
Adaptive time-stepping for incompressible flow
Part II: Navier-Stokes Equations

Kay, David A. and Gresho, Philip M. and Griffiths,
David F. and Silvester, David J.

2010

MIMS EPrint: 2008.61

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. SCI. COMPUT. c© 2010 Society for Industrial and Applied Mathematics
Vol. 32, No. 1, pp. 111–128

ADAPTIVE TIME-STEPPING FOR INCOMPRESSIBLE FLOW
PART II: NAVIER–STOKES EQUATIONS∗

DAVID A. KAY† , PHILIP M. GRESHO‡ , DAVID F. GRIFFITHS§ , AND

DAVID J. SILVESTER¶

Abstract. We outline a new class of robust and efficient methods for solving the Navier–
Stokes equations. We describe a general solution strategy that has two basic building blocks: an
implicit time integrator using a stabilized trapezoid rule with an explicit Adams–Bashforth method
for error control, and a robust Krylov subspace solver for the spatially discretized system. We present
numerical experiments illustrating the potential of our approach.

Key words. time-stepping, adaptivity, Navier–Stokes, preconditioning, fast solvers

AMS subject classifications. 65M12, 65M15, 65M20

DOI. 10.1137/080728032

1. Background and context. Simulation of the motion of an incompressible
fluid remains an important but very challenging problem. The resources required for
accurate three-dimensional simulation of practical flows test even the most advanced of
supercomputer hardware. The effectiveness of our stabilized TR–AB2 time-stepping
algorithm that we explore here is demonstrated in the context of convection-diffusion
problems in part I of this work [8]. Therein it is shown that stabilized TR–AB2
is particularly well suited to long time integration of advection-dominated problems
and is a very effective algorithm when faced with general advection-diffusion problems
with different time scales governing the system evolution. In this paper, our focus is
on assessing the performance of the integrator in combination with a state-of-the-art
iterative solver in the context of method-of-lines discretization of the Navier–Stokes
equations.

For simplicity, the case of a two-dimensional flow domain Ω is considered here.
Our solver methodology is exactly the same in the case of a three-dimensional flow
model. Thus, the flow domain boundary Γ consists of two nonoverlapping segments
ΓD ∪ ΓN associated with specified flow and natural outflow boundary conditions,
respectively,

∂�u

∂t
− ν∇2�u+ �u · ∇�u+∇p = 0 in Ω× [0, T],(1.1)

−∇ · �u = 0 in Ω× [0, T],(1.2)

∗Received by the editors June 21, 2008; accepted for publication (in revised form) February 9,
2009; published electronically February 5, 2010. This collaboration was supported by EPSRC grant
GR/R26092/1.

http://www.siam.org/journals/sisc/32-1/72803.html
†Oxford University Computing Laboratory, Oxford, OX1 3QD, UK (dkay@comlab.ox.ac.uk).
‡Livermore, CA (pgresho@comcast.net).
§Division of Mathematics, University of Dundee, Dundee, DD1 4HN, Scotland, UK (dfg@maths.

dundee.ac.uk).
¶School of Mathematics, University of Manchester, Manchester, M13 9PL, UK (d.silvester@

manchester.ac.uk).

111

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

112 D. KAY, P. GRESHO, D. GRIFFITHS, AND D. SILVESTER

�u = �g on ΓD × [0, T],(1.3)

ν∇�u · �n− p�n = �0 on ΓN × [0, T],(1.4)

�u(�x, 0) = �u0(�x) in Ω.(1.5)

Our notation is completely standard: �u is the fluid velocity, p is the scalar pressure,
ν > 0 is a specified viscosity parameter (in a nondimensional setting it is the inverse
of the Reynolds number), and T > 0 is some final time. The initial velocity field �u0
is typically assumed to satisfy the incompressibility constraint, that is, ∇ · �u0 = 0.
Unless stated otherwise, it is implicitly assumed that ΓN has nonzero measure, in
which case the pressure p is uniquely specified by the outflow boundary condition.

Conventional approaches to solving the initial value problem (1.1)–(1.5) typically
use semi-implicit time integration leading to a Poisson or Stokes-type problem at ev-
ery time step, but with a stability restriction on the time step. In contrast, there is
no time-step restriction in our case. The price that must be paid for this improved
robustness is the need to solve a so-called Oseen problem at every time step. For-
tunately, very efficient solvers for Oseen problems have become a reality in the last
decade; see, for example, [6], [13], [3], [2]. Specifically, the preconditioning frame-
work that has evolved offers the possibility of uniformly fast convergence independent
of the problem parameters (namely, the mesh size, the time step, and the Reynolds
number).

A common viewpoint (see, for example, Turek [18]) is that a coupled solver is
mainly of use for steady flows, whereas projection-type schemes are preferred when
modeling unsteady flows. We aim to challenge this assertion. Of course, projection-
type schemes can be very effective—especially if implemented using multigrid and
combined with a fixed time-stepping strategy. Their limitation is the fact that decou-
pling the velocity and pressure inevitably leads to smaller time steps when compared
to a coupled solver strategy. The big attraction of an implicit discretization in time
is that it enables the possibility of self-adaptive time-step control, with time steps
automatically chosen to “follow the physics.”

An outline of the paper is as follows. The temporal and spatial discretization
of (1.1)–(1.5) is discussed in section 2. The linear algebra aspects are discussed in
section 3, and the performance of our solver methodology is assessed in section 4.
We have tested our solver on a range of flow problems. Results for two benchmark
flow problems are presented here: first, a driven cavity flow that ultimately reaches a
steady state; and second, a developing flow around a cylinder that reaches a periodic
state of vortex shedding. We hope that, at the end, the reader will be convinced
not only that incompressible flow problems can be solved more efficiently using an
adaptive time integrator but also that studying the behavior of the computed time
step can help to delineate different phases of the evolution of the flow.

