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Abstract: We investigate a class of linear relay feedback systems with bang-bang control and
with the control input applied at discrete time instances. Using a third order system as a
representative example we show that stable oscillations with so-called sliding motion, with
sliding present in continuous time system, loose the sliding segment of evolution, but do not
loose their stability if the open loop system is stable. We then carry on our investigations
and consider a situation when stable self-sustained oscillations are generated with the unstable
open loop system. In the latter case a transition from a stable limit cycle to micro-chaotic
oscillations occurs. The presence of micro-chaotic oscillations is shown by considering a linearised
map that maps a small neighbourhood of initial conditions back to itself. Using this map the
presence of the positive Lyapunov exponent is shown. The largest Lyapunov exponent is then
calculated numerically for an open set of sampling times, and it is shown that it is positive. The
boundedness of the attractor is ensured for sufficiently small sampling times; with the sampling
time tending to zero these switchings become faster and they turn into sliding motion. It is
the presence of the underlying sliding evolution that ensures the boundedness of the chaotic
attractor. Our finding implies that what may be considered as noise in systems with digital
control should actually be termed as micro-chaotic behaviour. This information may be helpful
in designing digital control systems where any element contributing to what appears as noise
should be suppressed.
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1. INTRODUCTION

Systems characterized by an interaction of continuous and
discrete evolution abound in everyday life. Consider, for
instance, a flight control: an aircraft evolves continuously
in time, but it is controlled by microprocessors which op-
erate on digital (discrete) inputs and send digital signals.
Another example from outside of the field of engineer-
ing are regulatory processes in cell networks. There are
continuous time processes which govern the spatial and
temporal concentration of proteins inside of a single cell.
However, these continuous time processes are switched on
or off based on the concentration level of the protein. In
fact, most processes and systems, on the macroscopic scale,
combine continuous and discrete dynamics. In other words
they are hybrid.

It is not surprising that investigations of hybrid systems
have attracted the attention of scientists in recent years.
In the context of control the problem of robust stability
and controller design for hybrid systems is an active area
⋆ Research partially funded by EPSRC grant EP/E050441/1, the
University of Manchester and Manchester Metropolitan University.

of research, see for instance Liberzon (2003); Sanfelice
et al. (2008, 2009). The presence of combined continuous
and discrete evolution leads to dynamics not observed in
systems that are modelled using either: strictly continuous,
or strictly discrete time framework. One of the intriguing
features of hybrid systems is the possibility of a sudden
onset of chaotic dynamics. Such scenarios have been ob-
served, for instance, in the context of modelling DC/DC
power converters Banerjee et al. (1998); Banerjee and
Verghese (2001), and dry-friction oscillators di Bernardo
et al. (2003). The onset of chaotic dynamics in these
systems was shown to have been triggered by a non-
trivial interaction between a system Ω−limit set and the
so-called switching surface. This scenario is an example
of a discontinuity induced bifurcation. A survey of these
bifurcations and tools that can be used for their analytical
investigations can be found in di Bernardo et al. (2008).

In the current paper we are interested in another aspect of
the dynamics of hybrid systems. Namely we consider the
influence of digital sampling, or how the conversion from
the analogue to digital signal may affect system dynamics.
To this aim we focus on linear time invariant relay-



feedback systems with bang-bang control. We assume that
the control input is not an analogue signal available in
continuous time, but a discrete signal which is accessed at
discrete time intervals. We disregard here any quantization
noise in the signal representation. With the accuracy of
current converters this effect is considered to carry much
less influence on system dynamics than the digitization (we
use the word digitization and discretization synonymously)
of the analogue signal Vaccaro (1995); for instance, for
the applications in robotics a 16-bit converter is sensitive
enough for a quantization error to be negligible.

In Haller and Stépán (1996); Enikov and Stépán (1998) it
has been shown that the digitization of the spatial struc-
ture by the controller can induce micro-chaotic transient
dynamics. The effects of digitization on the stability of the
solutions have been considered in Lee and Haddad (2002);
Braslavsky et al. (2006), and in Xia and Chen (2007) the
existence of different types of attractors in a simple model
of a delta-modulated control system has been shown.

