

Standard Triples of Structured Matrix Polynomials

Al-Ammari, Maha and Tisseur, Francoise

2011

MIMS EPrint: 2011.37

Manchester Institute for Mathematical Sciences School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/ And by contacting: The MIMS Secretary School of Mathematics The University of Manchester Manchester, M13 9PL, UK

ISSN 1749-9097

Standard Triples of Structured Matrix Polynomials $\stackrel{\Leftrightarrow}{\Rightarrow}$

Maha Al-Ammari^a, Françoise Tisseur^{a,1,*}

^aSchool of Mathematics, The University of Manchester, Manchester, M13 9PL, UK

Abstract

The notion of standard triples plays a central role in the theory of matrix polynomials. We study such triples for matrix polynomials $P(\lambda)$ with structure S, where S is the Hermitian, symmetric, \star -even, \star -odd, \star -palindromic or \star -antipalindromic structure (with $\star = *, T$). We introduce the notion of S-structured standard triple. With the exception of T-(anti)palindromic matrix polynomials of even degree with both -1 and 1 as eigenvalues, we show that $P(\lambda)$ has structure S if and only if $P(\lambda)$ admits an S-structured standard triple, and moreover that every standard triple of a matrix polynomial with structure S is S-structured. We investigate the important special case of S-structured Jordan triples.

Keywords: standard triple, Jordan triple, structured matrix polynomial, Hermitian matrix polynomial, symmetric matrix polynomial, palindromic matrix polynomial, even matrix polynomial, odd matrix polynomial

1. Introduction

Standard and Jordan triples for matrix polynomials were introduced and developed by Gohberg, Lancaster and Rodman (see for example [4], [5], [6]). Jordan triples extend to matrix polynomials of degree m

$$P(\lambda) = \sum_{j=0}^{m} \lambda^{j} A_{j}, \quad A_{j} \in \mathbb{F}^{n \times n}, \quad \det(A_{m}) \neq 0,$$
(1)

the notion of Jordan pair (X, J) for a single matrix $A \in \mathbb{C}^{n \times n}$, where $X \in \mathbb{C}^{n \times n}$ is nonsingular, J is a Jordan canonical form for A, and $A = XJX^{-1}$. The matrix X in a Jordan triple (X, J, Y) for $P(\lambda)$ is $n \times mn$ and, as for the single matrix case, it contains the right eigenvectors and generalized eigenvectors of $P(\lambda)$. The matrix $J \in \mathbb{C}^{mn \times mn}$ is in Jordan canonical form, displaying the elementary divisors of $P(\lambda)$, and the matrix

 $^{^{\}ddagger}$ Version of May 10, 2011

^{*}Corresponding author.

Email addresses: Maha.Al-Ammari@postgrad.manchester.ac.uk (Maha Al-Ammari),

ftisseur@ma.man.ac.uk (Françoise Tisseur)

 $^{^{1}}$ The work of this author was supported by Engineering and Physical Sciences Research Council grant EP/I005293 and a Fellowship from the Leverhulme Trust.

Table 1: Matrix polynomials $P(\lambda) = \sum_{j=0}^{m} \lambda^j A_j$ with structure $\mathcal{S} \in \mathbb{S}$.

Structure S	Definition	Coefficients property	
Hermitian	$P(\lambda) = P^*(\lambda)$	$A_j = A_j^*$	
symmetric	$P(\lambda) = P^T(\lambda)$	$A_j = A_j^T$	
★ -even	$P(\lambda) = P^{\star}(-\lambda)$	$A_j = (-1)^j A_j^{\bigstar}$	
*-odd	$P(\lambda) = -P^{\star}(-\lambda)$	$A_j = (-1)^{j+1} A_j^\star$	
\star -palindromic	$P(\lambda) = \lambda^m P^{\bigstar}(\frac{1}{\lambda})$	$A_j = A_{m-j}^{\star}$	
\star -antipalindromic	$P(\lambda) = -\lambda^m P^{\star}(\frac{1}{\lambda})$	$A_j = -A_{m-j}^{\star}$	

 $Y \in \mathbb{C}^{mn \times n}$ plays the role of X^{-1} for a single matrix, i.e., the columns of Y^* determine left eigenvectors and generalized eigenvectors of $P(\lambda)$. A Jordan triple is a particular standard triple (U, T, V) in which the matrix T is in canonical form. Standard and Jordan triples are defined precisely in section 2.2.

Our objective is to study the standard and Jordan triples of structured matrix polynomials $P(\lambda)$ of the types listed in Table 1, where we use \star to denote the transpose T for real matrices and either the transpose T or the conjugate transpose \star for matrices with complex entries. The structure of standard and Jordan triples are well understood for Hermitian matrix polynomials [4], [5] and more recently real symmetric matrix polynomials [2], [12]. With no assumption on the sizes of the Jordan blocks, Gohberg, Lancaster and Rodman [4] show that if (X, J, Y) is a Jordan triple for a Hermitian matrix polynomial then $Y = SX^*$ for some nonsingular $mn \times mn$ matrix S such that $S = S^*$ and $JS = (JS)^*$. We show in section 3 that results of this type also hold for the structures in \mathbb{S} , where

$$S = \{\text{Hermitian, symmetric, *-even, *-odd, } T\text{-even, } T\text{-odd,}$$
(2)
*-palindromic, *-antipalindromic, $T\text{-palindromic, } T\text{-antipalindromic}\}.$

For $S \in \mathbb{S}$, we introduce the notion of S-structured standard triples. With the exception of T-(anti)palindromic matrix polynomials of even degree with both -1 and 1 as eigenvalues, we show that $P(\lambda)$ has structure S if and only if $P(\lambda)$ admits an S-structured standard triple, and that for any $P(\lambda)$ with structure S, all standard triples for $P(\lambda)$ are S-structured. Finally, we study in section 4 the special case of S-structured Jordan triples.

Two important features of this work are (a) a distinction, when necessary, between triples and matrix polynomials defined over the complex (\mathbb{C}) or real (\mathbb{R}) fields, and (b) a unified presentation of the results, except in section 4, where we provide explicit expressions for the *S*-matrix of *S*-structured Jordan triples that are structure-dependent.

2. Preliminaries

The set of all matrix polynomials with coefficient matrices in $\mathbb{F}^{n \times n}$ ($\mathbb{F} = \mathbb{R}$ or \mathbb{C}) is denoted by $\mathcal{P}(\mathbb{F}^n)$. When the polynomials are structured with structure \mathcal{S} , the corresponding set is denoted by $\mathcal{P}_{\mathcal{S}}(\mathbb{F}^n)$ (see Table 1). Throughout this paper we assume that $P(\lambda)$ has a nonsingular leading coefficient matrix as in (1). Recall that λ is an eigenvalue of $P(\lambda)$ with corresponding right eigenvector $x \neq 0$ and left eigenvector $y \neq 0$ if $P(\lambda)x = 0$ and $y^*P(\lambda) = 0$. We denote by $\Lambda(P)$ the set of eigenvalues of $P(\lambda)$.

2.1. Structured linearizations

Linearizations play a major role in the theory of matrix polynomials. They are $mn \times mn$ linear matrix polynomials $L(\lambda) = \lambda \mathcal{A} + \mathcal{B}$ related to $P(\lambda) \in \mathcal{P}(\mathbb{F}^n)$ of degree m by

$$E(\lambda)L(\lambda)F(\lambda) = \begin{bmatrix} P(\lambda) & 0\\ 0 & I_{(m-1)n} \end{bmatrix}$$

for some matrix polynomials $E(\lambda)$ and $F(\lambda)$ with constant nonzero determinants. For example, the companion form

$$C = -\begin{bmatrix} A_m^{-1}A_{m-1} & A_m^{-1}A_{m-2} & \dots & A_m^{-1}A_0 \\ -I_n & 0 & \dots & 0 \\ & \ddots & \ddots & \vdots \\ 0 & & -I_n & 0 \end{bmatrix}$$
(3)

of $P(\lambda) = \sum_{j=0}^{m} \lambda^{j} A_{j}$ defines a linearization $\lambda I - \mathcal{C}$ of $P(\lambda)$.

Some of the results in section 3 and all the results in section 4 rely on the construction of linearizations that preserve the structure of $P(\lambda) \in \mathcal{P}_{\mathcal{S}}(\mathbb{F}^n)$. The vector space of pencils

$$\mathbb{L}_1(P) = \left\{ L(\lambda) : L(\lambda)(\Lambda \otimes I_n) = v \otimes P(\lambda), \ v \in \mathbb{F}^m \right\},\$$

introduced in [16], provides a rich source of such linearizations. Here $\Lambda = \begin{bmatrix} \lambda^{m-1} & \dots & \lambda & 1 \end{bmatrix}^T$. It is shown in [7], [13], [15] that for some $v \in \mathbb{F}^m$ satisfying the admissible constraint

- (i) $v \in \mathbb{R}^m$ if $\mathcal{S} =$ Hermitian,
- (ii) $v = \Sigma_m v$ if $S \in \{T\text{-even}, T\text{-odd}\}$ or $v = \Sigma_m \bar{v}$ if $S \in \{\text{*-even}, \text{*-odd}\}$,
- (iii) $v = F_m v$ if $S \in \{T\text{-palindromic}, T\text{-antipalindromic}\}$ or $v = F_m \bar{v}$ if $S \in \{\text{*-palindromic}, \text{*-antipalindromic}\}$,

where

$$\Sigma_m = \text{diag}((-1)^{m-1}, \dots, (-1)^0), \qquad F_m = \begin{bmatrix} & & 1 \\ & \ddots & \\ 1 & & \end{bmatrix},$$

there exists a unique pencil $\lambda \mathcal{A}_{\mathcal{S}} + \mathcal{B}_{\mathcal{S}} \in \mathbb{L}_1(P)$ with structure $\mathcal{S} \in \mathbb{S}$. This pencil is a linearization of $P(\lambda)$ if the roots of the v-polynomial

$$\mathsf{p}(x;v) = v_1 x^{m-1} + v_2 x^{m-2} + \dots + v_{m-1} x + v_m$$

are not eigenvalues of P [16, Thm. 6.7]. The vector $v = e_m$, where e_m is the *m*th column of the $m \times m$ identity matrix, is an admissible vector for $S \in \{\text{Hermitian},$

symmetric, *-even, *-odd} since $e_m \in \mathbb{R}^m$ and $\Sigma_m e_m = e_m$. Also, the roots of $p(x; e_m)$ are all equal to ∞ and since det $(A_m) \neq 0$ then $\infty \notin \Lambda(P)$. Hence the structured pencils $\lambda \mathcal{A}_S + \mathcal{B}_S \in \mathbb{L}_1(P)$ with vector e_m are linearizations of P. They are given by

$$\lambda \mathcal{A}_{\mathcal{S}} + \mathcal{B}_{\mathcal{S}} = \begin{cases} \lambda \mathcal{A}(1) + \mathcal{B}(1) \text{ when } \mathcal{S} \in \{\text{Hermitian, symmetric}\},\\ \lambda \mathcal{A}(-1) + \mathcal{B}(-1) \text{ when } \mathcal{S} \in \{\star\text{-even}, \star\text{-odd}\}, \end{cases}$$
(4)

where

$$\mathcal{A}(\varepsilon) = \begin{bmatrix} 0 & \cdots & 0 & \varepsilon^{m-1}A_m \\ \vdots & \ddots & \varepsilon^{m-2}A_{m-1} \\ \vdots & \ddots & \ddots & \vdots \\ \varepsilon^0 A_m & \varepsilon^0 A_{m-1} & \cdots & \varepsilon^0 A_1 \end{bmatrix},$$

and

$$\mathcal{B}(\varepsilon) = - \begin{bmatrix} 0 & \dots & 0 & \varepsilon^{m-1}A_m & 0 \\ \vdots & \ddots & \varepsilon^{m-2}A_m & \varepsilon^{m-2}A_{m-1} & \vdots \\ 0 & \ddots & \ddots & \vdots & \vdots \\ \varepsilon A_m & \varepsilon A_{m-1} & \dots & \varepsilon A_2 & 0 \\ 0 & \dots & \dots & 0 & -A_0 \end{bmatrix}.$$