2. Discretization aspects. Our “basic” time-stepping algorithm is the well-
known, second-order accurate, trapezoid rule (TR). Let the interval [0, T] be divided
into N steps, {ti}Ni=1, and let �vj denote �v(�x, tj). The semidiscretized problem is the

following: Given (�un, pn) at time level tn and boundary data �gn+1 at time level tn+1,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ADAPTIVE TIME-STEPPING 113

compute (�un+1, pn+1) via1

2

kn+1
�un+1 − ν∇2�un+1 + �un+1 · ∇�un+1 +∇pn+1 =

2

kn+1
�un +

∂�u

∂t

n

in Ω,(2.1)

−∇ · �un+1 = 0 in Ω,(2.2)

�un+1 = �gn+1 on ΓD,(2.3)

ν∇�un+1 · �n− pn+1�n = �0 on ΓN .(2.4)

Here, kn+1 := tn+1−tn is the current time step, and ∂�u
∂t

n
:= ν∇2�un−�un ·∇�un−∇pn

is shorthand for the acceleration at time tn.
The limited stability of TR time-stepping for the incompressible Navier–Stokes

equations is extensively discussed in the literature, for example, in the well-cited paper
by Simo and Armero [15]. The basic algorithm has some attractive features, however.
In particular, solving a simple ODE model of convection-diffusion,

ẏ = −
(
1

τ
+ iω

)
y, y(0) = 1,(2.5)

where τ corresponds to a decay time constant and ω is a frequency parameter, it
is easily shown (see [8, sect. 2]) that TR is unconditionally stable (A-stable) and
nondissipative. This is important when modeling pure advection (τ = ∞), or even
advection-dominated problems (1τ � ω). Dettmer and Perić [1] critically compare TR
with alternative time-stepping algorithms in the context of fixed time-step algorithms
for convection-diffusion equations and for Navier–Stokes equations. They present
results showing that the lack of numerical damping within TR can be problematic
if the time step is kept fixed (and is not small enough). Smith and Silvester [14]
draw similar conclusions when comparing fixed time-step TR with the three-stage
operator-splitting methods advocated by Turek [18]. Such problems are circumvented
if an adaptive time-step strategy is employed and the TR method is stabilized as
described later.

From (2.1) it is evident that a numerical scheme for handling the nonlinear term
�un+1 · ∇�un+1 is needed at every time step. A standard approach (see Gresho and
Sani [9, p. 800]) would be solve the system (2.1)–(2.4) to a predefined accuracy using
some variant of the Newton iteration. Although this requires inner iterations, the
approach may still be cost-effective if it avoids any loss of stability which, using self-
adaptive time-stepping, usually leads to a reduction in the time-step size. We advocate
an alternative approach in this work—computational experiments in the final section
show that if the linearization is done using �un+1 · ∇�un+1 ≈ �wn+1 · ∇�un+1, where

(2.6) �wn+1 = (1 + (kn+1/kn))�u
n − (kn+1/kn)�u

n−1,

then temporal stability is not compromised significantly. The linearization (2.6) is
thus adopted in the remainder of the paper. In the case of constant time-stepping,
our methodology is essentially the same as the approach of Simo and Armero [15] and
the TRLE algorithm described in [10, p. 163].

1This is the usual implementation of TR; see Gresho and Sani [9, p. 797]. An alternative interpre-
tation (see Layton [10, p. 163]) is that an implicit midpoint evaluation of the the quadratic convection

term �un+1/2 · ∇�un+1/2 is computed via the second order update (�un+1 · ∇�un+1 + �un · ∇�un)/2.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

114 D. KAY, P. GRESHO, D. GRIFFITHS, AND D. SILVESTER

Let (·, ·) denote the standard scalar or vector valued L2 inner product defined
on Ω. Given the velocity solution space H1

�g = {�v|�v ∈ H1(Ω)2; �v|ΓD = �g}, the
linearized semidiscrete problem can be formulated as a variational problem: given
(�un, pn) ∈ H1

�gn × L2(Ω), we seek (�un+1, pn+1) ∈ H1
�gn+1 × L2(Ω) such that

2

kn+1
(�un+1, �v) + ν (∇�un+1,∇�v) + (�wn+1 · ∇�un+1, �v)− (pn+1,∇ · �v)

=
2

kn+1
(�un, �v) +

(
∂�u

∂t

n

, �v

)
,(2.7)

(∇ · �un+1, q) = 0(2.8)

for all (�v, q) ∈ H1
�0
(Ω)× L2(Ω).

Throughout this paper, spatial discretization will be done using a method-of-
lines approach based on finite element approximation on a fixed spatial grid. Our
algorithm methodology described below thus applies essentially verbatim to finite
difference and finite volume discretizations. The domain Ω is split into finitely many
nonoverlapping triangles τ , giving a triangulation Th. (The mesh parameter h can
be associated with the length of the longest edge of a triangle from Th.) Low-order
mixed approximation methods are not stable2 in general. One mixed method that is
stable is the so-called Taylor–Hood P2–P1 method, which uses continuous piecewise
quadratic approximation for the velocity components and continuous piecewise linear
approximation for pressure. We use Taylor–Hood approximation throughout this work
but emphasize that the rapid convergence properties of the linear solver methodology
described in the next section are essentially independent of the mixed approximation
used.