For our purpose we assume that the input to the controller
is delivered at discrete times. We then consider how peri-
odic oscillations, present in the continuously sampled sys-
tem, are influenced by the introduction of the digitization
of the control input.

The paper is outlined as follows. In Sec. 2 the class of
systems of interest is introduced. Then in Sec. 3 repre-
sentative example is investigated in detail. Finally Sec. 4
concludes the paper.

2. SYSTEMS UNDER INVESTIGATION

We focus on single-input single-output linear time invari-
ant relay feedback systems where the control variable is
accessed through a negative feedback loop. Namely

ẋ = Ax+Bu, y = Cx, u = −sgny, (1)

where A ∈ Rn×n, B ∈ Rn×1, C ∈ R1×n are constant
matrices, and x = (x1, x2, x3, · · · , xn)T (n ≥ 1) is the
state vector, and the “dot” symbol denotes differentiation
with respect to time. The “sgn” function is defined as
sgn(y) = 1 for y > 0, sgn(y) = −1 for y < 0, and
sgn(y) ∈ [−1, 1] for y = 0. The system trajectories of
(1) evolve following F1 = Ax−B in G1 := {Cx > 0} and
F2 = Ax+B in G2 := {Cx < 0}.
Across the switching surface Σ := {Cx = 0} system (1)
may either switch between F1 and F2 (or vice versa) or
it may generate so called sliding motion, that is a motion
on Σ. The sliding vector field Fs that governs solutions on
Σ can be obtained by means of Filippov’s convex method
Filippov (1988). Namely

Fs = αF1 + (1− α)F2, (2)

where α = HxF2
Hx(F2 − F1)

∈ [0, 1], and Hx is the vector

normal to Σ. The region within Σ, say Σ̂, where sliding
is possible can be defined by means of α. Namely Σ̂ :=
{0 ≤ α(x) ≤ 1}. The boundaries of Σ̂ are defined as

∂Σ̂0 := {α(x) = 0} and ∂Σ̂1 := {α(x) = 1}.
We investigate the effects of digitization on the dynamics
of (1) by assuming that the control variable y = Cx
is made available at discrete time instances with the

sampling time τ > 0. The state space representation of
such a modified relay feedback system is given by

ẋ = Ax+Bik , (3)

where

Bik+1
=


−B if Cx(kτ) > 0

B if Cx(kτ) < 0

Bik if Cx(kτ) = 0,

(4)

with Bi0 = −B (arbitrarily chosen), so that Bi1 is always
well defined. Thus the evolution of (3) is governed by

ẋ = Ax+Bik , if (k − 1)τ ≤ t < kτ.

The discretization of the output variable y = Cx implies
that sliding motion is not possible in (3), but the dis-
cretized system exhibits the possibility of fast switchings
between F1 and F2 (and vice versa).

2.1 Canonical form of the system

We assume that matrices A, B and C are given in so-called
observer canonical form:

A =


−a1 1 0 · · · 0
−a2 0 1 0
...

. . .
...

−an−1 0 0 1
−an 0 0 . . . 0

 , B =


b1,
b2,
...,

bn−1,
bn


and C = (1, 0, · · · , 0, 0). Using above state space repre-
sentation the switching surface Σ is given by Σ := {x1 =
0}. If at least one of the eigenvalues of A lies in the right
half-plane then neither continuously sampled system (1)
nor the discretized system (3) evolves towards the steady
state of F1 or F2. Similarly, if the equilibrium points of F1

and F2 do not lie in their respective domains of definition
and are bounded away from the switching surface Σ the
asymptotic dynamics of (1) and (3) does not converge to
the steady states of F1 or F2. In such cases systems (1) and
(3) often exhibit self-sustained oscillations. In (1) these can
be characterized by segment(s) of sliding if b1 > 0. Using
(2) together with the definition for α, and exploiting the

fact that ẋ1 = 0 within Σ̂, we can express Fs as

ẋ = Âx

where

Â =


0 0 0 0 0
0 −b2/b1 1 0 . . .
0 −bn−1/b1 0 1
...

. . .
...

0 −bn/b1 0 . . . 0

 .

