
Algorithms for Matrix Polynomials and
Structured Matrix Problems

Munro, Christopher J.

2011

MIMS EPrint: 2011.21

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/

ALGORITHMS FOR MATRIX

POLYNOMIALS AND STRUCTURED

MATRIX PROBLEMS

A non-confidential version of a restricted thesis

submitted to the University of Manchester

for the degree of Doctor of Philosophy

in the Faculty of Engineering and Physical Sciences

2010

Christopher J. Munro

School of Mathematics

Contents

Abstract 8

Declaration 9

Copyright Statement 10

Publications 12

Advisor and Examiners 13

Acknowledgements 14

1 Introduction 15

1.1 Outline and Motivation . 15

1.2 Notation and Background Linear Algebra 17

1.3 Matrix Factorizations . 19

1.4 Algorithms Implementation in Finite Precision 21

1.4.1 Measuring Accuracy and Stability of Computed Solutions . . 21

1.4.2 Matrix Rank Computation 23

1.5 The Polynomial Eigenvalue Problem 25

1.5.1 Structures and Properties of Matrix Polynomials 25

1.5.2 Singular Leading and Trailing Coefficients 26

1.5.3 Measuring the Accuracy of Computed Eigensolutions 27

2

1.5.4 Applications . 29

2 Solving PEPs by Linearization 35

2.1 Linearizations of Matrix Polynomials 35

2.2 Solving PEPs by Linearization in Finite Precision Arithmetic 37

2.3 Accuracy and Conditioning of Solutions to QEPs Solved by Lin-

earization . 38

2.3.1 Scaling Higher Degree Matrix Polynomials 44

2.3.2 Techniques to Improve Accuracy of Eigenvalues of Specific

Magnitude . 44

2.4 The QZ Algorithm . 45

2.5 Eigenvectors of Matrix Polynomials from Linearizations 47

3 Algorithm for Quadratic Eigenproblems 49

3.1 Introduction . 49

3.2 Choice of Linearization . 52

3.2.1 Backward Error and Condition Number 52

3.2.2 Companion Linearizations 54

3.3 Deflation of 0 and ∞ Eigenvalues 58

3.3.1 Rank and Nullspace Determination 59

3.3.2 Block Triangularization of C2(λ) 61

3.4 Left and Right Eigenvectors . 64

3.4.1 Right Eigenvectors . 64

3.4.2 Left Eigenvectors . 66

3.5 Algorithm . 66

3.6 Numerical Experiments . 67

3.7 Conclusion . 71

4 Structure Preserving Transformations 72

4.1 Introduction . 72

3

4.2 Structure Preserving Transformations 77

4.2.1 Elementary SPTs . 78

4.3 Derivation of Structure Preserving Constraints 80

4.4 Computing the Vectors Defining a Class Two SPT 84

4.5 Deflation for Symmetric Quadratics 86

4.5.1 Linearly Dependent Eigenvectors 86

4.5.2 Linearly Independent Eigenvectors 89

4.6 Deflation for Nonsymmetric Quadratics 93

4.6.1 Parallel Left Eigenvectors and Parallel Right Eigenvectors . 93

4.6.2 Non Parallel Left Eigenvectors and Non Parallel Right Eigen-

vectors . 95

4.6.3 Non Parallel Left (Right) Eigenvectors and Parallel Right

(Left) Eigenvectors . 98

4.7 Numerical Experiments . 99

4.8 Proof of Lemma 3, Symmetric Quadratics 102

4.9 Proof of Lemma 4, Nonsymmetric Quadratics 105

5 Conclusions 113

Bibliography 116

Word count 28292

4

List of Tables

2.1 Theoretical and computed eigenpairs of first (C1) and second (C2)

companion linearizations of quadratic Q with det(A0) 6= 0. (Finite

nonzero eigenvalues λ.) . 47

3.1 Quadratic eigenvalue problems from NLEVP collection. Largest

backward errors of eigenpairs, and corresponding eigenvalue λ, com-

puted by polyeig and quadeig. D indicates that deflation was

performed by quadeig since the problem has singular leading or

trailing coefficients. 69

3.2 Execution time in seconds for eigenvalue computation of quadratics

in NLEVP with singular A0 and/or A2. 70

3.3 cd player and speaker box problems from NLEVP collection. Largest

backward errors of eigenpairs computed by quadeig comparing two

scaling types, FLV (Fan, Lin and Van Dooren scaling only) and DS,

FLV (diagonal scaling, then Fan, Lin and Van Dooren scaling). . . 70

4.1 Relative magnitude of the off-diagonal elements of the deflated quadratic

Q2(λ) = λ2M2 + λC2 + K2 experiment 2 and condition number of

the transformations. 100

4.2 Condition numbers of the SPTs T and deflating transformations G

for different pairs of eigenvalues for experiment 4. 101

5

4.3 Scaled residuals and condition numbers for transformations in Ex-

periment 4. 102

6

List of Figures

1.1 Schematic of a shaft on bearing support 31

1.2 Simply supported beam with damping 31

1.3 Spring/dashpot with Maxwell elements 34

2.1 Computed spectrum of unscaled/scaled damped beam quadratic for

linearizations C1, L1, and L2, (as defined in (2.1.4)–(2.2.1)) using

MATLAB’s eig to solve the linear problem 39

7

The University of Manchester

Christopher J. Munro
Doctor of Philosophy
Algorithms for Matrix Polynomials and Structured Matrix Problems
February 19, 2011

In this thesis we focus on algorithms for matrix polynomials and structured matrix
problems.

We begin by presenting a general purpose eigensolver for dense quadratic eigen-
value problems, which incorporates recent contributions on the numerical solution
of polynomial eigenvalue problems, namely a scaling of the eigenvalue parameter
prior to the computation, and a choice of linearization with favourable conditioning
and backward stability properties. Our algorithm includes a preprocessing step that
reveals the zero and infinite eigenvalues contributed by singular leading and trail-
ing matrix coefficients and deflates them. Numerical experiments are presented,
comparing the performance of this algorithm on a collection of test problems, in
terms of accuracy and stability.

We then describe structure preserving transformations for quadratic matrix
polynomials. Given a pair of distinct eigenvalues (λ1, λ2) of an n × n quadratic
matrix polynomial Q(λ) = λ2A2 + λA1 + A0 with a nonsingular leading coeffi-
cient and their corresponding eigenvectors, we show how to transform Q(λ) into

a quadratic of the form

[
Qd(λ) 0

0 q(λ)

]
having the same eigenvalues as Q(λ), with

Qd(λ) an (n−1)× (n−1) quadratic matrix polynomial and q(λ) a scalar quadratic
polynomial with roots λ1 and λ2.

8

Declaration

No portion of the work referred to in this thesis has been

submitted in support of an application for another degree

or qualification of this or any other university or other

institute of learning.

9

Copyright Statement

i. The author of this thesis (including any appendices and/or schedules to this

thesis) owns certain copyright or related rights in it (the “Copyright”) and

s/he has given The University of Manchester certain rights to use such Copy-

right, including for administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or

electronic copy, may be made only in accordance with the Copyright, Designs

and Patents Act 1988 (as amended) and regulations issued under it or, where

appropriate, in accordance with licensing agreements which the University

has from time to time. This page must form part of any such copies made.

iii. The ownership of certain Copyright, patents, designs, trade marks and other

intellectual property (the “Intellectual Property”) and any reproductions of

copyright works in the thesis, for example graphs and tables (“Reproduc-

tions”), which may be described in this thesis, may not be owned by the

author and may be owned by third parties. Such Intellectual Property and

Reproductions cannot and must not be made available for use without the

prior written permission of the owner(s) of the relevant Intellectual Property

and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication and

commercialisation of this thesis, the Copyright and any Intellectual Property

10

and/or Reproductions described in it may take place is available in the Uni-

versity IP Policy (see http://www.campus.manchester.ac.uk/

medialibrary/policies/intellectual-property.pdf), in any relevant The-

sis restriction declarations deposited in the University Library, The University

Library’s regulations (see http://www.manchester.ac.uk/

library/aboutus/regulations) and in The University’s policy on presen-

tation of Theses.

11

Publications

This thesis is based on the following publications:

� Chapter 3 is based on the technical report “A General Purpose Algorithm for

Solving Quadratic Eigenproblems” [52] (with F. Tisseur and S. Hammarling)

� Chapter 4 is based on the paper “Deflating Quadratic Matrix Polynomials

with Structure Preserving Transformations” [57] (with F. Tisseur, and S.

Garvey), to appear in Linear Algebra and its Applications

12

Advisor and Examiners

Principal Advisor: Françoise Tisseur

Internal Examiner: Nick Higham

External Examiner: Karl Meerbergen (Katholieke Universiteit Leuven)

13

Acknowledgements

I am very grateful to my supervisor Françoise Tisseur for her supervision during

the past three years. It has been a privilege to work with Sven Hammarling on the

work contained in Chapter 3.

I would also like to thank:

� Younes Chahlaoui, Nick Higham and my colleagues Maha Al-Ammari, Rüdiger

Borsdorf, and Lijing Lin from the linear algebra group at Manchester for many

helpful comments and suggestions on work and talks during my PhD

� Chris Paul who was extremely helpful in providing quick IT support many

times during my PhD

� Athena Makroglou and Graham Elliott (University of Portsmouth), and Liz

Mavin and Jim Carr (formerly Fareham College) for their inspiration and

encouragement

� The School of Mathematics at Manchester for financial support for the du-

ration of my PhD, and support with costs of travelling to conferences and

workshops.

� Jenny Copelton and Neil Zammit for many helpful comments on a draft of

this manuscript

� my parents!

14

Chapter 1

Introduction

1.1 Outline and Motivation

The main theme of this thesis is developing algorithms that preserve structure in

matrix problems in finite precision arithmetic. We motivate the importance of

structure preservation by the following quote [62]:

“When a problem has any significant structure, we should design and

use algorithms that preserve and exploit that structure. Observation

of this principle usually results in algorithms that are superior in speed

and accuracy.”

David S. Watkins

A number of benefits can therefore result from developing structure preserving

algorithms. Making use of the inherent structure in the problem can lead to more

efficient algorithms and a reduction in storage requirements. Preserving structure

can also lead to an increase in accuracy, stability, and necessarily the key qualities of

the problem are preserved, for example spectral symmetries, location of eigenvalues,

and physical properties such as positive definiteness.

15

CHAPTER 1. INTRODUCTION 16

A recent example of the importance of structure preserving methods is illus-

trated by a quadratic eigenvalue problem that results when modelling vibrations

on railway tracks [35]. It is shown in [48] that deflation and taking into account

the structure of the problem is crucial to obtaining an accurate solution. Indeed,

solving the problem directly with the QZ algorithm, even in quadruple precision,

returns a solution with no correct significant figures [45].

This thesis focusses on algorithms for matrix polynomials, after introducing

background material in Chapter 1, we give an outline of the solution of polynomial

eigenvalue problems by linearization. Chapter 3 describes theory and implementa-

tion of a general purpose algorithm quadeig for solving quadratic eigenvalue prob-

lems. This algorithm incorporates recent contributions on the numerical solution

of polynomial eigenvalue problems, namely a scaling of the eigenvalue parameter

prior to the computation, [6], [14] and a choice of linearization with favourable con-

ditioning and backward stability properties [30], [32], [33]. Our algorithm includes

a preprocessing step that reveals the zero and infinite eigenvalues contributed by

singular leading and trailing matrix coefficients and deflates them. The algorithm

is tested on quadratic eigenproblems from the NLEVP collection of nonlinear eigen-

problems [7], illustrating the improved performance of this new algorithm quadeig,

with the existing MATLAB routine polyeig, both in terms of accuracy and sta-

bility and reduced computational cost.

Chapter 4 describes a structure preserving technique for the deflation of eigen-

pairs from quadratic matrix polynomials (a special case of general degree matrix

polynomials). Structure preserving transformations (SPTs) and associated con-

straints needed to determine them are defined in [17], the contribution of this

thesis is to use them to construct a family of nontrivial elementary SPTs that

have a specific action of practical use: that of “mapping” two linearly independent

eigenvectors to a set of linearly dependent eigenvectors. Using this family of SPTs,

CHAPTER 1. INTRODUCTION 17

given two eigentriples (λj, xj, yj), j = 1, 2 satisfying appropriate conditions, we can

decouples Q(λ) into a quadratic Qd(λ) = λ2Md +λCd +Kd of dimension n− 1 and

a scalar quadratic q(λ) = λ2m+ λc+ k = m(λ− λ1)(λ− λ2) such that (a)

Λ(Q) = Λ(Qd) ∪ {λ1, λ2},

where Λ(Q) denotes the spectrum of Q and (b) there exist well-defined relations

between the eigenvectors of Q(λ) and those of the decoupled quadratic

Q̃(λ) =

Qd(λ) 0

0 q(λ)

 . (1.1.1)

This procedure applies to symmetric and nonsymmetric quadratics, and when the

quadratic is symmetric preserves the symmetry.

1.2 Notation and Background Linear Algebra

In this work we generally adopt the Householder convention with regard to naming

variables, using the notation below.

� In denotes the n-by-n identity matrix.

� Matrices are denoted by capital letters: A.

� Elements of matrices by lower case letters of the respective matrix: aij.

� Vectors are denoted by lower case Latin letters: a, b, c.

� Scalars are denoted by Greek lower case letters: α, β, γ.

We adopt the MATLAB matrix notation, thus A(i : j, k : l) represents the inter-

section of rows i to j and columns k to l, while A(:, k) denotes the kth column,

CHAPTER 1. INTRODUCTION 18

the colon means to take all elements in the kth column. “T” denotes transpose,

while in complex arithmetic “∗” denotes conjugate transpose. We write the names

of routines from LAPACK (linear algebra package [2]) or MATLAB [49] as for

example polyeig.

� A vector norm is a function ‖ · ‖ : Cn → C satisfying the following

– ‖x‖ > 0 for all x ∈ Cn (with equality if and only if x = 0),

– ‖αx‖ = |α|‖x‖ for all α ∈ C, x ∈ Cn,

– ‖x+ y‖ 6 ‖x‖+ ‖y‖ for all x, y ∈ Cn.

A matrix norm ‖ · ‖ : Cn×n → C satisfies a similar definition. Two examples

are the Frobenius norm ‖A‖F =
√

trace(A∗A) and the 2-norm (or spectral

norm) ‖A‖2 =
√
λmax(A∗A). Both the Frobenius and 2-norms are consistent

norms (‖AB‖ 6 ‖A‖‖B‖), and unitarily invariant, that is if A,Q,Z ∈ Cn×n

with Q,Z unitary (Z∗Z = Q∗Q = I), then ‖QAZ‖F = ‖A‖F and ‖QAZ‖2 =

‖A‖2.

� The spectrum or set of all eigenvalues of a matrix A is denoted by Λ(A).

� We denote the Kronecker product by ⊗ and give a definition below.

Definition 1 (Kronecker Product, see [20]). Given A ∈ Cm×m and B ∈ Cn×n

the Kronecker product A⊗B ∈ Cmn×mn of A and B is given by

A⊗B =


a11B a12B · · · a1mB

a21B a22B · · · a2mB

...
...

