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Network-based drug design holds great promise in clinical research as a way to overcome
the limitations of traditional approaches in the development of drugs with high efficacy
and low toxicity. This novel strategy aims to study how a biochemical network as a whole,
rather than its individual components, responds to specific perturbations in different physio-
logical conditions. Proteins exerting little control over normal cells and larger control over
altered cells may be considered as good candidates for drug targets. The application of
network-based drug design would greatly benefit from using an explicit computational
model describing the dynamics of the system under investigation. However, creating a fully
characterized kinetic model is not an easy task, even for relatively small networks, as it is
still significantly hampered by the lack of data about kinetic mechanisms and parameters
values. Here, we propose a Monte Carlo approach to identify the differences between flux con-
trol profiles of a metabolic network in different physiological states, when information about
the kinetics of the system is partially or totally missing. Based on experimentally accessible
information on metabolic phenotypes, we develop a novel method to determine probabilistic
differences in the flux control coefficients between the two observable phenotypes. Knowledge
of how differences in flux control are distributed among the different enzymatic steps is
exploited to identify points of fragility in one of the phenotypes. Using a prototypical cancer-
ous phenotype as an example, we demonstrate how our approach can assist researchers in
developing compounds with high efficacy and low toxicity.

Keywords: metabolic control analysis; network-based drug design;
Monte Carlo sampling

1. INTRODUCTION

The main challenge in drug discovery consists of
developing drugs which are both effective and selec-
tive, hence non-toxic. In this respect, drug
development approaches have often assumed that
the enzyme chosen as target plays the role of ‘rate lim-
iting step’ for the biological function of interest [1].

However, single and completely rate-limiting steps
barely exist [2] and it is not easy to identify them if
they do. Potent inhibitors of essential enzymes often
do not show the expected effect at the cellular level
[3–5]. The network of biochemical interactions in
living cells buffers changes introduced in a single enzy-
matic step. Likewise, local changes may induce
unforeseen adverse side-effects on the whole system
[4]. This interconnectedness of biological function
usually results in poor predictive power with respect
to the requirement of high efficiency and low toxicity
for a drug.

*Authors for correspondence (ettore.murabito@postgrad.manchester.
ac.uk; ralf.steuer@manchester.ac.uk).

Electronic supplementary material is available at http://dx.doi.org/
10.1098/rsif.2010.0540 or via http://rsif.royalsocietypublishing.org.

J. R. Soc. Interface (2011) 8, 880–895
doi:10.1098/rsif.2010.0540

Published online 1 December 2010

Received 5 October 2010
Accepted 9 November 2010 880 This journal is q 2010 The Royal Society

 on April 26, 2011rsif.royalsocietypublishing.orgDownloaded from 

mailto:ettore.murabito@postgrad.manchester.ac.uk
mailto:ettore.murabito@postgrad.manchester.ac.uk
mailto:ralf.steuer@manchester.ac.uk
http://dx.doi.org/10.1098/rsif.2010.0540
http://dx.doi.org/10.1098/rsif.2010.0540
http://dx.doi.org/10.1098/rsif.2010.0540
http://rsif.royalsocietypublishing.org
http://rsif.royalsocietypublishing.org
http://rsif.royalsocietypublishing.org/


With the advent of systems biology, drug discovery
has been shifting its focus from a single-molecule to a
system-level perspective, and the concept of network-
based drug design has been introduced [3–6]. Within
this new paradigm, the aim is to study a biochemical
network as a whole and identify points of fragility
specifically characterizing an altered phenotype (as in
a cancer cell) [7,8]. By targeting these points of fragility,
a significant response in altered cells is induced. Differ-
ential network-based drug design then maximizes the
difference in response of target cells versus normal
cells [9]. A possible implementation of network-based
drug design is based on metabolic control analysis
(MCA), where the concept of fragility is expressed in
terms of control coefficients [10]. Differential MCA, in
particular, has been proposed as a tool to understand
how the system responds to specific perturbations
under different physiological conditions or in different
host cells, hence providing a way to assess both the effi-
ciency and the specificity of a compound designed to
target specific enzymes [3,9,11].

However, one fundamental requirement for applying
MCA is the availability of a fully characterized kinetic
model of the system under study. Creating such a
model is not an easy task, even for relatively small
metabolic networks [12,13]. In most cases, the detailed
enzymatic mechanisms governing the dynamics of the
different metabolic steps are unknown and precise
knowledge of kinetic parameters under the relevant in
vivo conditions is usually not available. The resulting
uncertainty in predicting the dynamic behaviour is sig-
nificant and increases drastically with the size of the
system [12]. Randomized sampling of the parameter
space represents a way in which such uncertainty can
be quantified and probabilistic insights about the dyna-
mical behaviour of the system can be obtained. Such
probabilistic approaches have been recently used in a
number of different studies, spanning from applications
on MCA [14,15], on metabolic engineering [16], to a
description of the dynamics in metabolic networks
[17–19]. Here we build upon these ideas and present a
Monte Carlo approach to identify differences between
the control profiles of a metabolic network in two differ-
ent settings, one representative of a tumour cell and the
other of a corresponding normal cell. Our aim is to show
how putative targets for drugs operating at the meta-
bolic level may be identified in a probabilistic manner,
when only partial knowledge is available with respect
to the kinetic properties of the system. In particular,
our analysis is based on experimentally accessible infor-
mation on metabolic phenotypes, such as observable
concentrations and fluxes, rather than on detailed
knowledge of kinetic parameters. It is demonstrated
that a combination of such phenotypic data, together
with heuristic assumptions about the properties of typi-
cal enzyme-catalysed reactions, already allows for a fast
and efficient way to explore the effectiveness of putative
drug targets. Our method makes use of biophysical con-
straints on the metabolic network, as provided by mass-
conservation and thermodynamics, and implements an
efficient numerical scheme to allow scanning of a large
parameter-space, making it applicable to networks of

large size. As a proof-of-concept, we apply our method-
ology to identify the points of fragility characterizing
a paradigmatic cancer metabolic phenotype. We
demonstrate that our method allows us to identify
those enzymes that exert a high differential control
upon a given relevant system property, and thus
represent suitable sites to specifically target the
cancerous phenotype.