Note that for \star -(anti)palindromic $P(\lambda)$, we have $0 \notin \Lambda(P)$ since $\infty \notin \Lambda(P)$. When m = 2k + 1 is odd, $v = e_{k+1}$ satisfies $v = F_m v = F_m \bar{v}$ and $0, \infty$ are the only roots of the v-polynomial. The corresponding \star -(anti)palindromic pencils in $\mathbb{L}_1(P)$ are given by

$$\lambda \mathcal{A}_{\mathcal{S}} + \mathcal{B}_{\mathcal{S}} = \begin{cases} \lambda \mathcal{A}^{odd} + (\mathcal{A}^{odd})^{\star} & \text{when } \mathcal{S} = \star \text{-palindromic with } m = 2k + 1, \\ \lambda \mathcal{A}^{odd} - (\mathcal{A}^{odd})^{\star} & \text{when } \mathcal{S} = \star \text{-antipalindromic with } m = 2k + 1, \end{cases}$$
(5)

where

$$\mathcal{A}^{odd} = \begin{bmatrix} \mathcal{A}_{11}^{odd} & \mathcal{A}_{12}^{odd} \\ \mathcal{A}_{21}^{odd} & \mathcal{A}_{22}^{odd} \end{bmatrix},\tag{6}$$

with $\mathcal{A}_{11}^{odd} = (\mathcal{A}_{22}^{odd})^T = 0_{nk \times n(k+1)}$ and

$$\mathcal{A}_{12}^{odd} = \begin{bmatrix} -A_m^{\star} & 0 & \dots & 0 \\ -A_{m-1}^{\star} & \ddots & & \vdots \\ \vdots & \ddots & \ddots & 0 \\ -A_{k+2}^{\star} & \dots & -A_{m-1}^{\star} & -A_m^{\star} \end{bmatrix}, \quad \mathcal{A}_{21}^{odd} = \begin{bmatrix} A_m & A_{m-1} & \dots & A_{k+1} \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & A_{m-1} \\ 0 & \dots & 0 & A_m \end{bmatrix},$$

are linearizations of $P(\lambda)$.

For *-(anti)palindromic polynomials of even degree m = 2k, the simplest nonzero vector v satisfying $F_m v = v$ when $\star = T$ or $F_m v = \bar{v}$ when $\star = *$ is of the form $v = \begin{bmatrix} 0 & \dots & 0 & z & z^* & 0 & \dots & 0 \end{bmatrix}^T$, where z and z^* are in position k and k + 1, respectively. The corresponding *-(anti)palindromic pencil in $\mathbb{L}_1(P)$ is a linearization of $P(\lambda)$ if $-z/z^*$ is not an eigenvalue of P and is given by

$$\lambda \mathcal{A}_{\mathcal{S}} + \mathcal{B}_{\mathcal{S}} = \begin{cases} \lambda \mathcal{A}_{-}^{even}(z) + (\mathcal{A}_{-}^{even}(z))^{\star} & \text{when } \mathcal{S} = \star \text{-palindromic with } m = 2k, \\ \lambda \mathcal{A}_{-}^{even}(z) - (\mathcal{A}_{-}^{even}(z))^{\star} & \text{when } \mathcal{S} = \star \text{-antipalindromic with } m = 2k, \end{cases}$$
(7)

where

$$\mathcal{A}^{even}_{-}(z) = \begin{bmatrix} \mathcal{A}^{even}_{11}(z) & \mathcal{A}^{even}_{12}(z) \\ \mathcal{A}^{even}_{21}(z) & \mathcal{A}^{even}_{22}(z) \end{bmatrix},$$

with

$$\begin{aligned} \mathcal{A}_{11}^{even}(z) &= z \begin{bmatrix} 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \\ A_m & A_{m-1} & \dots & A_{k+1} \end{bmatrix}, \quad \mathcal{A}_{22}^{even}(z) = z \begin{bmatrix} A_{k+1} & 0 & \dots & 0 \\ \vdots & \vdots & \vdots \\ A_{m-1} & 0 & \dots & 0 \\ A_m & 0 & \dots & 0 \end{bmatrix}, \\ \mathcal{A}_{12}^{even}(z) &= - \begin{bmatrix} z^*A_0 & zA_0 & 0 & \cdots & \cdots & 0 \\ z^*A_1 & z^*A_0 + zA_1 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ z^*A_{k-2} & z^*A_{k-2} + zA_{k-1} & \cdots & z^*A_1 + zA_2 & z^*A_0 + zA_1 & zA_0 \\ z^*A_k - z^* & z^*A_{k-2} & \cdots & z^*A_1 & z^*A_0 \end{bmatrix}, \\ \mathcal{A}_{21}^{even}(z) &= \begin{bmatrix} z^*A_m & zA_m + z^*A_{m-1} & zA_{m-1} + z^*A_{m-2} & \cdots & zA_{k+2} + z^*A_{k+1} \\ 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & zA_{m-1} + z^*A_{m-2} \end{bmatrix}. \end{aligned}$$

Note that when $\star = *$, we can always pick a $z \in \mathbb{F}$ such that $-z/z^{\star} \notin \Lambda(P)$. But when $\star = T$, $-z/z^{\star} = -1$ so if $-1 \in \Lambda(P)$ the corresponding \star -(anti)palindromic pencil in $\mathbb{L}_1(P)$ is not a linearization of $P(\lambda)$. In fact it is shown in [15] that some T-(anti)palindromic matrix polynomials of even degree do not have T-(anti)palindromic linearizations. Instead, we allow a linearization with "anti" structure: palindromic becomes antipalindromic and vice versa. For this, let $v = \begin{bmatrix} 0 & \dots & 0 & 1 & -1 & 0 & \dots & 0 \end{bmatrix}^T$ satisfying $v = -F_m v$. If $P(\lambda)$ is T-palindromic then there is a unique T-antipalindromic pencil in $\mathbb{L}_1(P)$ with vector v. Similarly if $P(\lambda)$ is T-antipalindromic then there is unique T-palindromic pencil in $\mathbb{L}_1(P)$ with vector v. Such pencils are linearizations of P if $1 \notin \Lambda(P)$ and are given by

$$\lambda \mathcal{A}_{\mathcal{S}} + \mathcal{B}_{\mathcal{S}} = \begin{cases} \lambda \mathcal{A}_{+}^{even} - (\mathcal{A}_{+}^{even})^{T} & \text{when } \mathcal{S} = T\text{-palindromic with } m = 2k, \\ \lambda \mathcal{A}_{+}^{even} + (\mathcal{A}_{+}^{even})^{T} & \text{when } \mathcal{S} = T\text{-antipalindromic when } m = 2k, \end{cases}$$
(8)

where $\mathcal{A}^{even}_{+}(z)$ has a block structure similar to that of $\mathcal{A}^{even}_{-}(z)$ in (7) with z replaced by 1 and z^{\star} replaced by -1. In particular, when m = 2,

$$\mathcal{A}^{even}_{+} = \begin{bmatrix} A_2 & A_1 + A_0 \\ -A_2 & A_2 \end{bmatrix}.$$

The next result, useful later, shows that the linearizations (4)-(8) share a property.

Lemma 2.1 Let $S \in \mathbb{S}$ and $P(\lambda) \in \mathcal{P}_{S}(\mathbb{F}^{n})$ with nonsingular leading coefficient. If $\lambda \mathcal{A}_{S} + \mathcal{B}_{S}$ is a structured linearization of $P(\lambda)$ as in (4)–(8) then $\mathcal{C} = -\mathcal{A}_{S}^{-1}\mathcal{B}_{S}$, where \mathcal{C} is the companion form of $P(\lambda)$ given in (3).

Proof. Some easy calculations show that $-\mathcal{A}_{\mathcal{S}}\mathcal{C} = \mathcal{B}_{\mathcal{S}}$.

Hence, with the exception of T-(anti)palindromic $P(\lambda)$ of even degree with both -1 and 1 as eigenvalues, the companion form of $P(\lambda)$ can be factorized as $\mathcal{C} = -\mathcal{A}_{\mathcal{S}}^{-1}\mathcal{B}_{\mathcal{S}}$, where $\lambda \mathcal{A}_{\mathcal{S}} + \mathcal{B}_{\mathcal{S}} = \mathcal{A}_{\mathcal{S}}(\lambda I - \mathcal{C})$ is a structured linearization of $P(\lambda)$.

2.2. Standard triples

Recall that (U,T) is an (m,n)-standard pair over \mathbb{F} if $T \in \mathbb{F}^{mn \times mn}$ and $U \in \mathbb{F}^{n \times mn}$ are such that

$$Q = Q(U,T) := \begin{bmatrix} UT^{m-1} \\ \vdots \\ UT \\ U \end{bmatrix}$$
(9)

is nonsingular [12, Def. 2.1]. The triple (U, T, V) forms an (m, n)-standard triple over \mathbb{F} if (U, T) is an (m, n)-standard pair over \mathbb{F} and $V \in \mathbb{F}^{mn \times n}$ is such that $UT^{m-1}V$ is nonsingular and, if $m \geq 2$,

$$UT^{j}V = 0, \quad j = 0: m - 2,$$
 (10)

or equivalently,

$$QV = e_1 \otimes N \tag{11}$$

for some nonsingular $n \times n$ matrix N, where e_1 is the first column of the $m \times m$ identity matrix [12, Def. 2.3]. Note that the definitions of standard pairs and triples make no reference to matrix polynomials.

