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a b s t r a c t

We outline a new class of robust and efficient methods for solving the Navier–Stokes equa-
tions with a Boussinesq model for buoyancy driven flow. We describe a general solution
strategy that has two basic building blocks: an implicit time integrator using a stabilized
trapezoid rule with an explicit Adams–Bashforth method for error control, and a robust
Krylov subspace solver for the spatially discretized system. We present numerical experi-
ments illustrating the efficiency of the chosen preconditioning schemes with respect to the
discretization parameters.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

Even the simplest advection–diffusion problems can exhibit multiple time scales, see Gresho et al. [10]. This means that
robust variable step time integrators are a prerequisite if such problems are to be efficiently solved computationally. The
effectiveness of a stabilized TR–AB2 time-stepping (trapezoid rule with a second-order explicit Adams–Bashforth method
for error control) algorithm has been demonstrated in the context of scalar convection–diffusion problems, and the isother-
mal Navier–Stokes equations in our previous publications, [10,13]. In this paper we assess the performance of the integrator
in combination with a state-of-the-art iterative solver for problems with coupled physics. Specifically, we consider the sim-
plest possible Boussinesq model of buoyancy driven flow represented by the following system of PDEs:

o~u
ot
þ~u � r~u� mr2~uþrp ¼~jT in W � X� ð0; s�; ð1:1Þ

r �~u ¼ 0 in W; ð1:2Þ
oT
ot
þ~u � rT � mr2T ¼ 0 in W: ð1:3Þ
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Our notation is standard: the flow domain is X,~u is the fluid velocity, p is the pressure and T is the temperature of the fluid.
The energy Eq. (1.3) essentially determines T and is coupled to the momentum equation through the ‘‘buoyancy force’’ term
on the right-hand side of (1.1).

The system (1.1)–(1.3) arises as a limiting case of modelling the flow of a fluid forced by gravity (acting in the vertical
direction~j) where the typical fluid velocity is much smaller than the local sound speed, and where only small temperature
deviations from the mean temperature are allowed. Further details are given in Straughan [19, Section 3.2]. Note that there
are two different viscosity parameters in our model: m in (1.1) and m in (1.3). The precise definition of these viscosity param-
eters depends on the nondimensionalization used. In our case, following the approach of Christon et al. [2], we define m and m
in terms of a Rayleigh number Ra and a Prandtl number Pr with

m ¼
ffiffiffiffiffiffi
Pr
Ra

r
; m ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pr � Ra
p :

The Prandtl number Pr is a property of the fluid, essentially the ratio of momentum diffusivity and thermal diffusivity: typ-
ical values are Pr � 0.71 for air and Pr � 0.015 for mercury (much smaller since it is a much more effective heat conductor).
The Rayleigh number is a dimensionless measure of the ratio of (destabilizing) buoyancy to (stabilizing) molecular diffusion
of momentum and buoyancy so it characterizes the degree of instability of the system – it is proportional to the product of
the thermal expansion coefficient of the fluid and the imposed temperature difference. Specific values of Ra that give rise to
interesting physical behaviour lie in the range 103 < Ra < 106. In this paper we consider two-dimensional flow models
(X � R2) and we focus on enclosed cavity flow configurations; the preconditioning methodology considered in this study
is critically evaluated for three-dimensional problems in Smethurst [18].

Typical engineering applications are those that involve heat exchange systems – nuclear reactor cooling and internal cool-
ing of computer central processor units are two important examples. The system (1.1)–(1.3) is supplemented by the generic
boundary conditions:

~u ¼ ~0 on C� ½0; s�;
T ¼ Tg on CD � ð0; s�;
mrT �~n ¼ 0 on CN � ð0; s�;

�
ð1:4Þ

where the boundary C = CD [ CN consists of non-overlapping pieces. A temperature field is specified on CD to create a tem-
perature gradient across the cavity and CN models insulated parts of the boundary. The initial condition models a quiescent
initial state:

~uð~x;0Þ ¼~0; Tð~x;0Þ ¼ 0; ~x 2 X [ C: ð1:5Þ

A conventional solution approach, see e.g. Xin and Le Quéré [22], for the initial-value problem (1.1)–(1.5) uses semi-
implicit time integration. This leads to a relatively simple linear algebra (Poisson or Stokes-type) problem at every time step,
but there is a CFL stability restriction on the maximum time step size. In contrast, there is no time step restriction in our fully
implicit approach. This enables the possibility of self-adaptive time step control – with time steps automatically chosen to
‘‘follow the physics’’.

An outline of the paper is as follows. The temporal and spatial discretization of (1.1)–(1.5) is discussed in Section 2. The
linear algebra aspects are discussed in Section 3, and the performance of our implicit time integrator methodology is as-
sessed in Section 4. Results for three different flow problems are presented: the first two example problems are laterally
heated cavity flows which ultimately attain a periodic state; the third problem is the classic problem of Rayleigh–Bénard
convection in a horizontally stretched domain.

2. Discretization aspects

The ‘‘basic’’ time-stepping algorithm that we employ is the well-known, second-order accurate trapezoid rule (TR). Let
the interval [0,s] be divided into N steps, ftigN

i¼1, and let ~v j denote the discrete (in time) approximation to ~vð�; tjÞ. The
semi-discretized problem is the following: given ð~un; pn; TnÞ at time tn, and boundary data Tnþ1

g at time tn+1, compute
ð~unþ1; pnþ1; Tnþ1Þ via:

2
knþ1

~unþ1 � mr2~unþ1 þ~unþ1 � r~unþ1 þrpnþ1 �~jTnþ1 ¼ 2
knþ1

~un þ o~u
ot

n

in X; ð2:1Þ

� r �~unþ1 ¼ 0 in X; ð2:2Þ
~unþ1 ¼~0 on C; ð2:3Þ

2
knþ1

Tnþ1 � mr2Tnþ1 þ~unþ1 � rTnþ1 ¼ 2
knþ1

Tn þ oT
ot

n

in X; ð2:4Þ

Tnþ1 ¼ Tnþ1
g on CD; ð2:5Þ

mrTnþ1 �~n ¼ 0 on CN: ð2:6Þ
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Here, kn+1 :¼ tn+1 � tn is the current time step. The term o~u
ot

n
:¼ mr2~un �~un � r~un �rpn þ~jTn is just shorthand for the acceler-

ation, and oT
ot

n
:¼ mr2Tn �~un � rTn similarly represents the rate of change of temperature at time tn.