Thus, using finite-dimensional approximation spaces X ⊂ H1
�0
and M ⊂ L2(Ω),

the fully discrete problem is to find (�un+1
h , pn+1

h) ∈ X�g ×M such that

2

kn+1
(�un+1

h , �vh) + ν (∇�un+1
h ,∇�vh) + (�wn+1

h · ∇�un+1
h , �vh)− (pn+1

h ,∇ · �vh)

=
2

kn+1
(�unh, �vh) +

(
∂�uh
∂t

n

, �vh

)
,(2.9)

(∇ · �un+1
h , qh) = 0(2.10)

for all (�vh, qh) ∈ X ×M . The linear algebra version of (2.9)–(2.10) will be explicitly
constructed in the next section.

Our adaptive time-stepping algorithm is a refined version of the “smart integra-
tor” advocated by Gresho and Sani [9, sect. 3.16.4] and has three ingredients: time
integration, the time-step selection method, and stabilization of the integrator. We
briefly discuss each of these separately below so as to mirror the discussion in part I;
see [8, sect. 1].

Time integration. We are conscious of the need to minimize potential round-off
instability; thus our implementation of the TR–AB2 pair explicitly computes the dis-
crete velocity updates scaled by the time step to avoid underflow and inhibit subtrac-

tive cancellation. Specifically, given �unh,
∂un

h

∂t , and the boundary update �g := �gn+1−�gn

kn+1
,

2See Elman, Silvester, and Wathen [5, Ch. 5] for a full discussion of inf-sup stability.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ADAPTIVE TIME-STEPPING 115

we first compute the pair (�d
n

h , p
n+1
h) ∈ X�g ×M such that

2(�d
n

h, �vh) + νkn+1 (∇�d
n

h,∇�vh) + kn+1(�w
n+1
h · ∇�d

n

h, �vh)− (pn+1
h ,∇ · �vh)

=

(
∂�unh
∂t

, �vh

)
− ν (∇�unh,∇�vh)− (�wn+1

h · ∇�unh, �vh),(2.11)

(∇ · �d
n+1

h , qh) = 0(2.12)

for all (�vh, qh) ∈ X×M , and then we update the TR velocity field and the acceleration
(time derivative of the velocity) via

(2.13) �un+1
h = �unh + kn+1

�d
n

h;
∂�un+1

h

∂t
= 2�d

n

h − ∂�unh
∂t

.

We will subsequently refer to (2.11)–(2.12) as the discrete Oseen problem. Note that
the computed pressure field pn+1

h is not needed for subsequent time steps and does
not play a role in the time-step selection process described next.

Time-step selection. To control the time integration it is usual to place a user-
specified tolerance, ε, on the L2 norm of the truncation error at the next time step,
�en+1
h , so that

(2.14) ‖�en+1
h ‖ ≤ ε‖�u∞h ‖,

where ‖�u∞h ‖ is (a possibly user-specified estimate of) the maximum norm of the
method-of-lines solution over the prescribed time interval.3 Assuming that the un-
derlying ODE system has smooth third derivatives in time (so that the TR time
integration is indeed second-order accurate) standard manipulation of Taylor series
shows that the ratio of successive truncation errors is proportional to the cube of
the ratio of successive time steps. This motivates the following time-step selection
heuristic:

(2.15) kn+2 = kn+1

(
ε/‖�en+1

h ‖
) 1

3

.

The local truncation error �en+1
h is estimated by comparing the TR velocity solution

�un+1
h with the AB2 velocity solution �un+1

∗ computed using the explicit update formula

(2.16) �un+1
∗ = �unh +

kn+1

2

[(
2 +

kn+1

kn

)
∂unh
∂t

−
(
kn+1

kn

)
∂�un−1

h

∂t

]
,

using the standard estimate (cf. part I, [8, p. 2021])

(2.17) �en+1
h = (�un+1

h − �un+1
∗)/[3(1 + kn/kn+1)].

To implement this methodology in a practical code there are two start-up issues
that need to be addressed:

1. AB2 is not self-starting. To start the simulation we require a finite element
function �u0h with boundary data �g0 that satisfies the discrete incompressibil-
ity constraint

(2.18) (∇ · �u0h, qh) = 0 for all qh ∈M.

3‖�u∞
h ‖ = 1 in all of the examples discussed in this paper.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

116 D. KAY, P. GRESHO, D. GRIFFITHS, AND D. SILVESTER

The initial acceleration (and concomitant pressure) is then computed by
solving the discrete (potential flow) problem: given the boundary update

�g := �g1−�g0

k1
, we compute the pair (

∂�u0
h

∂t , p
0
h) ∈ X�g ×M such that

(
∂�u0h
∂t

, �vh

)
− (p0h,∇ · �vh) = −ν (∇�u0,∇�v)− (�u0 · ∇�u0, �v),(2.19)

(
∇ · ∂�u

0
h

∂t
, qh

)
= 0(2.20)

for all (�vh, qh) ∈ X ×M . We then set n = 0 and define �w1
h = �u0h + k1

∂�u0
h

∂t so
as to construct the discrete Oseen problem (2.9)–(2.10). Solving this discrete
Oseen problem gives (�u1h, p

1
h) (the TR velocity and pressure) at the end of

the first time step. The acceleration at time t = k1 is then computed using
∂�u1

h

∂t = 2
k1
(�u1h − �u0h)−

∂�u0
h

∂t and allows us to compute the AB2 velocity at the
second time step. To complete the start-up process, time step control is then
switched on at the third time step (k1 = k0).

2. Choice of initial time step k0. Several strategies are available with which to
start the TR method. Our strategy is to select a conservatively small value for
k0 (say, 10−8). With such a choice we will have rapid growth in the time step:
typically ‖�enh‖ = O(eps) for the first few time steps (where eps is machine
precision), and so kn+1/kn = O((ε/eps)1/3) ≈ 104 when ε = 10−4. This
rapid growth implies that, for small values of n, we see exponential growth
in the time step, and with very few such steps (typically 2–4) a time step is
obtained that is commensurate with the “initial response time.” See part I [8,
p. 2021] for further discussion of this point.