2.2 Stability of periodic solutions with two sliding segments

We wish to establish what are the effects of digitization
on the existence and stability of simple symmetric periodic
orbits with sliding. We define a simple periodic orbit using
the definition similar to the one given in Johansson et al.
(1999). Namely, let a limit cycle L ⊂ Rn be defined
by the set of points attained by a periodic trajectory
that is isolated and not an equilibrium. If there exists
a trajectory in L with period T and the number ν > 0
such that Cx(t) > 0 for t ∈ (ν, T/2) and Cx(t) < 0
for t ∈ (T/2 + ν, T ) only, then we say that L is a
simple symmetric periodic orbit with sliding. This type of



self-sustained oscillations captures a particular feature of
Filippov systems which is the existence of sliding motion.
Due to the symmetry of relay system (1), that is because
F1(−x) = −F2(x), typically two sliding segments built a
limit cycle Tsypkin (1984).

Consider now a solution of (1) that starts on the switching

surface at the boundary of the sliding region ∂Σ̂1. In such
case system (1) starts its evolution by following vector field
F1. Solving the system equation gives

x1 = exp(At01)x0 − (exp(At01)− I)A−1B, (5)

where t01 is the time of evolution from the initial point x0

to the point x1 on Σ. If x1 ∈ Σ̂ then the solution follows
sliding motion on Σ̂, and we can assume without loss of
generality that it reaches ∂Σ̂0.

Thus, the second segment of the trajectory is given by

x2 = exp(Âts1)x1, (6)

where ts1 is the time required for the sliding flow to reach
the boundary of the sliding region ∂Σ̂0.

The final two segments that built periodic orbits of interest
are given by the solutions

x3 = exp(At02)x2 + (exp(At02)− I)A−1B, (7)

and
x4 = exp(Âts2)x3, (8)

where t02 is the time of evolution from the boundary of
the sliding region ∂Σ̂0 back to the switching surface, and
ts2 is the time of sliding required to reach ∂Σ̂1 at x0 again.

Assume that a limit cycle built of segments of trajec-
tories as described exists. To determine the stability of
such a limit cycle we have to obtain the first variation

of x4 with respect to x0, i.e. we wish to find ∂x4
∂x0

. The

stability is then given by the variation matrix which is a
matrix composition of the exponential matrices exp(At01),

exp(Âts1), exp(At02), exp(Âts2), and the saltation matri-
ces di Bernardo et al. (2008) that we denote as DMij ,
with i, j = 1, 2, s. The saltation matrices allow to take
into account switchings between flows.

Namely we have

DMij =

(
I +

(Fj − Fi)N

NFi

)
(9)

where Fi is the vector field which generates the flow that
in forward time reaches the switching point, Fj is the
vector field which in backward time reaches the switching
point, I is the identity matrix, and N is a vector nor-
mal to some surface on which switching between vector
fields occurs. In our case N is either Hx (the vector
normal to Σ), or αx (the vector normal to the surface

that defines the boundaries ∂Σ̂0 or ∂Σ̂1 – the bound-
aries of sliding region Σ̂). In this notation DM1s is the
saltation matrix which captures the effect of the switching
between vector field F1 and sliding vector field Fs around
point x1. The subscripts signify between which vector
fields there switchings occur. For a limit cycle as de-

scribed we have ∂x4
∂x0

= DMs1 exp(Âts2)DM2s exp(At02)

DMs2 exp(Âts1)DM1s exp(At01), with DMs1 and DMs2

being the identity matrix since on ∂Σ̂1 the vector field
F1 = Fs, and on ∂Σ̂0 it is the vector field F2 = Fs.

Fig. 1. Periodic orbit of system (10) with a segment of
sliding when no digital sampling is applied to the
system. Parameters are set to ζ = 0.1, ω = 1, k = 1,
σ = −1 and ρ = 0.4.

Fig. 2. Zoom into the region of sliding of periodic orbit
from Fig. 1.