2. METHODS

2.1. Metabolic control analysis

The dynamic behaviour of a metabolic system, consist-
ing of m metabolites and r reactions, can be described
by a set of ordinary differential equations of the form

dS
dt

¼ N " v; ð2:1Þ

where S is an m-dimensional vector denoting the set of
metabolite concentrations and N is the m % r stoichi-
ometry matrix. The r-dimensional vector v ¼ v(S,K)
describes the functional form of the reaction rates,
which depend on the metabolite concentrations S and
the set of kinetic parameters K. The presence of
mass-conservation relationships and conserved chemi-
cal moieties in the network results in linear
dependencies among the rows ofN. In this case, one dis-
tinguishes between a set of independently variable
metabolite concentrations S ind and a set of dependent
metabolite concentrations Sdep. To characterize the
dynamics of the system it is sufficient to consider the
set of independent variables, making use of a reduced
stoichiometry matrix N0 consisting of linearly indepen-
dent rows only. The link between N0 and N is provided
by the expression N ¼ L . N0, where L denotes the link
matrix [20].

To evaluate the system, each reaction has to be
assigned a particular rate equation and each kinetic
parameter needs to be assigned a specific quantitative
value. Given a set of initial conditions, equation (2.1)
can then be solved computationally, using standard
methods of numerical integration. Usually, the model
gives rise to one or more steady states (v0, S0) that
can be compared with experimentally observed values.
The response of the system to a perturbation of a kin-
etic parameter, representing for example the action of
a drug, can be quantified in terms of control coeffi-
cients, as introduced by MCA [2,21–23]. In
particular, given an effector pi which acts directly on
the enzymatic step i, the (scaled) concentration control
coefficient CS

i is defined as [20,24]

CS
i :¼ dS

dpi

pi
S

! ". dvi
dpi

pi
vi

! "
¼ d ln S

d ln vi

! "
; ð2:2Þ

and quantifies the ratio between the relative change of
the steady-state concentration of metabolite S and the
relative change in the catalytic action of enzyme i
(induced by an infinitesimal change in the parameter
pi). Analogously, the (scaled) flux control coefficient CJ

i
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is defined as

CJ
i :¼ dJ

dpi

pi
J

! ",
dvi
dpi

pi
vi

! "
¼ d ln J

d ln vi

! "
; ð2:3Þ

and quantifies the response of the system in terms of
the relative change in a steady-state flux J. Reder [20]
showed that the matrix CS of the concentration control
coefficients can be expressed as

CS ¼ &ðDS0Þ&1 " L " ðJ0Þ&1 "N0 "Dv0 ; ð2:4Þ

where J0 denotes the Jacobian of the system with respect
to the independent variables, while Dv0 and DS0 denote
square matrices with elements S0 and v0 on the diagonal,
respectively, and zero elsewhere.

For the matrix of flux control coefficients CJ the
following expression holds:

CJ ¼ 1þD&1
v0 " @v

@S

####
0
"DS0 "CS : ð2:5Þ

Because J0 can be written in terms of the link matrix
and the reduced stoichiometry matrix as

J0 ¼ N0 " @v
@S

" L; ð2:6Þ

it follows from equations (2.4)–(2.6) that, once the net-
work topology (as represented by L and N0) and the
network ‘phenotype’ (as represented by Dv0 and DS0 )
are known, the only quantities to be evaluated in
order to retrieve the control coefficients are the partial
derivatives @v/@S. These, in turn, depend on the func-
tional form of the rate equations governing the
dynamics of each enzymatic step, the kinetic par-
ameters and the metabolic state where the derivatives
are evaluated. When full kinetic information is avail-
able, the control coefficients can be readily calculated
using available software packages, such as COPASI
[25], or online simulation tools for biochemical models
that reside in repositories, such as JWS Online [26].

2.2. Differential metabolic control analysis

To locate suitable drug targets, one aims to identify
those enzymes where a perturbation—usually a
decrease in enzyme activity induced by an applied
inhibitor—elicits a large response in at least one vital
aspect of the functioning of the diseased cell, whereas
a similar decrease in the activity of the same enzyme
is less detrimental for the functioning, or ‘phenotype’,
of normal cells. We note that the diseased metabolic
phenotype often corresponds to changes in either
enzyme concentrations (because of mutations in regu-
latory elements or signal transduction genes), or
availability of external substrates (influx), whereas
most Michaelis–Menten constants remain unchanged.
Given detailed kinetic models of both phenotypes, the
putative action of a drug is applied to both models
and the difference in the response is assessed using
differential MCA or direct simulations.

The vital aspect of the diseased cell that is targeted
may be the production flux of ATP or it could be the
growth rate itself. Because it is often a flux, we shall

denote it by Jtarget. Our aim is then to locate suitable
sites for the action of a drug which results in the maxi-
mal differential response in this desired flux between
diseased phenotype and normal phenotype. Suitable
drug targets are chosen according to the following,
alternative or simultaneous, criteria:

— Maximal selectivity. We assume that the effect we
aim for is the decrease of Jtarget in the diseased
cells. In this case, we are interested in enzymes
which exert a positive control upon Jtarget in the
altered phenotype: CJ

iðdiseaseÞ . 0. Independent of
whether the effect induced in normal cells consists
of a decrease or increase of Jtarget, we require this
effect to be lower, in magnitude, than in altered
cells. In terms of flux control coefficients of an
enzyme i, this criterion can be expressed as follows:

SiJtarget :¼ CJtarget
iðdiseaseÞ & CJtarget

iðnormalÞ

###
### . 0: ð2:7Þ

The higher the value of SJtarget
i , the stronger the

differential response between normal and altered
cells. We note that equation (2.7) does not impose
any restriction on the sign nor on the value of
CJtarget

iðnormalÞ, provided that its magnitude is smaller

than the magnitude of CJtarget
iðdiseaseÞ. Indeed, enzymes

with non-negligible negative value of CJtarget
iðnormalÞ may

be also considered suitable targets as long as the
difference in magnitude with CJtarget

iðdiseaseÞ allows us to
reach an acceptable specificity through an appropri-
ate dosage of an applied inhibitor.