A general purpose ODE code in a software library will typically have multiple
bells and whistles. In contrast, our time-stepping algorithm has just one “trip”:

1. Time-step rejection. After computing the new time step via (2.15), we check
to see if the next step is seriously reduced,4 i.e., kn+2 < 0.7kn+1, or equiva-
lently that ‖�en+1

h ‖ > (1/0.7)3ε. If this happens, then the next time step is
rejected: the value of kn+1 is multiplied by (ε/‖�en+1

h ‖)1/3, and the current
step is repeated with this smaller value of kn+1.

Stabilization of the integrator. As discussed earlier, the TR method is prone to
“ringing” when solving stiff problems (typically for PDEs when using very small spa-
tial grid sizes to resolve fine detail) with relatively large tolerances on the time step
or toward the end of a simulation when close to steady state. Situations such as
these are discussed by Osterby [11] along with a variety of means of suppressing the
oscillations. Our code implements an alternative strategy—time-step averaging. The
averaging is invoked periodically every n∗ steps. For such a step, we save the values

t∗ = tn and �u∗h = �unh, and, having computed the TR update �d
n

h via (2.11)–(2.12),
we set tn = tn−1 +

1
2kn and tn+1 = t∗ + 1

2kn+1 and define the new “shifted” solution

4For example, if the iterative solver discussed in section 3 does not solve the discrete Oseen
problem to the required accuracy, then ‖�enh‖ will be larger than we would expect for the current
time step. If the step is repeated with a smaller step size, then the associated linear algebra problem
is more easily solved so the time-stepping algorithm can recover.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ADAPTIVE TIME-STEPPING 117

Fig. 1. Stabilized TR–AB2 integrator with periodic averaging: log kj versus time-step number
j for a driven cavity flow with viscosity ν = 1/100 being spun up from rest.

vectors so that

�unh =
1

2
(�u∗h + �un−1

h),
∂�unh
∂t

=
1

2

(
∂�unh
∂t

+
∂�un−1

h

∂t

)
,(2.21)

�un+1
h = �u∗h + 1

2kn+1
�d
n

h ,
∂�un+1

h

∂t
= �d

n

h .(2.22)

We then compute the next time step using (2.15) and continue the integration. The
averaging process annihilates any contribution of the form (−1)n to the solution and
its time derivative, thus cutting short the “ringing” while maintaining second-order
accuracy. In our code the parameter n∗ is a fixed parameter—typically 10. (A way
of calculating a suitable value n∗ on the fly is discussed in part I [8, p. 2023].) The
benefit of this simple stabilization strategy is illustrated in Figure 1, which shows the
behavior of stabilized and unstabilized TR–AB2 for a driven cavity flow problem for a
Reynolds number Re = UL/ν = 100. The fluid is initially at rest, and the tangential
velocity of one of the boundaries is smoothly increased to a value of unity; full details
are discussed later. Since the underlying Reynolds number is small enough, the flow
solution tends to a steady state as t→ ∞.

Looking at Figure 1, we see that the unstabilized TR–AB2 integrator generates
a constant time step as the steady state is approached. This behavior is erroneous in
the sense that if we were to follow the physics, then the time step would increase as
we approach the steady state. This is what we see when we stabilize the integrator,
and it is independent of the frequency of averaging. Note that there is a drop-off in
performance when we average too frequently or too infrequently—our default choice
of n∗ = 10 is essentially a compromise between enforcing stability and maintaining
accuracy. This is the value of n∗ that was used when generating the results presented
in section 4.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

118 D. KAY, P. GRESHO, D. GRIFFITHS, AND D. SILVESTER

3. Solving the discrete Oseen system. Let {φi}nu

i=1 define the basis set for
the approximation of a function from the space H1

0 := {v|v ∈ H1(Ω); v|ΓD = 0},
and let {ψj}np

j=1 define a basis set for the discrete pressure. The fully discrete solu-

tion (�un+1
h , pn+1

h) corresponding to the Oseen problem (2.9)–(2.10) is given by the
expansions

(3.1) �un+1
h =

[nu∑
i=1

αx,n+1
i φi,

nu∑
i=1

αy,n+1
i φi

]
+ �gn+1, pn+1

h =

np∑
k=1

αp,n+1
k ψk,

where αx,n+1, αy,n+1, and αp,n+1 represent vectors of coefficients. These are com-
puted by solving the linear equation system defined below.

Given the velocity basis set, we define so-called velocity matrices Mv, Av, and
Nv, representing identity, diffusion, and convection operators in the velocity space,
respectively:

Mv = [Mv]ij = (φi, φj),(3.2)

Av = [Av]ij = (∇φi,∇φj),(3.3)

Nv(�uh) = [Nv]ij = (�uh · ∇φi, φj).(3.4)

Combining the three velocity matrices and using the linearization in (2.7) defines the
velocity convection-diffusion matrix at time tn+1:

(3.5) Fn+1
v :=

1

kn+1
Mv + νAv +Nv(�w

n+1
h),

with �wn+1
h = (1 + (kn+1/kn))�u

n
h − (kn+1/kn)�u

n−1
h . In addition, given the pressure

basis set, we can define a discrete divergence matrix B = [Bx, By] via

Bx = [Bx]ki = −
(
ψk,

∂φi
∂x

)
,(3.6)

By = [By]ki = −
(
ψk,

∂φi
∂y

)
.(3.7)

Looking ahead to preconditioning the discrete system, we also define pressure ma-
trix analogues of Mv, Av, and Nv, representing identity, diffusion, and convection
operators in the pressure space:

Mp = [Mp]k� = (ψk, ψ�),(3.8)

Ap = [Ap]k� = (∇ψk,∇ψ�),(3.9)