The limited stability of TR time stepping for the incompressible Navier–Stokes equations has been extensively discussed
in the literature. For example, results showing that the lack of numerical damping within TR can be problematic if the time
step is kept fixed (and is not small enough) can be found in Dettmer and Perić [5]. Such problems can be circumvented if the
basic TR method is stabilized using a simple time-step averaging technique. Full details are given in our papers [10,13]. The
averaging is invoked periodically every n⁄ steps. For such a step, we save the values t	 ¼ tn;~u	 ¼ ~un; T	 ¼ Tn and having com-
puted the scaled TR velocity update ~dn :¼ ð~unþ1 �~unÞ=knþ1 and the temperature update dn :¼ 2(Tn+1 � Tn)/kn+1, we set
tn ¼ tn�1 þ 1

2 kn and tnþ1 ¼ t	 þ 1
2 knþ1 and define ‘‘shifted’’ solutions via the updates:

~un ¼ 1
2
~u	 þ~un�1� �

; Tn ¼ 1
2
ðT	 þ Tn�1Þ; ð2:7Þ

o~u
ot

n

¼ 1
2

o~u
ot

n

þ o~u
ot

n�1
 !

;
oT
ot

n

¼ 1
2

oT
ot

n

þ oT
ot

n�1
 !

; ð2:8Þ

~unþ1 ¼~u	 þ 1
2

knþ1
~dn;

o~u
ot

nþ1

¼~dn; ð2:9Þ

Tnþ1 ¼ T	 þ 1
4

knþ1dn
;

oT
ot

nþ1

¼ 1
2

dn
: ð2:10Þ

We let et denote the user-specified accuracy tolerance. If the TR–AB2 velocity and temperature component L2 error estimates
are denoted by k~enþ1

h k and kenþ1
h k, respectively, then with or without averaging, the time step kn+2 is computed using the heu-

ristic formula:

knþ2 ¼ knþ1 et=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~enþ1

h

�� ��2 þ enþ1
h

�� ��2
q� �1=3

; ð2:11Þ

before carrying on with the integration. In the code used in this study, the averaging frequency parameter n⁄ is typically fixed
so that n⁄ = 9. Some of our results, however, are computed using unstabilized TR and correspond to setting n⁄ =1 in the code.

From (2.1) and (2.4), it is evident that a numerical scheme for handling the nonlinear terms~unþ1 � r~unþ1 and~unþ1 � rTnþ1 is
needed at every time step. A conventional algorithm, see Gresho and Sani [11, p. 800], would solve the nonlinear system
(2.1)–(2.6) to a predefined accuracy using either fixed point iteration or some variant of Newton iteration. A recent paper
by Damanik et al. [3] gives an efficient implementation of the latter approach. An alternative approach is adopted herein:
we linearize (2.1) and (2.4) using the explicitly computable ‘‘second-order’’ convection field given by

~wnþ1 ¼ 1þ knþ1=knð Þð Þ~un � knþ1=knð Þ~un�1: ð2:12Þ

This is much simpler! At every time step we need to solve a single linear system with~unþ1 � r~unþ1 :¼ ~wnþ1 � r~unþ1 in (2.1) and
~unþ1 � rTnþ1 :¼ ~wnþ1 � rTnþ1 in (2.4). In contrast, the linear systems that arise using Newton’s iteration are much more com-
plicated (additional non-zero matrix blocks arise from the linearization of the term~unþ1 � rTnþ1) and iterative solution tech-
niques typically take twice as many iterations to reach a given tolerance compared to systems arising from a fixed-point
linearization, see [7, p. 374]. Computational experiments discussed later reinforce our assertion that temporal stability is
not compromised and accuracy is (essentially) maintained using (2.12). This strategy for linearization is that proposed for
constant time steps by Simo and Armero [17]. It is also mathematically equivalent to the TRLE algorithm discussed by Layton
[14, p. 163].

Spatial discretization will, throughout this paper, be done using a method-of-lines approach based on finite element
approximation on a fixed spatial grid of non-overlapping rectangles. We denote the grid subdivision by T h and associate
the parameter h with the length of the longest edge in T h. Then, given finite-dimensional approximation spaces
Xh � ðH1

0ðXÞÞ
2, Mh � L2(X) and Xh � H1

E0
ðXÞ, the fully discrete problem is to compute ~unþ1

h ; pnþ1
h ; Tnþ1

h

	 

satisfying:

2
knþ1
ð~unþ1

h ;~vhÞ þ mðr~unþ1
h ;r~vhÞ þ ð~wnþ1

h � r~unþ1
h ;~vhÞ � pnþ1

h ;r �~vh
� �

� Tnþ1
h ;~j �~vh

	 

¼ 2

knþ1
ð~un

h;~vhÞ þ
o~uh

ot

n

;~vh

� �
; ð2:13Þ

r �~unþ1
h ; qh

� �
¼ 0; ð2:14Þ

2
knþ1
ðTnþ1

h ; vhÞ þ m rTnþ1
h ;rvh

	 