3. REPRESENTATIVE EXAMPLE

In the remaining part of the paper we focus our attention
on a third order relay feedback system given by

ẋ = Ax+Bu, y = Cx, u = −sgny, (10)

where

A =

 −(2ζω + λ) 1 0
−(2ζωλ+ ω2) 0 1

−λω2 0 0

 , B =

 k
2kσρ
kρ2

 ,

x = ( x1 x2 x3 )
T
, C = ( 1 0 0 ) . The switching

surface is given by a zero-level set {y = Cx = x1 = 0},
vector fields F1 = Ax − B and F2 = Ax + B. Assuming
that the system is controlled digitally with a zero-order
hold the output y(t) is given at discrete sampling times
nτ where τ is the length of the sampling interval and n
is a positive integer. Note that in the current framework
switchings between vector fields F1 and F2 occur at nτ
time instances when y(nτ) changes its sign.

The dynamics of (10) with continuous time bang-bang
control has been extensively studied in di Bernardo et al.
(2001); Kowalczyk and di Bernardo (2001) where stable
self-sustained oscillations as well as chaotic dynamics have
been reported.
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Fig. 3. Periodic orbit of system (10) with digital sampling
τ = 0.005. Parameters are set to ζ = 0.1, ω = 1,
k = 1, σ = −1 and ρ = 0.4.

3.1 Stable self-sustained oscillations

The poles of the transfer function of the open loop system
are given by the eigenvalues of the matrix A, and are given

by µ1 = (−ζ +
√
ζ2 − 1)ω, µ2 = (−ζ −

√
ζ2 − 1)ω and

µ3 = −λ.
System (10) can exhibit stable self-sustained oscillations
in the case when the open loop system is stable (all the
poles of the transfer function lie in the left half-plane
of the complex plane), but also in the case when the
open loop system is unstable (at least one of the poles
of the transfer function lies in the right half-plane of the
complex plane). We can calculate the stability of such
orbits analytically using explicit solutions (5)–(8) together
with the expressions for the saltation matrices (9).

We start our investigations by considering a stable limit
cycle with sliding existing for ζ = 0.1, ω = 1, k = 1, σ =
−1, and ρ = 0.4. As depicted in Fig. 1 for these parameter
values the system exhibits symmetric limit cycles with
a segment of sliding motion. Sliding can be clearly seen
in Fig. 2. To calculate the stability of the limit cycle we
compute the eigenvalues of the matrix composition

∂x4

∂x0
= Dms1 × exp(Âts1)×DM2s × exp(At02)

×DMs2 × exp(Âts1)×DM1s × exp(At01) (11)

where DM1s, DMs2, DM2s and DMs1 are the salta-
tion matrices calculated at points x1, x2, x3 and x4 =
x0 respectively. In the case depicted in Fig. 1 x0 =
[0, 1, 2.71]T , time t01 = 3.89, x1 = [0, −0.83, −2.72]T ,
ts1 = 0.048, x2 = [0, −1, −2.71]T , t02 = 3.89, x3 =,
[0, 0.83, 2.72]T , ts2 = 0.048, and the matrices

A =

(−1.2 1 0
−1.2 0 1
−1 0 0

)
, Â =

(
0 0 0
0 0.8 1
0 0.16 0

)
.

Using these numerical values we find ∂x4
∂x0

and we deter-

mine the stability using the multipliers of ∂x4
∂x0

. The two

non-trivial multipliers of ∂x4
∂x0

are λ1 = 0 and λ2 = 0.2623,

and hence the limit cycle is stable. The multiplier 0 is
present due to the existence of sliding.

Fig. 4. Zoom into the neighbourhood of the switching
surface of the periodic orbit from Figure 3 with digital
sampling τ = 0.005.

Fig. 5. Schematic sketch of the locking of switchings in
digitally sampled system (10).

Keeping the same parameters we introduce sampling time
τ to the output variable y thus obtaining discretized
system (3). In Fig. 3 we depict a periodic orbit existing
in the system for τ = 0.005. Digitization destroys the
segment of sliding cf. Fig. 2 and 4. We must note, however,
that the introduction of sampling implies the extension of
phase space dimensions to four; the phase of switching
across the switching manifold is the fourth state variable,
call it ψ, where ψ ∈ [0, τ ].