...

am1B am2B · · · ammB


.

CHAPTER 1. INTRODUCTION 19

� The null space of a matrix null(A) is a set of linearly independent vectors,

where each vector x 6= 0 satisfies Ax = 0.

� The rank of an n-by-n matrix A is the number of linearly independent rows

or columns, and we have the relation rank(A) = n− dim(null(A)).

1.3 Matrix Factorizations

In this section we define the following matrix factorizations that will be used in the

algorithms presented in this thesis:

� Singular value decomposition.

� QR factorization and QR factorization with column pivoting.

� Schur, generalized Schur and generalized real Schur decomposition.

Definition 2 (Singular Value Decomposition [21, Thm. 2.5.2]). Any A ∈ Rm×n

can be decomposed as

A = UΣV T

U ∈ Rm×m,V ∈ Rn×n are orthogonal, Σ = diag(σ1, . . . , σp) ∈ Rm×n contains the

singular values of A. The singular values are ordered such that σ1 > σ2 > · · · >

σr = · · · σp = 0 where rank(A) = r and p = min(m,n).

Computing the SVD is one possible method of computing the rank of a matrix.

Definition 3 (Schur Decomposition [21, Thm. 7.1.3]). Given A ∈ Cn×n then there

exists a unitary matrix Q ∈ Cn×n such that Q∗AQ = T, where T is upper triangular

and Λ(A) = diag(T), Q can be chosen such that the eigenvalues appearing on the

diagonal of T appear in any order.

CHAPTER 1. INTRODUCTION 20

Definition 4 (Generalized Schur Decomposition [21, Thm. 7.7.1]). Given A,B ∈

Cn×n there exist unitary matrices Q,Z ∈ Cn×n such that

Q∗(A− λB)Z = T − λS

where T and S are upper triangular.

If tjj = sjj = 0 for some j then λ(A,B) = C otherwise

λ(A,B) =

{
tii
sii

}

and if sii = 0 for some i the eigenvalue λi is said to be infinite.

Given a real matrix pencil, and working only in real arithmetic there is the

generalized real Schur form. In this case given A,B ∈ Rn×n there exist orthogonal

matrices Q,Z ∈ Rn×n such that

QT (A− λB)Z = T − λS

where T is quasi-upper triangular and S is upper triangular. In general T − λS

will be quasi upper triangular. The eigenvalues of the pencil A− λB comprise the

ratios of the diagonal elements of T − λS for real eigenvalues, and the eigenvalues

of the blocks appearing on the diagonal of T −λS yield the complex eigenvalues of

A− λB.

Definition 5 (QR Factorization [21, Sec. 5.2]). Given a matrix A ∈ Rm×n with

m > n, then its QR factorization is given by

A = QR,

where Q ∈ Rm×m is orthogonal and R ∈ Rm×n is upper triangular.

CHAPTER 1. INTRODUCTION 21

Definition 6 (QR Factorization with Column Pivoting [21, Sec. 5.4.1]). Given

A ∈ Rm×n with m > n, its QR factorization with column pivoting is given by

QTAP =

R11 R12

0 0

 ,
where Q is orthogonal, P a permutation matrix, R11 ∈ Rk×k is upper triangular,

and k = rank(A). To define P , consider the jth stage of Householder QR factor-

ization, at the start of which we have

(Q1 · · ·Qj−1)
TA(P1 · · ·Pj−1) =

R(j−1)
11 R

(j−1)
12

0 R
(j−1)
22

 (1.3.1)

with R
(j−1)
11 nonsingular. The next permuation matrix Pj is chosen so that the

column of largest norm in R
(j−1)
22 is move to the lead position, then the next House-

holder transformation Qj has the action of zeroing the subdiagonal components.

1.4 Algorithms Implementation in Finite Preci-

sion

In this thesis we implement algorithms in finite precision, not exact arithmetic. In

this section we highlight some of the relevant details.

1.4.1 Measuring Accuracy and Stability of Computed So-

lutions

When considering solutions to problems in finite precision we are interested in two

quantities. Firstly, when we have a problem to solve with initial sampled data,

CHAPTER 1. INTRODUCTION 22

there is the possibility that the sampled data contains errors. The conditioning of

the data measures the sensitivity of the solution of the problem to perturbations

in the data. The extent to which the problem is well conditioned is an inherent

property of the problem. Secondly, given a method or algorithm for computing a

solution to a problem we would like to assess the quality of the computed solution.

Backward error is a measure of how much the problem must be perturbed for the

computed solution to be an exact solution of the perturbed problem.

An important quantity involved with working in finite precision is the unit

roundoff u, which characterizes the worst-case error inherent in representing real

numbers as floating point numbers in finite precision arithmetic.

Theorem 1 ([29]). If x ∈ R lies in the range of a floating point number system F

(a subset of the real numbers) then

fl(x) = x(1 + δ), |δ| < u,

where fl(x) denotes x evaluated in floating point arithmetic.

When implementing algorithms in MATLAB, the inbuilt function eps (machine

precision) can be used as a tolerance. This is not the same as the unit roundoff

but characterizes spacing of floating point numbers, thus eps returns the distance

from 1.0 to the next largest floating point number. The unit roundoff in MATLAB

is u = 2−53 = eps/2 ≈ 1.1e-16.

When developing algorithms to work in finite precision we would ideally like to

work with orthogonal transformations (U a real square matrix such that UTU = I,

for U complex T is replaced by conjugate transpose ∗). If we carry out a transfor-

mation on a matrix with errors: Â = A + E to form UT (A + E)U and take the

norm, then for orthogonal/unitary matrices and a unitarily invariant matrix norm

‖ · ‖, ‖UTEU‖ = ‖E‖ so we do not increase error inherent in the data.

CHAPTER 1. INTRODUCTION 23

1.4.2 Matrix Rank Computation

A key stage in many of the algorithms in this thesis is computing accurately (or

inferring information about) the rank of a matrix in finite precision arithmetic.

Given a matrix A ∈ Rn×n whose rank we wish to compute, we can take the SVD,

an eigendecomposition, or compute a QR factorization with column pivoting.

Theoretically the SVD yields a factorization A = UΣV T with

Σ = diag(σ1, . . . , σr, σr+1, . . . σn)

where, if the matrix is singular we have σr+1 . . . σn equal to zero exactly. In finite

precision, however, we will have the computed SVD ÛΣ̂V̂ T where x̂ denotes the

computed value of x. Thus σ̂r+1 . . . σ̂n will not be exactly zero, rather some ‘small’

quantity. We will then have to take a rank decision and neglect (set to zero) any

singular values less than a particular tolerance τ which will need to be chosen, we

then call the resulting rank the numerical rank.

Definition 7 (Numerical Rank). Given a matrix A ∈ Cn×n and a tolerance τ > 0

then the numerical rank of A is the largest integer k such that σk > τ .

It is worth noting that some existing routines such as GEQP3 in LAPACK, which

computes a QR factorization with column pivoting, will only return the factors

defining the factorizations and do not attempt to determine the numerical rank of

the matrix within the routine. Hence when implementing algorithms we will need

to use a suitable tolerance, for example τ = u‖A‖ where u is the unit roundoff.

Setting to zero quantities close to the unit roundoff can be justified by the

argument that doing so involves making perturbations of the same size as the error

inherent in storing the data as floating point numbers.

CHAPTER 1. INTRODUCTION 24

The most accurate (although also most expensive) way to determine the nu-

merical rank of a matrix is via the SVD [25]. A less expensive alternative to the

SVD is a QR factorization with column pivoting, which is implemented robustly

and efficiently in LAPACK. However, this factorization does not yield the correct

numerical rank for some matrices. An example of such a matrix is the Kahan ma-

trix (defined by the parameters n = 90 and θ = 1.2) described in [61]. Computing

a QR factorization with column pivoting in MATLAB yields an upper triangular

matrix whose smallest diagonal element is 1.9039e-3 and not small (relative to the

unit roundoff), but the smallest singular value is 3.9607e-15 and the matrix has

numerical rank 89 based on a tolerance τ ≈ u. In this case QR with column piv-

oting has provided an overestimate of the rank. Further information on QR with

column pivoting overestimating the rank of a matrix is contained in Section 3.3.1

on page 59. After computing a QR factorization the resulting R matrix is up-

per triangular, so it would be inexpensive to apply a condition number estimator

(such as MATLAB’s condest) to check the singularity, as the condition number

estimator normally tries to computes an LU factorization which is unnecessary

for upper triangular matrices. We note that, for the algorithms we later present,

overestimating the rank is much more favorable than underestimating the rank.

For example, in the case of preprocessing the standard eigenproblem to remove a

zero eigenvalue, overestimating the rank means we fail to remove a zero eigenvalue;

underestimating the rank would be much worse however, since it would mean we

are essentially setting to zero an eigenvalue which is not close to zero relative to

the unit roundoff.

Another option to find the numerical rank of a matrix is to compute a rank

revealing QR factorization [10]—for example one of the UTV type factorizations

[26]. Some of these methods are iterative however, so the cost of their computation

cannot be determined a priori. They are also not currently implemented in a robust,

CHAPTER 1. INTRODUCTION 25

blocked and efficient form in a library such as LAPACK.

1.5 The Polynomial Eigenvalue Problem

The polynomial eigenvalue problem (PEP) is to find scalar eigenvalues λ, and as-

sociated nonzero left and right eigenvectors y, x such that

y∗P`(λ) = 0, P`(λ)x = 0, x, y 6= 0,

where

P`(λ) = λ`A` + · · ·+ λA1 + A0

with Ai ∈ Cn×n, i = 0: `, and A` 6= 0, and throughout this thesis we will assume

that the degree ` matrix polynomial P`(λ) is regular, that is, det(P`(λ)) 6≡ 0.

The most commonly occurring case in applications is the quadratic eigenvalue

problem (QEP), a special case of the PEP with ` = 2. In these applications, the

quadratic matrix polynomial Q(λ) is often written as

Q(λ) = λ2M + λC +K,

where M is the mass matrix, C the damping matrix and K is the stiffness matrix.

1.5.1 Structures and Properties of Matrix Polynomials

A matrix polynomial may exhibit a number of structures, for example symmetric

coefficients, hyperbolicity, and properties such as real or complex coefficients, and

singular leading or trailing coefficients. Such structure will be exhibited in particu-

lar properties of the eigenvalues and eigenvectors. For example, when M,C, and K

are symmetric, then if λ is an eigenvalue with right eigenvector x, then x is a left

CHAPTER 1. INTRODUCTION 26

eigenvector of the eigenvalue λ̄. A summary of properties associated with different

structures is given in the review article [58].

1.5.2 Singular Leading and Trailing Coefficients

We call the A0 coefficient of a matrix polynomial P` the trailing coefficient, and

the A` coefficient the leading coefficient. If either or both of these matrices are

singular then we know the matrix polynomial will have zero or infinite eigenvalues.

Specifically, if rank(A0) = r0 and rank(A`) = r` then we have the following lower

bounds:

of zero eigenvalues > n− r0

of infinite eigenvalues > n− r`.

Also, if λ = 0 is an eigenvalue contributed by A0 then its corresponding eigenvector

is in fact a null vector of A0 (a null vector x 6= 0 of A satisfies Ax = 0). A similar

argument applies to infinite eigenvalues with null vectors of A`. There may be

additional zero or infinite eigenvalues if the leading or trailing coefficients have a

nontrivial null space intersection with the coefficients Ai, i = 1: `− 1.

Infinite eigenvalues λ =∞ are in fact zero eigenvalues of the reversal polynomial

rev(P`). The reversal polynomial of P`(λ) = λ2A` + · · ·+ λA1 + A0 is given by

rev(P`(λ)) := λ`P`(1/λ) = λ`A0 + λ`−1A1 + · · ·+ A`

and λ =∞ as an eigenvalue of P` is mapped to λ = 0 as an eigenvalue of rev(P`(λ)).

In order to treat infinite eigenvalues more comfortably, one can work with the

eigenvalue parameter written in homogeneous form, that is writing λ = α/β, with

not both of α and β zero. For real eigenvalues α and β can be normalized and

CHAPTER 1. INTRODUCTION 27

thought of as a point on the unit circle. The matrix polynomial in homogeneous

form is obtained upon substituting λ = α/β and defining

P`(α, β) = β`P`(λ) = α`A` + · · ·+ αβ`−1A1 + β`A0.

Thus zero eigenvalues take the form (α, β) = (0, β) with β 6= 0 and infinite eigen-

values the form (α, β) = (α, 0) with α 6= 0.

1.5.3 Measuring the Accuracy of Computed Eigensolutions

In this section we describe two quantities important in measuring the accuracy of

computed solutions to problems in finite precision arithmetic: backward error and

condition numbers. In Chapter 3 we explain an implementation of a general purpose

code to solve polynomial eigenvalue problems which will return both eigenvalue

condition numbers and backward errors for computed eigenpairs. In this section

we give the formulae used to compute these two quantities for the case of general

degree ` matrix polynomials. In our algorithms we allow for the possibility of both

infinite and zero eigenvalues, so to allow an equal treatment of finite, zero and

infinite eigenvalues we represent the eigenvalues in homogeneous form as mentioned

in the previous section.

The definition of backward error of a right eigenpair (x;α, β) of a degree `

matrix polynomial written in homogenous form

P`(α, β) =
∑̀
i=0

αiβ`−iAi

is given next. In this section ∆Ai denotes an unstructured perturbation to the Ai

coefficient.

CHAPTER 1. INTRODUCTION 28

Definition 8 (Relative normwise backward error of an approximate right eigen-

pair). The relative normwise backward error of an approximate right eigenpair

(x;α, β) of a polynomial P`(α, β) is defined as

ηP`
(x;α, β) = min {ε : (P`(α, β) +∆P`(α, β))x = 0, ‖∆Ai‖2 ≤ ε ‖Ai‖2 , i = 0 : `} ,

(1.5.1)

where ∆P`(α, β) =
∑`

i=0 α
iβ`−i∆Ai.

An explicit expression [58] for relative backward errors of right eigenpairs (x;α, β)

of degree ` matrix polynomials is given by

ηP`
(x;α, β) =

‖P`(α, β)x‖2(∑`
i=0|α|i|β|`−i ‖Ai‖2

)
‖x‖2

. (1.5.2)

The representation (α, β) of an eigenvalue λ is not unique, however (1.5.2) is inde-

pendent of the scaling of (α, β).

Moving to condition numbers, Dedieu and Tisseur [13] present condition num-

bers for eigenvalues of matrix polynomials. The condition number κP`
(α, β) is

defined for simple eigenvalues both finite (including zero) or infinite. It provides a

bound on the angle between an exact eigenvalue (α, β) and a perturbed eigenvalue

(α̃, β̃). The angle is based on viewing an eigenvalue as a line that goes through

the origin in the complex plane to the point (α, β) solving det(P`) = 0. For an

eigenvalue (α, β) of a degree ` matrix polynomial, this condition number is defined

as

κP`
(α, β) = max

‖∆A‖≤1

‖K(α, β)∆A‖2
‖[α, β]‖2

(1.5.3)

where ∆A = [∆A0, ∆A1, . . . , ∆A`]. K(α, β) : (Cn×n)(`+1) → T(α,β)P1, T(α,β)P1 is a

tangent space at (α, β) to P1 the projective space of lines through the origin in

C2. The condition operator for the eigenvalue (α, β) is defined as the differential

CHAPTER 1. INTRODUCTION 29

of the map from the (` + 1)-tuple (A0, . . . , A`) to (α, β) in projective space. The

condition number can be computed using the expression given below.