— Minimal toxicity. To avoid other system properties
(not captured by the flux of interest Jtarget) under-
going important changes in normal cells, we
require the normal phenotype to be wholly robust
against perturbation in the drug target activity. In
this respect, we define the toxicity coefficient,
which quantifies how far the normal phenotype
deviates from its original metabolic state after an
inhibition of enzyme i:

Ti ¼
1
N

X

j

CJj
iðnormalÞ

###
### j [ fall exchange fluxesg;

ð2:8Þ

where the summation is over all the N exchange
fluxes of the system. This definition of toxicity
reflects a black-box perspective, where the behav-
iour of the system is assessed through its inputs
and outputs. However, other definitions of toxicity
are possible and are examined later in §4.

2.3. A Monte Carlo strategy

A straightforward implementation of the strategy
described above is only rarely applicable, as detailed
kinetic models, describing the normal as well as the dis-
eased phenotype, are usually not available. To overcome
this limitation, we implement a Monte Carlo strategy
which allows us to deal with incomplete knowledge of
kinetic parameters and explicitly take into account
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available phenotypic data. In particular, we assume that
for both states of the system the measured metabolic
phenotype, characterized by a set of concentrations
and fluxes, is known. In this respect, our approach is
based on the fact that high-throughput metabolomics
and fluxomics studies are now standard techniques in
the analysis of cellular metabolism [17,27–32]. We
proceed according to the following rationales:

— We require that the map of the metabolic network of
interest is known and is the same for both the dis-
eased and the normal phenotype. In addition, we
assume that the topology of regulatory interactions
is, as far as possible, available.

— For some of the enzymatic steps, information about
the detailed functional form of the rate laws may be
available. However, in the absence of such infor-
mation, we employ heuristic assumptions about
generic reaction characteristics to describe the
dependencies of flux rates with respect to substrates,
products and allosteric effectors.

— To obtain a probabilistic understanding on how the
control is distributed, the kinetic parameters are
sampled randomly from pre-assigned intervals.
Each sampled set of parameters is made compliant
with the given metabolic phenotypes and additional
thermodynamic and biophysical constraints, by

rescaling the maximal activity of every reaction
step.

— For each sampled set of parameters the differential
response in the normal and the disease phenotype
is evaluated.

Our workflow is illustrated in figure 1. In the following,
each step is described more thoroughly and the details
of its implementation are given.

2.4. Defining generic reaction characteristics

To evaluate the differential response, each rate equation
has to be assigned a specific mathematical form. To
describe the kinetics of enzyme catalysed reactions for
which the true kinetics is unknown, several possible
heuristic approximate rate equations have been proposed
in the literature [33–35]. In general, good results are
obtained for functional forms that follow generalized
Michaelis–Menten equations. Given a reaction convert-
ing a set of substrates A into a set of products B

a1A1 þ a2A2 þ " " " ! b1B1 þ b2B2 þ " " "

such rate equation can be written as follows:

v ¼ freg "
Vmax

Q
~aai
i

Fð~a;~bÞ
" 1& G

Keq

! "
; ð2:9Þ

where

— freg is a dimensionless prefactor describing the inter-
actions of the enzyme with allosteric regulators.
Following the definition given in Liebermeister &
Klipp [35], we write

freg ¼
Y KI

Pk

KI
Pk

þ Pk

 !

"
Y Ql

KA
Ql
þ Ql

 !

; ð2:10Þ

where Pk and Ql denote, respectively, a generic (allo-
steric) inhibitor and activator, and KI

Pk
and KA

Ql

denote their corresponding binding constants. This
equation assumes that the activators and inhibitors
are non-competitive.

— Vmax is the forward maximal rate of the enzyme and
implicitly depends on the enzyme concentration.

— ~ai :¼ Ai=KM
Ai

is the concentration of reactant Ai

divided by its Michaelis constant KM
Ai
.

— ~bj :¼ Bj=KM
Bj

is the concentration of reactant Bj

divided by its Michaelis constant KM
Bj
.

— Fð~a;~bÞ is a positive polynomial of the scaled reac-
tant concentrations. Following [35], we choose

F ~a;~b
$ %

¼
Y

i
1þ ~ai þ " " " þ ~aai

ið Þ

þ
Y

j
1þ ~bj þ " " " þ ~b

bj

j

& '
& 1 ð2:11Þ

— G is the mass–action ratio, defined as

G ¼
PlB

bl
l

PkAak
k
:

— Keq denotes the equilibrium constant of the reaction.

The functional form described above captures the gen-
eric characteristics of enzyme catalysed reactions, such

input

stoichiometry of the system 

Monte Carlo 
approach 

normal
 metabolic state

altered
metabolic state

sampling of 
the kinetic 
parameter

evaluation of the 
differential control 
between the two 
metabolic states

iterative
process

∑ heuristic rate 
   equations

assumptions

∑ the equilibrium 
    constants are 
    known 

Figure 1. Workflow of our Monte Carlo approach. The Monte
Carlo approach described in the text receives as input the two
metabolic states under comparison (where each metabolic
state is defined in terms of fluxes and metabolite concen-
trations at stationary condition). The computation of the
control coefficients, following the sampling of the parameter
values, is done assuming that the rate equations and the equi-
librium constants are known. Where the detailed enzyme
mechanism is unknown, heuristic approximate rate equations
are used.
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as reversibility, product inhibition, saturation and a
reaction direction that only depends upon the mass–
action ratio relative to the equilibrium constant. In
the case study presented in this paper, we used
equations in the form proposed in Liebermeister &
Klipp [35] for every reaction.

2.5. Defining the kinetic parameters

Once the functional form of each rate equation is speci-
fied, the equations have to be populated with their
respective kinetic constants. Again, we may assume
that a (usually small) number of kinetic parameters is
available, either by direct experimentation or from
data repositories [36,37]. To account for the remaining
unknown or uncertain values, we implement a Monte
Carlo approach to systematically evaluate the behav-
iour of the network in a probabilistic manner. The
idea is to sample the parameters so that their values
comply with known phenotypic data and satisfy basic
biophysical and thermodynamic constraints.

