma 3.3 there exists C > 0 such that | · |γ ≤ C(| · |ε,β + | · |1). From

(22) we have that

|Pn0
t w|ε,β ≤ (r′ + CR′|t|ε/α)|w|ε,β + CR′|t|ε/α|w|(1).

Choose ρ with r′ < ρ < 1. Then there exists an interval J ′ containing 0 such
that if t ∈ J ′ then r′ + CR′|t|ε/α < ρ. Hence hypothesis (iii) of Theorem 4.6
holds.

By Lemma 4.4, P has a simple maximal eigenvalue at 1. Hence by
Theorem 4.6 there exists an interval J , 0 ∈ J , and ρ0 < 1 such that for
t ∈ J we can write

Pt = λtπt + Qt

where t 7→ λt is continuous, πt is a one-dimensional projection operator with
limt→0 |||πt − ν||| = 0, and Qt is the projection onto the remainder of the
spectrum and has spectral radius at most ρ0. As πtQt = Qtπt = 0, it follows
that Pn

t = λn
t πt + Qn

t .
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§5 Stable laws

Stable distributions are generalisations of the Gaussian distribution. Given
a sequence of normally distributed independent random variables Xi it is
well-known that the partial sums Sn = X0 + · · · + Xn−1 have the property
that n−1/2Sn is also normally distributed. The stable laws are characterised
by this behaviour: a suitable rescaling of independent partial sums has the
same distribution. More precisely, we have the following definition:

Definition. A distribution function F is called stable if, for any a1, a2 > 0
and any b1, b2, there exist constants a > 0 and b such that F (a1x + b1) ∗
F (a2x + b2) = F (ax + b), where ∗ denotes convolution.

It is known that four parameters completely determine a stable law [IL]:
Yp,β,b,c denotes the stable law with order p ∈ (0, 2), symmetry β ∈ [−1, 1],
origin b ∈ R and scaling factor c > 0. We often identify stable distributions
up to translation and scaling, denoting them simply by Yp,β.

The tail behaviour of a stable law is encoded in its order p. For p ∈
(0, 1) ∪ (0, 2), there are constants c1, c2 ≥ 0 (not both zero) such that
P (Yp,β > t) = (c1 + o(1))t−p and P (Yp,β < t) = (c2 + o(1))t−p.

Recall that if a random variable has distribution F then the characteristic
function φ of this distribution is given by

φ(t) =
∫ ∞

−∞
eitx dF (x).

In general, an explicit formula for the density of a stable distribution
is only known in a handful of special cases. However, explicit formulæ for
their characteristic functions are known.

Theorem 5.1 ([IL])
A distribution Y is stable of order p ∈ (0, 1) ∪ (1, 2) if and only if its char-
acteristic function φY (t) can be written in the form

φY (t) = exp
(

ibt− c|t|p
(

1− iβ sign(t) tan
(

π

2
p

)))
, (25)

where β, b and c are constants.

There is a corresponding formula for stable laws of order 1 [AD1].
We will also need the notion of slowly varying function.

Definition. A function l : R → R is said to be slowly varying if for every
t ∈ R

lim
x→∞

l(tx)
l(x)

= 1.
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Definition. We say that a function f (with distribution F ) is in the do-
main of attraction of a stable law of order p ∈ (0, 2) if there is a slowly
varying function l : R → R and constants c1, c2 ≥ 0, not both zero, such
that

1− F (t) =
1
tp

(c1 + o(1))l(t), F (−t) =
1
tp

(c2 + o(1))l(t) (26)

as t →∞.

The expansion of the characteristic function of a function in the domain
attraction of a stable law was studied by Ibragimov and Linnik for p 6= 1
[IL] and by Aaronson and Denker [AD1] for p = 1 in dimension one and for
all p for multidimensional distributions. For simplicity, in what follows we
will focus on real-valued functions and the case p ∈ (0, 1) ∪ (0, 2).

In §6 we relate the characteristic function of an observation f defined on
the IFS to the expansion of the maximal eigenvalue of Pt. We shall use the
following criterion.