Theorem 2 (see Theorem 2.3 [32]). The normwise condition number κP`(α,β) of a

simple eigenvalue (α, β) with right eigenvector x and left eigenvector y of a degree

` matrix polynomial is given by

κP`(α,β) =
(
∑`

i=0|α|2i|β|2(`−i) ‖Ai‖
2
2)

1/2 ‖y‖2 ‖x‖2
|y∗(β̄DαP` − ᾱDβP`)|α,β x|

(1.5.4)

where Dα = ∂
∂α

and Dβ = ∂
∂β

.

An alternative condition number is κP`
(λ) which is a direct generalization of

Wilkinson’s condition number [63] for the standard eigenvalue problem Ax = λx

and measures the relative change in an eigenvalue, however it is not defined for

zero or infinite eigenvalues. In Chapter 3 we describe an algorithm which allows

for the possibility of zero and infinite eigenvalues, hence we use κP`
(α, β).

1.5.4 Applications

Quadratic eigenvalue problems arise in many applications, for example, dynamic

analysis of mechanical systems in acoustics, structural mechanics, electrical circuit

simulation, gyroscopic systems, molecular dynamics and constrained least squares.

Information about many more applications can be found in the review article [58].

NLEVP [7] is a collection of nonlinear eigenvalue problems, some from applications

and some constructed to have specific properties. The problems are described and

the matrices defining the problems are available in a MATLAB toolbox.

A quadratic eigenvalue problem often results from vibrational/dynamic analysis

of structures discretized by the finite element method. The equations of motion

CHAPTER 1. INTRODUCTION 30

are:

Mq̈(t) + Cq̇(t) +Kq(t) = f(t), (1.5.5)

where M , C, and K ∈ Cn×n are mass, damping and stiffness matrices arising from

a finite element discretization, the vector f(t) is a forcing term, and q(t), f(t) are

n-vectors. When looking for exponential solutions, of the form q(t) = eλtx, the first

step is the solution of the homogeneous equation, which arises from setting f(t) = 0

in (1.5.5). Then, substituting q(t) = eλtx we obtain the QEP (λ2M + λC +K)x =

0 with Q(λ) = λ2M + λC + K. We now describe in more detail a number of

applications that yield quadratic eigenvalue problems.

Shaft Problem

A finite element model of a shaft on bearing supports with a damper, modelled

with the finite element package MSC/Nastran [27], yields a quadratic eigenvalue

problem Q(λ) = λ2M + λC + K, with M,C,K ∈ R400×400. In this example the

coefficients are very sparse. The mass matrix M has rank 199 and contributes

a large number of infinite eigenvalues. A schematic of the shaft can be found in

Figure 1.1.

Damped Beam Problem

A model of a beam as seen in Figure 1.2, simply supported at both ends and

damped at the midpoint is considered in [33].

The transverse displacement u(x, t) is governed by the partial differential equa-

tion,

ρA
∂2u

∂t2
+ c(x)

∂u

∂t
+ EI

∂4u

∂x4
= 0.

with associated boundary conditions: u(x, t) = u′′(x, t) = 0, x = 0, L. Solving for

exponential solutions of the form u(x, t) = eλtv(x, λ) yields an eigenproblem for

CHAPTER 1. INTRODUCTION 31

Figure 1.1: Schematic of a shaft on bearing support

Figure 1.2: Simply supported beam with damping

//////

�
�
�

A
A
A

///

A
A
A

�
�
�
///

-�
L

CHAPTER 1. INTRODUCTION 32

free vibrations of the form

λ2ρAv(x, λ) + λc(x)v(x, λ) + EI
∂4

∂x4
v(x, λ) = 0.

After discretizing the PDE to obtain a finite dimensional problem, one is left

with a quadratic matrix polynomial with mass, damping and stiffness matrices,

M,C and K with the properties M,K > 0 and C > 0. Due to the inherent

structure of the problem, it is known that the spectrum of the quadratic lies in the

closed left hand half of the complex plane.

Linear Spring Dashpot with Maxwell Elements

Gotts [22] describes a quadratic eigenvalue problem arising from a finite element

model of a linear spring in parallel with Maxwell elements (a Maxwell element is a

spring in series with a dashpot), for a diagram see Figure 1.3. This quadratic is also

included in the MATLAB toolbox NLEVP [7] under the name spring dashpot.

The quadratic is of the form

Q(λ) = λ2M + λC +K, M,C,K ∈ R10×10,

where the mass matrix M is symmetric and rank deficient (and hence contributes

infinite eigenvalues), the damping matrix C is rank deficient and block diagonal,

and the stiffness matrix K is symmetric and exhibits “arrowhead” structure. The

CHAPTER 1. INTRODUCTION 33

form of the matrix for 4 Maxwell elements is given below

M = diag(ρM̃11, 0), C = diag(0, η1K̃11, · · · , η4K̃55),

K =


αρK̃11 B

e1K̃22 0 0

BT 0
. . . 0

0 0 e4K̃55

 ,

where

B =
[
−ξ1K̃12, . . . , −ξ4K̃15

]
.

M̃ij and K̃ij are the ijth element mass and stiffness matrices, and

αρ =
4∑

k=0

ξk.

ηi, i = 1: 5, ξj j = 0: 5, ek, k = 1: 4 and ρ (the material density) are scalar

parameters.

CHAPTER 1. INTRODUCTION 34

Figure 1.3: Spring/dashpot with Maxwell elements

Chapter 2

Solving PEPs by Linearization

Generalized eigenvalue problems (A − λB)x = 0 can be solved by computing the

generalized Schur form. There is no extension however, of the generalized Schur

form for matrix pencils to matrix polynomials of degree two or higher. The standard

approach to solve PEPs both theoretically and numerically is to convert the degree

`matrix polynomial with n-by-nmatrix coefficients to a linear matrix pencil λX+Y

of dimension `n-by-`n, a process known as linearization. The linearized problem

is a generalized eigenproblem which can be solved by computing the generalized

Schur form. In this chapter we explain the linearization process, solution of the

linear problem, and recovery of the solution of the polynomial problem from that

of the linear problem.

2.1 Linearizations of Matrix Polynomials

The first step in solving the PEP by linearization is to find an `n-by-`n linear matrix

pencil L(λ) that is a linearization of the polynomial P`(λ) in that it satisfies the

following definition.

Definition 9 (Linearization [20]). The pencil L(λ) = λX + Y is a linearization of

35

CHAPTER 2. SOLVING PEPS BY LINEARIZATION 36

the degree ` matrix polynomial P`(λ) if

E(λ)L(λ)F (λ) =

P`(λ) 0

0 In(`−1)

 ,
where E(λ) and F (λ) are matrix polynomials with constant nonzero determinants

(and are said to be unimodular, and have inverses that are defined over the field of

matrix polynomials).

Research on linearizations of matrix polynomials has been very active lately

including generalization of its definition [42], [41], derivation of new (structured)

linearizations [1], [3], [4], [31], [46], [47] and analysis of the influence of the lin-

earization process on the accuracy and stability of computed solutions [30], [32],

[33]. Factors influencing the choice of linearization include the properties of the

matrix polynomial—for example structure in the coefficients, and the properties of

the linearization with regard to solving the original polynomial problem.

Recent work [47] has identified vector spaces of pencils that are potential lin-

earizations of degree ` matrix polynomials P`(λ) = λ`A`+ · · ·+λA1 +A0. Defining

Λ = [λ`−1, λ`−2, . . . , 1]T these vector spaces, which contain an infinite number of

linearizations of P` are

L1(P`) =
{
L(λ) : L(λ)(Λ⊗ In) = v ⊗ P`(λ), v ∈ C`

}
, (2.1.1)

L2(P`) =
{
L(λ) : (ΛT ⊗ In)L(λ) = wT ⊗ P`(λ), w ∈ C`

}
, (2.1.2)

DL(P`) = L1(P`) ∩ L2(P`). (2.1.3)

In practice, the most commonly used linearizations are the companion forms.

For example the first companion linearization of a quadraticQ(λ) = λ2A2+λA1+A0

CHAPTER 2. SOLVING PEPS BY LINEARIZATION 37

has the form

C1(λ) = λ

A2 0

0 In

+

 A1 A0

−In 0

 , (2.1.4)

which is in the vector space L1(Q) with vector v = e1. An example of a symmetry

preserving linearization of a real symmetric quadratic Q (Ai = ATi , i = 0: 2), with

det(A0) 6= 0, is

L1(λ) = λ

A2 0

0 −A0

+

A1 A0

A0 0

 (2.1.5)

which is in the space DL(Q) with vector v = e1. Such symmetry preserving lin-

earizations will be relevant in Chapter 4 in the area of structure preserving trans-

formations for quadratic matrix polynomials.

2.2 Solving PEPs by Linearization in Finite Pre-

cision Arithmetic

We begin by first considering a numerical example which illustrates the theme of

this section. In finite precision arithmetic we have computed the spectrum of the

damped beam quadratic [33], solving the quadratic eigenproblem by linearization

(using MATLAB’s eig function) with three different linearizations of the original

quadratic: L1 and C1 already mentioned (equations (2.1.4) and (2.1.5)), and for

det(A2) 6= 0,

L2(λ) = λ

 0 A2

A2 A1

+

−A2 0

0 A0

 , (2.2.1)

which is in the space DL(Q) with vector v = e2. Theoretically, in exact arithmetic

we know the eigenvalues of the quadratic problem are identical to those of the

linearized problem, and further, the eigenvalues should be the same regardless of

CHAPTER 2. SOLVING PEPS BY LINEARIZATION 38

which linearization is taken.

The three plots in the left hand side of Figure 2.1 show the computed spectrum

of the damped beam quadratic solved using the three linearizations (2.1.4)–(2.2.1).

It is shown in [33] that due to the properties of the problem, all the eigenvalues

should be in the left half of the complex plane. Even visually we can see that the

spectrum for the three different linearizations is different, and not all eigenvalues

are in the left half of the complex plane, both in contradiction to the theory.

In the next section we discuss recent theory which explains this situation and

techniques that can be used to improve the accuracy of computed eigenvalues.

The three plots in the right hand side of Figure 2.1 show the computed spectrum

when these techniques have been applied to the damped beam quadratic. We see

that at least visually the computed spectrum is the same for the three linearizations.

2.3 Accuracy and Conditioning of Solutions to

QEPs Solved by Linearization

In this section we discuss recent developments in the theory that can help explain

the accuracy of computed eigenvalues of matrix polynomials, solved by linearization

in finite precision arithmetic, and techniques that can be applied to attempt to

improve the situation. What follows is phrased for quadratic matrix polynomials.

In Section 2.3.1 we comment on matrix polynomials of degree higher than two.

We now define notation used in the rest of this chapter. Let Q(λ) be the original

(unscaled) matrix polynomial, and Q̃(µ) the quadratic scaled using the Fan, Lin

and Van Dooren scaling (which we will define). Let L be the linearization of the

scaled quadratic Q̃, where L(µ)z = 0 such that the right eigenvector has the form

z = [zT1 , z
T
2]T where z1 is the first and z2 the last n components of z. We write

CHAPTER 2. SOLVING PEPS BY LINEARIZATION 39

Figure 2.1: Computed spectrum of unscaled/scaled damped beam quadratic for
linearizations C1, L1, and L2, (as defined in (2.1.4)–(2.2.1)) using MATLAB’s eig
to solve the linear problem

C1 of unscaled Q C1 of scaled Q

L1 of unscaled Q L1 of scaled Q

L2 of unscaled Q L2 of scaled Q

CHAPTER 2. SOLVING PEPS BY LINEARIZATION 40

quantities computed in finite precision as µ̂, ẑ1, ẑ2 etc.

Linear problems/generalized eigenvalue problems of the form (A − λB)x = 0

can be solved with the QZ algorithm which gives backward stable solutions for the

linear problem. However, if we linearize a quadratic matrix polynomial, solve the

resulting linear problem with QZ and extract a solution for the quadratic matrix

polynomial, that solution will not in general be backward stable for the quadratic

problem. The theorem below shows that backward stable solutions will be returned

when solving by linearization with companion type linearizations, if the coefficient

matrices have unit norm.

Theorem 3 ([56, Thm. 7]). When solving the QEP Q(λ)x = 0 with Q(λ) =

λ2A2 + λA1 + A0, if ‖A2‖2 = ‖A1‖2 = ‖A0‖2 = 1 then solving the GEP using

a companion type linearization, with a backward stable algorithm (e.g., the QZ

algorithm) for the GEP is backward stable for the QEP.

The scaling of Fan, Lin and Van Dooren [14] attempts to achieve the above, by

rescaling the eigenvalue parameter to λ = µδ and multiplying the original quadratic

by a nonzero scalar γ. This yields the scaled quadratic

Q̃(µ) = δQ(µ) = µ2Ã2 + µÃ1 + Ã0.

The coefficients of the scaled quadratic have the form

Ã2 = γ2δA2, Ã1 = γδA1, Ã0 = δA0

where γ =
√
‖A0‖2
‖A2‖2

and δ = 2
‖A0‖2+γ‖A1‖2

. This scaling has no effect on condition

numbers or backward errors for eigenvalues of the quadratic, but attempts to im-

prove the condition numbers and backward errors of eigenpairs of Q recovered from

solving the linear problem L(µ)z = 0 and w∗L(µ) = 0 using a linearization L.

CHAPTER 2. SOLVING PEPS BY LINEARIZATION 41

We now present the link between this scaling and recent theory that explains

the impact of scaling on backward error and conditioning.

The scaling of Q can be measured by the quantity [32]

ρ =
maxi(‖Ai‖2)

min(‖A0‖2 , ‖A2‖2)
,

where for well scaled problems ρ ≈ 1, and scaling Q generally decreases ρ.

Sufficient conditions for approximate equality between backward errors for eigen-

pairs of the quadratic and linearization, ηQ ≈ ηL are given in [30, 32]. Where there

is a choice of which component of the eigenvector of the linearization (z1 or z2)

to take as an eigenvector of the quadratic (here we focus on right eigenvectors x,

results for left eigenvectors also exist), the theory says which of the first or last n

components to take. We give the details for L = C1 and L1 (see [30, 32] for L = L2).

In Chapter 3 the second companion linearization C2(λ) is used, we present relevant

information in that chapter.

Starting with companion linearizations for ηP ≈ ηC we require ‖A1‖ 6 ‖A2‖ ≈

‖A0‖ then if |λ| > 1 choose x = z1, else choose x = z2.