Our starting point consists of a metabolic state as
characterized by a flux distribution v0 and a set of
metabolite concentrations S0. The flux distribution v0

satisfies the stationarity constraint dS0/dt;N . v0 ¼ 0,
and the direction of each flux must be consistent with
the set of concentrations, relative to its equilibrium con-
stant. Reaction parameters are then assigned or
sampled according to the following criteria:

— Equilibrium constants. The equilibrium constants
are physico-chemical quantities which reflect the
change in standard Gibbs free energy occurring in
a reaction. They do not depend on the specific
organism or cell type, but may depend on intracellu-
lar parameters, such as temperature. While as yet a
large-scale detailed experimental quantification of
the change in free energy is not available, a
number of algorithms exists that allow for a reason-
able computational approximation [38–42]. In the
case study presented here, the values assigned
to the equilibrium constants are obtained from
Holzhütter [43].

— Michaelis–Menten constants. The Michaelis–
Menten constants are genuine enzyme kinetic
parameters and are sampled randomly in intervals
½Kmin

M ;Kmax
M ). Different options are available to

specify the interval borders. Here, the interval
boundaries are chosen according to the observed
metabolite concentrations. We sample the values
of the parameters from intervals covering at least
two orders of magnitudes around the steady-state
concentrations of the corresponding metabolite. In
particular, if [S]1 and [S]2 denote the concentration
of a metabolite S in the two metabolic states,
the affinity, inhibition and activation constants of
any enzyme in respect to S are sampled between
min{[S]1,[S]2} % 102a and min{[S]1,[S]2} % 102b,
with a and b representing adjustable factors. To
ensure that the sampled values are evenly spread
among the different order of magnitudes around
[S]1 and [S]2, the sampling is performed using a log-
arithmic distribution. In the sampling process no

distinction is made between parameters relating to
regulatory interaction and substrate and product
affinities. The results shown in the next section
refer to sampling conditions where a ¼ b ¼ 1. The
robustness of our results was subsequently tested
for different choices of a and b, and different
sampling distributions.

— Maximum rates. Given the metabolic state and the
parameters defined above, it follows from equation
(2.9) that the maximum reaction velocity Vmax is
unambiguously determined. In other terms, to
make the sampled values of Michaelis–Menten con-
stants compliant with the metabolic state (v0, S0)
and the thermodynamics of the system (determined
by the equilibrium constants Keq), the maximum
reaction velocity is computed by reversing equation
(2.9) with respect to Vmax.

2.6. Evaluating the control coefficients

The sampling is performed iteratively. For each
sampled set of parameters, the partial derivatives
@v/@S are evaluated based on the generalized
Michaelis–Menten rate equation described above.
Both metabolic states were tested for stability by eval-
uating their corresponding Jacobian. Parameter sets
resulting in Jacobians with positive real part among
their spectrum of eigenvalues were discarded, otherwise
the control coefficients were evaluated using equations
(2.4)–(2.5). We note that the computation only
employs basic matrix inversion and multiplication—a
procedure which is orders of magnitude faster than
numerical integration, making our approach applicable
to systems of large size. The process is repeated
iteratively until 2.5 % 104 samples are obtained.

2.7. Assessing the suitability of drug target
candidates

The differences in the control profiles between diseased
and normal phenotype are evaluated according to the
criteria of maximal selectivity and minimal toxicity
specified above. Because of the probabilistic nature of
our approach, these criteria have to be reformulated
such that they describe the average, over all the
sampling iterations, of the two quantities defined in
equations (2.7)–(2.8). As an additional criterion, we
evaluate the reliability of the estimated average selec-
tivity. As a quantitative measure of the quality of our
prediction, we define the reliability coefficient as the
ratio of the average selectivity to the standard deviation
of the sampled selectivities:

RJtarget
i ;

SJtarget
i

sðSJtarget
i Þ

: ð2:12Þ

2.8. Defining the diseased phenotype

To show the applicability of our method on a system of
reasonable complexity, we consider a case study to ident-
ify suitable sites for drug intervention specifically
targeting a cancerous phenotype. As to the best of
our knowledge no detailed characterization of a
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cancer metabolic phenotype (in terms of fluxes and
metabolite concentrations) exists, we employ a modelling
approach to obtain a set of fluxes and concentrations
representative of a generic cancer phenotype.

Our starting point consists of a fully defined meta-
bolic map of human erythrocyte metabolism [43],
modified for our purpose (figure 2). Two different sets
of maximal activities (Vmax) are used to reproduce the
flux patterns characteristic of a normal cell and a

paradigmatic cancer cell. In particular, the cancerous
metabolic phenotype is obtained by increasing the
Vmax of those enzymes which are often overexpressed
in cancer, namely the glucose transporter [44,45], hexo-
kinase (HXK) [46–49] and phosphofructokinase (PFK)
[46,49,50]. The activity of a fourth enzyme, the gluta-
thione oxidase (GSHox), is also increased in order to
achieve a higher flux through the pentose phosphate
pathway, as observed by Richardson et al. [51].
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Figure 2. Metabolic map of central carbon metabolism. The metabolic map was derived, in its main features, from Holzhütter’s
model of erythrocyte metabolism and subsequently enriched with a reaction representing the TCA cycle and a reaction represent-
ing the oxidative phosphorylation process. Glucose transporter (GLT), lactate transporter (LCT), phosphoribosylpyrophosphate
synthetase (PRPPS) and the tricarboxylic acid (TCA) branch represent the exchange fluxes of the system. ALD, aldolase; TK,
transketolase; TPI, triosephosphate isomerase.
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We emphasize that the model itself is not used in
further analysis and its purpose is solely to obtain a
kinetically and thermodynamically consistent set of
concentrations and fluxes that represents the common
features shared among a wide panel of different cancer-
ous cell lines, in particular a higher uptake of glucose
and an enhanced production of lactate [52–54]. Details
of model construction and analysis are given in the
electronic supplementary material.