Np(�wh) = [Np]k� = (�wh · ∇ψk, ψ�).(3.10)

Finally, using the definitions (3.1)–(3.7), the discretized Oseen problem can be
expressed as the following system: find [αx,n+1,αy,n+1,αp,n+1] ∈ R

nu×nu×np such
that ⎡

⎣ Fn+1
v 0 BT

x

0 Fn+1
v BT

y

Bx By 0

⎤
⎦
⎡
⎣ αx,n+1

αy,n+1

αp,n+1

⎤
⎦ =

⎡
⎣ f x,n+1

f y,n+1

f p,n+1

⎤
⎦ .(3.11)

The right-hand-side vector f is constructed from the boundary data �gn+1, the com-

puted velocity �unh at the previous time level, and the acceleration
∂�un

h

∂t .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ADAPTIVE TIME-STEPPING 119

The coefficient matrix in (3.11) may be written in the equivalent form

K :=

[
Fn+1

v BT

B 0

]
,(3.12)

where Fn+1
v is a 2 × 2 block diagonal matrix, with diagonal blocks Fn+1

v defined as
in (3.5). Thus, at every time level, we are faced with the task of solving a square
nonsingular linear equation system Kα = f. This is done using a (right-) precon-
ditioned Krylov subspace method. Such methods start with some guess α0, with
residual r0 = f −Kα0; given a preconditioner, P , say, to be defined later, construct
a sequence of approximate solutions of the form

(3.13) αk = α0 + pk,

where pk is a vector in the k-dimensional Krylov space

(3.14) Kk(r0,KP
−1) = span{r0,KP−1r0, . . . , (KP

−1)k−1r0} .

The preconditioned GMRES method is used herein. A feature of GMRES is that
it is an optimal Krylov solver in that it computes the unique iterate of the form
(3.13) for which the Euclidean (or root mean square) norm of the residual vector is
smallest—the classical convergence estimate is

‖rk‖2 = min
φk(0)=1

‖φk(KP−1)r0‖2,

where φk is the set of polynomials of degree k. Step m of the process requires one
matrix-vector product together with a set of m vector operations, making its cost, in
terms of both operation counts and storage, proportional to mn, where n = 2nu +np

is the dimension of the system (3.11). A full discussion of GMRES convergence
properties can be found in [5, Ch. 4], together with details of the construction of
successive GMRES iterates.

At every time level, we set the initial vector α0 = 0 and run the preconditioned
GMRES process until either a fixed number of iterations (maxit) is reached, or else
the stopping-test

‖f−Kαm‖2
‖r0‖2

< itol

is satisfied. We denote the solver strategy by GMRES(maxit, itol). Typically, we
set maxit to 50, and itol to 10−6. The big task is to construct a preconditioner P
such that the stopping-test is satisfied for smallm. Furthermore, we would like this m
to be independent of the discretization parameter h and the viscosity ν. Given that a
complete description of our preconditioning methodology is given in [13] and [5, Ch.
8], we simply outline the key features here.

The general form of an ideal preconditioner is

P =

(
Fn+1

v BT

0 −X

)
,(3.15)

where the np × np matrix X is an approximation to the pressure Schur complement
matrix S = B(Fn+1

v)−1BT . We note that if the exact Schur complement X := S were
used in (3.15), then GMRES would give the exact solution in two iterations, that is,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

120 D. KAY, P. GRESHO, D. GRIFFITHS, AND D. SILVESTER

α2 = α; see Murphy, Golub, and Wathen [7]. Since the Schur complement matrix
S is dense, then an equally effective yet relatively inexpensive approximation to it is
needed if this approach is to be practical. Such an approximation is that developed by
Kay, Loghin, and Wathen [6] and is referred to herein as pressure convection-diffusion
preconditioning. It is given by setting X = Ap(F

n+1
p)−1Mp, with the pressure matrix

operators Ap and Mp given in (3.9) and (3.8), respectively, and

(3.16) Fn+1
p =

1

kn+1
Mp + νAp +Np(�w

n+1
h),

defining the pressure space analogue of the Fn+1
v operator in (3.5). The properties of

this Schur complement approximation are the subject of ongoing analysis; see [3] for
some theoretical results in the steady-state case. Numerical experiments showing the
good performance of this preconditioning strategy in the context of steady-state flow
problems are given in [16] and [2].

Note that preconditioning with P requires the action of the inverse of Fn+1
v and

X at each GMRES iteration:

P−1 =

(
(Fn+1

v)−1 (Fn+1
v)−1BTX−1

0 −X−1

)
.(3.17)

Using the pressure convection-diffusion approximation to X , we see that

(3.18) X−1 =M−1
p (Fn+1

p)A−1
p ,

and thus preconditioning is done by effecting the action of the inverse operators
(Fn+1

v)−1, A−1
p , and M−1

p . In practice, these matrix operations can be done very effi-
ciently using algebraic multigrid (AMG). More specifically, all the results in the next
section are computed using an inexact preconditioner where the actions of (Fn+1

v)−1

and A−1
p are approximated by two AMG V-cycles and the action of the inverse mass

matrix M−1
p is approximated by five iterations of a diagonally scaled conjugate gra-

dient algorithm.5

The AMG code that we use for this is a MATLAB version of the subroutine
HSL MI20 [4]. It should be stressed that we use this subroutine as a black-box—we
specify three (point Gauss–Seidel) smoothing sweeps (no special reordering) at each
level, and all AMG coarsening parameters are set to the default values. The realiza-
tion that we were able to generate results without having to incorporate streamline
diffusion into the preconditioner was a big surprise for us.6 The fact that we are using
standard Galerkin approximation without “tuning parameters” makes for a very clean
discretization and, in our opinion, makes our methodology look very attractive.