þ ~wnþ1

h � rTnþ1
h ;vh

	 

¼ 2

knþ1
ðTn

h;vhÞ þ
oTh

ot

n

; vh

� �
; ð2:15Þ

for all ð~vh; qh;vhÞ 2 Xh �Mh � Xh, where ~wnþ1
h ¼ ð1þ ðknþ1=knÞÞ~un � ðknþ1=knÞ~un�1. Note that the linearized system is uncou-

pled and can be solved by back-substitution; first, by computing Tnþ1
h from (2.15), second, by computing ð~unþ1

h ; pnþ1
h Þ satisfying

(2.13) and (2.14).
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Low-order mixed approximation methods for the velocity and pressure fields are not stable1 in general. One mixed meth-
od that is stable is the ‘‘Taylor–Hood’’ Q2–Q1 method, using continuous piecewise quadratic approximation for the velocity com-
ponents and continuous piecewise linear approximation for pressure. The Q2–Q1 method is combined with Q2 approximation for
the temperature, which leads to a well-balanced approximation, see Gunzburger [12, p. 221]. We also emphasise that the effi-
ciency of the linear solver methodology described in the next section is independent of the mixed approximation employed.

3. A fast linear solver

To generate a linear system of algebraic equations we need to define specific basis sets for the approximation spaces:

Xh ¼ span
/i

0

� �
;

0
/i

� �� nu

i¼1

for velocity;

Mh ¼ spanfwjg
np

j¼1 for pressure; and

Xh ¼ spanf/kg
nT
k¼1 for temperature:

As discussed in [10,13], our TR implementation explicitly computes discrete velocity and temperature updates ~dn
h and dn

h

that are scaled by the time step so as to avoid underflow and inhibit subtractive cancellation. The current velocity and tem-
perature solutions are then given by

~unþ1
h ¼~un

h þ knþ1
~dn

h; Tnþ1
h ¼ Tn

h þ
1
2

knþ1dn
h: ð3:1Þ

To this end, given the expansions:

~dnþ1
h ¼

Pnu

i¼1
ax;nþ1

i /i

Pnu

i¼1
ay;nþ1

i /i

2
6664

3
7775; pnþ1

h ¼
Xnp

j¼1

ap;nþ1
j wj; dnþ1

h ¼
XnT

k¼1

at;nþ1
k /k;

the coefficient vectors au,n+1 = [ax,n+1, ay,n+1],ap,n+1 and at,n+1 are computed by solving the ‘‘saddle-point system’’ associated
with (2.13)–(2.15) – that is

Fnþ1
m BT � 1

2 knþ1


M

B 0 0
0 0 Fnþ1

m

0
B@

1
CA au;nþ1

ap;nþ1

at;nþ1

0
B@

1
CA ¼ f u;nþ1

0
f t;nþ1

0
B@

1
CA; ð3:2Þ

where we have divided the incompressibility constraint by the time step kn+1 to preserve the div–grad block symmetry. In
(3.2), the matrix 


M represents the buoyancy term, and is defined below. The matrix B = [Bx,By] is the discrete divergence
operator,

Bx :¼ ½Bx�ji ¼ � wj;
o/i

ox

� �
; j ¼ 1; . . . ;np; i ¼ 1; . . . ;nu; ð3:3Þ

By :¼ ½By�ji ¼ � wj;
o/i

oy

� �
; j ¼ 1; . . . ; np; i ¼ 1; . . . ;nu: ð3:4Þ

A consequence of the enclosed flow boundary conditions is that the matrix BT has a one-dimensional null space spanning
constant pressure vectors. This means that the system (3.2) is singular. Note that the zero vector in the right-hand side of
(3.2) ensures that the system is consistent.

The matrices Fnþ1
m and Fnþ1

m in (3.2) are the discrete convection–diffusion-reaction operators for the velocity and temper-
ature respectively:

Fnþ1
m :¼ 2M þ mknþ1Aþ knþ1N ~wnþ1

h

� �
; ð3:5Þ

Fnþ1
m :¼ M þ 1

2
mknþ1Aþ 1

2
knþ1N ~wnþ1

h

� �
; ð3:6Þ

with Scalar-analogue component matrices:

M :¼ ½M�ij ¼ /i;/j

� �
; i; j ¼ 1; . . . ;nu; ð3:7Þ

A :¼ ½A�ij ¼ ðr/i;r/jÞ; i; j ¼ 1; . . . ;nu; ð3:8Þ
Nð~whÞ :¼ ½N�ij ¼ ~wh � r/i;/j

� �
i; j ¼ 1; . . . ;nu: ð3:9Þ

1 See Elman et al. [7, Ch. 5] for a full discussion of inf-sup stability.
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The matrices M, A and N in (3.5) are the block diagonal matrix analogues of M, A and N, respectively. The velocity-temper-
ature coupling in (3.2) is represented by the matrix:



M

:¼ 

M

	 

ij
¼ ½0;/i�;/j

� �
; i ¼ 1; . . . ; nu; j ¼ 1; . . . ;nT : ð3:10Þ

Our solution algorithm is right-preconditioned GMRES with a preconditioner that is specially tailored to the structured ma-
trix (3.2). The strategy we use is a natural extension of the block upper triangular methodology2 discussed in [7, Section 8.1].
To illustrate the approach, we express the system (3.2) (omitting the matrix subscripts/superscripts) with a preconditioner P so
that:

F BT �T

B 0 0
0 0 F

0
B@

1
CAP�1 P

au

ap

at

0
B@

1
CA ¼ iu

0
f t

0
B@

1
CA:

Introducing the velocity–pressure Schur complement matrix S = BF�1BT, an ideal block triangular preconditioner:

P �
F BT �T

0 �S 0
0 0 F

0
B@

1
CA; ð3:11Þ

is motivated by the identity:

F BT �T

B 0 0
0 0 F

0
B@

1
CA F�1 F�1BT S�1 F�1TF�1

0 �S�1 0
0 0 F�1

0
B@

1
CA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
P�1

�
I 0 0
BF�1 I BF�1TF�1

0 0 I

0
B@

1
CA:

A simple permutation of the second and third rows and columns of the matrix on the right here generates a lower triangular
matrix with ones on the diagonal. Thus, the eigenvalues of this matrix are identically one. It can also be shown that this ma-
trix has Jordan blocks of dimension two, which implies that GMRES applied to (3.2) with right preconditioner P will converge
in precisely two iterations, independent of the convection field ~wnþ1

h and the values of the parameters h, kn+1, m and m.
It follows from (3.11) that the action of P�1 on a vector can be implemented as a three-step process. First, we solve sys-

tems associated with the matrix operator F and the Schur complement matrix S; second, we perform a matrix–vector mul-
tiply with T ¼ knþ1

2


M and with BT, and finally we solve the two scalar systems associated with the matrix operator F. For a

practical algorithm, these matrix solves will be replaced by inexact solves associated with a fixed number (one or two, typ-
ically) of algebraic multigrid (AMG) V-cycles.

It is not practical to work with the Schur complement S, and we use two strategies that circumvent the use of this matrix.
These two alternatives are identified in [7, Section 8.2]. The first approach, referred to as Pressure Convection–Diffusion (PCD)
preconditioning, is a triple product approximation. The ingredients are a matrix–vector multiply with the operator F defined
on the pressure space, together with solves with the pressure mass matrix Q and a pressure diffusion matrix A	 :¼ BM�1

	 BT . In
this work, we follow the suggestion of Elman & Tuminaro [8] and implement PCD via:

S�1 ¼ BF�1BT
	 
�1

� Q�1
	 F	A

�1
	 ; ð3:12Þ

where Q⁄ is the diagonal of Q, M⁄ is the diagonal of M, and F⁄ is constructed like Fkþ1
m in (3.5) except that the velocity functions

/i and /j are replaced by pressure basis functions wi and wj. The second approach, referred to as Least Squares Commutator
(LSC) preconditioning, avoids the construction of the reaction-convection–diffusion operator on the pressure space and is
given by

S�1 ¼ BF�1BT
	 
�1

� A�1
	 BM�1

	 FM�1
	 BT

	 

A�1
	 : ð3:13Þ

As discussed above, in a practical implementation, the action of A�1
	 in (3.12) and (3.13) will be performed inexactly using

AMG. Note that the rank deficiency of BT means that A⁄ inherits the same one-dimensional null space.3 Preconditioning with
the Schur complement approximations (3.12) and (3.13) and with the matrix operators Fkþ1

m ; Fkþ1
m in P�1 will be referred to as

exact PCD and LSC preconditioning, respectively. To show the effectiveness of these two preconditioning strategies, we describe
their performance for solving two representative examples of the system (3.2).

First we consider a ‘‘snapshot’’ system that arises after 1200 time units when computing time accurate solutions of a
model of natural convection in a tall (aspect ratio of 8:1) cavity—full details are given in Section 4.3. The spatial subdivision

2 We did not explore the alternative approach of decoupling the block system (3.2) and solving the two component problems iteratively. The additional issue
that doing so would introduce is that of designing a suitable stopping criterion for solving the temperature equation. Our fully-coupled preconditioner
circumvents this issue.

3 As discussed in [7, Section 2.3], there is no intrinsic difficulty in solving a consistent singular system using preconditioned iteration.
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is a 31 � 248 nonuniform grid. The matrix dimensions are nu = nT = 31311, np = 7968, so the system dimension is 101901. As
illustrated in Fig. 3.1, there are stretched elements (with aspect ratio of 1:16 in the vertical direction) next to the cavity walls
to give better resolution of the shear layers that are generated in the early-time transient, see [2]. The ‘‘snapshot’’ flow solu-
tion is shown in Fig. 3.2. This is taken at a time when the system has reached a quasi-steady periodic cycle—temperature
‘‘hotspots’’ continuously circle clockwise around the cavity with a frequency of approximately 3.4 time units. Shown in
Fig. 3.3 is the time step evolution of the adaptive integrator with the temporal tolerance set to 3 � 10�5. It can be seen from
this graph that at t = 1200, the time step kn+1 is 0.082(±0.003) time units. This gives �40 sample points per cycle – this is
close to the minimum needed if our aim is to generate qualitatively accurate solutions, and it is slightly smaller than the
empirically chosen constant time step Dt = 0.1 taken in [5].

To investigate the behaviour of our fast solver methodology we first consider solving the linearized system (3.2) using
exact LSC and PCD preconditioning. GMRES convergence curves for a tight tolerance (residual reduction of 10�9) are shown
in Fig. 3.4. There are two potential sources of difficulty: first, grid stretching is known to be problematic for algebraic mul-
tigrid as well as to lead to a deterioration in the effectiveness of the LSC approach when solving steady problems, see [20],
(the PCD methodology is generally robust however); and second, the highly recirculating convection field means that simple
point smoothing is unlikely to be effective when solving the convection–diffusion sub-problems using geometric or algebraic
multigrid.4 Looking at the results for exact preconditioning (using direct solves for the subsidiary systems with F,F and A⁄), we

x=1/2

y=4

Fig. 3.1. Details of grid (to scale) showing the high aspect ratio rectangles in the two coordinate directions.

Isotherms : t=1200 Streamlines : t=1200

Fig. 3.2. Laterally heated 8:1 cavity Ra = 3.4 � 105, Pr = 0.71: snapshot of reference solution at t = 1200.