An (m, n)-standard pair (U, T) over \mathbb{F} is a standard pair for $P(\lambda) = \sum_{j=0}^{m} \lambda^j A_j$ if

$$A_m U T^m + A_{m-1} U T^{m-1} + \dots + A_1 U T + A_0 U = 0$$
(12)

[6, p. 46]. A standard triple (U, T, V) is a standard triple for $P(\lambda)$ if (12) holds and $A_m = (UT^{m-1}V)^{-1}$. Any $P(\lambda) \in \mathcal{P}(\mathbb{F}^n)$ with nonsingular leading coefficient admits a standard triple. For example, it is easy to check that

$$(e_m^T \otimes I_n, \mathcal{C}, e_1 \otimes A_m^{-1}) \tag{13}$$

with C as in (3) is a standard triple for $P(\lambda)$.

Let $U_i \in \mathbb{F}^{n \times mn}$, $T_i \in \mathbb{F}^{mn \times mn}$ and $V_i \in \mathbb{F}^{mn \times n}$, i = 1, 2. Then (U_1, T_1, V_1) is similar to (U_2, T_2, V_2) if there exists a nonsingular $G \in \mathbb{F}^{mn \times mn}$ such that

$$U_2 = U_1 G, \qquad T_2 = G^{-1} T_1 G, \qquad V_2 = G^{-1} V_1.$$

Moreover if (U_1, T_1, V_1) is a standard triple so is (U_2, T_2, V_2) [5, Prop. 12.1.3]. Note that if (U, T, V) is a standard triple for $P(\lambda)$ then

$$(e_m^T \otimes I_n)Q = U, \quad Q^{-1}\mathcal{C}Q = T, \quad e_1 \otimes A_m^{-1} = QV,$$

with Q as in (9). Hence any standard triple (U, T, V) for $P(\lambda)$ is similar to $(e_m^T \otimes I_n, \mathcal{C}, e_1 \otimes A_m^{-1})$. Note that because T is similar to $\mathcal{C}, \lambda I - T$ is a linearization of $P(\lambda)$ and $\Lambda(P) = \Lambda(T)$. The following result [5, Thm. 12.1.4] will be useful.

Structure \mathcal{S}	$u_{\mathcal{S}}(T)$	$t_{\mathcal{S}}(T)$	$v_{\mathcal{S}}(T)$
Hermitian/symmetric	Ι	T^{\star}	Ι
*-even	-I	$-T^{\star}$	Ι
*-odd	Ι	$-T^{\star}$	Ι
*-palindromic, $m = 2k + 1$	$-T^{\star(k-1)}$	$T^{-\star}$	$T^{\star k}$
*-palindromic, $m = 2k$	$-T^{\star(k-1)}(I+\alpha T^{\star})^{-1}$	$T^{-\star}$	$(I + \alpha T^{\star})T^{\star(k-1)}$
*-antipal indromic, $m=2k+1$	$T^{\star(k-1)}$	$T^{-\star}$	$T^{\star k}$
$\star\text{-antipalindromic} m=2k$	$T^{\star(k-1)}(I + \alpha T^{\star})^{-1}$	$T^{-\star}$	$(I + \alpha T^{\star})T^{\star(k-1)}$

Table 2: Definition of $u_{\mathcal{S}}(T), t_{\mathcal{S}}(T), v_{\mathcal{S}}(T)$ for some $T \in \mathbb{F}^{mn \times mn}$ satisfying assumption (b), where α is some scalar in \mathbb{F} such that $\alpha^* \alpha = 1$ and $-\alpha \notin \Lambda(T)$.

Lemma 2.2 Let $U \in \mathbb{F}^{n \times mn}$, $T \in \mathbb{F}^{mn \times mn}$, $V \in \mathbb{F}^{mn \times n}$ and let $P(\lambda) \in \mathcal{P}(\mathbb{F}^n)$ be of degree m with nonsingular leading coefficient. Then (U, T, V) is a standard triple for $P(\lambda)$ if and only if $P(\lambda)^{-1} = U(\lambda I - T)^{-1}V$ for $\lambda \in \mathbb{C} \setminus \Lambda(P)$.

A Jordan triple (X, J, Y) over \mathbb{F} for $P(\lambda)$ is a standard triple for $P(\lambda)$ for which the matrix J is in Jordan form or real Jordan form if $\mathbb{F} = \mathbb{R}$. By (12) and [6, Prop. 2.1], we have that $\sum_{j=0}^{m} A_j X J^j = 0$ and $\sum_{j=0}^{m} J^j Y A_j = 0$. The columns of X and Y^* determine right and left eigenvectors and generalized eigenvectors of $P(\lambda)$. The matrix J is the Jordan form of the companion form C of $P(\lambda)$.

3. S-structured standard triples

We now consider standard triples in the context of structured matrix polynomials. We start by listing two assumptions used in our analysis. Let $S \in S$, $P(\lambda) \in \mathcal{P}_{S}(\mathbb{F}^{n})$ have degree m with nonsingular leading coefficient and let $T \in \mathbb{F}^{mn \times mn}$.

Assumption (a): if $S \in \{T\text{-palindromic}, T\text{-antipalindromic}\}$ and $P(\lambda)$ has degree m = 2k then either $-1 \notin \Lambda(P)$ or $1 \notin \Lambda(P)$.

Assumption (b): if $S \in \{T\text{-palindromic}, T\text{-antipalindromic}\}$ and m = 2k then either $-1 \notin \Lambda(T)$ or $1 \notin \Lambda(T)$.

These two assumptions are equivalent when $\lambda I - T$ is a linearization of $P(\lambda)$. For some T satisfying assumption (b) we define $u_{\mathcal{S}}(T), t_{\mathcal{S}}(T), v_{\mathcal{S}}(T)$ as in Table 2. Note that assumption (b) ensures the existence of $\alpha \in \mathbb{F}$ such that $\alpha^* \alpha = 1$ and $-\alpha \notin \Lambda(T)$. Also, for \star -(anti)palindromic structures, the eigenvalues of T comes in pairs (λ, λ^{-*}) . Hence $0 \notin \Lambda(T)$ since $\infty \notin \Lambda(T)$ and T^{-*} is well defined.

Before stating our main result in Theorem 3.5, we provide a few lemmas and introduce the notion of S-structured standard triple. The first lemma of this section extends to all structures in S a result in [11, Cor. 14.2.1] for Hermitian structure.

Lemma 3.1 Let (U, T, V) be an (m, n)-standard triple for $P(\lambda) \in \mathcal{P}(\mathbb{F}^n)$ with nonsingular leading coefficient and let $S \in S$. Assume that T satisfies assumption (b). Then $P(\lambda)$ has structure S if and only if $(V^*u_S(T), t_S(T), v_S(T)U^*)$ is a standard triple for $P(\lambda)$.

Proof. The proof for $S \in \{\text{Hermitian, symmetric, } \star\text{-even, } \star\text{-odd}\}$ is easy to obtain using the resolvent form for $P(\lambda)$ given in Lemma 2.2 and the definition of the structures in Table 1. See also [11, Cor. 14.2.1] for the Hermitian structure.

Now suppose that $P(\lambda)$ is \star -palindromic. Since any standard triple for $P(\lambda)$ is similar to $(e_m^T \otimes I_n, \mathcal{C}, e_1 \otimes A_m^{-1}) =: (\widetilde{U}, \mathcal{C}, \widetilde{V})$, it suffices to show that this standard triple is similar to $(\widetilde{V}^{\star} u_{\mathcal{S}}(\mathcal{C}), \mathcal{C}^{-\star}, v_{\mathcal{S}}(\mathcal{C})\widetilde{U}^{\star})$. We need to consider three cases:

(i) m = 2k + 1. The pencil $\lambda \mathcal{A}^{odd} + (\mathcal{A}^{odd})^{\star}$ with \mathcal{A}^{odd} as in (6) is a linearization of $P(\lambda)$. By Lemma 2.1, $\mathcal{C} = -(\mathcal{A}^{odd})^{-1}(\mathcal{A}^{odd})^{\star}$. So if we let $G^{-1} = \mathcal{A}^{odd}$ then

$$\widetilde{V}^{\star} u_{\mathcal{S}}(\mathcal{C}) = -(e_1 \otimes A_m^{-1})^{\star} (\mathcal{C}^{\star})^{k-1} = \widetilde{U}G, \quad G^{-1}\mathcal{C}G = \mathcal{C}^{-\star} = t_{\mathcal{S}}(\mathcal{C})$$

and

$$G^{-1}\widetilde{V} = G^{-1}(e_1 \otimes A_m^{-1}) = e_{2k} \otimes I = (\mathcal{C}^{\star})^k (e_m \otimes I) = v_{\mathcal{S}}(\mathcal{C})\widetilde{U}^{\star}.$$

(ii) $m = 2k, \star = T$ and $-1 \in \Lambda(T)$. From assumption (b) it follows that $1 \notin \Lambda(T)$ so we can take $\alpha = -1$ in the definition of $u_{\mathcal{S}}$ and $v_{\mathcal{S}}$. The pencil $\lambda \mathcal{A}^{even}_{+} - (\mathcal{A}^{even}_{+})^{\star}$ with \mathcal{A}^{even}_{+} as in (8) is a linearization of $P(\lambda)$. By Lemma 2.1, $\mathcal{C} = -(\mathcal{A}^{even}_{+})^{-1}(\mathcal{A}^{even}_{+})^{\star}$. If we let $G^{-1} = \mathcal{A}^{even}_{+}$ then as in (i), $G^{-1}\mathcal{C}G = t_{\mathcal{S}}(\mathcal{C})$. Also,

$$v_{\mathcal{S}}(\mathcal{C})\widetilde{U}^{T} = (I - \mathcal{C}^{T})\mathcal{C}^{T(k-1)}(e_{m} \otimes I_{n}) = e_{k+1} \otimes I - e_{k} \otimes I = G^{-1}(e_{1} \otimes I)A_{m}^{-1} = G^{-1}\widetilde{V}.$$

From $\widetilde{V} = Gv_{\mathcal{S}}(\mathcal{C})\widetilde{U}^T$ it follows that $\widetilde{V}^T = \widetilde{U}\mathcal{C}^{(k-1)}(I-\mathcal{C})G^T$, so that

$$\begin{split} \widetilde{V}^T u_{\mathcal{S}}(\mathcal{C}) &= -\widetilde{U}\mathcal{C}^{(k-1)}(I-\mathcal{C})G^T\mathcal{C}^{T(k-1)}(I-\mathcal{C}^T)^{-1} \\ &= -\widetilde{U}\mathcal{C}^{(k-1)}(I-\mathcal{C})\mathcal{C}^{(1-k)}G^T(I-\mathcal{C}^T)^{-1} \\ &= \widetilde{U}G^{-1}(I-\mathcal{C}^T)(I-\mathcal{C}^T)^{-1} = \widetilde{U}G^{-1}, \end{split}$$

where we used $G^T \mathcal{C}^{T(k-1)} G^{-T} = \mathcal{C}^{-(k-1)}$ and $\mathcal{C} G^T = G$.

(*iii*) $m = 2k, \star = *, T$ and $-1 \notin \Lambda(T)$. In this case Lemma 2.1 says that $\mathcal{C} = -(\mathcal{A}^{even}_{-}(z))^{-1}(\mathcal{A}^{even}_{-}(z))^{\star}$ with $\mathcal{A}^{even}_{-}(z)$ as in (7). The proof is similar to that in (ii) with $\alpha = z/z^{\star}$.