3. RESULTS

3.1. Identifying the control profile of the system
based on the topology and the metabolic state

The conjecture underlying our probabilistic approach
is that some of the control properties of a metabolic
system are independent from the precise magnitude
of the enzyme parameters. The rationale behind this
conjecture is that the signs and magnitudes of the con-
trol coefficients are determined to an appreciable
extent by the topology of the system as well as the
metabolic state under consideration [20,55]. To investi-
gate our conjecture, we distinguish between two

extreme scenarios: if the control coefficients are
entirely determined by the metabolic map and pheno-
type, then their value should be independent from the
specific choice of the kinetic parameters; on the other
hand, if stoichiometry and phenotype had no bearing
on control properties at all, then the control coeffi-
cients calculated for randomized values of the kinetic
parameters should have infinitely wide and flat
distributions.

Figure 3 shows the distributions obtained for the
control exerted by selected enzymes upon the glucose
import flux in the normal phenotype. In some of the
cases, the control coefficients are distributed fairly nar-
rowly with respect to the entire probable range of
values. For example, the control coefficient of the glu-
cose transporter (GLT, figure 3a) is distributed almost
entirely between 0.01 and 0.05. This reinforces an ear-
lier conclusion from a precise calculation that this
control coefficient is small and that inhibitors of the
glucose transporter are unlikely to be toxic to human
erythrocytes [56]. More importantly, it confirms the
strength of our conjecture for this case; i.e. within the
limits of experimental accuracy [2], the value of this
flux control coefficient can be estimated on the basis
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Figure 3. Calculated distributions of the control exerted by some enzymes over the glucose uptake flux in the normal phenotype.
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of the metabolic map, the metabolic phenotype and
very limited kinetic information. The other panels of
figure 3 show that this phenomenon is not unique.
It is also valid for the control exerted on this same
flux by other enzymes in the system, also for ones
with higher flux control. Figure 3 also shows that the
accuracy by which metabolic map and metabolic
phenotype determine the flux control coefficient is not
always the same. For the phosphofructokinase, for
example, the estimated flux control coefficients on
glucose import exhibit a broad distribution covering
almost the entire interval between zero and one
(figure 3b). The other panels in figure 3 are chosen as
representative cases where the distribution of the con-
trol coefficients over the uptake of glucose is either
mainly confined in the negative semiaxes (as opposed
to glucose transporter and phosphofructokinase) or is
spread evenly around zero, allowing no best guess on
the sign of the actual control coefficient. See also the
electronic supplementary material for a magnified
depiction of the individual distributions.

Figure 4 summarizes the distributions of the estimated
control coefficients for the entire network. Each position
in the matrix corresponds to the control exerted by an
enzyme (columns) upon a flux within the network
(rows) and shows the (colour-coded) percentage of calcu-
lated control coefficients that is positive. If the box is
white then the flux control coefficient is positive indepen-
dent, to a good extent, of the values of the kinetic
constants. For example, the figure shows that the control
exerted by the first six enzymes on all the first 13 reactions
is positive, as indeed might be expected from the network
topology shown in figure 2. Likewise, the enzymes 14–18
(corresponding to G6PDH, 6PGD, GSSG, GSHox and
EP) mostly exert a negative control on the flux through
reaction 3 (PGI), again consistently with our expectations
from the network topology. However, other results are less
straightforward to interpret, showing the utility of our cal-
culations for complex reaction network. Overall, figure 4
confirms our conjecture that often at least the sign of
the control coefficient is, to a good extend, independent
from the precise values of kinetic parameters—enabling

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

fl
ux

es

enzymes

17

18

19

20

21

22

23

24

25

26

27

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

Figure 4. Matrix of the flux control coefficient in the normal metabolic state. The matrix of the flux control coefficients in the
normal metabolic phenotype is represented as a grey-scale matrix. The entry ( j,i) is associated with the statistical control exerted
by enzyme i (column index) upon flux j (row index). More in particular, the shade of the entry represents the percentage of cal-
culated control coefficients that is positive. The ends of the colours scale represent the extreme situations in which the
distribution lies entirely over positive (white) or negative (black) values. The numbers at the left and the bottom of the
matrix refers to the different reaction steps in the system as depicted in figure 2.

Identifying putative drug targets E. Murabito et al. 887

J. R. Soc. Interface (2011)

 on April 26, 2011rsif.royalsocietypublishing.orgDownloaded from 

http://rsif.royalsocietypublishing.org/


us to obtain a best guess for putative drug targets in the
face of incomplete information.

3.2. Identifying candidate targets for drug
intervention

From the perspective of limiting the survival or prolifer-
ation of cells that function as parasites in the human
body, a possible strategy consists of inhibiting glycolysis,
provided the pathway is phenotypically different in the
parasitic versus the host cells [3,5,57,58]. From an MCA
perspective, this translates into inhibiting the activity of
an enzymewhich exerts a major control over (for example)
the uptake of glucose in the diseased/parasitic phenotype
and a minor control over the same flux in the normal phe-
notype. The rationale of such an approach is to starve the
diseased/parasitic cells without significantly affecting the
host. From here on we will refer to this specific strategy
to present and comment on our results.

Figure 5 shows the distributions of the selectivity
coefficients with respect to the uptake of glucose for
the same enzymes of figure 3a,b, in particular, show
that the selectivity coefficients of the glucose transpor-
ter (GLT) and phosphofruktokinase (PFK) are mainly
distributed over negative values, meaning that the

control exerted by these enzymes upon the uptake of
glucose is higher in the normal phenotype than in the
cancer phenotype. Consequently, GLT and PFK
cannot be considered good candidate targets (cf. [59]).
This result is somewhat expected as the diseased pheno-
type was taken to be due to overexpression of four
enzymes among which GLT and PFK (see §2). In gen-
eral, however, the overexpression of an enzyme does not
necessarily imply a decrease in the control it exerts, as
the activity of the enzyme must be considered in the
context of the entire network. Other enzymes show
the desired selectivity in terms of their control on the
target flux between diseased and normal cells. This is
the case for phosphoglycerate kinase (PGK, figure 5d)
and lactate transporter (LCT, figure 5e), the selectivity
coefficients of which are mainly distributed over posi-
tive values, although the magnitude of these values
differ substantially between the two enzymes.