4 This issue is explored in some detail in [7, Section 4.3]. Alternating line relaxation is recommended instead.
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see that LSC and PCD are equally robust with regard to the issue of the stretched grid. Indeed, for a realistic residual reduction
factor of 10�6 we obtain convergence in only three iterations for LSC and five iterations for PCD.

Achieving such good performance in the inexact case is hardly more challenging. Results obtained for AMG inexact LSC and
PCD preconditioning are also shown in Fig. 3.4. We make use of a MATLAB version5 of the code HSL_MI20 [1] and replace each
of the solves with Fnþ1

m (m = 0.00145 for this problem), Fnþ1
m ðm ¼ 0:00203) and A�1

	 with a single V-cycle of AMG. Results are shown
for two different smoothing strategies: a standard 2–2 (presmoothing–postsmoothing) V-cycle using point damped Jacobi (PDJ)
with damping parameter x = 0.5, and, to enhance robustness, a hybrid approach which is a V-cycle with one sweep of ILU (0)
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Fig. 3.4. GMRES convergence using Least Squares Commutator preconditioner (left) and Pressure Convection Diffusion preconditioner (right) for the
snapshot flow solution illustrated in Fig. 3.2 with an automatically chosen time step of 0.082 units. (Note that m = 0.00145 and m = 0.00203 in this case.)
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Fig. 3.5. Vertically heated 1:8 cavity: snapshot of pseudo-steady solution.
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Fig. 3.3. Laterally heated 8:1 cavity Ra = 3.4 � 105, Pr = 0.71: evolution of the time step using the TR-AB2 integrator with n⁄ =1.

5 The source code is freely available in release 3.1 of the IFISS software package [16].
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with a lexicographic left ? right and bottom ? top ordering on the finest level and two sweeps of PDJ with x = 0.5 on all coarser
levels. As might be expected, the ILU results are significantly better than those obtained using PDJ smoothing. The point smooth-
ing approach appears to be viable nonetheless. For a realistic residual reduction factor of 10�6 we obtain convergence in thirteen
iterations for LSC and eleven iterations for PCD. Similar results for three-dimensional problems can be found in [1].

We remark here that the large presence of the mass matrix as a component of the coefficient matrices F and F, which
comes from time-stepping, is a crucial ingredient in the above examples. As the temporal error tolerance is tightened, the
associated reduction in time step means that the effectiveness of the AMG solver is further increased. A more challenging
test for our iterative solver is when the TR integrator generates large time steps, kn � O(1) say, which is typical behaviour
when a system goes to a steady-state.

Our second ‘‘snapshot’’ system is an example of such a problem, arising from a model of Rayleigh–Bénard convection in a
(thin) 1:8 aspect ratio cavity – full details are given in Section 4.2. For the specific values of Pr and Ra), the viscosity param-
eters are m = 0.0218 and m = 0.00306. The ‘‘snapshot’’ solution is shown in Fig. 3.5. The spatial subdivision is a 160 � 20 uni-
form grid, and the matrix dimensions are nu = nT = 13161, np = 3381, so the overall system dimension is 42864. The
Boussinesq problem models a classical example of instability: initially the flow solution tends to a quiescent equilibrium
state (~uh ¼~0) with the temperature Th horizontally stratified. The equilibrium solution is not stable, however. This is illus-
trated by the evolution of the kinetic energy shown in Fig. 3.6. As can be seen, the time-step grows monotonically until it
reaches a maximum at about 100 time units. At this stage the velocity solution is close to zero and the temperature solution
is a linear function of the vertical coordinate. There is a time step rejection at this point, however, after which the TR inte-
grator successively cuts back the time step and follows a rapid transient – ultimately settling on a quasi-steady solution
which has the characteristic multiple ‘‘convective roll’’ pattern shown in Fig. 3.5. At the ‘‘final’’ time of 300 units the time
step is approximately 4 time units, see Fig. 3.6.

As shown in Fig. 3.7, the iterative solver needs to work slightly harder in this case. There is little to choose between LSC
and PCD preconditioning strategies. As in the first example, the ILU results are somewhat better than those obtained using
PDJ smoothing. The point smoothing approach is still perfectly feasible: for residual reduction factor of 10�6 we obtain con-
vergence in seventeen iterations for LSC and twenty-one iterations for PCD. Moreover, the fact that we are using standard
Galerkin approximation without ‘‘tuning parameters’’ makes for a very clean discretization and, in our opinion, makes the
preconditioning methodology look even more attractive.

4. Assessment of linearization and time-stepping

We present computational results for a selection of representative Boussinesq problems here. Our primary focus is on the
behaviour of the linearized TR time-stepping algorithm. Thus, unless stated otherwise, the stabilized TR integrator in Section
2 is run with the saddle point system at each time level solved using the MATLAB ‘‘backslash’’ sparse solver. Some results
generated using inexact AMG preconditioning will be presented in Section 4.3.

4.1. Laterally heated horizontal cavity

We consider the easiest problem first – that of a horizontally heated 1:4 aspect ratio cavity with small Prandtl number,
Pr = 0.015, associated with gallium arsenide. This is a classical test problem and is a popular Boussinesq benchmark problem,
see [15]. The physical problem is motivated by models of oscillatory instability in the so-called Bridgman technique for
growing crystals for optoelectronic applications. For further motivation, see Winters [21] and the references therein. For
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small Rayleigh number, the flow is steady, but if the temperature gradient is large enough then the system will undergo a
transition from a stable to an oscillatory flow via a Hopf bifurcation – a detailed discussion can be found in Gelfgat et al. [9].