For the linearization L1 the sufficient conditions depend on eigenvalue magni-

tude as well as the choice of eigenvector. For |λ| > 1 the condition is ρ ≈ 1 in

which case choose x = z1 as the eigenvalue of Q. For |λ| 6 1 the condition is

ρmax(1, (‖A1‖+ ‖A0‖)‖A−12 ‖) ≈ 1 and take x = z2.

Upon proceeding from the quadratic to the linear problem, we can measure the

growth of the eigenvalue condition number and the backward error of eigenpairs of

Q̃ recovered from the solution of the linear problem.

We now look at what happens to the backward error ψ(µ) and condition number

φ(zk) growth factors ηL(µ) = ψL(zk)κQ(µ), κL(µ) = φL(µ)κQ(µ), when we

scale Q using the Fan, Lin and Van Dooren scaling. We will need the quantities

CHAPTER 2. SOLVING PEPS BY LINEARIZATION 42

[33]

τ =
‖A1‖2√
‖A0‖2 ‖A2‖2

, and ω(µ) =
1 + τ

1 + |µ|
1+|µ|2 τ

.

The following expressions for the growth factors for L = C1, L1, and L2 are

presented in [33]:

φC1 ≈ ω(µ̂), ψC1(ẑk) ≈ ω(µ̂)
‖ẑ‖2
‖ẑk‖2

, (2.3.1)

φL1 ≈
1 + |µ̂|
|µ̂|

ω(µ̂), ψL1(ẑk) ≈ ν(k)ω(µ̂)
‖ẑ‖2
‖ẑk‖2

, (2.3.2)

φL2 ≈ (1 + |µ̂|)ω(µ̂), ψL2(ẑk) ≈ ν(k)ω(µ̂)
‖ẑ‖2
‖ẑk‖2

, (2.3.3)

where for L1: ν(1) = 1 and ν(2) = ||Â−10 ||2, and for L2: ν(1) = 1 and ν(2) =

||Â−12 ||2.

For the scaled problem it holds that

1 6 ω(µ) 6 min

{
1 + τ,

1 + |µ|2

|µ|

}
,

thus, both backward error and condition number are essentially optimal for C1 for

all λ, for L1 if |µ̂| > 1 and for L2 if |µ̂| < 1, if ω(µ) = O(1), the physical interpreta-

tion of this is that for mechanical systems, this is the case for systems that are not

too heavily damped, that is ‖A1‖2 <∼
√
‖A0‖2 ‖A2‖2 where τ < 1. The class of ellip-

tic quadratics fall into this category (of not too heavily damped problems), since A2

is positive definite, and for all nonzero x it holds that (x∗A1x)2 < 4(x∗A0x)(x∗A2x).

Optimality also holds if |µ| = O(1).

Due to the choice of eigenvector of the quadratic from the solution of the linear

problem, the expressions of backward error growth factor depend on zk (whether

the first or last n components of ẑ are selected as an eigenvector x of the quadratic).

Applications yielding examples of quadratics for which the scaling of Fan, Lin,

CHAPTER 2. SOLVING PEPS BY LINEARIZATION 43

and Van Dooren does not improve the inherent scaling of the problem are available.

One such example is the cd player problem from NLEVP [7]. Before applying

scaling we have

‖A2‖2 = 1.0, ‖A1‖2 = 1.0e7, ‖A0‖2 = 2.3e5,

and after scaling,

||Ã2||2 = 9e-5, ||Ã1||2 = 2, ||Ã0||2 = 9e-5.

This is an example of a quadratic that is heavily damped with

‖A1‖2 � max(‖A2‖2 , ‖A0‖2).

As seen in equations (2.3.1)–(2.3.3), the theory explains that eigenvalues of

linearizations L of heavily damped quadratics can have large condition numbers

(for L) and backward errors of the original quadratic.

Another scaling strategy is tropical scaling [19], of the same type as the scaling

as Fan, Lin and Van Dooren, of the form Q(λ)← Q̃(µ). The parameters δ and γ are

formed after computing the tropical roots of a scalar quadratic tropical polynomial,

whose coefficients are the norms of the coefficients of Q. This yields two roots and

therefore two scalings. Analysis in [52] shows that if the roots are equal this is

equivalent to the scaling of Fan, Lin and Van Dooren. When the roots are unequal,

one scaling attempts to improve the accuracy of small eigenvalues and the other

the accuracy of large eigenvalues.

CHAPTER 2. SOLVING PEPS BY LINEARIZATION 44

2.3.1 Scaling Higher Degree Matrix Polynomials

For higher degree matrix polynomials (cubics and above), the eigenvalue parameter

scaling of Fan, Lin and Van Dooren is extended to higher degree polynomials in [6]

to a scaling of the form

P̃`(µ) = γP`(δλ). (2.3.4)

The previously mentioned quantity ρ, which measures the scaling of the problem

naturally extends to

ρ =
maxi(‖Ai‖2)

min (‖A0‖2 , ‖A`‖2)
.

The choice of δ =
√
‖A0‖2/‖A`‖2 can be shown [6] to minimize ρ(δ) for P`(δλ)

in (2.3.4). If ρ ≈ 1 then for a given eigenvalue there is a linearization in the

space DL(P`) such that the eigenvalue condition number for the linearization is

approximately the same as the condition number for the original polynomial [32].

For companion linearizations, which are not in DL(P`), in addition to ρ ≈ 1 we

also require [32] that ‖Ai‖2 ≈ 1, i = 0: ` and γ in (2.3.4) is chosen to attempt to

achieve ‖Ai‖2 ≈ 1, i = 0: `. The choice of γ = aT1/aTa where a is a vector with

ai = ‖Ai‖2 , i = 0: ` and 1 is a vector of ones of length `+ 1 minimizes ‖γa− 1‖22
or we might choose γ = maxi(‖Ai‖2)−1 provided ‖Ai‖2 6= 0. If ‖A0‖2 = ‖A`‖2 then

δ = 1 and scalings of the form µ = δλ will not improve ρ.

2.3.2 Techniques to Improve Accuracy of Eigenvalues of

Specific Magnitude

For problems that are not too heavily damped, the Fan, Lin and Van Dooren scaling

yields optimal conditioning and backward error results for all eigenvalues for C1,

for all eigenvalues inside the unit circle for L1 and for all eigenvalues outside the

unit circle for L2. If however, we are mainly interested in computing eigenvalues

CHAPTER 2. SOLVING PEPS BY LINEARIZATION 45

of a specific magnitude ζ > 0, then the technique of balancing can be attempted.

Balancing is based on the observation that for computed eigenvalues λ̂ of a

single matrix A (the standard eigenvalue problem) λ is perturbed by at least u‖A‖

with u the unit roundoff. We can attempt to increase the accuracy of the computed

eigenvalue by reducing ‖A‖. For the standard eigenvalue problem see [54]. The

technique is extended to matrix pencils in [59] and [44] (the methods differ in

the cost function minimized). The method for matrix pencils in [44] is extended

to matrix polynomials in [6], and involves determining diagonal scaling matrices

D1, D2 to form a scaled matrix polynomial P̃`(λ) = D1P`(λ)D2. The matrices D1

and D2 aim to achieve

∑̀
k=0

ζ2k ‖D1AkD2ei‖22 = 1,
∑̀
k=0

ζ2k
∥∥eTj D1AkD2

∥∥2
2

= 1, i, j = 1: n, (2.3.5)

where ζ > 0 is the magnitude of the desired eigenvalues. Numerical experiments

are also presented, showing improvement of the accuracy of computed eigenvalues

after applying the technique.

2.4 The QZ Algorithm

To solve the generalized eigenvalue problem that arises from the linearization pro-

cess we use the QZ algorithm [51] as implemented robustly and efficiently in the

LAPACK [2] routine xGGEV. For simplicity we will describe the process working

with real arithmetic (DGGEV); ZGGEV is the version implemented working with com-

plex arithmetic. The LAPACK routines are also used when the MATLAB eig

function is called. In this section we focus on aspects of the algorithm that are

relevant to later chapters in this thesis—full details can be found in [2, 51] or [21].

The QZ algorithm computes the generalized Schur decomposition of a matrix

CHAPTER 2. SOLVING PEPS BY LINEARIZATION 46

pair (A,B) (see Definition 4) to obtain the eigenvalues of the pencil A − λB; ad-

ditional steps can then be carried out to obtain eigenvectors. The implementation

of the QZ process in DGGEV computes the eigenvalues λ of a given matrix pencil

A−λB with A,B ∈ Rn×n and optionally the associated right and left eigenvectors

x, y ∈ Cn.

Algorithm 1 (QZ Algorithm, [51, 21]). Given the matrix pencil A − λB with

A,B ∈ Rn×n , the QZ algorithm computes orthogonal Q and Z such that QTAZ =

T is quasi upper triangular and QTBZ = S is upper triangular. The stages can be

summarized as:

Step 1. Attempt to permute the pencil A− λB to block upper triangular form, as

in Equation (2.4.1)

Step 2. Transform B to upper triangular form

Step 3. Reduce to Hessenberg triangular form

Step 4. Apply QZ iterations to the Hessenberg triangular form (accumulate the

orthogonal transformations if eigenvectors are desired).

Step 5. (Optional) Compute eigenvectors of the permuted pencil, taking into ac-

count the matrices that put the pencil into generalized real Schur form, then

transform again to recover eigenvectors of the original unpermuted pencil.

We briefly expand on the first two stages which will be relevant to Chapter 3.

Step 1 is implemented with DGGBAL which attempts to permute the pencilA−λB

to the block upper triangular form below:

W1(A− λB)W2 =


A11 A12 A13

0 A22 A23

0 0 A33

− λ

B11 B12 B14

0 B22 B23

0 0 B33

 , (2.4.1)

CHAPTER 2. SOLVING PEPS BY LINEARIZATION 47

where W1 and W2 are permutation matrices, A11, B11, A33, B33 are upper triangular,

and A22, B22 are full. If this form can be achieved then the problem decouples and

the remaining spectrum can be computed from the smaller pencil A22 − λB22.

Step 2 starts with the matrix B and transforms it to upper triangular form by

computing its QR factorization, B = QR, then setting A ← QTA and B ← R,

this is done using the routine DGEQRF. A general purpose algorithm for solving

quadratic eigenvalue problems presented in Chapter 3 achieves this step using one

of the factorizations computed for checking the rank of the leading and trailing

coefficients.

2.5 Eigenvectors of Matrix Polynomials from Lin-

earizations

In this section we briefly comment on the recovery of eigenvectors of the polynomial

from eigenvectors of the linearization when working in finite precision. We consider

the two linearizations C1 and C2 shown in Table 2.1, where we use the notation

that if x is an exact quantity then x̂ is its computed value in finite precision.

Table 2.1: Theoretical and computed eigenpairs of first (C1) and second (C2) com-
panion linearizations of quadratic Q with det(A0) 6= 0. (Finite nonzero eigenvalues
λ.)

Linearization Theoretical Finite Precision

C1(λ) = λ

[
A2 0
0 In

]
+

[
A1 A0

0 −In

]
z1 =

[
λx
x

]
ẑ1 =

[
λ̂x̂1
x̂2

]

C2(λ) = λ

[
A2 0
0 In

]
+

[
A1 −In
A0 0

]
z2 =

[
λx
−A0x

]
ẑ2 =

[
λ̂x̂3
−A0x̂4

]

In finite precision we have the situation in the last column of Table 2.1 where

CHAPTER 2. SOLVING PEPS BY LINEARIZATION 48

the eigenvectors x of the quadratic Q that appear in the eigenvectors z1 and z2 of

the linearization are not generally equal. In theory, all the eigenvectors x of the

quadratic that appear in the eigenvectors z1 and z2 are identical and eigenpairs

(λ, x) satisfy Q(λ)x = 0. However, in finite precision, we have computed eigenpairs

(λ̂, x̂i) that satisfy Q(λ̂)x̂i = εi ≈ 0 for i = 1: 4.

It can be seen that for the linearization C1 we could return either x̂1 or x̂2,

and for C2 we either return x̂3 or (when det(A0) 6= 0) solve the linear system

−A0x̂4 = ẑ2(n + 1: 2n) for x̂4. The key point is that there is a choice to be made

as to how the eigenvector is returned. In practice we would like to return the most

accurate solution possible. One option implemented by the MATLAB function

polyeig is to return whichever of the possible eigenvectors yields the smallest

backward error for the polynomial problem.

For a general purpose algorithm, we have the potential for zero, infinite, or

finite eigenvalues. In this case, working with the homogeneous representation of

an eigenvalue as λ = α/β, the forms of the left and right eigenvectors split into

different cases depending on α and β, rather than a single form for the eigenvector.

For example, given the quadratic Q(α, β) = α2A2 + αβA1 + β2A0 with eigenvalue

λ = α/β and left and right eigenvectors x and y, the second companion form

C2(α, β) of Q in homogenous form is C2(α, β) = α

A2 0

0 In

 β
A1 −In

A0 0

 . The

left and right eigenvectors (w and z) of C2(α, β) have the form

λ = α/β, (α, β 6= 0), w =

αy
βy

 z =

 αx

−βA0x

 ,
λ = 0, (α = 0, β 6= 0), w =

0

y

 z =

 x

A1x

 ,
λ =∞, (α 6= 0, β = 0), w =

y
0

 z =

x
0

 .

Chapter 3

A General Purpose Algorithm for

Solving Quadratic Eigenvalue

Problems

3.1 Introduction

Quadratic eigenvalue problems (QEPs) arise in a wide variety of science and en-

gineering applications, such as the dynamic analysis of mechanical systems, where

the eigenvalues represent vibrational frequencies. For many practical examples of

QEPs, see the NLEVP collection [7] and the survey article [58].

The QEP is to find scalars λ and nonzero vectors x, y satisfying

Q(λ)x = 0, y∗Q(λ) = 0, (3.1.1)

where

Q(λ) = λ2A2 + λA1 + A0, (3.1.2)

the Aj, j = 0 : 2 are n × n matrices and x, y are the right and left eigenvectors,

49

CHAPTER 3. ALGORITHM FOR QUADRATIC EIGENPROBLEMS 50

respectively, corresponding to the eigenvalue λ.

QEPs are an important class of nonlinear eigenproblems that are less routinely

solved than the standard eigenvalue problem (A − λI)x = 0 or generalized eigen-

value problem (A − λB)x = 0. Quadratic, and more generally, polynomial eigen-

value problems are usually converted to a degree one problem of larger dimension—

the process of linearization. For example the pencil

A− λB =

A0 0

0 I

− λ
−A1 −A2

I 0

 (3.1.3)

has the same eigenvalues as (4.1.1) with right eigenvectors of the form z =
[
x
λx

]
for finite eigenvalues. This is the pencil used by the MATLAB function polyeig

for quadratics of the form (3.1.2). This conversion to linear form allows standard

numerical methods (e.g., the QZ algorithm [51] or Krylov subspace methods for

large sparse problems) to be applied. In doing so however, it is important to un-

derstand the influence of the linearization process on the accuracy and stability of

the computed solution. Indeed Tisseur showed that solving the QEP by applying a

backward stable algorithm (e.g. the QZ algorithm) to a linearization can be back-

ward unstable [56]. Also, unless the block structure of the linearization is respected

(and it is not by standard techniques), the conditioning of the solutions of the larger

linear problem can be worse than those for the original quadratic (4.1.1), since the

class of admissible perturbations is larger. For example, eigenvalues that are well

conditioned for problem (4.1.1) may then be ill conditioned for linearizations [32],

[33]. For these reasons, the numerical solution of QEPs requires special attention.