Theorem 5.2 ([IL])
Let F be a distribution with characteristic function φF (t). Suppose that
p 6= 1 and let Y = Yp,β,b,c be the stable law with characteristic function
given by (25). Then a necessary and sufficient condition for F to be in the
domain of attraction of the stable law Y is that in the neighbourhood of the
origin

φF (t) = exp
(

ibt− c|t|pl(t)
(

1− iβ sign(t) tan
(

π

2
p

)))
,

where l(t) is slowly varying as t → 0.

§6 Expansion of the maximal eigenvalue

When σ2(f) < ∞ then one has the following expansion of the maximal
eigenvalue λt of Pt:

λt = ν(f)t +
σ2(f)

2
t2 + o(t2)

from which the Central Limit Theorem then follows. Under additional hy-
potheses, the o(t2) term can be improved and Berry-Esseen bounds can be
proved. This is discussed in [HH2] in the case of random walks on semigroups
of Lipschitz mappings that contract on average, with a place-independent
probability.

When σ2(f) is infinite we have the following asymptotic expansion of λt.

Theorem 6.1 (Expansion of the maximal eigenvalue)
For p ∈ (0, 1)∪ (1.2) suppose that f has distribution F and is in the domain
of attraction of a stable law Y = Yp,β,b,c of order p. Let λt be the maximal
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eigenvalue of the perturbed operator Pt. Then there is a slowly varying
function l such that

Re logλt = − sign(t)|t|pcl(t−1) + o(|t|pl(t−1))

and

Im logλt = tb− sign(t)|t|pcβ tan
(

pπ

2

)
+ o(tpl(t−1)),

where β = (c2 − c1)/(c1 + c2) with c1, c2 as in (26), b is given by

b =

 0 for p ∈ (0, 1),∫ ∞

−∞
x dF (x) for p ∈ (1, 2)

and c = (c1 + c2)π/2.

Proof (sketch). The proof follows closely ideas in [AD2] (which in turn
makes use of ideas in [N]). We indicate the modifications required.

Since f , with distribution F , is in the domain of attraction of a stable law
Yp,β there is a slowly varying function l : R → R and constants c1, c2 ≥ 0,
not both zero, such that (26) holds.

The proof consists of estimating 1− λt, where λt is the maximal eigen-
value of Pt, and then using the fact that log(λt) = log(1 + (λt − 1)) =
(λt − 1) + O(|λt − 1|2).

Let wt denote the maximal eigenfunction of Pt corresponding to the
eigenvalue λt so that Ptwt = λtwt. We normalise wt so that

∫
wt dν = 1.

Let F denote f−1(B) where B denotes the σ-algebra of Borel subsets of R.
We define w̃t by w̃t ◦ f = E(wt | F). Note that

λt = λtν(wt) = ν(λtwt) = ν(Ptwt) = ν(P (eitfwt))

= ν(eitfwt) = ν(eitf E (wt | F)) =
∫

eitxw̃t dF (x).

Similarly,

1 =
∫

w̃t dF (x)

so that dFt = w̃t dF is a probability measure on R. Hence

1− λt =
∫ ∞

−∞
(1− eitx) dFt(x).

The proof now proceeds as in [AD2, N]. ❏
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§7 Distributional stable limit theorems

We are now in position to prove our main result.

Theorem 7.1
For p ∈ (0, 1)∪ (1, 2), suppose that f is continuous, |f |(α) < ∞ and is in the
domain of attraction of a stable law Y of order p, satisfying (26). Then for
any x ∈ X,

µx

{
j ∈ Σ

∣∣∣∣ Snf(x, j)− an

bn
< t

}
→
∫ t

−∞
dY,

as n →∞ with an = 0 if p < 1 and an = nν(f) if p > 1, and bp
n = nl(bn).

Proof. By replacing f by f−ν(f) there is no loss in generality in assuming
that an = 0.

It is well-known that a sequence of random variables converges in dis-
tribution if and only if their corresponding characteristic functions converge
pointwise at continuity points. The characteristic function of Y = Yp,β is

E(eitY ) = exp
(
−c|t|p

(
1− iβ sign(t) tan

(
pπ

2

)))
.

Hence it is sufficient to prove that

Ex

(
exp

(
it

Snf(x, ·)
bn

))
→ exp

(
−c|t|p

(
1− iβ sign(t) tan

(
pπ

2

)))
as n →∞.