We take X = [0,4] � [0,1] as the problem domain and we set the temperature difference on the vertical walls so that
T(x = 0,t ?1) = 0.5, T(x = 4,t ?1) = �0.5. To produce a gradually emerging flow, the vertical walls are smoothly heated/
cooled so that:

Tðx ¼ 0; tÞ ¼ 1
2

1� e�10t
� �

; Tðx ¼ 4; tÞ ¼ �1
2
ð1� e�10tÞ; ð4:1Þ

and both horizontal walls are assumed to be insulated. We solve the flow problem with Ra = 3000. This corresponds to a
Grashof number Gr = Ra/Pr = 2 � 105 which is greater than the critical value Gr⁄ = 1.32 � 105 given in [9]. We take an
80 � 20 uniform grid initially and run stabilized TR to 300 time units with et (the time-accuracy tolerance) set to
3 � 10�5. As shown in Fig. 4.1, the computational solution quickly evolves into a stable cyclic configuration with a period
of about 18 time units. The periodic solution is skew-symmetric (invariant with respect to a rotation through p about the
cavity centre) and alternates in time between one and three vortices. This is visualised by the stationary streamline sequence
shown in Fig. 4.2. The time step evolution is shown in Fig. 4.3. This plot makes it clear that the solution reaches the periodic
configuration at approximately 50 time units, after which the TR integrator settles on a time step of 0.240(±0.033), about 75
points per cycle.

To provide quantitative evidence of the accuracy of these computional results, a set of solution statistics for the gridpoint
(0.1,0.1) is given in Table 4.1. The reference results in the first column are those generated with the 20 � 80 grid and with
et = 3 � 10�5 and correspond to the results in Figs. 4.1, 4.2, 4.3. The extremal point values and the bottom-line estimate of the
oscillation period are computed by averaging the results over the final four cycles (the interval (220,300) in Fig. 4.1). The
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reference results show three significant–digit agreement with those obtained when the problem is solved on a finer spatial
grid (second column) and also with the high accuracy results (third column) obtained using the refined grid in combination
with a tight time accuracy tolerance.

4.2. Vertically heated horizontal cavity

The thin cavity configuration of the first test problem is retained in the second example but the heating direction is ver-
tical instead of horizontal. The Prandtl number is set to Pr = 7.1, a typical value for water. Such a configuration is of huge
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Fig. 4.3. Laterally heated 1:4 cavity Ra = 3000, Pr = 0.015: evolution of the time step using the TR-AB2 integrator with n⁄ = 9 and et = 3 � 10�5.
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Fig. 4.2. Laterally heated 1:4 cavity Ra = 3000, Pr = 0.015: snapshots of the flow solution.
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importance because of the laboratory experiments of Bénard in 1900 and the subsequent stability analysis of Rayleigh in
1916 – for further motivation see Drazin [6, Chapter 6]. Here we take X = [0,8] � [0,1] as the problem domain (1:8 cavity)
and heat/cool the horizontal walls so that:

Tðy ¼ 0; tÞ ¼ 1
2
ð1� e�10tÞ; Tðy ¼ 1; tÞ ¼ �1

2
1� e�10t
� �

: ð4:2Þ

The left and right cavity walls are assumed to be insulated. Our aim is to compute the transition from an unstable equilib-
rium flow to a stable configuration of convection rolls. The computation reported in Section 3 is done with a 160 � 20 uni-
form grid, a Rayleigh number of Ra = 1.5 � 104 and a temporal accuracy tolerance of et = 1 � 10�6, see Figs. 3.5 and 3.6.
Perhaps unsurprisingly, the system evolution is extremely sensitive to the choice of et. To illustrate this point, Fig. 4.4 shows
the evolution of the time step and kinetic energy when the problem in Fig. 3.6 is solved with a more relaxed tolerance of
et = 1 � 10�4. At first sight, comparison of Figs. 3.6 and 4.4 suggests that there is no agreement between these two runs!

The issue here is that the instability ‘‘trigger’’ for the equilibrium solution to lose stability is numerical round-off. In
Fig. 4.4 the stabilized TR integrator is taking larger and larger time steps (the penultimate step is 94 time units) and the ter-
mination time of 300 units is not quite long enough for instability to set in.6 The kinetic energy evolution in Fig. 4.4 shows that
100 time units is indeed the point at which stability is lost, which is in agreement with the results of Fig. 3.6. Moreover at the
final time of 300 units the velocity solution is O(10�6). If the integration were to be restarted from this solution then it would
evolve as in Fig. 3.6 to the convection roll solution in Fig. 3.5.

4.3. Laterally heated tall cavity

The final problem – the MIT benchmark problem proposed by Christon et al. [2] – is a more challenging test of our solu-
tion strategy. The aim is to model a horizontally heated tall (8:1 aspect ratio) cavity with Prandtl number, Pr = 0.71 at a near-
critical Rayleigh number of Ra⁄ = 3.4 � 105. Although the geometry is simple, the solution has a complicated multiscale
structure with a complex time behaviour resulting from travelling waves in the vertical boundary layers interacting with
thermal instabilities along horizontal walls. As discussed in Xin & LeQuéré [22], the long-time solution dynamics are extre-
mely sensitive to small changes in the benchmark problem statement. Steady solutions are not stable since there is a Hopf
bifurcation to non-skew-symmetric periodic solutions at Ra = 3.06 � 105 and a second bifurcation to a branch of skew-
symmetric periodic solutions at Ra = 3.11 � 105. As this is the only stable branch of solutions for Rayleigh numbers close
to the benchmark value Ra⁄, comparisons of numerical results obtained using different approaches are meaningful. We will
compare results obtained using our TR strategy with published reference results in [2]. Our aim at the outset is to see if the
linearized TR methodology can solve such a demanding problem in ‘‘black-box’’ fashion—that is, without tuning parameters,
and not knowing the structure, for example the period, of the long-time solution beforehand.