In a number of applications, such as structural mechanics [15], constrained

multibody systems [9], 3D computer vision problems [39], vibration of railtracks

[45], either, or both, of the leading A2 or trailing A0 coefficients are singular.

CHAPTER 3. ALGORITHM FOR QUADRATIC EIGENPROBLEMS 51

When both A0 and A2 are singular, the quadratic Q(λ) may be nonregular (i.e.,

det(Q(λ)) ≡ 0). In this case the QZ algorithm when applied to a linearization of

Q may deliver meaningless results. Regular quadratics (i.e., det(Q(λ)) 6≡ 0) with

singular A0 and/or A2 have zero and/or infinite eigenvalues. Theoretically, the QZ

algorithm handles infinite eigenvalues well [60]. However, experiments of K̊agström

and Kressner [36] show that if infinite eigenvalues are not extracted before starting

the QZ steps, they may never be detected due to the effect of rounding errors in

floating point arithmetic.

In one quadratic eigenvalue problem occurring in the vibration analysis of rail

tracks under excitation arising from high speed trains [35], [45, p.18], the defla-

tion of zero and infinite eigenvalues had a significant impact on the quality of the

remaining computed finite eigenvalues.

In this work we present a general purpose eigensolver for dense QEPs, which in-

corporates recent contributions on the numerical solution of polynomial eigenvalue

problems, namely a scaling of the eigenvalue parameter prior to the computation,

[6], [14] and a choice of linearization with favourable conditioning and backward

stability properties [30], [32], [33]. Our algorithm includes a preprocessing step

that reveals the zero and infinite eigenvalues contributed by singular leading and

trailing matrix coefficients and deflates them. The preprocessing step may also

detect nonregularity (although this is not guaranteed). Our algorithm takes ad-

vantage of the block structure of the chosen linearization. We have implemented it

as a MATLAB [49] function called quadeig, which makes use of functions from the

NAG Toolbox for MATLAB [53]. Our eigensolver can in principle be extended to

matrix polynomials of degree higher than two. The preprocessing step can easily

be extended using the same type of linearization, merely of a higher degree matrix

polynomial. For scaling of the eigenvalue parameter prior to the computation we

can use the method described in Section 2.3.1 on page 44 [6], which extends the

CHAPTER 3. ALGORITHM FOR QUADRATIC EIGENPROBLEMS 52

Fan, Lin and Van Dooren scaling for matrix polynomials of degree two.

In this chapter we write Q to represent (in addition to matrices A,B) the

quadratic matrix polynomial Q(λ) (that was previously written as Q(λ)), so we can

use Q to represent a matrix transformation, for example from a QR factorization.

We also write a matrix pencil as A− λB rather than λA+B.

3.2 Choice of Linearization

The definition of a linearization, L(λ) = A−λB is a of a quadratic Q(λ) was given

earlier in Definition .

For a given quadratic Q, there are an infinite number of linearizations (the

pencil (3.1.3) is just one example). These linearizations can have widely varying

eigenvalue condition numbers [32], and approximate eigenpairs of Q(λ) computed

via linearization can have widely varying backward errors [30]. In the following

subsection we define the terms backward error and condition number more precisely

focusing on the particular linearization that our algorithm will employ.

3.2.1 Backward Error and Condition Number

Definitions of backward error and condition number for quadratics and lineariza-

tions are contained in Section 1.5.3, we recall only the special case for quadratics.

Explicit expressions for backward errors for Q and L are given by [30]:

ηQ(x, α, β) =
‖Q(α, β)x‖2(∑2

i=0 |α|i|β|2−i‖Ai‖2
)
‖x‖2

, ηL(z, α, β) =
‖L(α, β)z‖2

(|β|‖A‖2 + |α|‖B‖2) ‖z‖2
,

(3.2.1)

The definitions and explicit expressions for the backward error ηQ(y∗, α, β) and

ηL(w∗, α, β) of a left approximate eigenpair (y∗, α, β) and (w∗, α, β) of Q and L are

analogous to those for right eigenpairs.

CHAPTER 3. ALGORITHM FOR QUADRATIC EIGENPROBLEMS 53

The eigenvalue condition number κL(α, β) for the pencil L(α, β) = βA − αB

is obtained by a trivial extension of a result of Dedieu and Tisseur [13, Thm. 4.2]

that treats the unweighted Frobenius norm, this yields the explicit formula

κL(α, β) =
√
|β|2‖A‖22 + |α|2‖B‖22

‖w‖2‖z‖2∣∣w∗(β̄DαL − ᾱDβL)|(α,β)z
∣∣ , (3.2.2)

where Dα ≡ ∂
∂α

and Dβ ≡ ∂
∂β

, where z, w are right and left eigenvectors of L

associated with (α, β). Note that the denominators of the expressions (3.2.2) is

nonzero for simple eigenvalues. Also, these expressions are independent of the

choice of representative of (α, β) and of the scaling of the eigenvectors. Let (α, β)

and (α̃, β̃) be the original and perturbed simple eigenvalues, normalized such that

‖(α, β)‖2 = 1 and (α, β)(α̃, β̃)∗ = 1. Then the angle between the original and

perturbed eigenvalues satisfies

∣∣θ((α, β), (α̃, β̃)
)∣∣ ≤ κQ(α, β)‖∆A‖+ o(‖∆A‖). (3.2.3)

Note that ‖∆A‖ ≈ ηQ(α̃, β̃) := minx 6=0 ηQ(x, α̃, β̃) = miny 6=0 ηQ(y∗, α̃, β̃). Hence

the product of the condition number (1.5.4) with the backward error (3.2.1) pro-

vides an approximate upper bound on the angle between the original and computed

eigenvalues. The condition numbers and backward errors are optionally returned

by our algorithm.

We want to use a linearization L that is as well conditioned as the original

quadratic Q and for it to lead, after recovering approximate left and right eigen-

vectors of Q from those of L, say w and z, to a backward error of the same order

of magnitude as that for L, that is, we would like

κQ(α, β) ≈ κL(α, β), ηQ(x, α, β) ≈ ηL(z, α, β), ηQ(y∗, α, β) ≈ ηL(w∗, α, β)

CHAPTER 3. ALGORITHM FOR QUADRATIC EIGENPROBLEMS 54

for all eigenvalues (α, β).

3.2.2 Companion Linearizations

Companion linearizations are the most commonly used linearizations in practice.

Several forms exist. The first and second companion linearization of Q (defined

earlier in Table 2.1) are given by

C1(λ) =

 A1 A0

−In 0

−λ
−A2 0

0 −In

 , C2(λ) =

A1 −In

A0 0

−λ
−A2 0

0 −In

 .
(3.2.4)

Note that C2(λ) is the block transpose of C1(λ). Other companion forms can be

obtained, for example, by taking the reversal of the first or second companion form

of rev(Q),

C3(λ) =

A0 0

0 In

− λ
−A1 −A2

I 0

 , C4(λ) =

A0 0

0 I

− λ
−A1 In

−A2 0


or simply by swapping the block rows or block columns of these linearizations.

Companion linearizations have a number of desirable properties:

(a) They are always linearizations even if Q(λ) is nonregular. Moreover they are

strong linearizations [42]: they preserve the partial multiplicities of infinite

eigenvalues.

(b) The left and right eigenvectors of Q(λ) are easily recovered from those of the

companion form ([23], [30] and (3.2.5) for C2).

(c) If the quadratic is well scaled (i.e., ‖Ai‖2 ≈ 1, i = 0: 2), companion lineariza-

tions have good conditioning and backward stability properties (see below).

CHAPTER 3. ALGORITHM FOR QUADRATIC EIGENPROBLEMS 55

Amongst companion linearizations Ci(λ) = Ai− λBi we are looking for one for

which

(d) the Ai matrix is in block upper triangular form, thereby reducing the compu-

tational cost of the Hessenberg-triangular reduction step of the QZ algorithm,

(e) the linearization can easily be transformed to a block upper triangular form

revealing zero and infinite eigenvalues, if any.

The first and second companion linearizations in (3.2.4) satisfy desideratum

(d) and we will show in Section 3.3 that in the presence of singular leading and

trailing matrix coefficients, desideratum (e) can easily be achieved for the second

companion linearization. Hence our eigensolver will use C2(λ).

Concerning property (b), the second companion form C2(λ) in (3.2.4) has right

eigenvectors z and left eigenvectors w of the form

z =

z1
z2

 =



 αx

−βA0x

 if α 6= 0, βx

βA1x

 if α = 0,

w =

w1

w2

 =

αy
βy

 , (3.2.5)

where x, y are right and left eigenvectors of Q(λ) with eigenvalue λ = α/β. The

formulae in (3.2.5) show that x can be recovered from the first n entries of z or by

solving A0x = z2, whereas y can be recovered from either the n first entries or the

last n entries of w.

The experiments in [30] and [32] show that for the first companion linearization

in (3.2.4),

κQ(α, β)� κC1(α, β), ηQ(x, α, β)� ηC1(z, α, β), ηQ(y∗, α, β)� ηC1(w
∗, α, β)

(3.2.6)

CHAPTER 3. ALGORITHM FOR QUADRATIC EIGENPROBLEMS 56

can happen when the coefficient matrices Ai, i = 0: 2 vary largely in norm, (3.2.6)

also holds for the second companion linearization C2. The scaling of Fan, Lin,

and Van Dooren [14] tries to bring the 2-norms of A0, A1, and A2 close to 1, in

order to overcome this problem. It converts Q(λ) = λ2A2 + λA1 + A0 to Q̃(µ) =

µ2Ã2 + µÃ1 + Ã0, where

λ = γµ, Q(λ)δ = µ2(γ2δA2) + µ(γδA1) + δA0 ≡ Q̃(µ), (3.2.7)

γ =
√
A0/A2, δ = 2/(A0 + A1γ). (3.2.8)

Note that ηQ(x, α, β) = ηQ̃(x, α̃, β̃) , where µ = α̃/β̃, so this scaling has no effect

on the backward error for the quadratic, however κQ(α, β) is scale-dependent.

Let (z, w, α, β) be an approximate eigentriple of the second companion lineariza-

tion C2 in (3.2.4) of the scaled quadratic Q̃ with |α|2 + |β|2 = 1. Define

ω = ω(α, β) :=
1 + τ

1 + |αβ|τ
, τ =

‖A1‖2√
‖A2‖2 ‖A0‖2

. (3.2.9)

Using the framework developed in [23], [30] we can show that

1√
2
≤

ηQ̃(w∗i , α, β)

ηC2
(w∗, α, β)

≤ 27/2ω
‖w‖2
‖wi‖2

, i = 1, 2, (3.2.10)

1√
2
≤
ηQ̃(z1, α, β)

ηC2
(z, α, β)

≤ 23/2ω
‖z‖2
‖z1‖2

(3.2.11)

1

2
√

2
≤ κC2(α, β)

κQ̃(α, β)
≤ 4

√
3ω, (3.2.12)

where w1 = w(1 : n), w2 = w(n + 1: 2n) and z1 = z(1 : n). In interpreting these

bounds recall that, for an exact left eigenvector of C2(λ),

‖w‖2
‖w1‖2

≈ 1 for |α| ≥ |β|, ‖w‖2
‖w2‖2

≈ 1 for |α| ≤ |β| (3.2.13)

CHAPTER 3. ALGORITHM FOR QUADRATIC EIGENPROBLEMS 57

and that for an exact right eigenvector z of C2(λ), ‖z‖2/‖z1‖2 ≈ 1.

Hence (3.2.10)–(3.2.11) show that if ω = O(1) then ηQ̃ ≈ ηC2
for both left and

right eigenpairs. It is shown in [30] that

1 ≤ 1 + τ

1 + 1
2
τ
≤ ω ≤ min

{
1 + τ,

1

|αβ|

}
≤ 1 + τ. (3.2.14)

Hence, ω = O(1) if τ � 1, or equivalently, ‖A1‖2 <∼ (‖A2‖2‖A0‖2)1/2, which in

the terminology of damped mechanical systems means that the problem is not too

heavily damped. When τ � 1 the penultimate inequality in (3.2.14) will still be

of order 1 if |α||β| = |α|
√

1− |α|2 = O(1), which is the case unless |λ| = |α|/|β| =

|α|/
√

1− |α|2 is small or large.

This analysis and the numerical experiments in Section 3.6 suggest applying

the scaling of Fan, Lin, and Van Dooren to the original quadratic Q(λ) prior to

building the second companion linearization C2(λ). For quadratics that are not too

heavily damped, the bounds in (3.2.10)–(3.2.11) guarantee that if the eigenpairs of

C2(λ) are computed with a small backward error (this is the case if we use the QZ

algorithm) then we can recover eigenpairs for Q(λ) with a small backward error.

Algorithm 2 (Fan, Lin and Van Dooren scaling [14]). Given n × n matrices

A2, A1, A0, this algorithm overwrites A2, A1, A0 with scaled matrices, attempting

to achieve ‖A2‖F ≈ ‖A1‖F ≈ ‖A0‖F ≈ 1 and returns a scalar γ such that if λ, µ

are eigenvalues of the unscaled and scaled quadratic then λ = µγ. No scaling is

performed when ‖A0‖F = 0 or ‖A2‖F = 0.

γ = 1, g2 = ‖A2‖F , g0 = ‖A0‖F

if g0 6= 0 and g2 6= 0

g1 = ‖A1‖F

γ =
√
g0/g2

δ = 2/(g0 + g1γ)

CHAPTER 3. ALGORITHM FOR QUADRATIC EIGENPROBLEMS 58

A2 = γ2δA2, A1 = γδA1, A0 = δA0

end

3.3 Deflation of 0 and ∞ Eigenvalues

The eigenvalues of a regular n × n quadratic Q(λ) are the zeros of the charac-

teristic polynomial det
(
Q(λ)

)
= det(A2)λ

2n + lower order terms, so when A2 is

nonsingular, Q(λ) has 2n finite eigenvalues. When A2 is singular Q(λ) has d finite

eigenvalues to which we add 2n − d infinite eigenvalues, where d is the degree of

det(Q(λ)).

Recall that λ is an eigenvalue of Q if and only if 1/λ is an eigenvalue of the

reversal of Q,

rev(Q(λ)) := λ2A0 + λA1 + A2

where 0 and ∞ are regarded as reciprocals. If r0 = rank(A0) < n then Q has at

least n−r0 zero eigenvalues and if r2 = rank(A2) < n, Q has at least n−r2 infinite

eigenvalues.

As an example, the quadratic

Q(λ) = λ2

0 1

0 0

+ λA1 +

0 0

1 0


with A1 such that det(Q(λ)) 6≡ 0 has at least one infinite eigenvalue and at least

one zero eigenvalue. If A1 =

0 1

0 1

 then the remaining eigenvalues are ∞ and

−1.