4. Numerical results. The first model problem is the classical lid-driven cavity.
The motivation for considering this is to demonstrate the effectiveness of our solver
when it is used to time step to a steady state. The second model problem is another
well-studied problem, namely, that of a channel flow with a cylindrical obstruction.
The version of the model that we consider is that proposed by Dettmer and Perić in
[1]. An alternative problem statement and a benchmark solution is given by Turek [17,
Ch. 1]. The motivation for studying this problem is to show that our solver can be

5Diagonally scaling the mass matrix gives a perfectly conditioned operator; see [5, Lemma 6.3].
6The mass matrix contribution coming from the time-stepping is the crucial ingredient here—as

the temporal error tolerance is reduced, the effectiveness of the AMG solver is increased.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ADAPTIVE TIME-STEPPING 121

used to “follow the physics” of a transition of a flow from a state of rest to a periodic
state of vortex shedding. For a related and detailed analysis of the start-up flow past
a cylinder, see Gresho and Sani [9, Sec. 3.19].

Example 4.1. Consider a spatially discretized system (2.7)–(2.8) defined on a
unit square cavity domain. The initial condition is �u0(�x) = 0 in the cavity, and an
enclosed flow boundary condition �g = �0 is imposed on three of the walls together
with a time-dependent velocity �g = (1− e−5t, 0) on the top boundary 0 < x < 1; y =
1. This models a slow start-up from rest. For sufficiently small Reynolds number
Re = 1/ν < 13, 000 the flow tends to a steady state. This consists of a clockwise
rotating primary flow, secondary recirculation regions in the two bottom corners, and
a tertiary recirculation on the left-hand wall; see Shankar and Deshpande [12]. For
larger values of the Reynolds number the steady flow is not stable. At a very large
Reynolds number the flow will be chaotic and turbulent.

Fig. 2. Stabilized TR–AB2 integrator with periodic averaging for Example 4.1 with viscosity
ν = 1/1000: log kj versus time step number j. Top: Entire evolution. Bottom: Zoom showing the
almost perfect agreement over the final 20 time steps.

Figure 2 shows the evolution of the time step when we run our solver for a
problem with ν = 1/1000 with time-stepping tolerance ε = 10−4. For simplicity, we
use a uniform mesh of right-angled triangles with edge length h, and we compare the
behavior on two meshes—a basic mesh (red curve) with 1/h = 64 and a refined mesh
(blue curve) with 1/h = 128. The time integration was run to a final time of 100 time
units. Using either mesh, the time step grows monotonically with time and ultimately
reaches a value of O(10) time units. The time-step evolution can also be seen to be
essentially independent of the spatial subdivision—this suggests that the simulations
are time-accurate. The time-step behavior can also be seen to be consistent with that
in Figure 1 with n∗ = 10, which is for an order of magnitude larger viscosity.

The performance of the preconditioned GMRES(50, 10−6) solver is plotted in
Figure 3. We observe that the discrete Oseen system becomes progressively more
difficult to solve as the time step grows. On a positive note, however, we also see

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

122 D. KAY, P. GRESHO, D. GRIFFITHS, AND D. SILVESTER

Fig. 3. Stabilized TR–AB2 integrator with periodic averaging for Example 4.1 with viscosity
ν = 1/1000: Number of GMRES iterations versus time step number j.

that the solver performance at each time step is completely insensitive to the mesh
refinement level!

Example 4.2. Consider a spatially discretized system (2.7)–(2.8) defined on a
rectangular domain −5 < x < 16,−4.6 < y < 4.5 with a cylindrical obstruction of
diameter unity centered at the point (0, 0). The initial condition is �u0(�x) = 0 in
the domain, and a zero flow boundary condition is imposed on the cylinder boundary
together with a time-dependent velocity �g = (1 − e−5t, 0) on the left-hand (inflow)
boundary, as well as at the top and the bottom of the channel. The right-hand
boundary x = 16,−4.6 < y < 4.5 satisfies the natural outflow condition (1.4) for
all time. For a viscosity coefficient in the range 1/1000 ≤ ν ≤ 1/100 the flow tends
to a time periodic vortex shedding solution which subjects the cylinder to oscillating
lift and drag forces acting parallel and perpendicular to the direction of the flow,
respectively.

The results in Figure 4 illustrate what happens when we run our solver on the
problem with ν = 1/100, using the relatively coarse mesh shown in Figure 5, with
the time-stepping tolerance ε = 10−4. The top plot shows a snapshot of the flow
solution during the shedding cycle. Also shown is the evolution of the lift coefficient
from the rest state, and the cyclic variation of the drag coefficient after shedding has
been established. With this accuracy tolerance the algorithm generates a constant
time step of 0.05 once in the shedding regime—this corresponds to approximately 100
sample points per shedding cycle. Looking at the time-step evolution in Figure 4, we
can identify four distinct phases. First, we have a “fake” initial transient which lasts
1–5 time units and which is associated with the dynamic boundary condition. Note
that there is a noticeable “judder” at about 5 time units—roughly speaking when the
initial influx hits the cylinder. Between 5 and 35 time units the integrator runs with
a constant time step of about 0.13, corresponding to the lengthening of the pair of
recirculating eddies in the wake of the cylinder. Finally, after approximately 35 time
units, stability is lost, the flow symmetry is broken, and the time step automatically
cuts back, ultimately settling on the constant value that is appropriate for the accurate
computation of the vortex shedding.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ADAPTIVE TIME-STEPPING 123

Fig. 4. Solution data for Example 4.2 for ν = 1/100 with accuracy ε = 10−4. The y-axis limits
for the time step in the second plot range from 0 to 0.2, and those for the drag coefficients in the
third plot range from 1.43 to 1.46.