By §4.2, we can write Pn
s = λn

s πs + Qn
s for s ∈ J , a neighbourhood of 0.

Fix t. Then t/bn ∈ J for sufficiently large n. Recalling (17), we note that∣∣∣∣Pn
t

bn

1(x)− exp
(
−c|t|p

(
1− iβ sign(t) tan

(
pπ

2

)))∣∣∣∣
=

∣∣∣∣λn
t

bn

π t
bn

(1)(x) + Qn
t

bn

(1)(x)− exp
(
−c|t|p

(
1− iβ sign(t) tan

(
pπ

2

)))∣∣∣∣
≤

∣∣∣∣λn
t

bn

π t
bn

(1)(x)− exp
(
−c|t|p

(
1− iβ sign(t) tan

(
pπ

2

)))∣∣∣∣+ ∣∣∣∣Qn
t

bn

(1)(x)
∣∣∣∣

≤
∣∣∣∣λn

t
bn

− exp
(
−c|t|p

(
1− iβ sign(t) tan

(
pπ

2

)))∣∣∣∣
+
∣∣∣∣λn

t
bn

∣∣∣∣ · ∣∣∣∣π t
bn

(1)(x)− 1
∣∣∣∣+ ∣∣∣∣Qn

t
bn

(1)(x)
∣∣∣∣ . (27)

As |λn
t/bn

| is bounded above by 1 and |||πt − ν||| → 0, we have∣∣∣∣λn
t

bn

∣∣∣∣ · ∣∣∣∣π t
bn

(1)(x)− 1
∣∣∣∣→ 0

as n →∞. Moreover, ∣∣∣∣Qn
t

bn

(1)(x)
∣∣∣∣→ 0

22



as n →∞ as ‖Qn
t

bn

‖ ≤ ρn
0 provided n is sufficiently large. It remains to show

that the first term in (27) converges to 0.
It follows from Theorem 6.1 that

Re logλ t
bn

= −n sign(t)c
∣∣∣∣ t

bn

∣∣∣∣p l

(
bn

t

)
+ o

(∣∣∣∣ t

bn

∣∣∣∣p l

(
bn

t

))
.

and

Im logλ t
bn

= −n sign(t)c
∣∣∣∣ t

bn

∣∣∣∣p (βl

(
bn

t

)
tan

(
pπ

2

))
+ o

(∣∣∣∣ t

bn

∣∣∣∣p l

(
bn

t

))
.

Note that
o

(∣∣∣∣ t

bn

∣∣∣∣p l

(
bn

t

))
= o

(
tp

n

l(bn/t)
l(bn)

)
. (28)

As l is slowly varying, l(bn/t)/l(bn) → 1 as n → ∞. Hence (28) converges
to 0 as n →∞.

Similarly,

−n sign(t)c
∣∣∣∣ t

bn

∣∣∣∣p l

(
bn

t

)
= − sign(t)c|t|p l(bn/t)

l(bn)
→ − sign(t)c|t|p

and

−n sign(t)c
∣∣∣∣ t

bn

∣∣∣∣p βl

(
bn

t

)
tan

(
pπ

2

)
= − sign(t)c|t|pβ l(bn/t)

l(bn)
tan

(
pπ

2

)
→ − sign(t)c|t|pβ tan

(
pπ

2

)
as n →∞. This completes the proof. ❏

§8 Local stable limit theorems

§8.1 Arithmeticity and cohomology of observations

The local distributional limiting behaviour of the sequence of observations
f(Zn(x, ·)) depends on whether f essentially takes values in a lattice.

Definition. A function f : X → R is said to be arithmetic if there exists
t0 6= 0 such that Pt0 has an eigenvalue of modulus 1, i.e. there exists r ∈
[0, 2π), w ∈ Cε,β,γ , w 6= 0, such that Pt0w = eirw. Otherwise, we say that f
is non-arithmetic.

We have the following characterisation of arithmeticity. We say that
two functions f1, f2 are cohomologous if there exists a function h such that
f1Tj = f2Tj + h− hTj for all j.