Let us denote by Nr(A) =
{
x ∈ Cn : Ax = 0

}
and Nl(A) =

{
y ∈ Cn : y∗A = 0

}
the right and left nullspace, respectively of A ∈ Cn×n. Note that the right and left

eigenvectors of Q associated with the 0 and ∞ eigenvalues generate the right and

CHAPTER 3. ALGORITHM FOR QUADRATIC EIGENPROBLEMS 59

left nullspace of A0 and A2, respectively.

Our algorithm checks the rank of A0 and A2; when one or both of them are

singular, it deflates the corresponding zero and infinite eigenvalues. In the next

section we describe and justify how our algorithm checks the rank of the leading and

trailing coefficients using a matrix factorization, and how a basis for the nullspace

can be obtained from the factorization.

3.3.1 Rank and Nullspace Determination

A QR factorization with column pivoting (see Definition 6) can be used to deter-

mine the numerical rank of an n× n matrix A.

For sufficiently small ‖E‖2, it is shown in [28, Thm. 5.2] that A + E has the

QR factorization with column pivoting

Q̄∗(A+ E)P =


k n−k

k R̄11 R̄12

n−k 0 R̄22

, (3.3.1)

with

‖R̄22‖2
‖A‖2

≤ ‖E‖2
‖A‖2

(1 + ‖R−111 R12‖2) +O

(
‖E‖2
‖A‖2

)2

. (3.3.2)

The quantity ‖R−111 R12‖2 can be arbitrarily large and (3.3.2) shows that even if

‖E‖2 is small, ‖R̄22‖2 can be much larger than the distance σk+1(A + E) 6 ‖E‖2

from A + E to the rank k matrices. Empirical observations show however, that

‖R−111 R12‖2 is usually small. Hence if A + E is close to a rank k matrix then R̄22

will be small. Our algorithm sets R̄22 to zero if ‖R̄22‖2 ≤ nu‖A‖2, where u is

the unit roundoff. This test can yield a numerical rank that is an overestimate of

the rank but this does not affect the stability of our algorithm. Indeed we only

deflate zero and infinite eigenvalues using QR factorizations with column pivoting.

CHAPTER 3. ALGORITHM FOR QUADRATIC EIGENPROBLEMS 60

Overestimating the rank results in deflating fewer eigenvalues than we could have

done, had the rank been computed correctly. The QZ algorithm then has to solve

a generalized eigenproblem of larger dimension.

The last n − k columns of Q in (6) span the left null space of A. A basis

for the right nullspace of A is obtained by postmultiplying (6) by a sequence of

Householder transformations H1, . . . , Hk that reduce R12 to zero. This leads to a

complete orthogonal decomposition of A,

Q∗AZ =


k n−k

k T11 0

n−k 0 0

, (3.3.3)

where Z = PH1 · · ·Hr and Q and P are as in (6) (see [21, p. 250]). Then the last

n− k columns of PH span the right nullspace of A.

The LAPACK routine xGEQP3 computes (6). In floating point arithmetic, how-

ever, xGEQP3 computes

fl(Q∗AP) =


r n−r

r R̂11 R̂12

n−r 0 R̂22

. (3.3.4)

because of rounding errors. We set R̂22 to zero if ‖R̂22‖2 ≤ nu‖A‖2, where u is the

unit roundoff and call r in (3.3.4) the numerical rank of A. Once (3.3.4) is computed

and R̂22 set to zero, the LAPACK routine xTZRZF can be used to eliminate the R12

block to yield a complete orthogonal decomposition.

CHAPTER 3. ALGORITHM FOR QUADRATIC EIGENPROBLEMS 61

3.3.2 Block Triangularization of C2(λ)

Throughout this section we assume that r0 := rank(A0) ≥ r2 =: rank(A2) (if r0 <

r2 we work with rev(Q(λ)) instead of Q(λ) and swap the factorizations (3.3.5)).

Let

Q∗iAiPi =


ri n−ri

r0 R
(i)
11 R

(i)
12

n−r0 0 0

 =

R(i)

0

 , i = 0, 2, (3.3.5)

be QR factorizations with column pivoting of A0 and A2. With the help of these

factorizations and another complete orthogonal decomposition when both A0 and

A2 are singular (i.e., r0, r2 < n), we show how to transform the second companion

form C2(λ) =
[
A1

A0

−I
0

]
− λ
[−A2

0
0
−I

]
in (3.2.4) into block upper triangular form

QC2(λ)V =


A11 A12 A13

0 A22 A23

0 0 0n−r0

− λ

B11 B12 B13

0 0n−r2 B23

0 0 In−r0

 , (3.3.6)

where the 2n × 2n matrices are partitioned conformably. When A22 is singular

then det(Q(λ)) = det(C2(λ)) ≡ 0 and hence Q(λ) is nonregular. When A22 is

nonsingular, (3.3.6) reveals n− r0 zero eigenvalues and n− r2 infinite eigenvalues.

The remaining eigenvalues are those of the (r1 + r2)× (r1 + r2) pencil A11 − λB11.

We consider three cases.

(i) r0 = r2 = n. In this case there are no zero or infinite eigenvalues. We

make use of the factorization of A2 in (3.3.5), however, to reduce the leading

coefficient
[
A2

0
0
I

]
of the linearization to upper triangular form, a necessary

CHAPTER 3. ALGORITHM FOR QUADRATIC EIGENPROBLEMS 62

step in the QZ algorithm. This is achieved with

Q =

Q∗2 0

0 In

 , V =

P2 0

0 In


so that

QC2(λ)V =

Q∗2A1P2 −Q∗2
A0P2 0

− λ
R2 0

0 I

 = A11 − λB11.

(ii) r0 < r2 = n. In this case there are at least n− r0 zero eigenvalues, which we

deflate with

Q =

Q∗2 0

0 Q∗0

 , V =

P2 0

0 Q0


so that

QC2(λ)V =


n r0 n−r0

n X11 X12 X13

r0 X21 0 0

n−r0 0 0 0

− λ

R(2) 0 0

0 Ir0 0

0 0 In−r0

 (3.3.7)

where X11 = Q∗2A1P2, [X12, X13] = −Q∗2Q0 and X21 = R(0)P ∗0P2. The pencil

(3.3.7) is in the form (3.3.6) with A11 =
[
X11

X21

X12

0

]
and B11 =

[−R(2)

0
0

−Ir0

]
of

dimension (n+ r0)× (n+ r0). As in case (i), B11 is upper triangular.

(iii) r0 ≤ r2 < n. There are at least n − r0 zero eigenvalues and at least n − r2

infinite eigenvalues that we deflate as follows. With

Q̃ =

Q∗2 0

0 Q∗0

 , Ṽ =

In 0

0 Q0



CHAPTER 3. ALGORITHM FOR QUADRATIC EIGENPROBLEMS 63

we obtain

Q̃C2(λ)Ṽ =



r2 n−r2 r0 n−r0

r2 X11 X12 X13 X14

n−r2 X21 X22 X23 X24

r0 X31 X32 0 0

n−r0 0 0 0 0


− λ


Y11 Y12 0 0

0 0 0 0

0 0 −Ir0 0

0 0 0 −In−r0


,

(3.3.8)

where

[X31, X32] = R(0)P0,

X11 X12

X21 X22

 = Q∗2A1,

X13 X14

X23 X24

 = −Q∗2Q0,

and [Y11, Y12] = −R(2)P2. Let

[r2 n−r2 r0

n−r2 X21 X22 X23

]
= Q3

[n−r2 r0+r2

R3 0
]
Z3

be a complete orthogonal decomposition and let

Q =


Ir2 0 0 0

0 0 Ir0 0

0 Q∗3 0 0

0 0 0 In−r0


Q̃, V = Ṽ


n+r0 n−r0

Z∗3 0

0 In−r0




0 In−r2 0

Ir2+r0 0 0

0 0 In−r0

 .

Then easy calculations show that QC2(λ)V has the form (3.3.6) with A22 =

R3.

CHAPTER 3. ALGORITHM FOR QUADRATIC EIGENPROBLEMS 64

3.4 Left and Right Eigenvectors

The computation of the left and right eigenvectors differ so we consider them

separately.

3.4.1 Right Eigenvectors

When either or both of A0 and A2 are singular, the vectors spanning their right

nullspaces Nr(A0) and Nr(A2) are right eigenvectors associated with the 0 and ∞

eigenvalues of Q(λ). These nullspaces can be obtained from (3.3.5) by zeroing R
(i)
12 ,

i = 0, 2 to obtain a complete orthogonal decomposition as in (3.3.3), that is,

Q∗jAjZj =


rj n−rj

rj T j11 0

n−rj 0 0

.
The last n− r0 columns of Z0 are eigenvectors of Q with eigenvalue 0 and the last

n− r2 columns of Z2 are eigenvectors of Q with eigenvalue ∞.

The eigenvectors associated with the remaining eigenvalues are recovered from

those of the linearization C2(λ). If z̃ is a right eigenvector of the (r0+r2)×(r0+r2)

pencil A11 − λB11 in (3.3.6) then

z =

n z1

n z2

 = V

z̃
0


is a right eigenvector of C2(λ). We also know that z must have the form displayed

in (3.2.5). However, in floating point arithmetic when A0 is nonsingular and for

CHAPTER 3. ALGORITHM FOR QUADRATIC EIGENPROBLEMS 65

finite nonzero eigenvalues,

z =

z1
z2

 =

 αx1

−βA0x2

 .
We can use the QR factorization of A0 in (3.3.5) to solve the linear system z2 =

−βA0x2 for x2 efficiently. We return as approximate eigenvector ofQ corresponding

to the eigenvalue λ = α/β the vector xi, i = 1, 2 which minimizes ηQ(xi, α, β).

Given two approximate eigenpairs (λ, x1) and (λ, x2), with backward errors

ηQ(λ, x1) and ηQ(λ, x2), if neither of x1 nor x2 yields an acceptable backward error,

we could attempt to obtain an improvement by determining a linear combination

x3 = a1x1 + a2x2 that solves

min
a∈C2

‖Q(λ)Xa‖2
‖Xa‖2

,

where X = [x1, x2]. For that we take the GSVD [2, pp. 257–259] of the pair of

n× 2 matrices (Q(λ)X,X),

Q(λ)X = UCY −1, X = V SY −1,

where U, V are unitary, Y is nonsingular and C = diag(c1, c2), S = diag(s1, s2)

with c1, c2, s1, s2 ≥ 0. Thus if we let a = Y b,

min
a∈C2

‖Q(λ)Xa‖22
‖Xa‖22

= min
b∈C2

‖Cb‖22
‖Sb‖22

= min
b∈C2

b∗C∗Cb

b∗S∗Sb

which is the smallest eigenvalue of C∗C − λS∗S . So the minimum is achieved at

b = ei, where |ci/si| is minimal. Hence a = Y ei.

In finite precision, however, there can be a problem if either one or both of

CHAPTER 3. ALGORITHM FOR QUADRATIC EIGENPROBLEMS 66

‖Q(λ)X‖2 or ‖X‖2 are close to the unit roundoff. This can result in an ill-

conditioned Y matrix which causes problems in returning an accurate eigenvector

when we solve for a1 and a2 to yield x3. In addition, from numerical experiments

ηQ(λ, x3) is rarely significantly smaller than ηQ(λ, xi), i = 1, 2 (if at all).

3.4.2 Left Eigenvectors

When A0 is singular, the last n − r0 columns of Q0 in (3.3.5) are eigenvectors of

Q associated with the n − r0 deflated zero eigenvalues and when A2 is singular,

the last n − r2 columns of Q2 in (3.3.5) are eigenvectors of Q associated with the

deflated n− r2 infinite eigenvalues.

Let w be a left eigenvector of C2(λ) corresponding to an eigenvalue λ = α/β

of A11 − λB11 in (3.3.6). In exact arithmetic w has the form displayed in (3.2.5)

but in floating point arithmetic, w1 and w2 are generally not parallel. If ω = O(1)

then (3.2.10) and (3.2.12) predict optimal backward error for w1 if |λ| > 1 and w2

if |λ| 6 1. If ω � O(1) then we choose whichever of w1 or w2 yields the smallest

backward error.

3.5 Algorithm

Algorithm 3 (Quadratic Eigenvalue Solver). Given three n×n matrices A2, A1, A0,

and a rank tolerance tol this algorithm computes a vector E of length 2n containing

the eigenvalues of Q(λ) = λ2A2 + λA1 + A0, and optionally, two n × 2n matrices

X and Y containing the corresponding right and left eigenvectors.

1. Scale A2, A1, A0 using Algorithm 2 (Fan, Lin and Van Dooren scaling).

Optionally scale using diagonal scaling with scaling parameter ζ.

2. Build block upper triangular form (3.3.6) using Algorithm 3.

CHAPTER 3. ALGORITHM FOR QUADRATIC EIGENPROBLEMS 67

If eigenvectors are desired, store transformation matrices Q and V.

3. Compute the Schur decomposition of A11 − λB11.

To summarize, our eigensolver performs the following steps:

1. Scaling of eigenvalue parameter using Algorithm 2.

2. Rank determination of A2 and A0 (see Section 3.3.1).

3. Block triangularization of second companion linearization to achieve (3.3.6).

4. Compute the Schur decomposition of A11 − λB11.

5. Optionally compute:

� Right/left eigenvectors.

� Eigenvalue condition numbers.

� Backward errors of approximate right/left eigenpairs.

3.6 Numerical Experiments

We now describe a collection of numerical experiments designed to give insight into

Algorithm 3, its performance in floating point arithmetic, and the implementation

issues. Our computations were done in MATLAB 7.9.0 (R2009b) under Windows

XP (SP3) with a Pentium E6850, for which u = 2−53 ≈ 1.1× 10−16.

Experiment 1. We ran our algorithm quadeig on some quadratic eigenvalue

problems from NLEVP [7]. Table 3.1 displays for each problem the largest back-

ward error for the right eigenpairs returned by the MATLAB function polyeig and

the largest backward errors for the right and left eigenpairs returned by quadeig.

For this set of problems quadeig returns right/left eigenpairs with backward er-

rors close to the machine precision except for the cd player and pdde stability

CHAPTER 3. ALGORITHM FOR QUADRATIC EIGENPROBLEMS 68

problems. For these problems, the large values for the right/left backward errors

are predicted by the upper bounds for the growth in backward errors of eigenpairs

of the scaled quadratic from those of those of the linearization in (3.2.10)—(3.2.11).

The quantity ω forms part of these growth factors and we see that ω ≈ 104 for the

cd player problem and ω ≈ 0.5× 102 for the pdde stability problem.