In the remainder of the paper we will critically assess the performance of our
solver, first when run with ν = 1/100, and second when run with ν = 1/400. Our
results can then be directly compared with those in [1, pp. 1213–1221], where the same
problems are solved using fixed time-stepping, together with fully implicit approxima-
tion (that is, solving nonlinear equations using Newton iteration at each time level).
We solve both of these flow problems on three meshes. The coarsest mesh, so-called
level 1, is illustrated in Figure 5. It contains 999 triangles and has nu = 2055 velocity
degrees of freedom. An intermediate mesh, so-called level 2, is obtained by a uni-
form refinement of the coarsest mesh and contains 3996 triangles and has nu = 8106
velocity degrees of freedom. Note that the newly introduced nodes are “moved” to
the cylinder boundary to give a better resolution of the circular geometry. The finest
mesh, so-called level 3, is obtained by a uniform refinement of the intermediate mesh,
but this time excluding the two regions at the top and the bottom that adjoin the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

124 D. KAY, P. GRESHO, D. GRIFFITHS, AND D. SILVESTER

Fig. 5. Reference mesh for Example 4.2.

inflow in Figure 5. This gives a mesh of 12728 triangles with nu = 25101 velocity
degrees of freedom.

We consider the easier case of ν = 1/100 first. In Figure 6 we present a comparison
plot showing the evolution of the lift coefficient with different mesh refinement levels.
We note that the results computed on the level 2 and level 3 meshes are essentially
indistinguishable from one another. Note that the frequency of shedding is a major
point of physical interest. When we compare these results with the lift coefficient
evolution computed using a fully implicit second-order time-stepping method that is
given in [1, Fig. 15], we find very a close match—the frequency of shedding and the
amplitude of the lift coefficient are identical in the eyeball norm.

The evolution of the associated time step is also shown in Figure 6. We note
first that, independent of the spatial refinement, the character of the time-step evo-
lution shows the four distinct phases exhibited in Figure 4. We can also see that the
constant time step that is used in the second phase (the development of the recircu-
lation zones in the cylinder wake) is mesh-dependent. The fact that the time step
that is used in the shedding phase is essentially mesh-independent (certainly on the
two finer levels) confirms that the integrator is time-accurate in this regime. Also
shown in Figure 6 is the comparison of the iterative solver performance for the three
refinement levels. From this, we see that our preconditioning strategy is extremely
efficient—typically taking 23 GMRES iterations per time step in the shedding phase
on the intermediate mesh and 29 GMRES iterations per time step on the most refined
mesh. We can also see that the algorithm is robust (in the sense that there are few
rejected steps) in the “tough” phases when the solver fails to converge to the accuracy
tolerance in maxit iterations—for example, during the second phase of the flow evo-
lution when using the most refined mesh. Our interpretation of this situation is that
the time step that is generated by the crude ε = 10−4 tolerance is probably overly
optimistic during the second phase of the flow evolution. This reduces the effective-
ness of the algebraic multigrid preconditioner7 for the velocity convection-diffusion
operator (Fn+1

v)−1. Evidence for this comes from solving the same problem on the
intermediate mesh with a tighter error tolerance of ε = 10−7. This generates a smooth
hump-shaped time-step evolution with a maximum time step of 0.03 at about 17.5
time units and gives constant time steps in the shedding phase which are an order

7We would get much better robustness if we followed the recipe in [5, p. 361] and added a
streamline diffusion stabilization term to the discrete operator prior to the set-up phase of the AMG
solver.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ADAPTIVE TIME-STEPPING 125

Fig. 6. Top: Lift coefficient evolution for Example 4.2 for ν = 1/100 with accuracy ε = 10−4.
Bottom: Time step size and number of GMRES iterations versus time step.

of magnitude smaller than those in Figure 6. In this case, the linear solver has no
problem at all—GMRES always satisfies the itol=10−6 residual tolerance criterion
in fewer than 25 iterations.

In these experiments the accuracy of the linearized TR–AB2 algorithm is almost
identical to a fully implicit version of the TR–AB2 algorithm. To give a specific exam-
ple, the shedding computation on the intermediate mesh was recomputed using a fully
implicit version of TR. Thus, at every time step we iterated the Oseen solve (2.11)–
(2.12) with a simple fixed point (Picard) iteration. The initial approximation for the
convective velocity (�wn+1

h)(0) was given by �unh. At the kth step we set up the system
(2.11)–(2.12) with a convection field (�wn+1

h)(k) and solved it using preconditioned
GMRES to an accuracy of itol=10−6 to get the solution (dn+1

h)(k). This in turn

gives the updated velocity approximation (�wn+1
h)(k+1) := (wn+1

h)(k) + kn+1(d
n+1
h)(k).

Our fixed point iteration process was terminated when the norm of the difference
between successive velocity iterates was less than 10−3. Typically, this led to two or

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

126 D. KAY, P. GRESHO, D. GRIFFITHS, AND D. SILVESTER

three Picard iterations at every time step. The time step sequence that resulted using
this nonlinear approach turned out to be almost identical to that generated by our lin-
earized method. The complete history and a zoom in the shedding regime are shown
in Figure 7. Regarding the relative accuracy of the corresponding flow solutions, the
shedding frequencies are essentially identical, and the amplitude of the lift coefficient
is slightly bigger, i.e., more accurate, in the nonlinear case. The total computation
time was almost exactly three times longer in the nonlinear case, however!

Fig. 7. Top: Linearized versus nonlinear time stepping for Example 4.2 for ν = 1/100 with
accuracy ε = 10−4. Bottom: Zoom of the time step size versus time in the shedding regime.

Fig. 8. Solution snapshot for Example 4.2 for ν = 1/400 with accuracy ε = 10−4.