Conversely, suppose that (U, T, V) and $(V^{\star}u_{\mathcal{S}}(T), T^{-\star}, v_{\mathcal{S}}(T)U^{\star})$ are standard triples for $P(\lambda)$. Assumption (b) guarantees the existence of $\alpha \in \mathbb{F}$ such that $\alpha^{\star}\alpha = 1$ and $I + \alpha T^{\star}$ is nonsingular. Hence $u_{\mathcal{S}}$ and $v_{\mathcal{S}}$ are well defined. Using the resolvent form for $P(\lambda), P(\lambda)^{-1} = U(\lambda I - T)^{-1}V$, we obtain

$$\lambda^{-m}(P(\lambda^{-\star}))^{-\star} = \lambda^{-m}(U(\lambda^{-\star}I - T)^{-1}V)^{\star} = \lambda^{1-m}V^{\star}(I - \lambda T^{\star})^{-1}U^{\star}.$$

If $\|\lambda T^{\star}\| < 1$ for some subordinate matrix norm $\|\cdot\|$ then

$$(I - \lambda T^{\star})^{-1} = I + \lambda T^{\star} + \lambda^2 T^{\star 2} + \cdots$$
(14)

Using (14) and the fact that $V^{\star}T^{\star j}U^{\star} = 0$, j = 0: m - 2 (see (10)), we obtain

$$\lambda^{-m} (P(\lambda^{-\star}))^{-\star} = V^{\star} T^{\star(m-1)} (I + \lambda T^{\star} + \lambda^2 T^{\star 2} + \cdots) U^{\star}$$

= $V^{\star} T^{\star(k-1)} (I - \lambda T^{\star})^{-1} T^{\star(m-k)} U^{\star}$
= $-V^{\star} T^{\star(k-1)} (\lambda I - T^{-\star})^{-1} T^{\star(m-k-1)} U^{\star}$ (15)

for all $|\lambda| < ||T^{\star}||^{-1}$. When m = 2k + 1, (15) reads $\lambda^{-m}(P(\lambda^{-\star}))^{-\star} = V^{\star}u_{\mathcal{S}}(T)(\lambda I - T^{-\star})^{-1}v_{\mathcal{S}}(T)U^{\star} = P(\lambda)^{-1}$. Note that $(\lambda I - T^{-\star})^{-1}$ commutes with $T^{\star k-1}$, $(I + \alpha T^{\star})$ and $(I + \alpha T^{\star})^{-1}$ so when m = 2k, (15) can be rewritten as $\lambda^{-m}(P(\lambda^{-\star}))^{-\star} = V^{\star}u_{\mathcal{S}}(T)(\lambda I - T^{-\star})^{-1}v_{\mathcal{S}}(T)U^{\star} = P(\lambda)^{-1}$ for all $|\lambda| < ||T||^{-1}$. Since $\lambda^{-m}(P(\lambda^{-\star}))^{-\star} = P(\lambda)^{-1}$ holds for many values of λ , $P(\lambda) = \lambda^m P^{\star}(\lambda^{-1})$ for all λ , that is, $P(\lambda)$ is \star -palindromic.

The results for the \star -antipalindromic structure are proved in a similar way.

In the proof of Lemma 3.1 we use the fact that if (U, T, V) is a standard triple for a structured $P(\lambda)$ then there exists a nonsingular S such that

$$US = V^{\star} u_{\mathcal{S}}(T), \quad S^{-1}TS = t_{\mathcal{S}}(T), \quad S^{-1}V = v_{\mathcal{S}}(T)U^{\star}.$$
 (16)

These relations imply certain properties of S, which we use in our definition of S-structured standard triples.

Definition 3.2 (S-structured standard triple) Let $S \in S$. An (m, n)-standard triple (U, T, V) with T satisfying assumption (b) is said to be S-structured if $V = Sv_S(T)U^*$ for some nonsingular $S \in \mathbb{F}^{mn \times mn}$ having the following properties:

- $S = S^*$, $TS = (TS)^*$ when $S \in \{Hermitian, symmetric\},\$
- $S = -S^*$, $TS = (TS)^*$ when $S = \star$ -even,
- $S = S^{\star}, TS = -(TS)^{\star}$ when $S = \star \text{-odd},$
- $TS^{\star} = -S$ when $S = \star$ -palindromic and m = 2k + 1 or $TS^{\star} = -\alpha S$ when $S = \star$ -palindromic and m = 2k,
- $TS^{\star} = S$ when $S = \star$ -antipalindromic and m = 2k + 1 or $TS^{\star} = \alpha S$ when $S = \star$ -antipalindromic and m = 2k,

for some $\alpha \in \mathbb{F}$ such that $\alpha^* \alpha = 1$ and $-\alpha \notin \Lambda(T)$.

We refer to the matrix S in Definition 3.2 as the S-matrix of the S-structured standard triple (U, T, V). We point out that Hermitian and symmetric structured standard triples are called *self-adjoint standard triples* in the literature (see for example [5, p. 244]). For \star -(anti)palindromic structures, the matrix T in Definition 3.2 is S^{-1} -unitary, that is, $T^{\star}S^{-1}T = S^{-1}$, and with additional constraints on T's structure, Lancaster, Prells and Rodman refer to (U, T, V) as a *unitary standard triple* [8, Def. 4]. Hence a unitary standard triple is S-structured but the converse is not true in general.

Our definition of \mathcal{S} -structured standard triples is justified by the next lemma.

Lemma 3.3 Let $S \in S$. An (m, n)-standard triple (U, T, V) with T satisfying assumption (b) is S-structured if and only if it is similar to $(V^*u_S(T), t_S(T), v_S(T)U^*)$.

Proof. The proof of this lemma appears in [12, Thm. 3.4] for the symmetric structure and the proof there extends easily to structures $S \in \{\text{Hermitian}, \star\text{-even}, \star\text{-odd}\}$.

Suppose $S=\star$ -palindromic (the proof for \star -antipalindromic structure is similar and so we omit it). If m = 2k + 1 and (U, T, V) is S-structured, then there exists S nonsingular such that $TS^{\star} = -S$ and $V = ST^{\star k}U^{\star}$. Hence $S^{-1}TS = T^{-\star}$ and

$$US = V^{\star}S^{-\star}T^{-k}S = -V^{\star}S^{-\star}T^{-(k-1)}S^{\star} = -V^{\star}T^{\star(k-1)}.$$

Hence (U, T, V) is similar to $(-V^{\star}T^{\star(k-1)}, T^{-\star}, T^{\star(m-k-1)}U^{\star})$.

When m = 2k, $TS^* = -\alpha S$ and $V = S(I + \alpha T^*)T^{*(k-1)}U^*$ for some $\alpha \in \mathbb{F}$ such that $\alpha^* \alpha = 1$ and $-\alpha \notin A(T)$. The first equality implies that $S^{-1}TS = T^{-*}$ while the first and second equality yield

$$US = V^{\star}S^{-\star}T^{-(k-1)}(I + \alpha^{\star}T)^{-1}S$$

= $V^{\star}T^{\star(k-1)}S^{-\star}(I + \alpha^{\star}T)^{-1}S$
= $-V^{\star}T^{\star(k-1)}(I + \alpha T^{\star})^{-1} = V^{\star}u_{\mathcal{S}}(T).$

Conversely, if (U, T, V) is similar to $(V^{\star}u_{\mathcal{S}}(T), T^{-\star}, v_{\mathcal{S}}(T)U^{\star})$ then there exists S nonsingular such that (16) holds with $t_{\mathcal{S}}(T) = T^{-\star}$. It remains to show that $TS^{\star} = -S$ when m = 2k + 1 and $TS^{\star} = -\alpha S$ when m = 2k. When m = 2k + 1, the first and last equalities in (16) imply that $V = -ST^{\star k}S^{-\star}T^{(k-1)}V$ and since V has full rank, $-ST^{\star k}S^{-\star}T^{(k-1)} = I$, which on using the second equality in (16) yields $TS^{\star} = -S$. When m = 2k, the first and last equalities in (16) and the fact that V has full rank imply that

$$-ST^{\star(k-1)}(I + \alpha T^{\star})S^{-\star}(I + \alpha^{\star}T)^{-1}T^{(k-1)} = I$$

$$\iff -T^{-(k-1)}(I + \alpha T^{-1})SS^{-\star}(I + \alpha^{\star}T)^{-1}T^{(k-1)} = I$$

$$\iff -T^{-(k-1)}SS^{-\star}(\alpha T^{-1})T^{(k-1)} = I$$

$$\iff -\alpha SS^{-\star} = T^{(k-1)}T^{-(k-2)} = T. \quad \Box$$

The next lemma shows that any standard triple that is similar to an S-structured standard triple is itself S-structured.

Lemma 3.4 Let (U, T, V) be a standard triple similar to (U_1, T_1, V_1) , that is, $(U_1, T_1, V_1) = (UG, G^{-1}TG, G^{-1}V)$ for some nonsingular matrix G. Let $S \in S$ and assume T satisfies assumption (b). If (U, T, V) is S-structured with matrix S then (U_1, T_1, V_1) is S-structured with matrix $S_1 = G^{-1}SG^{-\star}$.

Proof. It is easy to check that $V_1 = S_1 v_{\mathcal{S}}(T_1) U_1^*$ and since the properties of S are preserved by \star -congruence, (U_1, T_1, V_1) is \mathcal{S} -structured with matrix S_1 . \Box

We can now state our main result, which is a direct consequence of Lemma 3.1, Lemma 3.3 and Lemma 3.4. It extends a result for Hermitian structure [5, Thm. 12.2.2] to all structures in S.

Theorem 3.5 Let $S \in S$ and $P(\lambda) \in \mathcal{P}(\mathbb{F}^n)$ with nonsingular leading coefficient satisfying assumption (a). Then $P(\lambda)$ has structure S if and only if $P(\lambda)$ admits an S-structured standard triple, in which case every standard triple for $P(\lambda)$ is S-structured. The structure of the matrix S in an S-structured standard triple is uniquely determined by the triple, as shown by the next result.

Proposition 3.6 Let $S \in S$ and (U, T, V) be an S-structured standard triple with matrix S. Then

$$S = Q(U,T)^{-1}Q(V^{\star}u_{\mathcal{S}}(T), t_{\mathcal{S}}(T))$$

with Q(U,T) as in (9).

Proof. Using Definition 3.2 we check that $Q(U,T)S = Q(V^{\star}u_{\mathcal{S}}(T), t_{\mathcal{S}}(T))$.

The matrix S is also easy to construct when the matrix coefficients of $P(\lambda)$ are known.