To calculate the stability of the limit cycle it is con-
venient to consider a fixed time map from a switching
point back to itself. In G1 the switching between ϕ2
and ϕ1 occurs at [0.0065, 0.8390, 2.7174], and in G2 at
−[0.0065, 0.8390, 2.7174]. The time of evolution between
these two points is t = 3.9329. We can calculate the
stability of the periodic orbit by considering the variational
equation only. That is we do not need to apply the salta-
tion matrices. The Floquet multipliers are λ1 = 0.01257+
0.45522i, λ2 = 0.01257 − 0.45522i and λ3 = 0.00038, and
they all lie within the unit circle of the complex plane. Note
that in the case of continuous time sampling the number
of non-trivial Floquet multipliers is 1, but in the discrete
case we have 3 non-trivial Floquet multipliers. The reason
behind the extension of phase space lies in the fact that
digital sampling: (a) introduces additional state variable
related to the phase of crossing of the flow with respect
to the switching surface, and (b) sampling destroys sliding
motion (the existence of sliding implies the loss of system
dimension).
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Fig. 6. Chaotic attractor of system (10) with digital
sampling τ = 0.005. Parameters are set to ζ = −0.07,
ω = 1, k = 1, σ = −1, and ρ = 0.05.

We should also note that in the current case the phase
of switching is locked. The mechanism behind the locking
of switching points is schematically explained in Fig. 5.
Consider a rectangle of initial conditions at time τ after
the switching between ϕ2 to ϕ1 takes place (the rectangle
labelled by I−1 in Fig. 5, where x−1 denotes the middle
point in the box with respect to the phase of different
points). This box is then mapped by ϕ1 and ϕ2 onto I0
(assuming the size of I−1 is such that it is mapped across
Σ within time τ which we can assume without loss of
generality). Note that the length of I0 in the direction
normal to Σ is roughly the same as the length of I−1

along Σ. However the width of I0 is very small due to
the contractions induced by flows ϕ2 and ϕ1, but it is the
width of I0 which will differentiate between trajectories
characterised by different phases (x0 is the image of x−1

under ϕ2 and ϕ1). After time τ the rectangle I0 is mapped
to Im(I0) which, along Σ, lies within I−1. For t→ ∞ the
subsequent images of I−1 tend to 0, and hence the phase
of switchings is locked.

3.2 Micro-chaos due to digitization

Considering the same parameter values we now decrease ζ
and ρ to be able to find a stable limit cycle with unstable
open loop in system (10). A limit cycle with the unstable
open loop was found for ζ = −0.07, ω = 1, k = 1,
σ = −1 and ρ = 0.05. The non-trivial Floquet multipliers
corresponding to this orbit lie within the unit circle (λ1 =
0 and λ2 = 0.7919) hence the limit cycle is stable. The
multipliers are calculated by means of (11). It is the effect
of the saltation matrices (9) that ensures the stability. Let
us now consider the effect of introducing digitization to the
control variable y. We observe apparent thickening of the
attractor. In Fig. 6 we depict the corresponding attractor
for τ = 0.005.

It turns out that the observed attractor is chaotic.

The boundedness can be seen as follows. Consider some
region of phase space about the point on ∂Σ̂1 where the
limit cycle with continuous time sampling lifts off the
switching plane. In Glendinning and Kowalczyk (2010) it
has been shown that for sufficiently small τ sliding motion
is a limit of the “zig-zag” motion present in the system
due to switchings.

2ε

Σ

x1

x2

g1

g2

π

Fig. 7. Schematic representation of the bounding region
along the limit cycle for sufficiently small sampling
time τ .

In Fig. 7 we depict a segment of sliding limit cycle in
the projection onto (x1, x2) coordinate plane as well as
a trajectory existing in some neighbourhood of the limit
cycle for some sufficiently small sampling time τ . We
can make all admissible “zig-zag” trajectories bounded
in the x1, x2, x3 coordinates along the sliding part of
the cycle within a parallelepiped of some width, say 2ε,
by appropriately decreasing the sampling time τ . For the
boundedness we have to ensure that all the trajectories
can be made to leave the parallelepiped arbitrarily close
to the point, say xg, at which the sliding cycle leaves the
switching surface. Let π := {x ∈ R3 : HxF1 = 0} be the
zero velocity surface containing xg. We wish to establish
that any trajectory is ejected from the parallelepiped along
the x2 coordinate in a way that can be made arbitrarily
small by decreasing τ . Let n1, n2 be the maximum velocity
of vector fields F1 and F2 along the x2 direction for all
pints (x1, x2, x3) within the parallelepiped in the region
of interest. Let m1 be the minimum velocity of the vector
field F2 along the x1 direction for all points (x1, x2, x3)
within the parallelepiped in the region of interest. The
maximum value of x2 that a “zig-zag” trajectory leaving
the switching surface can attain is g1 = x2 = x2g + n1τ +
n2⌈ ε