Because of the probabilistic nature of our approach, the
quantities defining the criteria of maximal selectivity and
minimal toxicity, i.e. the selectivity coefficient SJtarget

i and
the toxicity coefficient Ti, respectively, are taken in their

average values SJtarget
i and Ti, where the average is com-

puted over all the sampling iterations. For the statements
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about enzyme selectivity to bemeaningful we also consider
the reliability coefficient RJtarget

i as defined in equation
(2.12). We now have three criteria by which to compare
potential molecular drug targets. In any actual situation
we will need to look at all three criteria simultaneously.
To make the weighing of the three criteria as transparent
as possible, we introduce the following scaled quantities:

si ;
SJtarget
i

max
alli

fSJtarget
i g

; ð3:1Þ

1
ti

;
maxfTig& Ti

maxfTig&minfTig
ð3:2Þ

and ri ;
RJtarget

i

max
alli

fRJtarget
i g

; ð3:3Þ

wheresi, 1/ti and ri are the normalized selectivity, the nor-
malized safety and the normalized reliability, respectively.

We note that the normalized safety is defined so that it
increases with decreasing toxicity.

By restricting our search for putative targets to only

those enzymes with positive average selectivity SJtarget
i ,

i.e. enzymes which tend to produce the wanted inhibit-
ing effect on Jtarget in the diseased phenotype, the three
normalized criteria are bound between 0 and 1.

Figure 6 depicts the values of the normalized selec-
tivity, reliability and safety for all the enzymes with

positive average selectivity SJtarget
i . A most interesting

result was that one enzyme target was both most
selective and most reliable, and was also hardly toxic.
This target was phosphoglyceratekinase (PGK). The
fact that all three criteria come out with a single
enzyme target suggests that that target could indeed
be exceptionally valuable. It also suggests that the
methodology we have introduced may be useful; a
lesser result would have been if the target that was
most selective would have been least reliable and most
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toxic, or if the least toxic target would also have been
least selective. However, in general, we expect that no
single target is best according to all three criteria intro-
duced above. The more important result therefore is
that our methodology leads to a clear separation of
the potential targets at least in the dimensions of selec-
tivity and reliability. In this respect the criterion of
maximal safety (i.e. minimal toxicity) appeared to be
less discriminatory for the enzymes shown.

We may wish to classify drug targets with a single
score, which takes into account all three criteria (selec-
tivity, reliability and safety), perhaps with different
weights. To do so, we define the following quantity:

Zi ¼
ws " si þ wr " ri þ ðwt=tiÞ

ws þ wr þ wt
ð3:4Þ

as the score to be assigned to enzyme i. Equation (3.4)
represents a plane in the three-dimensional space
defined by si, ri and 1/ti. For a minimally required
score Z*, one may draw the corresponding plane in
figure 6a and require all enzyme targets one wishes to
consider for further development to lie above that
plane. In figure 6a, we have drawn the plane correspond-
ing to Z* ¼ 1/3 and weight factors ws ¼ 4, wt ¼ 2 and
wr ¼ 1. This specific choice for the weight factor
values was made to prioritize the maximal selectivity
over the minimal toxicity, and the latter over the
requirement of minimal uncertainty. Table 1 shows
the list of enzyme with positive average selectivity,
sorted by decreasing value of Z.

3.3. Robustness of the results

As a probabilistic method, our approach crucially relies
on the robustness of the results with respect to different
ways of sampling the parameter values. To this end, we
repeated the data generation process and the sub-
sequent analysis using different sampling conditions.
In particular, we changed the range of values from
which the parameters were sampled and the sampling
distribution. For each different set of sampling con-
ditions, we ranked the suitability of the different
enzyme as drug targets as explained above.

Table 2 summarizes the results obtained for the
different sampling conditions, showing PGK as the

highest scoring target for all of them. As expected,
enzymes with lower scores than PGK did not always
keep their position in the ranking list. The lower the
score the higher the chance for the enzyme to enter
the list in a different position, when the sampling con-
dition was altered. In most of the cases, however, the
top six entries of the list remained the same. In particu-
lar, PGK always emerged as the best guess as putative
target, while enolase (ENO) and phosphoglycerate
mutase (PGM) were always found within the top four
entries of the list, and lactate dehydrogenase (LDH)
was almost always found between the 3rd and the 6th
position (see the electronic supplementary material for
more details). The use of a linear sampling distribution
caused the most different results in respect to the
scoring list obtained with a logarithmic distribution,
even for the high-scoring enzymes (except for PGK,
which was always at the top of the list). This fact can
be ascribed to the highly asymmetric sampling of the
parameter values in respect to the metabolite concen-
trations. When using a linear distribution, there is a
much higher probability that the sampled value of the
Michaelis–Menten constants exceed the concentration
of the corresponding metabolites. In our case, where
a ¼ b ¼ 1 (see §2 for their definition), for each reaction
step statistically at least 90 per cent of the sampled
values were larger than the concentration of their corre-
sponding metabolites. This implies a scenario where
the saturation level of all the enzymes in respect to all
their reactants and modifiers was almost always smaller
that 50 per cent. On the other hand, when using a
logarithmic distribution, the value of the Michaelis–
Menten constants tended to be evenly sampled around
the metabolite concentrations, or, more precisely,
among the orders of magnitude spanned by the
sampling intervals.