Experiment 2. We tested quadeig against polyeig on QEPs with singular lead-

ing and/or trailing coefficient matrices. Table 3.2 shows that deflating speeds up

the execution time. We do not see a signficant decrease in the computation time

for the spring dashpot quadratic where n = 1002 and the leading coeffient M has

low rank r2 = 2, however as seen in Section 1.5.4 the leading coefficient is of the

form M = diag(ρM̃11, 0). Due to the structure in M the routine DGGBAL (used in

MATLAB’s eig which is called by polyeig to solve the linear problem) is able to

permute the linearization to peform deflation. As a result there is not as signficant

a decrease in the compuation time when quadeig is used to solve the problem.

polyeig cannot cope with computing both eigenvalues and eigenvectors for the

railtrack2 problem on the machine used for these computations (hence this test

was omitted from Table 3.1).

The speaker box problem is a 107 × 107 quadratic in the NLEVP collection,

which comes from a finite element model of a speaker box [37, Ex. 5.5]. The stiffness

matrix A0 has rank 106 < n and the matrix coefficients have large variation in the

norms: ‖M‖2 = 1, ‖C‖2 = 5.7 × 10−2, ‖K‖2 = 1.0 × 107. The zero eigenvalue is

not detected by polyeig and is computed as ±7.4e-2.

Experiment 3. We investigate the effect of applying the diagonal scaling of Sec-

tion 2.3.2 with the scaling parameter set to ζ = 1 which is the default suggested in

[6] if there is no knowledge of the desired magnitude of eigenvalues. We first apply

the Fan, Lin and Van Dooren scaling and then diagonal scaling. Table 3.3 contains

CHAPTER 3. ALGORITHM FOR QUADRATIC EIGENPROBLEMS 69

Table 3.1: Quadratic eigenvalue problems from NLEVP collection. Largest back-
ward errors of eigenpairs, and corresponding eigenvalue λ, computed by polyeig

and quadeig. D indicates that deflation was performed by quadeig since the
problem has singular leading or trailing coefficients.

polyeig quadeig

Problem n λ = α/β ηmax
Q (x, α, β) ηmax

Q (x, α, β) ηmax
Q (y∗, α, β)

acoustic_wave_1d 10 2.8e+000 2.2e-015 6.5e-016 6.2e-016
acoustic_wave_2d 30 -2.6e+000 5.3e-016 5.1e-016 5.5e-016
bicycle 2 -7.8e-001 1.3e-015 1.1e-016 4.6e-017
bilby 5 -8.8e-018 2.9e-016 4.9e-016 1.9e-016
cd_player 60 -1.7e+006 1.7e-010 2.2e-012 4.9e-012
closed_loop 2 -1.1e+000 1.8e-016 1.5e-016 1.2e-016
damped_beam 200 -8.2e+000 3.7e-009 8.6e-016 7.1e-016
dirac 80 -7.0e+000 3.7e-015 1.3e-015 1.6e-015
gen_hyper2 15 9.8e+000 7.8e-016 5.2e-016 6.8e-016
intersection 10 2.5e+001 3.7e-017 1.3e-016 1.3e-016
hospital 24 -2.5e+000 2.5e-013 1.1e-015 1.1e-015
metal_strip 9 -4.5e+000 3.1e-014 4.9e-016 3.8e-016
mobile_manipulator 5 -5.2e-002 1.2e-018 5.8e-017 1.5e-017 D
omnicam1 9 3.7e-001 1.8e-015 1.2e-016 4.4e-017
omnicam2 15 2.6e-001 3.9e-017 1.5e-016 2.8e-016
pdde_stability 225 -4.0e+001 4.5e-014 1.3e-014 1.4e-014
power_plant 8 -3.2e+000 1.3e-008 4.9e-016 4.2e-017
qep1 3 3.3e-001 2.0e-016 7.1e-017 3.5e-017
qep2 3 0.0e+000 9.6e-017 1.2e-016 1.2e-016
qep3 3 3.0e+000 9.4e-017 1.1e-016 9.0e-017
railtrack 1005 9.2e+000 2.0e-008 2.3e-015 5.9e-015 D
relative_pose_6pt 10 -8.4e-003 1.8e-015 5.0e-016 1.5e-016
shaft 400 1.7e-003 5.2e-008 7.2e-016 7.1e-016 D
sign1 81 -6.1e-001 2.1e-016 7.1e-016 6.9e-016
sign2 81 2.7e+000 5.1e-016 1.7e-015 1.1e-015
sleeper 10 -1.3e+001 1.1e-015 4.7e-016 4.7e-016
speaker_box 107 -2.0e-008 1.7e-011 2.7e-016 3.0e-016 D
spring 5 -2.9e+001 2.6e-016 4.7e-016 5.6e-016
spring_dashpot 10 -6.0e-003 1.1e-015 3.3e-016 1.3e-016 D
spring_dashpot 1002 -1.0e-001 7.4e-015 4.0e-015 6.3e-015 D
wing 3 9.5e-002 4.8e-015 2.1e-016 4.8e-016
wiresaw1 10 1.0e-015 1.9e-014 3.4e-016 3.5e-016
wiresaw2 10 -8.0e-001 3.5e-014 9.1e-016 8.3e-016

CHAPTER 3. ALGORITHM FOR QUADRATIC EIGENPROBLEMS 70

Table 3.2: Execution time in seconds for eigenvalue computation of quadratics in
NLEVP with singular A0 and/or A2.

Problem n r0 r2 polyeig quadeig

speaker_box 107 106 107 0.20 0.10
shaft 400 400 199 1.94 1.68

spring_dashpot 1002 1002 2 15.06 13.95
railtrack 1005 67 67 25.76 4.69

railtrack2 1410 705 705 203.06 97.98

maximum backward errors for the cd player and speaker box quadratics from

the NLEVP collection, for which diagonal scaling has a significant impact on the

solution compared with applying just the scaling of Fan, Lin and Van Dooren as

in Table 3.1.

For the cd player problem the use of diagonal scaling reduces τ and we see a

significant improvement in the maximum backward error. After applying diagonal

scaling to the speaker box problem, however, the value of τ increases from when

only the scaling of Fan, Lin and Van Dooren is applied.

Table 3.3: cd player and speaker box problems from NLEVP collection. Largest
backward errors of eigenpairs computed by quadeig comparing two scaling types,
FLV (Fan, Lin and Van Dooren scaling only) and DS, FLV (diagonal scaling, then
Fan, Lin and Van Dooren scaling).

Problem Scaling ηmax
Q (x, α, β) ηmax

Q (y∗, α, β) max(ω) τ

cd_player FLV 5.2e-012 1.1e-011 2.2e+04 2.2e+04
DS, FLV 8.7e-014 8.9e-014 4.0e+01 3.9e+01

speaker_box FLV 3.5e-016 5.1e-016 1.0e+00 1.8e-05
DS, FLV 2.1e-013 3.4e-015 6.1e+02 6.0e+02

CHAPTER 3. ALGORITHM FOR QUADRATIC EIGENPROBLEMS 71

3.7 Conclusion

We have presented a general purpose eigensolver for dense QEPs, which, in compar-

ison to the existing MATLAB routine polyeig incorporates recent contributions on

the numerical solution of polynomial eigenvalue problems, namely a scaling of the

eigenvalue parameter prior to the computation, and a choice of linearization with

favourable conditioning and backward stability properties and, if they are present,

deflation of infinite and zero eigenvalues using rank revealing factorizations.

The algorithm quadeig has been tested on real problems from the NLEVP

benchmark collections, and from the results we can see an increase in accuracy

of the solution in terms of backward error. These improvements are a result of a

combination of implementing the scaling of Fan, Lin and Van Dooren, and using

recent theory to recover the eigenvectors, and including a preprocessing step that

reveals the zero and infinite eigenvalues contributed by singular leading and trail-

ing matrix coefficients and deflates them. For problems with singular leading or

trailing coefficients, the preprocessing step can lead to a signficant decrease in the

computation time, for example in the railtrack and railtrack2 problems.

The use of diagonal scaling can result in an improvement in accuracy, but

requires the order of magnitude of desired eigenvalues. Since we are producing

a general purpose algorithm we cannot in general expect the user to specify the

magnitude of the desired eigenvalues. Hence we only include diagonal scaling in

our algorithm as an option.

Chapter 4

Deflating Quadratic Matrix

Polynomials with Structure

Preserving Transformations

4.1 Introduction

We consider the quadratic matrix polynomial Q(λ) = λ2M + λC + K, where

M,C,K ∈ Rn×n with M nonsingular, and the associated quadratic eigenvalue

problem

Q(λ)x = 0, y∗Q(λ) = 0, (4.1.1)

where λ is an eigenvalue, x and y are corresponding right and left eigenvectors,

respectively (where if M , C and K are symmetric x = ȳ). Throughout, we use

the subscript R to denote right eigenvectors or when referring to transformations

applied to the right, and the subscript L for left eigenvectors and transformations

applied to the left. We also denote by Λ(Q) the spectrum of Q.

Given two eigentriples (λj, xj, yj), j = 1, 2 satisfying appropriate conditions,

72

CHAPTER 4. STRUCTURE PRESERVING TRANSFORMATIONS 73

we propose a deflation procedure that decouples Q(λ) into a quadratic Qd(λ) =

λ2Md +λCd +Kd of dimension n−1 and a scalar quadratic q(λ) = λ2m+λc+k =

m(λ− λ1)(λ− λ2) such that (a)

Λ(Q) = Λ(Qd) ∪ {λ1, λ2},

where Λ(Q) denotes the spectrum of Q and (b) there exist well-defined relations

between the eigenvectors of Q(λ) and those of the decoupled quadratic

Q̃(λ) =

Qd(λ) 0

0 q(λ)

 . (4.1.2)

This is termed “strong deflation” in the engineering community as opposed to

“weak deflation” which is achieved by introducing zeros in the last rows or last

columns of the matrices.

We cannot in general construct an n× n equivalence transformation with non-

singular matrices P and T such P TQ(λ)T = Q̃(λ), where Q̃(λ) is the decoupled

quadratic in (4.1.2) [43], unlike the case for linear polynomials A − λB. The

standard way of treating quadratic matrix polynomials, both theoretically and

numerically, is to convert them into equivalent linear matrix pencils of twice the

dimension, a process called linearization [20], described earlier in Section 2.1. De-

flation procedures for matrix pencils ignore the block structure of linearizations

such as L2(λ). They produce a deflated pencil that is not in general a linearization

of a quadratic matrix polynomial [38].

Garvey, Friswell and Prells [16] and later Chu and Xu [12] showed that for

quadratics with symmetric coefficients and semisimple eigenvalues (i.e., each eigen-

value λ appears only in 1 × 1 Jordan blocks in a Jordan triple for Q [20]), there

CHAPTER 4. STRUCTURE PRESERVING TRANSFORMATIONS 74

exists a real nonsingular matrix W ∈ R2n×2n such that W TL2(λ)W = LD(λ), where

LD(λ) = λ

 0 DM

DM DC

+

−DM 0

0 DK

 , (4.1.3)

with DM , DC , DK diagonal. The pencil LD(λ) is a linearization of the diagonal

quadratic QD(λ) = λ2DM + λDC + DK , which clearly has the same eigenvalues

as Q(λ). The proof of the diagonalization of the blocks of L2(λ) to achieve LD(λ)

in (4.1.3) is constructive and requires the knowledge of all the eigenvalues and

eigenvectors of Q. Most importantly it shows that by increasing the dimension of

the transformations from n×n when working directly on Q to 2n× 2n by working

on a pencil of twice the dimension of Q, total decoupling of the underlying second

order system can be achieved. The congruence in (4.1.3) is an example of a structure

preserving transformation (SPT). More generally, we say that a pair (WL,WR) of

2n×2n real nonsingular matrices defines a structure preserving transformation for

an n×n quadratic matrix polynomial Q(λ) = λ2M +λC +K with M nonsingular

if

STL

 0 M

M C

 ,
−M 0

0 K

SR =

 0 M1

M1 C1

 ,
−M1 0

0 K1

 , (4.1.4)

where M1, C1, and K1 are n×n matrices [34] that define a new quadratic Q1(λ) =

λ2M1 + λC1 +K1 sharing the same eigenvalues as Q(λ).

The distinction between the work in [17] and this chapter is that, whereas

[17] attempts complete diagonalization given that all eigenvalues and eigenvectors

are known, this work attempts to block diagonalize the quadratic (subject to the

eigenvalues satisfying a number of constraints), knowing only two eigenvalues and

CHAPTER 4. STRUCTURE PRESERVING TRANSFORMATIONS 75

corresponding eigenvectors. This block diagonalization of Q by deflating two eigen-

values has a number of applications, one example is in the area of model updating.

Model updating is the modification of an existing inaccurate model with measured

data. The eigenvalue embedding problem is a special instance of model updating

and can be defined as follows: consider a quadratic matrix polynomial

Q(λ) = λ2M + λC +K

resulting from a second-order dynamical system with a few known eigenvalues λj,

j = 1: k. Now suppose that new eigenvalues σj, j = 1: k have been measured.

There are several types of eigenvalue embedding problems but one of them consists

of updating the quadratic Q(λ) to a new quadratic Q̂(λ) with eigenvalues σj, j =

1: k replacing the eigenvalues λj, j = 1: k of Q(λ) while the remaining 2n − k

eigenvalues of Q̂(λ) are kept the same as those of the original problem Q(λ). This

is sometimes referred to as eigenvalue updating with no spill-over.

A number of solutions to this problem has been proposed often with additional

constraints such as preservation of the symmetry of the coefficient matrices and

preservation of the positive definiteness of the mass and stiffness matrices.

The deflation procedure in this chapter can be used to update eigenvalues of

a quadratic matrix polynomial, knowing only the eigenvalues to be updated and

their corresponding eigenvectors, maintaining the symmetry of the problem if the

original quadratic is symmetric. Further work involves investigating the potential of

this process for updating systems, its reliability and performance in finite precision

arithmetic, and comparison with existing techniques.

We deflate two eigenvalues at a time, since the problem is quadratic. For a given

pair of eigenvalues λ1, λ2 and their associated left and right eigenvectors xLj, xRj,

j = 1, 2, we identify conditions under which there exist elementary SPTs (SL, SR)

CHAPTER 4. STRUCTURE PRESERVING TRANSFORMATIONS 76

which are rank-two modifications of the 2n×2n identity matrix and transform Q(λ)

into a new quadratic Q1(λ) for which λ1 and λ2 share the same left eigenvector zL

and same right eigenvector zR, that is,

z∗LQ1(λj) = 0, Q1(λj)zR = 0, j = 1, 2. (4.1.5)

In particular we find that λ1 and λ2 must be semisimple and distinct and that, if

they are both real, they must also satisfy

sign

(
xTL2Q

′(λ2)xR2

xTL1Q
′(λ1)xR1

)
= sign

(
xTL2Q

′(λ1)xR1

xTL1Q
′(λ2)xR2

)
,

which for symmetric quadratics Q means that λ1 and λ2 must have opposite type

[20] (the type of a real eigenvalue λ of Q(λ) with associated eigenvector x being

the sign of xTQ′(λ)x = 2λxTMx+ xTCx). Under these conditions we characterize

a family of elementary SPTs that maps (λj, xRj, xLj) to (λj, zR, zL), j = 1, 2.