Proposition 3.7 Let $S \in S$ and $P(\lambda) \in \mathcal{P}_{S}(\mathbb{F}^{n})$ of degree m with nonsingular leading coefficient satisfying assumption (a). If (U,T) is a standard pair for $P(\lambda)$ then $(U,T, Sv_{S}(T)U^{\star})$ is an S-structured standard triple for $P(\lambda)$ with matrix S given by

$$S^{-1} = \begin{cases} Q^T \mathcal{A}^{even}_+ Q & \text{if } P \text{ is } T\text{-}(anti) palindromic, \ m = 2k \text{ and } -1 \in \Lambda(P), \\ z^{-\star} Q^{\star} \mathcal{A}^{even}_-(z) Q & \text{if } P \text{ is } \star\text{-}(anti) palindromic, \ m = 2k, \ -z/z^{\star} \notin \Lambda(P), \\ Q^{\star} \mathcal{A}_S Q & \text{otherwise,} \end{cases}$$

where Q := Q(U,T) is as in (9), and $\mathcal{A}_{\mathcal{S}}$, $\mathcal{A}^{even}_{-}(z)$ and \mathcal{A}^{even}_{+} are as in (4)–(8).

Proof. We first show that the matrix S in the proposition has the properties listed in Definition 3.2. Note that under assumption (a), $P(\lambda)$ has a structured linearization $\lambda A_{\mathcal{S}} + \mathcal{B}_{\mathcal{S}}$, which is one of (4)–(8). The pair (Q, T) is a standard pair for $\lambda \mathcal{A}_{\mathcal{S}} + \mathcal{B}_{\mathcal{S}}$, and hence

$$Q^{\star} \mathcal{A}_{\mathcal{S}} Q T = -Q^{\star} \mathcal{B}_{\mathcal{S}} Q \quad \Longleftrightarrow \quad Q^{\star} \mathcal{B}_{\mathcal{S}} Q = -z^{\star} S^{-1} T, \tag{17}$$

where z = 1 except when $\mathcal{A}_{\mathcal{S}} = \mathcal{A}^{even}_{-}(z)$, in which case z is such that $-z/z^{\star} \notin \Lambda(P)$. Since \star -congruence preserves any structure in S, the pencil

$$Q^{\star}(\lambda \mathcal{A}_{\mathcal{S}} + \mathcal{B}_{\mathcal{S}})Q = z^{\star}(\lambda S^{-1} - S^{-1}T)$$

has the same structure as $\lambda A_{S} + B_{S}$, and hence S satisfies the appropriate properties.

It remains to show that V in (11) has the form $V = Sv_{\mathcal{S}}(T)U^{\star}$. For $\mathcal{S} \in \{\text{Hermitian}, \text{symmetric}, \star\text{-even}, \star\text{-odd}\}, v_{\mathcal{S}}(T) = I$. Since $U^{\star} = Q^{\star}(e_m \otimes I_n)$ and $S^{-1} = Q^{\star}\mathcal{A}_{\mathcal{S}}Q$, we find that

$$SU^{\star} = Q^{-1} \mathcal{A}_{\mathcal{S}}^{-1} Q^{-\star} Q^{\star} (e_m \otimes I_n) = Q^{-1} \mathcal{A}_{\mathcal{S}}^{-1} (e_m \otimes I_n).$$

From the block structure of $\mathcal{A}_{\mathcal{S}}$ in (4) we see that $\mathcal{A}_{\mathcal{S}}(e_1 \otimes I_n) = (e_m \otimes I)A_m$, or equivalently, $\mathcal{A}_{\mathcal{S}}^{-1}(e_m \otimes I) = (e_1 \otimes I_n)A_m^{-1}$ since $\mathcal{A}_{\mathcal{S}}$ and A_m are both nonsingular. Hence $SU^{\star} = Q^{-1}(e_1 \otimes I_n)A_m^{-1} = V$.

When $P(\lambda)$ is \star -(anti)palindromic of odd degree then the definition of V in (11), the expression for S in the proposition and the structure of $\mathcal{A}_{\mathcal{S}} = \mathcal{A}^{odd}$ in (5) yield

$$S^{-1}V = Q^{\star} \mathcal{A}_{\mathcal{S}} Q Q^{-1} (e_1 \otimes I_n) A_m^{-1} = T^{\star k} U^{\star}.$$

For a \star -palindromic P of even degree, we have shown that $TS^{\star} = -\alpha S$, where $\alpha = -z/z^{\star}$. From the definition of Q in (9), $T^{\star(k-1)}U^{\star} = Q^{\star}(e_{k+1} \otimes I_n)$. Hence on using

the definition of V in (11), the expression for S in the proposition and the structure of $\mathcal{A}_{\mathcal{S}} = \mathcal{A}^{even}_{-}(z)$ in (7) we have that

$$QS(I + \alpha T^{\star}) = Q(S - S^{\star})Q^{\star}(e_{k+1} \otimes I_n)$$

= $(z^{\star}\mathcal{A}^{even}_{-}(z))^{-1}(e_{k+1} \otimes I_n) - z(\mathcal{A}^{even}_{-}(z))^{-\star}(e_{k+1} \otimes I_n).$

From the definition of $\mathcal{A}^{even}_{-}(z)$ in (7), we find that

$$\mathcal{A}_{-}^{even}(z) \begin{bmatrix} z^{-1}A_{m}^{-1} - z^{m-1}P(z, -z^{\star})^{-1} \\ (-z)^{m-2}z^{\star}P(z, -z^{\star})^{-1} \\ (-z)^{m-3}z^{\star 2}P(z, -z^{\star})^{-1} \\ \vdots \\ (-z)^{0}z^{\star(m-1)}P(z, -z^{\star})^{-1} \end{bmatrix} = -\alpha^{-1}e_{k+1} \otimes I_{n},$$
$$\left(\mathcal{A}_{-}^{even}(z)\right)^{\star} \begin{bmatrix} -z^{m-1}(z^{\star})^{0}P(z, -z^{\star})^{-1} \\ (-z)^{m-2}z^{\star}P(z, -z^{\star})^{-1} \\ (-z)^{m-3}z^{\star 2}P(z, -z^{\star})^{-1} \\ \vdots \\ (-z)^{0}z^{\star(m-1)}P(z, -z^{\star})^{-1} \end{bmatrix} = e_{k+1} \otimes I_{n},$$

where $P(z, -z^{\star}) = \sum_{j=0}^{m} z^{j} (-z^{\star})^{m-j} A_{j}$. Hence

$$z^{\star} (\mathcal{A}_{-}^{even}(z))^{-1} (e_{k+1} \otimes I_n) - z (\mathcal{A}_{-}^{even}(z))^{-\star} (e_{k+1} \otimes I_n) = (e_1 \otimes I_n) \mathcal{A}_m^{-1},$$

that is, $S(I + \alpha T^{\star})T^{\star(k-1)}U^{\star} = Q^{-1}(e_1 \otimes I_n)A_m^{-1} = V$. The proof for \star -antipalindromic P is along the same lines. \Box

It follows from Theorem 3.5 and Proposition 3.7 that if $P(\lambda)$ has structure S then the standard triple (13) is S-structured with matrix $S = \mathcal{A}_{S}^{-1}$ except when $\mathcal{A}_{S} = \mathcal{A}_{-}^{even}(z)$, in which case $S = z^{\star} (\mathcal{A}_{-}^{even}(z))^{-1}$.

4. S-structured Jordan triples

We now explain how to obtain explicit expressions for the Jordan matrix and S-matrix of S-structured Jordan triples $(X, J, S_J v_S(J)X^*)$ of $P(\lambda) \in \mathcal{P}_S(\mathbb{F}^n)$. We note that the matrix S_J displays the sign characteristic of $P(\lambda)$, whose definition we now give.

Let $(U, T, S_T v_S(T)U^*)$ be a standard triple for $P(\lambda) \in \mathcal{P}_S(\mathbb{F}^n)$. The sign characteristic of $P(\lambda)$ is defined as the sign characteristic of the pair (T, S_T^{-1}) , which is a list of signs, with a sign (+1 or -1) attached to each partial multiplicity of

- real eigenvalues of Hermitian or real symmetric matrix polynomials,
- purely imaginary eigenvalues of *-even, *-odd, real *T*-even and real *T*-odd matrix polynomials,
- eigenvalues with unit modulus of *-(anti)palindromic and real *T*-palindromic matrix polynomials.

These signs can be read off the canonical decomposition of $\lambda S_T^{-1} - S_T^{-1}T$ via \star -congruence (see [5, Sec. 12.4] for Hermitian structure). Note that the definition of the sign characteristic for $P(\lambda)$ is independent of the choice of standard triple. Indeed if $(U_i, T_i, S_{T_i}v_S(T_i)U_i^{\star})$, i = 1, 2 are *S*-structured standard triples for $P(\lambda)$, then by Lemma 3.4 there exists a nonsingular *G* such that $T_2 = G^{-1}T_1G$ and $S_{T_2} = G^{-1}S_{T_1}G^{-\star}$. Hence, $\lambda S_{T_2}^{-1} - S_{T_2}^{-1}T_2 = G^{\star}(\lambda S_{T_1}^{-1} - S_{T_1}^{-1}T_1)G$, that is, the pencils $\lambda S_{T_i}^{-1} - S_{T_i}^{-1}T_i$, i = 1, 2 are \star -congruent. They share the same canonical decomposition via \star -congruence and therefore the same sign characteristic.

We know that the triple $((e_m^T \otimes I_n), \mathcal{C}, (e_1 \otimes A_m^{-1}))$ is a standard triple for $P(\lambda)$ and by Theorem 3.5, it is S-structured with S-matrix as in Proposition 3.7 with $Q = I_{mn}$. Hence, on using Lemma 2.1, we find that

$$\lambda S_{\mathcal{C}}^{-1} - S_{\mathcal{C}}^{-1} \mathcal{C} = \lambda z^{-\star} \mathcal{A}_{\mathcal{S}} + z^{-\star} \mathcal{B}_{\mathcal{S}},$$

where $\lambda \mathcal{A}_{\mathcal{S}} + \mathcal{B}_{\mathcal{S}}$ is a structured linearization of $P(\lambda)$ as in (4)–(8), and z = 1 except when $\mathcal{A}_{\mathcal{S}} = \mathcal{A}_{-}^{even}(z)$, in which case $z \in \mathbb{F}$ is chosen such that $-z/z^{\star} \notin \Lambda(P)$. So what we need is a canonical decomposition of $\lambda \mathcal{A}_{\mathcal{S}} + \mathcal{B}_{\mathcal{S}}$ via \star -congruence,

$$Z^{\star}(\lambda \mathcal{A}_{\mathcal{S}} + \mathcal{B}_{\mathcal{S}})Z = \lambda(Z^{\star}\mathcal{A}_{\mathcal{S}}Z) - (Z^{\star}\mathcal{A}_{\mathcal{S}}Z)(Z^{-1}\mathcal{C}Z) = z^{\star}(\lambda S_{J}^{-1} - S_{J}^{-1}J),$$

where $J = Z^{-1}CZ$ is the Jordan form of C. Fortunately, such decompositions are available in the literature for all the structures in S. We use these canonical decompositions to provide explicit expressions for J and S_J in Appendix A. These expressions show that S_J and J have the same block structure and that we can read the sign characteristic of $P(\lambda)$ from certain diagonal blocks of S_J .