Proposition 8.1
Suppose that f is continuous and that

∫
f dν = 0. Then the following are

equivalent:
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(i) f is arithmetic.

(ii) f is cohomologous to a function taking values in a lattice.

Proof. If f is cohomologous to a lattice-valued function then there exists
t0 6= 0 such that t0fTj = r+kTj = h−hTj where r ∈ R and k is 2πZ-valued.
It follows that Pt0(e

ih) = eireih so that f is arithmetic.
The converse is a standard convexity argument. Suppose that for some

t0 6= 0 there exists a non-zero w ∈ Cε,β,γ such that Pt0w = eirw. Then
|w| ≤ P (|w|). As ν(|w|) ≤ ν(P (|w|)) = ν(|w|) it follows that |w| is a
constant, which we may take to be 1, ν-a.e. Writing w = eih we have
that Pt0(e

ih) =
∑

j pj(x)eit0f(Tjx)+ih(Tjx) = eireih, a convex sum of complex
numbers of modulus 1. Hence this sum is trivial, i.e. fTj = r+kTj +h−hTj

for some lattice valued function k. ❏

§8.2 Local stable limit theorems

In this section we prove the local stable limit theorem in the case where f
is in the domain of attraction of a stable law of order p ∈ (0, 1) ∪ (1, 2).

Theorem 8.2
Let f be a continuous non-arithmetic function with |f |(α) < ∞ and ν(f) = 0.
Suppose that f satisfies (26) and is in the domain of attraction of a stable
law Yp with density yp. Fix x ∈ X. Then for any a, b ∈ R, a < b we have

lim
n→∞

|bnµx{j ∈ Σ | Snf(x, j) ∈ z + [a, b]} − yp(z/bn)(b− a)| = 0

uniformly in z ∈ R, where bp
n = bl(bn).

Proof. Define the sequence of measures mn on R by defining how they
integrate continuous functions: if w : R → R is continuous∫

w dmn = Ex

(
bn

yp(z/bn)

∫
w(−z + Snf(x, ·))

)

for a continuous function w : R → R. To prove the theorem it is sufficient
to prove that mn weak∗ converges to Lebesgue measure on R. Let H denote
the space of continuous functions w : R → R such that the Fourier transform
ŵ is compactly supported. To prove that mn weak∗ converges to Lebesgue
measure, it is sufficient to prove that mn(w) →

∫
w(t) dt for all w ∈ H [Br].

Define

An(z) = bn Ex (w(−z + Snf(x, ·)))− yp(z/bn)
∫ ∞

−∞
w(t) dt.

Thus it is sufficient to prove that |An(z)| → 0 as n →∞ uniformly in z ∈ R.
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We denote the Fourier transform of w by

ŵ(s) =
∫ ∞

−∞
w(t)e−ist dt.

Then by the inversion formula we have

w(t) =
1
2π

∫ ∞

−∞
ŵ(s)eist ds.

Moreover, by Theorem 5.1 we have that

yp(z) =
1
2π

∫ ∞

−∞
φp(t)e−itz dt

where
φp(t) = exp (−c|t|p(1− iβ sign(t) tan(pπ/2))) .

Suppose that ŵ is supported on [−δ, δ]. Then for any α ∈ (0, δ) we can
write

2πAn(z)

= bn Ex

(∫ ∞

−∞
ŵ(t)eit(−z+Snf(x,·)) dt

)
− ŵ(0)

∫ ∞

−∞
φp(t)e

− itz
bn dt

= bn

∫ δ

−δ
ŵ(t)

∫
Σ

eitSnf(x,·) dµx e−itz dt− ŵ(0)
∫ ∞

−∞
φp(t)e

− itz
bn dt

=
∫ δbn

−δbn

ŵ

(
t

bn

)
Pn

t
bn

1(x)e−
itz
bn dt− ŵ(0)

∫ ∞

−∞
φp(t)e

− itz
bn dt

=
∫
|t|≤αbn

(
ŵ

(
t

bn

)
Pn

t
bn

1(x)− ŵ(0)φp(t)
)

e−
itz
bn dt (29)

+
∫

αbn≤|t|≤δbn

ŵ

(
t

bn

)
Pn

t
bn

1(x)e−
itz
bn dt (30)