3.4. Comparison with the dynamic model

To assess the significance of our result, we compared the
insights gained through our statistical approach with
the results obtainable directly through a dynamic

Table 1. Suitability of the different enzymes as drug targets.
The suitability of each enzyme as drug target is evaluated
according to the three criteria of selection described in the
text. The score is computed through equation (3.4) where
ws ¼ 4, wt ¼ 2 and wr ¼ 1 (see text).

enzyme score

PGK 0.99
ENO 0.56
LDH 0.48
PGM 0.45
LCT 0.40
TPI 0.38
GAPDH 0.36
ALD 0.35
6PGD 0.32

Table 2. Best drug target guesses for different sampling
conditions. The first two columns refer to the parameters a
and b used to define the intervals from which the parameter
values were sampled. The first four rows refer to sampling
conditions where the intervals were defined separately for each
parameter, as discussed in §2. The borders of this interval
were defined as min {[S]1, [S]2} % 10a and max {[S]1, [S]2} %
10b, where {[S]1, [S]2} denotes the set of concentrations of all
the metabolites in the two metabolic states.

a b sampling function best guess

1 1 logarithmic PGK
1 2 logarithmic PGK
2 1 logarithmic PGK
2 2 logarithmic PGK
1 1 linear PGK
1a 1a logarithmic PGK
asampling performed on the same interval for all the
parameters.
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simulation. The dynamic model used to retrieve the
cancer metabolic state (see §2 and electronic sup-
plementary material) was used as workbench for this
assessment. The two sets of parameters characterizing
the two metabolic states (normal and cancer) were
both modified by decreasing the activity (Vmax) of
PGK from 12.9 to 6.5 mM h21, simulating the addition
of a non-competitive inhibitor. Figure 7 shows how some
of the fluxes of the metabolic system changed in the two
phenotypes in response to this perturbation. Table 3
shows the relative changes recorded once the system
reached the new steady state after the perturbation.

4. DISCUSSION

Despite a surge in the perspectives of using mechanistic
mathematical modelling in clinical development [60–63],
parametric uncertainty remains a challenge to mechan-
istic approaches in medicine [13]. However, contrary
to the scarcity of kinetic data, the comprehensive
quantification of all concentrations and fluxes within
a metabolic system is, at least in principle, experimen-
tally feasible. The question we addressed in this paper
is whether the knowledge of a metabolic phenotype

only—expressed in terms of fluxes and metabolite con-
centrations at steady-state—allows for a probabilistic
understanding of how the control properties of a bio-
chemical system are distributed among the different
enzymatic steps and metabolic processes. We developed
a Monte Carlo approach which aims to provide
researchers with a probabilistic description of how the
control properties of a metabolic network differ between
two fully characterized metabolic phenotypes, when
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Figure 7. Effects induced on the principal fluxes of the system by decreasing the activity of PGK. The plots show the effect of
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Table 3. Relative changes in the principal fluxes of the
system after decreasing the activity of PGK. The relative
changes reported are the result of decreasing the activity of
PGK from 12.9 to 6.5 mM s21.

metabolic branch/process
normal
state (%)

cancer
state (%)

glucose uptake 27 244
lactate production 261 282
TCA cycle 21 28
phosphoribosylpyrophosphate

synthetase (PRPPS)
þ9 þ13.0

ATPase 22 212
oxidative phosphorylation 21 28
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only minimal knowledge of the system is available with
respect to its kinetic parameters. Our goal was to locate
points of fragility in a diseased/pathogen phenotype
which can be considered for drug interventions with
maximal effectiveness and minimal toxicity. In particu-
lar, enzymes which exert a major control over a certain
property of interest in a diseased/pathogen phenotype,
and a minor control over the same property in the
normal/host phenotype, represent good putative tar-
gets. In our method, the control profiles characterizing
the two phenotypes under comparison are determined
for sampled values of the unknown affinity, inhibition
and activation constants. Our Monte Carlo approach
provides us with a statistical understanding of how
the control is differentially distributed between the
two metabolic states, where the word ‘statistical’
should be interpreted in the sense of uncertainty
rather than in the sense of population dispersion.

The system under study was a simplified reconstruc-
tion of the central carbon metabolism, with two
metabolic states that were representative of a normal
and a paradigmatic cancerous phenotype. The results
presented in this work refer to a clinical strategy
aimed to starve specifically cancer cells, i.e. to locate
enzymes which exhibit a high differential control upon
the uptake of glucose, denoted as Jtarget, between the
two phenotypes.

In the development of new drugs, pharmaceutical
companies tend to give priority to the maximal effect
that a compound can induce in the disease cells.
Among the palette of compounds which pass this
filter, a second screening is performed to look for com-
pounds which leave the normal phenotype unaltered
as much as possible. Our approach is different. To
assess the suitability of the enzymes as possible targets
for an anti-cancer drug, three different criteria were
considered in this paper: maximal selectivity, maximal
safety (i.e. minimal toxicity) and maximal reliability.
The first criterion was formulated in such a way as to
encompass both the requirements of high effectiveness
and high selectivity with respect to the specific property
one wants to affect in the diseased cells. High values of
the selectivity coefficient correspond to a high (posi-
tive) control over Jtarget in the diseased cell, and a
relatively small control over the same flux in the
normal cells. In particular, we introduced the selectivity
coefficient, as defined in equation (2.7), to quantify the
differential response of the system to inhibition of
enzyme i. Alternative definitions than equation (2.7)
may also be considered. For example, Bakker et al. [3]
defined it as the ratio between the control over Jtarget
in the parasitic/diseased cell over the same control
in the host/normal cell. Such a definition, however,
may result in over-ranking enzymes with small control
in the diseased phenotype as putative targets. An
enzyme A with CJtarget

AðnormalÞ ¼ 0:01 and CJtarget
AðdiseasedÞ ¼ 0:1,

for instance, would be considered preferable to an
enzyme B with CJtarget

BðnormalÞ ¼ 0:3 and CJtarget
BðdiseasedÞ ¼ 0:9,

as the ratio CJtarget
AðdiseasedÞ=C

Jtarget
AðnormalÞ would be around

three times the ratio CJtarget
BðdiseasedÞ=C

Jtarget
BðnormalÞ. However,

using an appropriate dosage of a drug that inhibits

enzyme B, one could reduce the effect of the enzyme
inhibition in the normal cell to a negligible extent
while maintaining in the diseased cell a strong effect,
in fact stronger than would be feasible by inhibition
of enzyme A.