5. Concluding remarks

The results in this paper represent a first step towards the solution of the structured inverse polynomial eigenvalue problem: given a list of admissible elementary divisors for the structure, and possibly, corresponding right eigenvectors and generalized eigenvectors, construct a structured matrix polynomial having these elementary divisors and eigenvectors/generalized eigenvectors. Indeed, using the results in sections 3 and 4 we show in [1] how to construct an S-structured (2, n)-Jordan triple (X, J, Y) from a given list of 2n prescribed eigenvalues and n linearly independent eigenvectors and generalized eigenvectors, and use the fact that an S-structured (2, n)-Jordan triple defines a unique structured quadratic $Q(\lambda) = \lambda^2 A_2 + \lambda A_1 + A_0 \in \mathcal{P}_S(\mathbb{F}^n)$, where $A_2 = (XJSv_S(J)X^*)^{-1}$,

$$A_1 = -A_2 X J^2 S v_{\mathcal{S}}(J) X^* A_2, \quad A_0 = -A_2 (X J^2 S v_{\mathcal{S}}(J) X^* A_1 + X J^3 S v_{\mathcal{S}}(J) X^* A_2),$$

and $v_{\mathcal{S}}(\cdot)$ as in Table 2.

Finally, we note that standard triples have been useful to describe structure preserving transformations (SPTs) for matrix polynomials, and in particular quadratic matrix polynomials [3]. We believe that the notion of S-structured standard triples will further our understanding of SPTs for structured matrix polynomials.

Appendix A. Explicit expressions for J and S_J

Using the canonical decompositions of structured pencils via \star -congruences, we provide in this appendix an explicit expression for the Jordan matrix and S-matrix of S-structured Jordan triples $(X, J, S_J v_S(J) X^{\star})$ of $P(\lambda) \in \mathcal{P}_S(\mathbb{F}^n)$ for each $S \in S$. We assume that $P(\lambda)$ is of degree m with nonsingular leading coefficient matrix. To facilitate the description of J and S_J , we introduce the matrices $F_1 = [1], G_1 = [0]$, and for integers k > 1

$$E_{k} = \begin{bmatrix} & & 1 \\ & -1 & \\ & 1 & \ddots & \\ (-1)^{k-1} & & & \end{bmatrix}_{k \times k} = (-1)^{k-1} E_{k}^{T}, \qquad F_{k} = \begin{bmatrix} & & 1 \\ & \ddots & \\ 1 & & & \end{bmatrix}_{k \times k}.$$

We denote by

$$J_{\ell_k}(\lambda_k) = \begin{bmatrix} \lambda_k & 1 & & \\ & \lambda_k & \ddots & \\ & & \ddots & 1 \\ & & & & \lambda_k \end{bmatrix} \in \mathbb{C}^{\ell_k \times \ell_k},$$

the Jordan block of size ℓ_k associated with λ_k , and by

$$K_{2m_k}(\lambda_k, \bar{\lambda}_k) = K_{2m_k}(\Lambda_k) = \begin{bmatrix} \Lambda_k & I_2 & & \\ & \Lambda_k & \ddots & \\ & & \ddots & I_2 \\ & & & & \Lambda_k \end{bmatrix} \in \mathbb{R}^{2m_k \times 2m_k}, \quad \Lambda_k = \begin{bmatrix} \alpha_k & \beta_k \\ -\beta_k & \alpha_k \end{bmatrix},$$

the $2m_k \times 2m_k$ real Jordan block associated with the pair of complex conjugate eigenvalues $(\lambda_k, \bar{\lambda}_k)$, where $\lambda_k = \alpha_k + i\beta_k$ with $\alpha_k, \beta_k \in \mathbb{R}, \beta_k \neq 0$. We use the notation $\bigoplus_{j=1}^r F_j$ to denote the direct sum of the matrices F_1, \ldots, F_r .

Note that there are restrictions on the Jordan structure of P. For instance, a regular $n \times n$ matrix polynomial cannot have more than n elementary divisors associated with the same eigenvalue [14]. Also, the elementary divisors have certain pairing, which depends on the structure $S \in S$ and the eigenvalue. Hence we describe for each $S \in S$ the elementary divisors arising from $P(\lambda) \in \mathcal{P}_{S}(\mathbb{F}^{n})$ and then provide an expression for J and S_{J} .

Appendix A.1. Hermitian structure

Suppose $P(\lambda)$ is Hermitian with

• r real elementary divisors $(\lambda - \lambda_j)^{\ell_j}$, j = 1: r, and

• s pairs of nonreal conjugate elementary divisors $(\lambda - \mu_j)^{m_j}$, $(\lambda - \overline{\mu}_j)^{m_j}$, j = 1:s

with
$$\ell_j, m_j$$
 such that $\sum_{j=1}^r \ell_j + 2 \sum_{j=1}^s m_j = mn$. It follows from [9, Thm. 6.1] that

$$J = \bigoplus_{j=1}^r J_{\ell_j}(\lambda_j) \oplus \bigoplus_{j=1}^s (J_{m_j}(\bar{\mu}_j) \oplus J_{m_j}(\mu_j)), \quad S_J = S_J^{-1} = \bigoplus_{j=1}^r \varepsilon_j F_{\ell_j} \oplus \bigoplus_{j=1}^s F_{2m_j}.$$

Here $\{\varepsilon_1, \ldots, \varepsilon_r\}$ with $\varepsilon_j = \pm 1$ is the sign characteristic associated with the real eigenvalues λ_j , j = 1: r of $P(\lambda)$. We easily check that $S_J = S_J^*$ and $JS_J = (JS_J)^*$.

Appendix A.2. Real symmetric structure

Suppose $P(\lambda)$ is real symmetric with

- r real elementary divisors $(\lambda \lambda_j)^{\ell_j}$, j = 1: r, and
- s pairs of nonreal conjugate elementary divisors $(\lambda \mu_j)^{m_j}$, $(\lambda \overline{\mu}_j)^{m_j}$, j = 1:s

with ℓ_j, m_j such that $\sum_{j=1}^r \ell_j + 2 \sum_{j=1}^s m_j = mn$. On using [9, Thm. 9.2] we find that

$$J = \bigoplus_{j=1}^{r} J_{\ell_j}(\lambda_j) \oplus \bigoplus_{j=1}^{s} K_{2m_j}(\mu_j, \bar{\mu}_j), \qquad S_J = S_J^{-1} = \bigoplus_{j=1}^{r} \varepsilon_j F_{\ell_j} \oplus \bigoplus_{j=1}^{s} F_{2m_j},$$

where the scalars $\varepsilon_j = \pm 1$ form the sign characteristic associated with the real eigenvalues of $P(\lambda)$. Note that $S_J = S_J^T$ and $JS_J = (JS_J)^T$.

Appendix A.3. Complex symmetric structure

Suppose $P(\lambda)$ is complex symmetric with q elementary divisors $(\lambda - \lambda_j)^{m_j}$, $\lambda_j \in \mathbb{C}$, j = 1; q, with m_j such that $\sum_{j=1}^q m_j = mn$. Then [20, Prop. 4.3] leads to

$$J = \bigoplus_{j=1}^q J_{m_j}(\lambda_j), \qquad S_J = S_J^{-1} = \bigoplus_{j=1}^q F_{m_j},$$

which satisfy $S_J = S_J^T$ and $JS_J = (JS_J)^T$.

Appendix A.4. *-even structure

Suppose $P(\lambda)$ is *-even with

- r purely imaginary (including 0) elementary divisors $(\lambda i\beta_j)^{\ell_j}$, j = 1: r, and
- s pairs of nonzero and non-purely imaginary elementary divisors $(\lambda i\mu_j)^{m_j}$, $(\lambda i\overline{\mu}_j)^{m_j}$, j = 1: s,

with ℓ_j, m_j such that $\sum_{j=1}^r \ell_j + 2\sum_{j=1}^s m_j = mn$. With the change of eigenvalue parameter $\lambda = -i\mu$, the *-even linearization of $P(\lambda), \lambda \mathcal{A}_S + \mathcal{B}_S = \mu(-i\mathcal{A}_S) + \mathcal{B}_S$ becomes a Hermitian pencil in μ . Using Appendix A.1 we obtain that

$$J = -i\Big(\bigoplus_{j=1}^r J_{\ell_j}(-\beta_j) \oplus \bigoplus_{j=1}^s \big(J_{m_j}(-\bar{\mu}_j) \oplus J_{m_j}(-\mu_j)\big)\Big), \quad S_J = -i\Big(\bigoplus_{j=1}^r \varepsilon_j F_{\ell_j} \oplus \bigoplus_{j=1}^s F_{2m_j}\Big).$$

Here $\{\varepsilon_1, \ldots, \varepsilon_r\}$ with $\varepsilon_j = \pm 1$ is the sign characteristic associated with the zero and purely imaginary eigenvalues of $P(\lambda)$. Note that $S_J = -S_J^*$ and $JS_J = (JS_J)^*$.

Appendix A.5. Real T-even structure

Suppose $P(\lambda)$ is real *T*-even with (see [17])

- t zero elementary divisors λ^{n_j} with n_j even, j = 1: t,
- r pairs of real elementary divisors $(\lambda + \alpha_j)^{p_j}$, $(\lambda \alpha_j)^{p_j}$ with p_j odd if $\alpha_j = 0$, j = 1: r,
- s pairs of purely imaginary elementary divisors $(\lambda + i\beta_j)^{k_j}$, $(\lambda i\beta_j)^{k_j}$ with $\beta_j > 0$, j = 1: s,

• q quadruples of nonzero and non-purely imaginary elementary divisors $(\lambda + \mu_j)^{m_j}$, $(\lambda - \mu_j)^{m_j}$, $(\lambda - \overline{\mu}_j)^{m_j}$, $(\lambda - \overline{\mu}_j)^{m_j}$, j = 1: q,

with n_j, p_j, k_j, m_j such that $\sum_{j=1}^t n_j + 2 \sum_{j=1}^r p_j + 2 \sum_{j=1}^s k_j + 4 \sum_{j=1}^q m_j = mn$. Using [10, Thm. 16.1], we find that

$$J = \bigoplus_{j=1}^{\iota} J_{n_j}(0) \oplus \bigoplus_{j=1}^{\prime} \left(J_{p_j}(\alpha_j) \oplus -J_{p_j}(\alpha_j)^T \right)$$
$$\oplus \bigoplus_{j=1}^{s} K_{2k_j}(i\beta_j, -i\beta_j) \oplus \bigoplus_{j=1}^{q} \left(K_{2m_j}(\mu_j, \bar{\mu}_j) \oplus -K_{2m_j}(\mu_j, \bar{\mu}_j)^T \right),$$

$$S_J = \bigoplus_{j=1}^t \varepsilon_j E_{n_j} \oplus \bigoplus_{j=1}^r \begin{bmatrix} 0 & -I_{p_j} \\ I_{p_j} & 0 \end{bmatrix} \oplus \bigoplus_{j=1}^s \varepsilon_j (E_{k_j} \otimes E_2^{k_j}) \oplus \bigoplus_{j=1}^q \begin{bmatrix} 0 & -I_{2m_j} \\ I_{2m_j} & 0 \end{bmatrix},$$

where the scalars $\varepsilon_j = \pm 1$ form the sign characteristic associated with the purely imaginary eigenvalues and zero eigenvalues of even partial multiplicities (see [19]). We easily check that $S_J = -S_J^T$ and $JS_J = (JS_J)^T$.