+
∫
|t|≥αbn

ŵ(0)φp(t)e
− itz

bn dt. (31)

Recalling that Pn
t = λn

t πt + Qn
t we see that

(29) =
∫
|t|≤αbn

(
ŵ

(
t

bn

)
λn

t
bn

π t
bn

1(x)− ŵ(0)φp(t)
)

e−
itz
bn dt (32)

+
∫
|t|≤αbn

ŵ

(
t

bn

)
Qn

t
bn

1(x)e−
itz
bn dt. (33)

By §4.2 we can choose α ∈ (0, δ) sufficiently small so that there exists ρ < 1
and a constant C > 0 such that ‖Qn

t/bn
‖ ≤ Cρn

0 and |λt/bn
| ∈ (ρ, 1] for all

|t| ≤ αbn. Notice that from the proof of Theorem 7.1 that λn
t/bn

→ φp(t) as
n → ∞. It follows from §4.2 that πt/bn

1 → ν(1) = 1 as n → ∞. By con-
tinuity, ŵ(t/bn) → ŵ(0) as n → ∞. Hence the integrand in (32) converges

25



to 0 as n → ∞. As, moreover, the integrand is bounded in modulus by an
integrable function, it follows from the Dominated Convergence Theorem
that (32) converges to 0 as n →∞.

Noting that as bp
n = nl(bn) for a slowly varying function l, it follows that

bn = O(n
1
p
+ε) for any ε > 0. Hence

|(33)| ≤ Cρn
0bn → 0

as n →∞.
Similarly, we can estimate (30). For each t ∈ [α, δ], Pt does not have 1

as an eigenvalue. Hence there exists η < 1 and a constant C > 0 such that
‖Pn

t ‖ ≤ Cηn. Hence
|(30)| ≤ Cηnbn → 0

as n →∞.
Clearly (31) converges to 0 as n →∞ as bn →∞ and φp ∈ L1.
Noting that none of the constants above depend on z we see that An(z) →

0 as n →∞, uniformly in z ∈ R. ❏

Remark. The proof of the local central limit theorem is similar, cf. [BPD],
with e−t2/2 replacing yp(t).

Remark. One can also formulate and prove a stable local limit theorem
in the case of an arithmetic Hölder function f ; cf. [AD2].

§9 Random difference equations

Let aj ∈ R, aj > 0, bj ∈ R. random difference equation is determined by the
equation

zj+1 = aj+1zj + bj+1 (34)

where the (aj , bj) are i.i.d. pairs of real numbers. There is a great deal of
literature on the solution to such equations and their applications ([Ke, DF],
for example). In the case where the (aj , bj) are chosen independently from a
finite or countable set then (34) can be viewed as an IFS by taking Tj(x) =
ajx + b, chosen with probability pj .

The affine IFS (Tj , pj) satisfies (1) precisely when
∑

pjaj < 1. (The
technical hypothesis (10) holds provided

∑
pjbj < ∞.) In this case, the tail

behaviour of the invariant measure ν is well-known.

Theorem 9.1 ([Ke, Gol])
Suppose the affine IFS (Tj , pj) contracts on average and that the closed

subgroup of R generated by log aj is R. Define θ0 by
∑

pja
θ0
j = 1. Suppose

that for some ε > 0 we have
∑

pja
θ0+ε
j ,

∑
pjb

θ0+ε
j < ∞. Then ν([t,∞)) ∼ 1

tθ0
as t →∞.
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Taking f(x) = xα where α ∈ (0, 1] we see that f satisfies (7) with p =
θ0/α, and so the distributional and local limit Theorems (when f is non-
arithmetic) above hold in this case.

More generally, the case of a random walk on the affine group of R has
been studied [GP]. In this case the probability used to choose the Tj need
not be supported on a discrete set of maps. In the case where f(x) = x, a
complete analysis of the expansion of the maximal eigenvalue of Pt, and an
precise identification of the stable limit law can be achieved [GP].
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[HH1] H. Hennion and L. Hervé, Limit theorems for Markov chains and stochastic
properties of dynamical systems by quasi-compactness, Springer Lecture
Notes in Mathematics, 1766 (2001).
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