Motivated by the excellent results obtained by Davis & Bänsch [4], our initial attempt to solve the MIT problem was to run
linearized TR–AB2 with n⁄ =1 on a stretched 31 � 248 spatial grid. To construct such a grid, our grid generator includes
stretching parameters ax and ay to control the wall refinement in the x and y directions respectively. The grid shown in
Fig. 3.1 corresponds to setting ax = 2 and ay = 1 and reproduces the specific mesh grading used in [4]. The top and bottom
cavity walls are left insulated and the vertical walls are smoothly heated/cooled so that:

Table 4.1
Point data statistics for laterally heated 1:4 cavity Ra = 3000, Pr = 0.015 at (0.1, 0.1).

Subdivision et Reference h-refined ht-refined
20 � 80 30 � 120 30 � 120
3 � 10�5 3 � 10�5 1 � 10�6

(ux)min �0.0425 �0.0425 �0.0423
(ux)max �0.0191 �0.0192 �0.0194
Dux 0.0234 0.0233 0.0228
�ux �0.0308 �0.0308 �0.0308

(uy)min 0.0146 0.0146 0.0148
(uy)max 0.0338 0.0338 0.0336
Duy 0.0193 0.0192 0.0188
uy 0.0242 0.0242 0.0242

Tmin 0.4622 0.4622 0.4623
Tmax 0.4648 0.4648 0.4648
DT 0.0026 0.0026 0.0025
T 0.4635 0.4635 0.4635

Period 17.983 17.969 17.972

6 We note that this issue is not seen using unstabilized TR because ringing makes the time step stagnate and prevents the integrator from taking large time
steps when approaching a steady state.
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Tðx ¼ 0; tÞ ¼ 1
2
ð1� e�10tÞ; Tðx ¼ 1; tÞ ¼ �1

2
1� e�10t
� �

: ð4:3Þ

Running the unstabilized TR algorithm with an accuracy tolerance et = 3 � 10�5 gives the results in Section 3 that were dis-
cussed earlier, see Figs. 3.1, 3.2, 3.3, 3.4. These results are qualitatively correct – after a long transient the solution evolves
into a stable cycle with a period of �3.40 time units (the benchmark result in [22] is 3.411). Moreover, the solution snapshot
in Fig. 3.2 is visibly skew-symmetric, and the kinetic energy (not shown here) tends to a value of �0.241 (the benchmark
results are 0.240 ± 0.001).

A closer comparison with published results for the benchmark reveals, however, some deficiencies. The benchmark spec-
ification [2] examines data statistics at mesh points P1 = (0.181,7.370) and P2 = (0.819,7.370). We refer first to Fig. 4.5 and
Table 4.2. The figure shows the temperature at P1 computed using the TR-AB2 method with n⁄ = 9. (The results for n⁄ =1 are
virtually identical in these cases.) The graph on the right shows an accurate solution; this is discussed in more detail below.
The table summarises point data statistics for mesh points P1 and P2 computed using five different TR solution strategies. The
highlighted results in the first column are of high accuracy, obtained using a stringent time-accuracy tolerance et = 5 � 10�7

and a fully coupled TR, where the nonlinear equations at each time level are solved to a relative accuracy of 10�5. These will
be used as reference results in the sequel. (By way of comparison, DT = 0.0427 in [22].) The other columns contain results,
from left to right, for a fully coupled TR with milder tolerance et = 3 � 10�5; a simple linearization of TR using a single Picard
step with first order time accuracy; Picard linearization with two Picard steps; and an adaptive BDF2 integrator described in
[11, p. 805]. The solvers are all run on the same stretched 31 � 248 grid to a time of 1200 units. The extremal point values
and the estimated period are computed over the final twenty cycles.

What is most striking here is that (on the left side of Fig. 4.5) the amplitudes of the cyclic oscillations of the temperature
are too high by about 50%. The velocity components (not shown) behave similarly. We attribute this inaccuracy to the
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decoupling of the momentum and energy equations in the linearized system (2.13)–(2.15). Thus, in cases where the physics
is ‘‘tightly coupled’’, we might expect that the linearization strategy is going to be ineffective.

This supposition is reinforced by the observation that essentially perfect agreement with the results in [22] can be ob-
tained when we run our code using fully coupled TR (solving the nonlinear equations at each time level to a relative accuracy
of 10�5) with all other parameters unchanged; this is shown in the second column of Table 4.2. A simple linearization of TR
using a single Picard step with first order time accuracy (the third column, ‘‘linTR’’, in Table 4.2) gives very poor results –
both the period and the amplitude of oscillations differ in the leading digit from the reference values. The results obtained
when two Picard steps are done at each nonlinear iteration (column ‘‘linTR2’’) are, in contrast, surprisingly good. This rein-
forces our view that the momentum–temperature (de-) coupling is very important in this problem. Note that over-diffusive
results were obtained using the self-adaptive BDF2 integrator (column ‘‘GL–BDF2’’) described in [11, p. 805] – these results
are much less accurate than the analogous results for TR–AB2 in the second column.

We return now to discussion of Fig. 4.5, which, again, shows results for the linearized TR method (2.13)–(2.15) with time-
step stabilization. In this computation, our stabilized TR code is first run to 750 units with et = 3 � 10�5. (This target time is
long enough for the numerical solution to reach a stable periodic cycle.) A reference point temperature is shown in the left
hand plot and we see that the integrator has settled on an approximate time step of 0.085 time units (approximately
40 points per period). The overshoot in the amplitude of the oscillations is self-evident, as can be seen from comparison with
the reference data of Table 4.2. The computation is then restarted from this point with et = 10�6. This tighter tolerance leads
to a smaller time step (approximately 0.034 time units) which generates about 100 points per period. After a smooth

Table 4.2
Computed MIT reference statistics computed using nonlinear TR time stepping (n⁄ =1).