Appendix A.6. Complex T-even structure

Let $\lambda_j \in \mathbb{C} \setminus \{0\}$ and suppose $P(\lambda)$ is complex *T*-even with (see [17])

- t zero elementary divisors λ^{m_j} with m_j even, j = 1: r,
- q pairs of elementary divisors $(\lambda \lambda_j)^{k_j}$, $(\lambda + \lambda_j)^{k_j}$ with k_j odd if $\lambda_j = 0, j = 1; q$,

with m_j, k_j such that $\sum_{j=1}^r m_j + 2 \sum_{j=1}^q k_j = mn$. Then, by [20, Prop. 4.7 (b)], we obtain that

$$J = \bigoplus_{j=1}^{t} J_{m_j}(0) \oplus \bigoplus_{j=1}^{q} (J_{k_j}(\lambda_j) \oplus J_{k_j}(-\lambda_j)), \quad S_J = \bigoplus_{j=1}^{t} \begin{bmatrix} 0 & -F_{\frac{1}{2}m_j} \\ F_{\frac{1}{2}m_j} & 0 \end{bmatrix} \oplus \bigoplus_{j=1}^{q} \begin{bmatrix} 0 & -F_{k_j} \\ F_{k_j} & 0 \end{bmatrix}$$

Note that $S_J = -S_J^T$ and $JS_J = (JS_J)^T$.

Appendix A.7. *-odd structure

Suppose $P(\lambda)$ is *-odd with

- r purely imaginary (including 0) elementary divisors $(\lambda i\beta_j)^{\ell_j}$, j = 1: r and
- s pairs of nonzero and non-purely imaginary elementary divisors $(\lambda i\mu_j)^{m_j}$, $(\lambda i\overline{\mu}_j)^{m_j}$, j = 1:s,

with ℓ_j, m_j such that $\sum_{j=1}^r \ell_j + 2 \sum_{j=1}^s m_j = mn$. Note that for the *-odd linearization $\lambda \mathcal{A}_S + \mathcal{B}_S$ of $P(\lambda)$ in (4), the pencil $i(\lambda \mathcal{A}_S + \mathcal{B}_S)$ is *-even and the structure for S_J and J follows from Appendix A.4. We find that

$$J = -i \Big(\bigoplus_{j=1}^r J_{\ell_j}(-\beta_j) \oplus \bigoplus_{j=1}^s \big(J_{m_j}(-\bar{\mu}_j) \oplus J_{m_j}(-\mu_j) \big) \Big), \quad S_J = S_J^{-1} = \bigoplus_{j=1}^r \varepsilon_j F_{\ell_j} \oplus \bigoplus_{j=1}^s F_{2m_j},$$

which satisfy $S_J = S_J^*$ and $JS_J = -(JS_J)^*$. Here $\{\varepsilon_1, \ldots, \varepsilon_r\}$ with $\varepsilon_j = \pm 1$ is the sign characteristic associated with the zero and purely imaginary eigenvalues of $P(\lambda)$.

Appendix A.8. Real T-odd structure

Suppose $P(\lambda)$ is real *T*-odd with (see [17])

- t zero elementary divisors λ^{ℓ_j} with ℓ_j odd, j = 1: t,
- r pairs of real elementary divisors $(\lambda + \alpha_j)^{p_j}$, $(\lambda \alpha_j)^{p_j}$ with p_j even if $\alpha_j = 0$, j = 1: r,
- s pairs of purely imaginary elementary divisors $(\lambda + i\beta_j)^{k_j}$, $(\lambda i\beta_j)^{k_j}$ with $\beta_j > 0$, j = 1: s, and
- q quadruples elementary divisors $(\lambda + \mu_j)^{m_j}$, $(\lambda \mu_j)^{m_j}$, $(\lambda + \bar{\mu}_j)^{m_j}$, $(\lambda \bar{\mu}_j)^{m_j}$, j = 1: q,

with ℓ_j, p_j, k_j, m_j such that $\sum_{j=1}^t \ell_j + 2 \sum_{j=1}^r p_j + 2 \sum_{j=1}^s k_j + 4 \sum_{j=1}^q m_j = mn$. On using [10, Thm. 17.1] we find that

$$J = \bigoplus_{j=1}^{t} J_{\ell_j}(0) \oplus \bigoplus_{j=1}^{r} \left(J_{p_j}(\alpha_j) \oplus -J_{p_j}(\alpha_j)^T \right)$$
$$\oplus \bigoplus_{j=1}^{s} K_{2k_j}(i\beta_j, -i\beta_j) \oplus \bigoplus_{j=1}^{q} \left(K_{2m_j}(\mu_j, \bar{\mu}_j) \oplus -K_{2m_j}(\mu_j, \bar{\mu}_j)^T \right),$$
$$S^{-1} = \bigoplus_{s=1}^{t} \varepsilon_s E_{\ell_s} \oplus \bigoplus_{j=1}^{r} \begin{bmatrix} 0 & I_{p_j} \end{bmatrix} \oplus \bigoplus_{s=1}^{s} \varepsilon_s (E_{l_s} \otimes E^{k_j-1}) \oplus \bigoplus_{s=1}^{q} \begin{bmatrix} 0 & I_{2m_j} \end{bmatrix}$$

$$S_J = S_J^{-1} = \bigoplus_{j=1} \varepsilon_j E_{\ell_j} \oplus \bigoplus_{j=1} \begin{bmatrix} 0 & I_{p_j} \\ I_{p_j} & 0 \end{bmatrix} \oplus \bigoplus_{j=1} \varepsilon_j (E_{k_j} \otimes E_2^{k_j-1}) \oplus \bigoplus_{j=1} \begin{bmatrix} 0 & I_{2m_j} \\ I_{2m_j} & 0 \end{bmatrix},$$
where the scalars $\varepsilon_j = \pm 1$ form the sign characteristic associated with the purely imaginary $\varepsilon_j = \pm 1$.

where the scalars $\varepsilon_j = \pm 1$ form the sign characteristic associated with the purely imaginary eigenvalues and the zero eigenvalues with odd partial multiplicities. We easily check that $S_J = S_J^T$ and $JS_J = -(JS_J)^T$.

Appendix A.9. Complex T-odd structure

Let $\lambda_j \in \mathbb{C} \setminus \{0\}$ and suppose $P(\lambda)$ is complex *T*-odd with (see [17])

- s zero elementary divisors λ^{ℓ_j} with ℓ_j odd, j = 1: s, and
- q pairs of elementary divisors $(\lambda + \lambda_j)^{k_j}$, $(\lambda \lambda_j)^{k_j}$ with k_j even if $\lambda_j = 0, j = 1; q$,

with ℓ_j, k_j such that $\sum_{j=1}^s \ell_j + 2 \sum_{j=1}^q k_j = mn$. It follows from [20, Prop. 4.7 (b)] that

$$J = \bigoplus_{j=1}^{s} J_{\ell_j}(0) \oplus \bigoplus_{j=1}^{q} \left(-J_{k_j}(\lambda_j) \oplus J_{k_j}(\lambda_j) \right), \qquad S_J = S_J^{-1} = \bigoplus_{j=1}^{s} E_{\ell_j} \oplus \bigoplus_{j=1}^{q} F_{2k_j}.$$

Clearly, $S_J = S_J^T$ and $JS_J = -(JS_J)^T$.

Notice the difference between the zero elementary divisors associated with T-even and T-odd pencils (see [17, Cor. 4.3]).

Appendix A.10. *-(anti)palindromic structure

Suppose $P(\lambda)$ is complex *-palindromic with $-1 \notin \Lambda(P)$ and (see [18])

- q pairs of elementary divisors $(\lambda \lambda_j)^{k_j}$, $(\lambda 1/\overline{\lambda}_j)^{k_j}$ with $\lambda_j \in \mathbb{C}$, $|\lambda_j| \neq 1, j = 1; q$,
- t elementary divisors $(\lambda \lambda_j)^{2\ell_j + 1}$ with $\lambda_j \in \mathbb{C}$ such that $|\lambda_j| = 1, j = 1; t$, and
- s elementary divisors $(\lambda \lambda_j)^{2m_j}$ with $\lambda_j \in \mathbb{C}, |\lambda_j| = 1, j = 1: s$,

with k_j, ℓ_j, m_j such that $2 \sum_{j=1}^q k_j + \sum_{j=1}^t (2\ell_j + 1) + 2 \sum_{j=1}^s m_j = mn$. Then using either [21, Thm. 5] or [22, Sec. 2.2.2] we find that

$$J = -S_J S_J^{-*}$$

with

$$S_{J} = \bigoplus_{j=1}^{q} \begin{bmatrix} 0_{k_{j}} & F_{k_{j}}J_{k_{j}}(-\lambda_{j}) \\ F_{k_{j}} & 0_{k_{j}} \end{bmatrix} \oplus \bigoplus_{j=1}^{t} \varepsilon_{j} \begin{bmatrix} 0 & 0 & F_{\ell_{j}}J_{\ell_{j}}(-\lambda_{j}) \\ 0 & (-\lambda_{j})^{1/2} & e_{1}^{T} \\ F_{\ell_{j}} & 0 & 0 \end{bmatrix}$$
$$\oplus \bigoplus_{j=1}^{s} \varepsilon_{j} \begin{bmatrix} 0_{m_{j}} & F_{m_{j}}J_{m_{j}}(-\lambda_{j}) \\ F_{m_{j}} & e_{1}e_{1}^{T} \end{bmatrix},$$

has the above elementary divisors. Here e_1 is the first column of the identity matrix. The scalars $\varepsilon_j = \pm 1$ form the sign characteristic associated with the eigenvalues of unit modulus of $P(\lambda)$ (see [8]).

For the *-antipal indromic structure, $J = S_J S_J^{-*}$ with S_J as above but with $-\lambda_j$ replaced by λ_j .