The criterion of maximal safety (or minimal toxicity)
was introduced to assure that the normal phenotype
was robust to a perturbation of the drug target. The
predicted toxic effect of inhibiting an enzyme i was
quantified through the toxicity coefficient defined in
equation (2.8). We defined this coefficient as the aver-
age of the absolute values of the flux control
coefficients of enzyme i with respect to all the exchange
fluxes. Our definition reflects a black-box perspective,
where the behaviour of the system is assessed solely
through its input and output fluxes. However, this defi-
nition of toxicity is far from unique and its suitability
may depend on the specific situation. For example, an
alternative choice would be to define the toxicity as
the largest of all of the target enzyme’s flux control coef-
ficients. Also, there may be reactions or pathways for
which a change in the flux does not induce any major
effect on the vital functions of the cell, while even
small alterations in other fluxes might entail significant
stress in the normal cellular physiology. In this case, the
criterion of minimal toxicity can be augmented by
assigning different weights to the respective control
coefficients. Another possibility to define the toxicity
coefficient would be to take into account the concen-
tration of key metabolites that are known to have
toxic effects. In this case, the toxicity is assessed in
terms of the concentration control coefficients of the
target enzymes with respect to these metabolites.

Finally, the criterion of maximal reliability was
introduced in order to prefer enzymes whereby the com-
puted average selectivity was affected by the least
possible uncertainty.

To evaluate the suitability of an enzyme as a drug
target, different weights can be assigned to these cri-
teria, depending on the relevance they have for the
researcher. In the present work, we chose to prioritize
the maximal selectivity over the minimal toxicity, and
the latter over the requirement of minimal uncertainty.
By doing so, PGK was identified as the best guess for a
suitable drug target. Although in this case PGK was
both the most selective and most reliable enzyme
target, besides being hardly toxic, we note that in gen-
eral the outcome of our analysis can sensibly depend on
the priority ascribed to the three criteria mentioned
above. From a clinical perspective, performing our
analysis with different weight factors may then provide
a palette of best drug targets referring to different
thresholds among the required properties of selectivity,
safety and reliability.

The robustness of our results was tested against
different choices of the sampling conditions. The fact
that PGK always emerged as the best guess as putative
target represents an important result, as it suggests that
the sampling approach proposed in this paper can pro-
vide a relevant insight about the control profile of a
metabolic system that is reasonably robust with respect
to alterations in the numerical methods. If the top
entries of the scoring list were to change completely
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based on the sampling condition, the method would
have proved to be of less utility. We note, however,
that in general different choices of the sampling distri-
bution may lead to different enzymes as best putative
drug target. The use of different sampling distributions
may then be thought and adopted as a way to provide a
more restrictive assessment of how the emergence of a
specific enzyme as best target is due to topological con-
straints rather than specific parameter values (or range
of values).

The conclusions achieved through our probabilistic
approach, leading to the identification of PGK as the
best putative target, were compared with the outcome
of a mechanistic approach by decreasing the activity
(Vmax) of PGK in the dynamic model introduced in §2
and described in the electronic supplementary material.
The response of the system to this perturbation showed
that the normal phenotype was indeed less sensitive to
an inhibition of PGK than the diseased phenotype.
This lower sensitivity has been observed not only in
respect to the glucose uptake flux, but in the general be-
haviour of the system. The exchange fluxes and the
main metabolic processes were in fact less affected in
the normal phenotype, showing good agreement with
our statistical result. Regarding specifically the pro-
duction of lactate, we registered a significant decrease
in the flux through LDH in both normal and diseased
phenotype (261% and 282%, respectively). Since this
strong decrease occurred on a branch which is virtually
unused in normal cells (except for muscle cells under
anaerobic conditions and erythrocytes), this result
does not invalidate PGK as putative drug target
candidate.

In conclusion, the statistical approach proposed in
this paper provides us with a useful strategy for asses-
sing how the control profile is differently distributed
in two distinct metabolic phenotypes. It also highlights
which enzyme can best represent a putative target with
respect to requirements such as high effectiveness and
low toxicity. The significance of the results obtained
through this kind of analysis, however, may be
improved at different levels, not necessarily only related
to the probabilistic nature of our approach. For
example, a higher degree of detail in the representation
of the metabolic map would reduce the approximation
introduced by considering lumped reactions represent-
ing more complex biochemical pathways or processes.
In the example provided in this paper, two of such reac-
tions were used to represent the TCA cycle and
oxidative phosphorylation. Expanding a lumped reac-
tion into the entire set of enzymatic steps it
represents, could lead to new and important insights
about how the control properties are distributed in
the system. This is mostly the case when metabolic
intermediates that are only involved in a lumped path-
way have regulatory effects on enzymatic steps outside
that pathway. A more detailed description of the
lumped pathway would then result not only in a
‘higher resolution’ of how the control properties are
locally distributed among the different steps which
were lumped together, but also in a different overall
control profile. Just as in the case of conventional kin-
etic modelling, the level of detail in which the

metabolic map is represented can determine the level
of accuracy of the regulatory map, and consequently
have a non-negligible effect on the results.

A related aspect is the choice of rate equations of the
enzymatic steps. While generic rate equations are com-
monly used to capture generic aspects of metabolic
networks, the actual, experimentally determined, rate
equations may result in slightly modified control prop-
erties. In particular, the experimental determination
of reaction functions may also identify further
unknown regulatory interactions, as well as possible
cooperativity between metabolic compounds. Regard-
ing the use of the generic rate equation, we also note
that different choices are possible. The specific instance
of generalized Michaelis–Menten equation proposed
by Liebermeister & Klipp [35], and used in this paper,
takes into account generic characteristics of enzyme
catalysed reactions—such as reversibility, product inhi-
bition, saturation, reaction direction that only depends
upon the mass–action ratio relative to the equilibrium
constant. However, alternative choices have been pro-
posed by Rohwer et al. [64] that also account for
competition between substrates and products and take
possible cooperativity into account. We note though,
in contrast to explicit kinetic models, we are only inter-
ested in the derivatives of the rate equations, such that
minor differences in the precise functional form often
have no major effect. In most applications, we also
expect that at least partial information on some kinetic
parameters is available. Such partial information allows
us to further constraint the sampling intervals and to
obtain results that are specific for the system under
study. In this sense, our approach can be straightfor-
wardly incorporated into an iterative scheme that
allows us to quantify uncertainty in the control profile,
and hence allows us to pinpoint further experiments to
increase the specificity and reliability of the results.
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