m1τ ⌉τ , where x2g is the component of xg along the

x2 coordinate. Clearly g1 can be made arbitrarily close
to xg by decreasing τ . This ensures that for sufficiently
small τ there exists a bounded region in the neighbourhood
of the region of phase space where sliding cycle exists
in continuously sampled system. For a detailed argument
on boundedness proved for the planar case we refer to
Glendinning and Kowalczyk (2010). We now establish the
existence of a positive Lyapunov exponent. The average
behaviour of state vectors from some region, say D,
containing an attractor, back to itself, can be established
by considering a mapping from the tangent space of
D back to itself. The logarithms of the eigenvalues of
the linear map so obtained correspond to the sought
Lyapunov exponents. We can compute these eigenvalues
by computing the multipliers of exp(Ati) where ti is
the average time needed to reach a region in G1 where
switching between ϕ2 and ϕ1 takes place. Note that ti
will include the times of evolution following both flows
ϕ1 and ϕ2. As we stated before, the eigenvalues of the
characteristic equation of the matrix A are µ1, 2 = −ζω ±√
ζ2 − 1, µ3 = −λ. Therefore for ζ negative two of

these eigenvalues are positive. This already suffices to
show the existence of a positive Lyapunov exponent along
the attractor since in the sampled system there are no
saltation matrices that could induce contraction. For the
sake of completeness we calculate the eigenvalues of the
first variation along the flow that map points from some



Fig. 8. The dominant lyapunov exponent indicating the
presence of chaotic dynamics in the digitally sampled
relay system. Parameters are set to ζ = −0.07, ω = 1,
k = 1, σ = −1 and ρ = 0.05.

neighbourhood of xg back to itself – these are the averaged
multipliers of the linear map. We find the numerical values
of these multipliers to be λ1 = −0.1801 + 1.7385i, λ2 =
−0.1801 − 1.7385i and λ3 = 0.00034. We note that the
first two of the eigenvalues lie outside of the unit circle.
The logarithms of their absolute values are positive, and
hence the Lyapunov exponents along the flow are positive.

Our numerics suggests that the chaotic attractor depicted
in Fig 6 exists for an open set of sampling times τ . In
Fig. 8 we depict the largest Lyapunov exponent versus the
sampling time τ for τ ∈ (0.001, 0.1).

4. CONCLUSIONS

In the paper we study a class of single-input single-output
relay feedback systems with discretized control. In par-
ticular, we are investigating the effects of discretization
on periodic oscillations present in continuously sampled
system. Using a third order relay feedback system as a
representative example, in the case when the open loop
system is stable, discretization implies the destruction of
a segment of sliding and an effective increase of state space
dimensions by two. In the case when the open loop system
is unstable digitization leads to an onset of micro-chaotic
oscillations. We compute the largest Lyapunov exponent of
the chaotic attractor for an open set of sampling times and
show it to be positive. The dynamics of the continuously
sampled system is used to explain the mechanism behind
the onset of micro-chaos. The mechanism which we un-
raveled in our system is quite general and we believe that
any digitally controlled switched systems with the state
space dimension n ≥ 2 can exhibit the chaotic dynamics as
described in our paper. Moreover, what in these systems
is currently attributed to noise may in fact result from
the digitization and be of a deterministic nature. This, in
turn, may be useful in applications as it may, for exam-
ple, inform a designer of a digital control system that a
seemingly noisy output is produced due to digitization.
This information can then be used to reduce noise using a
different control strategy, which could be important if the
noise levels happen to be of critical importance.

Further work is aimed at verifying if liner, planar relay
feedback systems can produce chaotic dynamics as de-
scribed in our paper.
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