Appendix A.11. Real T-(anti)palindromic structure

Suppose $P(\lambda)$ is real *T*-palindromic with $-1 \notin \Lambda(P), \lambda_j \in \mathbb{C} \setminus \{0\}$, and (see [18])

- r pairs of real elementary divisors $(\lambda \lambda_j)^{k_j}, (\lambda 1/\lambda_j)^{k_j}$ with $\lambda_j \in \mathbb{R}, |\lambda_j| \neq 1, j = 1:r,$
- q quadruples of nonreal elementary divisors $(\lambda \lambda_j)^{n_j}$, $(\lambda \overline{\lambda}_j)^{n_j}$, $(\lambda 1/\lambda_j)^{n_j}$, $(\lambda -$
- s elementary divisors $(\lambda 1)^{2m_j}, j = 1: s,$
- t pairs of elementary divisors $(\lambda 1)^{2\ell_j + 1}$, $(\lambda 1)^{2\ell_j + 1}$, j = 1:t,
- *u* pairs of elementary divisors $(\lambda \lambda_j)^{\ell'_j}$, $(\lambda \overline{\lambda}_j)^{\ell'_j}$ with $|\lambda_j| = 1$, $\lambda_j \neq 1$, ℓ'_j odd, j = 1: u,
- p pairs of elementary divisors $(\lambda \lambda_j)^{m'_j}$, $(\lambda \overline{\lambda}_j)^{m'_j}$ with $|\lambda_j| = 1$, $\lambda_j \neq 1$, m'_j even, j = 1: p.

We have that $2\sum_{j=1}^{r} k_j + 4\sum_{j=1}^{q} n_j + 2\sum_{j=1}^{s} m_j + 2\sum_{j=1}^{t} (2\ell_j + 1) + 2\sum_{j=1}^{u} \ell'_j + 2\sum_{j=1}^{p} m'_j = mn.$

Using [22, Thm. 2.8] we find that $J=-S_JS_J^{-\ast}$ has the above list of elementary divisors, where

$$S_{J} = \bigoplus_{j=1}^{r} \begin{bmatrix} 0_{k_{j}} & F_{k_{j}}J_{k_{j}}(-\lambda_{j}) \\ F_{k_{j}} & 0_{k_{j}} \end{bmatrix} \oplus \bigoplus_{j=1}^{q} \begin{bmatrix} 0_{2n_{j}} & K_{2n_{j}}(-\Lambda_{j}) \\ F_{n_{j}} \otimes I_{2} & 0_{2n_{j}} \end{bmatrix} \oplus \bigoplus_{j=1}^{s} \begin{bmatrix} 0 & F_{m_{j}}J_{m_{j}}(-1) \\ F_{m_{j}} & 0 \end{bmatrix}$$
18

$$\begin{split} & \oplus \bigoplus_{j=1}^{t} \varepsilon_{j} \begin{bmatrix} 0_{\ell_{j}} & 0 & F_{\ell_{j}} J_{\ell_{j}}(-1) \\ 0 & 1 & e_{1}^{T} \\ F_{\ell_{j}} & 0 & 0_{\ell_{j}} \end{bmatrix} \oplus \bigoplus_{j=1}^{t} \varepsilon_{j} \begin{bmatrix} 0_{\ell_{j}} & 0 & F_{\ell_{j}} J_{\ell_{j}}(-1) \\ 0 & 1 & e_{1}^{T} \\ F_{\ell_{j}} & 0 & 0_{\ell_{j}} \end{bmatrix} \\ & \oplus \bigoplus_{j=1}^{u} \varepsilon_{j} \begin{bmatrix} 0_{\ell_{j}'-1} & 0 & K_{\ell_{j}'-1}(-\Lambda_{j}) \\ 0 & (-\Lambda_{j})^{\frac{1}{2}} & e_{1}^{T} \otimes I_{2} \\ F_{\frac{1}{2}(\ell_{j}'-1)} \otimes I_{2} & 0 & 0_{\ell_{j}'-1} \end{bmatrix} \oplus \bigoplus_{j=1}^{p} \varepsilon_{j} \begin{bmatrix} 0_{m_{j}'} & K_{m_{j}'}(-\Lambda_{j}) \\ F_{\frac{1}{2}m_{j}'} \otimes I_{2} & e_{1}e_{1}^{T} \otimes I_{2} \end{bmatrix}$$

Here $(-\Lambda_j)^{\frac{1}{2}}$ is the principal square root of $-\Lambda_j$. The scalars ε_j are signs ± 1 and form the sign characteristic associated with the eigenvalues of unit modulus of $P(\lambda)$ except

the eigenvalues 1 with even partial multiplicities (see [8]). For the *T*-antipalindromic $P(\lambda)$, $J = S_J S_J^{-T}$ where S_J is as above but with $-\lambda_j, -1$, $-\Lambda_j$, 1 replaced by λ_j , 1, Λ_j , -1, respectively.

Appendix A.12. Complex T-(anti)palindromic structure

Suppose $P(\lambda)$ is complex T-palindromic with $-1 \notin \Lambda(P)$ and (see [18])

- t elementary divisors $(\lambda 1)^{m_j}$ with m_j even, j = 1: t,
- q pairs of elementary divisors $(\lambda \lambda_j)^{k_j}$, $(\lambda 1/\lambda_j)^{k_j}$ with k_j odd when $\lambda_j = 1$, j=1:q,

with m_j, k_j such that $\sum_{j=1}^t m_j + 2 \sum_{j=1}^q k_j = mn$. On using either [21, Thm. 1] or [22, Thm. 2.6], we find that with

$$S_J = \bigoplus_{j=1}^t \begin{bmatrix} 0_{m_j/2} & F_{m_j/2}J_{m_j/2}(-1) \\ F_{m_j/2} & e_1e_1^T \end{bmatrix} \oplus \bigoplus_{j=1}^q \begin{bmatrix} 0_{k_j} & F_{k_j}J_{k_j}(-\lambda_j) \\ F_{k_j} & 0_{k_j} \end{bmatrix}$$

the matrix $J = -S_J S_J^{-T}$ has the above elementary divisors.

Now if $P(\lambda)$ is complex T-antipalindromic with $-1 \notin \Lambda(P)$ and (see [18])

- t elementary divisors (λ − 1)^{ℓ_j} with ℓ_j odd, j = 1:t,
 q pairs of elementary divisors (λ − λ_j)^{k_j}, (λ − 1/λ_j)^{k_j} with k_j even if λ_j = 1, j = 1: q,

with ℓ_j, k_j such that $\sum_{j=1}^t \ell_j + 2\sum_{j=1}^q k_j = mn$. On using [22, Thm. 2.6], we find that the matrix $J = S_J S_J^{-T}$ with

$$S_{J} = \bigoplus_{j=1}^{t} \begin{bmatrix} 0_{\ell_{j}} & 0 & F_{\ell_{j}} J_{\ell_{j}}(1) \\ 0 & 1 & e_{1}^{T} \\ F_{\ell_{j}} & 0 & 0_{\ell_{j}} \end{bmatrix} \oplus \bigoplus_{j=1}^{q} \begin{bmatrix} 0_{k_{j}} & F_{k_{j}} J_{k_{j}}(\lambda_{j}) \\ F_{k_{j}} & 0_{k_{j}} \end{bmatrix}$$

has the above elementary divisors.

Note that J in Appendix A.10–Appendix A.12 is "almost" in Jordan canonical form.

References

- Maha Al-Ammari and Françoise Tisseur. Structured inverse quadratic eigenvalue problems. Technical report, Manchester Institute for Mathematical Sciences, The University of Manchester, UK, 2011. In preparation.
- Moody T. Chu and Shu-Fang Xu. Spectral decomposition of real symmetric quadratic λ-matrices and its applications. *Math. Comp.*, 78:293–313, 2009.
- [3] S. D. Garvey, P. Lancaster, A. A. Popov, U. Prells, and I. Zaballa. Filters connecting isospectral quadratic systems. *To appear in Linear Algebra Appl.*, 2011.
- [4] Israel Gohberg, Peter Lancaster, and Leiba Rodman. Spectral analysis of selfadjoint matrix polynomials. Ann. of Math. (2), 112(1):33-71, 1980.
- [5] Israel Gohberg, Peter Lancaster, and Leiba Rodman. Indefinite Linear Algebra and Applications. Birkhäuser, Basel, Switzerland, 2005.
- [6] Israel Gohberg, Peter Lancaster, and Leiba Rodman. Matrix Polynomials. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2009. Unabridged republication of book first published by Academic Press in 1982.
- [7] Nicholas J. Higham, D. Steven Mackey, Niloufer Mackey, and Françoise Tisseur. Symmetric linearizations for matrix polynomials. SIAM J. Matrix Anal. Appl., 29(1):143–159, 2006.
- [8] Peter Lancaster, Uwe Prells, and Leiba Rodman. Canonical structures for palindromic matrix polynomials. Oper. Matrices, 1(4):469–489, 2007.
- [9] Peter Lancaster and Leiba Rodman. Canonical forms for Hermitian matrix pairs under strict equivalence and congruence. SIAM Rev., 47(3):407–443, 2005.
- [10] Peter Lancaster and Leiba Rodman. Canonical forms for symmetric/skew-symmetric real matrix pairs under strict equivalence and congruence. *Linear Algebra Appl.*, 406:1–76, 2005.
- [11] Peter Lancaster and Miron Tismenetsky. The Theory of Matrices. Academic Press, London, second edition, 1985.
- [12] Peter Lancaster and Ion Zaballa. A review of canonical forms for selfadjoint matrix polynomials. To appear in the Gohberg Memorial Volume. Springer, 2011.
- [13] D. Steven Mackey. Structured Linearizations for Matrix Polynomials. PhD thesis, University of Manchester, Manchester, England, 2006.
- [14] D. Steven Mackey. Quadratic realizability of matrix polynomials. Part I: The unstructured case. Manuscript, 2011.
- [15] D. Steven Mackey, Niloufer Mackey, Christian Mehl, and Volker Mehrmann. Structured polynomial eigenvalue problems: Good vibrations from good linearizations. SIAM J. Matrix Anal. Appl., 28(4):1029–1051, 2006.
- [16] D. Steven Mackey, Niloufer Mackey, Christian Mehl, and Volker Mehrmann. Vector spaces of linearizations for matrix polynomials. SIAM J. Matrix Anal. Appl., 28(4):971–1004, 2006.
- [17] D. Steven Mackey, Niloufer Mackey, Christian Mehl, and Volker Mehrmann. Jordan structures of alternating matrix polynomials. *Linear Algebra Appl.*, 432:867–891, 2010.
- [18] D. Steven Mackey, Niloufer Mackey, Christian Mehl, and Volker Mehrmann. Smith forms of palindromic matrix polynomials. MIMS EPrint 2010.36, Manchester Institute for Mathematical Sciences, The University of Manchester, UK, May 2010.
- [19] Volker Mehrmann and Hongguo Xu. Perturbation of purely imaginary eigenvalues of Hamiltonian matrices under structured perturbations. *Electron. J. Linear Algebra*, 17:234–257, 2008.
- [20] Leiba Rodman. Comparison of congruences and strict equivalences for real, complex, and quaternionic matrix pencils with symmetries. *Electron. J. Linear Algebra*, 16:248–283, 2007.
- [21] Christian Schröder. A canonical form for palindromic pencils and palindromic factorizations. Technical Report No. 316, DFG Research Center, MATHEON, Technische Universität Berlin, Berlin, Germany, 2006.
- [22] Christian Schröder. Palindromic and Even Eigenvalue Problems Analysis and Numerical Methods. PhD thesis, Technischen Universitat Berlin, Germany, 2008.