We conclude with a discussion of the more challenging case of ν = 1/400. A
snapshot of the flow solution computed on the finest mesh is illustrated in Figure 8.
Figure 9 shows a comparison plot showing the evolution of the lift coefficient with the
three different meshes. We note that the results computed on the level 2 and level 3

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ADAPTIVE TIME-STEPPING 127

meshes are in close agreement. For either mesh the amplitude of the lift coefficient in
the shedding phase is clearly greater than 1.1. This makes the accuracy comparable
to the benchmark results obtained using a fully implicit second-order method with
“very small time steps,” quoting from the legend in Figure 23 in [1].

Looking closely at the time-step evolution, we find that the time step tends to a
value of about 0.02 time units in the shedding phase, independent of the mesh. We also
see that the time step is repeatedly cut back on the refined mesh because the GMRES
solver is not able to meet the tolerance in maxit iterations. In our view, the fact that
we are able to generate a solution to this flow problem shows the inherent robustness
of our solver methodology. To generate a perfectly smooth time-step evolution and
simultaneously keep the GMRES iteration counts under control would require us to
rerun the fine grid computation using a much tighter time accuracy tolerance, say,
ε = 10−7.

Fig. 9. Top: Lift coefficient evolution for Example 4.2 for ν = 1/400 with accuracy ε = 10−4.
Bottom: Time step size and number of GMRES iterations versus time step.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

128 D. KAY, P. GRESHO, D. GRIFFITHS, AND D. SILVESTER

5. Concluding remarks. Our numerical experiments show that even simple
flow problems can have quite complex time scales, some physical and some of nu-
merical origin. It is clear that some form of adaptive time integrator is essential in
order to efficiently respond to the different time scales, and, given the wide range
of dynamics taking place during these simulations, it is rather reassuring to see the
TR–AB2 integrator find the appropriate time step during all the phases.

REFERENCES

[1] W. Dettmer and D. Perić, An analysis of the time integration algorithms for the finite
element solutions of incompressible Navier–Stokes equations based on a stabilised formu-
lation, Comput. Methods Appl. Mech. Engrg., 192 (2003), pp. 1177–1226.

[2] H. C. Elman, V. E. Howle, J. N. Shadid, and R. S. Tuminaro, A parallel block multi-level
preconditioner for the 3D incompressible Navier-Stokes equations, J. Comput. Phys., 187
(2003), pp. 504–523.

[3] H. C. Elman, D. J. Silvester, and A. J. Wathen, Performance and analysis of saddle point
preconditioners for the discrete steady-state Navier-Stokes equations, Numer. Math., 90
(2002), pp. 665–688.

[4] J. Boyle, M. D. Mihajlović, and J. A. Scott, HSL MI20: An Efficient AMG Pre-
conditioner, Technical rep. RAL–TR–2007–021, STFC Rutherford Appleton Labora-
tory, Didcot, UK, 2007, available online at http://epubs.cclrc.ac.uk/bitstream/1961/
bmsRALTR2007021.pdf.

[5] H. C. Elman, D. J. Silvester, and A. J. Wathen, Finite Elements and Fast Iterative Solvers,
Oxford University Press, Oxford, UK, 2005.

[6] D. Kay, D. Loghin, and A. J. Wathen, A preconditioner for the steady-state Navier–Stokes
equations, SIAM J. Sci. Comput., 24 (2002), pp. 237–256.

[7] M. F. Murphy, G. H. Golub, and A. J. Wathen, A note on preconditioning for indefinite
linear systems, SIAM J. Sci. Comput., 21 (2000), pp. 1969–1972.

[8] P. M. Gresho, D. F. Griffiths, and D. J. Silvester, Adaptive time-stepping for incom-
pressible flow; part I: Scalar advection-diffusion, SIAM J. Sci. Comput., 30 (2008), pp.
2018–2054.

[9] P. M. Gresho and R. L. Sani, Incompressible Flow and the Finite Element Method: Vol. 2:
Isothermal Laminar Flow, John Wiley, Chichester, UK, 2000.

[10] W. Layton, Introduction to the Numerical Analysis of Incompressible Viscous Flows, Com-
putational Science and Engineering 6, SIAM, Philadelphia, 2008.

[11] O. Osterby, Five ways of reducing the Crank–Nicolson oscillations, BIT, 43 (2003), pp. 811–
822.

[12] P. N. Shankar and M. D. Deshpande, Fluid mechanics in the driven cavity, Annu. Rev.
Fluid Mech., 32 (2000), pp. 93–136.

[13] D. J. Silvester, H. Elman, D. Kay, and A. Wathen, Efficient preconditioning of the lin-
earized Navier–Stokes equations, J. Comput. Appl. Math., 128 (2001), pp. 261–279.

[14] A. Smith and D. J. Silvester, Implicit algorithms and their linearisation for the transient
Navier–Stokes equations, IMA J. Numer. Anal., 17 (1997), pp. 527–543.

[15] J. C. Simo and F. Armero, Unconditional stability and long-term behaviour of transient
algorithms for the incompressible Navier–Stokes and Euler equations, Comput. Methods
Appl. Mech. Engrg., 111 (1994), pp. 111–154.

[16] Syamsudhuha and D. J. Silvester, Efficient solution of the steady-state Navier–Stokes equa-
tions using a multigrid preconditioned Newton–Krylov method, Internat. J. Numer. Meth-
ods Fluids, 43 (2003), pp. 1407–1427.

[17] S. Turek, Efficient Solvers for Incompressible Flow Problems, Springer-Verlag, Berlin, 1999.
[18] S. Turek, A comparative study of some time-stepping techniques for the incompressible Navier-

Stokes equations: From fully implicit nonlinear schemes to semi-implicit projection meth-
ods, Internat. J. Numer. Methods Fluids, 22 (1996), pp. 987–1011.