Method
timestepping
linearisation

Reference
TR-AB2
Picard

fullTR
TR-AB2
Picard

linTR
TR-AB2
Picard

TR-AB2
Picard linTR2

GL-BDF2
Picard BDF2

et 5 � 10�7 3 � 10�5 3 � 10�5 3 � 10�5 3 � 10�5

Nonlinear tolerance 1 � 10�5 1 � 10�5 1 step 2 steps 1 � 10�5

# Nonlinear steps �4 �4 1 2 �5
Total # timesteps 39368 9604 12820 10633 13977
Mean timestep 0.028 0.105 0.092 0.105 0.067
(ux)min 0.0346 0.0345 0.0365 0.0333 0.0349

(ux)max 0.0868 0.0871 0.1237 0.0926 0.0849
Dux 0.0522 0.0526 0.0872 0.0593 0.0501
ux 0.0607 0.0608 0.0801 0.0629 0.0599

(Dp)min �0.0125 �0.0126 �0.0190 �0.0138 �0.0121
(Dp)max 0.0074 0.0074 0.0111 0.0084 0.0069
D(Dp) 0.0198 0.0199 0.0301 0.0222 0.0191
Dp �0.0026 �0.0026 �0.0039 �0.0027 �0.0026

Tmin 0.2461 0.2459 0.2322 0.2438 0.2467
Tmax 0.2872 0.2872 0.2988 0.2898 0.2861
DT 0.0411 0.0414 0.0666 0.0461 0.0395
T 0.2666 0.2665 0.2655 0.2668 0.2664

Period 3.4135 3.4211 4.0177 3.4248 3.4319

Table 4.3
Computed MIT reference statistics computed using linearized TR time stepping (n⁄ = 9).

Reference et = 3 � 10�5 et = 1 � 10�6

(ux)min 0.0346 0.0329 0.0339
(ux)max 0.0868 0.1170 0.0917
Dux 0.0522 0.0841 0.0578
ux 0.0607 0.0750 0.0628

(Dp)min �0.0125 � 0.0178 � 0.0135
(Dp)max 0.0074 0.0116 0.0082
D(Dp) 0.0198 0.0294 0.0218
Dp �0.0026 �0.0031 �0.0027

Tmin 0.2461 0.2362 0.2442
Tmax 0.2872 0.3012 0.2896
DT 0.0411 0.0650 0.0454
T 0.2666 0.2687 0.2669

Period 3.4135 3.382 3.412
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transient (not shown in Fig. 4.5) the TR integrator settles on the periodic solution illustrated in the right hand plot – with a
significant decrease in the oscillation amplitude!

The fine-tolerance linearized TR results in Fig. 4.5 are visibly more accurate than the relaxed tolerance ‘‘linTR2’’ results
discussed earlier. To quantify this, a set of point data statistics computed over the final seven cycles are tabulated in Table
4.3 together with the reference values from Table 4.2. Running with a tighter tolerance is especially appealing from a fast
linear algebra perspective. This can be seen in Fig. 4.6 where we track the iteration counts for a GMRES residual reduction
of 10�6 that were recorded in the process of computing the solution shown in Fig. 4.5. We use the PCD preconditioning strat-
egy described in Section 3. Note that for increased efficiency (because the AMG setup phase is very slow MATLAB) the AMG
grid sequence generated at the first time step is stored (at times t = 700 and t = 840 respectively), and successively (re-) used
over the whole time integration interval shown. On a 2.0 GHz MacBook our strategy gives an average CPU time of 9.3 s/time-
step when running amg–ILU with the relaxed tolerance (corresponding to the data labeled ‘‘�’’ in the left-hand plot of
Fig. 4.6), but only 6.6 seconds/timestep for the amg–ILU results in the right-hand plot. The amg–PDJ preconditioning strategy
(corresponding to ‘‘o’’) is a little less efficient – it requires about twice as many iterations to satisfy the GMRES tolerance,
which translates to 17.5 and 13.2 s/timestep for the relaxed and the tight accuracy tolerance respectively.

5. Concluding remarks

We have developed a fast and robust computational strategy for finding the numerical solution of models of bouyancy
driven flow using implicit methods. The algorithm is constructed using a time-stepping strategy built from a stabilized trap-
ezoidal rule, in conjunction with a specialized linearization strategy that achieves second-order accuracy in time and has the
feature that, despite the nonlinearity of the Navier–Stokes equations, requires only one linear system solution at each time
step. Moreover, this system can be solved in essentially optimal order complexity using algebraic multigrid methods. We
have demonstrated the effectness of this solution algorithm on a series of benchmark problems, where it is shown in par-
ticular that very little preliminary knowledge of problem structure or parameter tuning is needed to efficiently compute
accurate solutions.
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[1] J. Boyle, M. Mihajlović, J. Scott, HSL_MI20: an efficient AMG preconditioner for finite element problems in 3D, Int. J. Numer. Methods Eng. 82 (2010) 64–
98.

[2] M.A. Christon, P.M. Gresho, S.B. Sutton, Computational predictability of time-dependent natural convection flows in enclosures (including a benchmark
solution), Int. J. Numer. Methods Fluid. 40 (2002) 953–980.

[3] H. Damanik, J. Hron, A. Ouazzi, S. Turek, A monolithic FEM-multigrid solver for non-isothermal incompressible flow on general meshes, J. Comput.
Phys. 228 (2009) 3869–3881.

[4] D. Davis, E. Bänsch, An operator-splitting finite-element approach to the 8:1 thermal-cavity problem, Int. J. Numer. Methods Fluid. 40 (2002) 1019–
1030.
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Fig. 4.6. GMRES iterations recorded using inexact PCD preconditioning when generating the solution in Fig. 4.5.
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