Since our transformations are structure preserving we never work with the 2n ×

2n matrices in (4.1.4). Indeed the matrix coefficients of Q1(λ) are just low rank

modifications of M,C and K and are therefore not expensive to compute. When

(4.1.5) holds we then show how to construct two nonsingular matrices GL, GR such

that GT
LQ1(λ)GR = Q̃(λ) with Q̃(λ) as in (4.1.2), that is, the pair (GL, GR) deflates

the two eigenvalues λ1, λ2.

This chapter is organized as follows. After some preliminary results in Sec-

tion 4.2 on structure preserving transformations, in Section 4.5 we explain how to

deflate eigenvalues of symmetric quadratic matrix polynomials. In the following

section we then extend the symmetric deflation procedure to quadratics with non-

symmetric coefficient matrices. In Section 4.7 we present some numerical examples

that illustrate our deflation procedure. To the best of our knowledge, this work

CHAPTER 4. STRUCTURE PRESERVING TRANSFORMATIONS 77

is the first attempt at constructing a family of nontrivial elementary SPTs that

have a specific action of practical use: that of “mapping” two linearly independent

eigenvectors to a set of linearly dependent eigenvectors.

4.2 Structure Preserving Transformations

In this section we recall some necessary results from [17] and [34]. SPTs, defined

in (4.1.4), have a number of important and useful properties that we begin by

summarizing.

Lemma 1. [34] Let (WL,WR) be an SPT transforming Q(λ) = λ2M + λC + K

with M nonsingular into Q̃(λ) = λ2M̃ + λC̃ + K̃. Then

(i) Q(λ) and Q̃(λ) share the same eigenvalues.

(ii) M̃ is nonsingular.

(iii) If (λ, x, y) is an eigentriple of Q(λ) then

W−1
R

λx
x

 =

λx̃
x̃

 , W−1
L

λ̄y
y

 =

λ̄ỹ
ỹ

 ,
for some nonzero x̃, ỹ ∈ Cn such that Q̃(λ)x̃ = 0 and ỹ∗Q̃(λ) = 0.

(iv) Consider the vector space of pencils [47], [31]

DL(Q) =

λ

v1M v2M

v2M v2C − v1K

+

v1C − v2M v1K

v1K v2K

 : v ∈ R2

 .

If L(λ) ∈ DL(Q) with vector v then L̃(λ) = W T
L L(λ)WR ∈ DL(Q̃) with vector

v. In other words, the SPT (WL,WR) preserves the block structure of DL(Q).

Moreover if L(λ) is a linearization of Q then L̃(λ) is a linearization of Q̃(λ).

CHAPTER 4. STRUCTURE PRESERVING TRANSFORMATIONS 78

(v) If WL = WR and Q(λ) is symmetric (i.e., M,C and K are symmetric) then

Q̃(λ) is symmetric.

4.2.1 Elementary SPTs

Matrix pairs (GL, GR) of the form

GS =

G̃S 0

0 G̃S

 , det(G̃S) 6= 0, S = L,R

always define an SPT for any quadratic Q. They have the property that if (GL, GR)

transforms Q(λ) into Q̃(λ) then Q̃(λ) = G̃T
LQ(λ)G̃R. The pair (GL, GR) is called a

class one elementary SPT when G̃S = I −mSn
T
S for some nonzero vectors mS, nS,

S = L,R [17].

The key elementary SPT used in our deflation procedure has the form

TS =

I + aSb
T
S aSd

T
S

aSf
T
S I + aSh

T
S

 ∈ R2n×2n, (4.2.1)

where aS, bS, dS, fS, hS ∈ Rn with aS, dS, fS nonzero. The matrix TS differs from

the identity matrix by a matrix of rank at most 2 and it is nonsingular if [8], [34]

det(TS) = (1 + aTSbS)(1 + aTShS)− (aTSdS)(aTSfS) 6= 0.

With the notation

αM := aTLMaR, αC := aTLCaR, αK := aTLKaR,

a pair (TL, TR) of nonsingular matrices with TS, S = L,R, as in (4.2.1) forms a

CHAPTER 4. STRUCTURE PRESERVING TRANSFORMATIONS 79

class two elementary SPT if [17], [34]

αC = aTLCaR 6= 0 (4.2.2)

and

1

2
αCfL + αMbL = −MaR, (4.2.3)

αKfL +
1

2
αC(bL + hL) + αMdL = −CaR, (4.2.4)

αKhL +
1

2
αCdL = −KaR, (4.2.5)

1

2
αCfR + αMbR = −MTaL, (4.2.6)

αKfR +
1

2
αC(bR + hR) + αMdR = −CTaL, (4.2.7)

αKhR +
1

2
αCdR = −KTaL. (4.2.8)

The constraints (4.2.3)–(4.2.8) (see Section 4.3 for the derivation) force preservation

of structure. Multiplying the constraints (4.2.3)–(4.2.5) on the left by aTL and the

constraints (4.2.6)–(4.2.8) on the left by aTR allows us to rewrite the determinant

of TL and TR as

det(TS) = α−2C (1 + aTSbS)(1 + aTShS)(α2
C − 4αKαM), S = L,R

which shows that

α2
C − 4αKαM 6= 0 (4.2.9)

is a necessary condition for (TL, TS) to be an SPT.

CHAPTER 4. STRUCTURE PRESERVING TRANSFORMATIONS 80

From (4.2.3)–(4.2.8) we have that if (TL, TR) transforms Q(λ) to Q̃(λ) then

K̃ = K − αKhLhTR − αC(hLd
T
R + dLh

T
R)/2− αMdLdTR,

C̃ = C − αK(hLf
T
R + fLh

T
R)− αC(hLb

T
R + bLh

T
R + dLf

T
R + fLd

T
R)/2

−αM(dLb
T
R + bLd

T
R),

M̃ = M − αKfLfTR − αC(bLf
T
R + fLb

T
R)/2− αMbLbTR

which shows that M̃, C̃, and K̃ are low rank modifications of M,C, and K.

4.3 Derivation of Structure Preserving Constraints

We now summarize the derivation of the constraints (4.2.3)–(4.2.8), that must be

satisfied in order that the pair (TL, TR) forms a class two elementary SPT [16, 17].

On requiring that a congruence transformation with (TL, TR) on the standard basis

pencil coefficients preserves the block structure we obtain three equations,

I + aLb
T
L aLd

T
L

aLf
T
L I + aLh

T
L

T C K

K 0

I + aRb
T
R aRd

T
R

aRf
T
R I + aRh

T
R

 =

C̃ K̃

K̃ 0

 , (4.3.1)

I + aLb
T
L aLd

T
L

aLf
T
L I + aLh

T
L

T M 0

0 −K

I + aRb
T
R aRd

T
R

aRf
T
R I + aRh

T
R

 =

M̃ 0

0 −K̃

 ,
(4.3.2)

I + aLb
T
L aLd

T
L

aLf
T
L I + aLh

T
L

T  0 M

M C

I + aRb
T
R aRd

T
R

aRf
T
R I + aRh

T
R

 =

 0 M̃

M̃ C̃

 .
(4.3.3)

To obtain the structure preserving constraints, we first set the expressions for

CHAPTER 4. STRUCTURE PRESERVING TRANSFORMATIONS 81

K̃ equal in (4.3.1), and simplify the result to obtain

(bL − hL)aTLK(I + aRh
T
R) +

[
(I + bLa

T
L)C + fLa

T
LK − dLaTLM

]
aRd

T
R = 0. (4.3.4)

Similarly, setting the (1, 2) and (2, 1) blocks in (4.3.2) equal to one of the corre-

sponding matrices in (4.3.1) we obtain

dLa
T
L

[
C(I + aRb

T
R) +KaRf

T
R +MaRd

T
R

]
+ (I + hLa

T
L)KaR(bR − hR)T = 0. (4.3.5)

Next, setting the (1,1) and (2,2) blocks of (4.3.3) and (4.3.1) to zero and simplifying

we have

fLa
T
LM(I + aRb

T
R) + (I + bLa

T
L)MaRf

T
R + fLa

T
LCaRf

T
R = 0, (4.3.6)

fLa
T
LCaRd

T
R + (I + hLa

T
L)KaRd

T
R + fLa

T
LK(I + aRh

T
R) = 0. (4.3.7)

Finally, setting the off diagonal blocks of (4.3.2) to zero we have

(I + bLa
T
L)MaRd

T
R − fLaTLK(I + aRh

T
R) = 0, (4.3.8)

dLa
T
LM(I + aRb

T
R)− (I + hLa

T
L)KaRf

T
R = 0. (4.3.9)

Equations (4.3.8) and (4.3.9) can be satisfied by choosing

fL = β(I + bLa
T
L)MaR (4.3.10)

fR = β(I + bRa
T
R)MTaL (4.3.11)

dL = β(I + hLa
T
L)KaR (4.3.12)

dR = β(I + hRa
T
R)KTaL (4.3.13)

where β 6= 0 is an arbitrary constant. For convenience we take β = −2/aTLCaR

CHAPTER 4. STRUCTURE PRESERVING TRANSFORMATIONS 82

and obtain

fL = − 2

aTLCaR
(I + bLa

T
L)MaR, (4.3.14)

fR = − 2

aTLCaR
(I + bRa

T
R)MTaL, (4.3.15)

dL = − 2

aTLCaR
(I + hLa

T
L)KaR, (4.3.16)

dR = − 2

aTLCaR
(I + hRa

T
R)KTaL. (4.3.17)

Equations (4.3.14)–(4.3.16) simplify to

1

2
αCdL + αKhL = −KaR,

1

2
αCdR + αKhR = −KTaL, (4.3.18)

1

2
αCfL + αMbL = −MaR,

1

2
αCfR + αMbR = −MTaL. (4.3.19)

Equations (4.3.18) and (4.3.19) form four structure preserving constraints. To ob-

tain the final two structure preserving constraints, we rearrange (4.3.4) and (4.3.8)

to

bL − hL =
2

αC

(
(I + bLaLT)C + fLa

T
LK + dLa

T
LM

)
aR, (4.3.20)

bR − hR =
2

αC

(
(I + bRa

T
R)CT + fRa

T
RK

T + dRa
T
RM

T
)
aL. (4.3.21)

Next we substitute (4.3.14) and (4.3.16) for fL, and dL in (4.3.20), (4.3.15) and

(4.3.17) for fR, and dR in (4.3.21) and assuming αKαM − (αC/2)2 6= 0 we have

bL + hL =
αC

2
CaR − αKMaR − αMKaR

αKαM − (αC/2)2
, (4.3.22)

bR + hR =
αC

2
CTaL − αKMTaL − αMKTaL

αKαM − (αC/2)2
. (4.3.23)

CHAPTER 4. STRUCTURE PRESERVING TRANSFORMATIONS 83

Now after multiplying (4.3.18) by αM and (4.3.19) by αK , we obtain two equa-

tions, the first by adding the two equations with K and M terms, and the second

by adding the equations with KT and MT terms to obtain,

αMαK(bL + hL) +
αC
2
αMdL + αMKaR +

αC
2
αKfL + αKMaR = 0, (4.3.24)

αMαK(bR + hR) +
αC
2
αMdR + αMK

TaL +
αC
2
αKfR + αKM

TaL = 0. (4.3.25)

Finally substituting (4.3.22) and (4.3.23) for αMKaR + αKMaR in (4.3.24) and

αMK
TaL + αKM

TaL in (4.3.25) respectively we obtain the two final structure

preserving constraints,

αMdL + αKfL +
1

2
αC(bL + hL) + CaR = 0, (4.3.26)

αMdR + αKfR +
1

2
αC(bR + hR) + CTaL = 0. (4.3.27)

To summarize, we now have six structure preserving constraints which the SPT

(TL, TR) must satisfy:

1

2
αCfL + αMbL = −MaR, (4.3.28)

αMdL + αKfL +
1

2
αC(bL + hL) = −CaR, (4.3.29)

1

2
αCdL + αKhL = −KaR, (4.3.30)

1

2
αCfR + αMbR = −MTaL, (4.3.31)

αMdR + αKfR +
1

2
αC(bR + hR) = −CTaL, (4.3.32)

1

2
αCdR + αKhR = −KTaL. (4.3.33)

CHAPTER 4. STRUCTURE PRESERVING TRANSFORMATIONS 84

4.4 Computing the Vectors Defining a Class Two

SPT

Once the two vectors aL and aR are chosen such that (4.2.2) and (4.2.9) hold the

structure preserving constraints (4.2.3)–(4.2.8) are linear in the remaining unknown

vectors. They can be rewritten in matrix form as

V A = B ⇐⇒ VLA = BR, VRA = BL, (4.4.1)

where A ∈ R4×3 and B ∈ R2n×3 are given by

A =


αM

1
2
αC 0

0 αM
1
2
αC

1
2
αC αK 0

0 1
2
αC αK


, B = −

MaR CaR KaR

MTaL CTaL KTaL

 =

BR

BL



(4.4.2)

and V =
[
VL
VR

]
∈ R2n×4 with VS =

[
bS dS fS hS

]
∈ Rn×4 for S = L,R contains

the remaining unknown vectors. Some calculations show that

det(ATA) =
1

4
(α2

C − 4αMαK)2(α2
C + α2

M + α2
K)

which is nonzero by (4.2.9), so that A has full rank and all solutions to (4.4.1) are

given by

V = BA+ +Q(I − AA+) ⇐⇒

 VL = BRA
+ +QL(I − AA+),

VR = BLA
+ +QR(I − AA+),

for some arbitrary Q =
[
QL

QR

]
∈ R2n×4. Here A+ is the pseudoinverse of A, which

is given by A+ = (ATA)−1AT since A has full rank (see Stewart and Sun [55, Sec.

CHAPTER 4. STRUCTURE PRESERVING TRANSFORMATIONS 85

3.1]).

The transformation TS used in our deflation procedure performs a specific ac-

tion: that of mapping two non parallel eigenvectors of Q associated with a pair of

eigenvalues to just one eigenvector for Q̃ associated to that same pair of eigenval-

ues. This results in an extra constraint of the form zTV = wT for some given z

and w that the solution V of (4.4.1) must satisfy. The next result will be needed

for the existence and characterization of all the class two SPTs performing that

specific action.

Theorem 4. Let A ∈ Rr×k, r ≥ k have full rank, B ∈ Rn×k, w ∈ Rr, and nonzero

z ∈ Rn be given. The problem of finding V ∈ Rn×r such that

V A = B, zTV = wT , (4.4.3)

has a solution if and only if wTA = zTB. In this case the general solution is

V = (I − zz+)BA+ + U(I − AA+) + z(zT z)−1wT , (4.4.4)

where U ∈ Rn×r is any matrix such that zTU = 0.

Proof. If V is a solution to (4.4.3) then zTB = zTV A = wTA. Conversely, if

zTB = wTA then since A+A = I multiplying V in (4.4.4) on the right by A yields

V A = B and since zTU = 0 we have that zTV = wT so that V in (4.4.4) is a

solution to (4.4.3).

Every solution V to (4.4.3) can therefore be rewritten as

V = (I − zz+)V AA+ − (I − zz+)V AA+ + V − zz+V + zz+V

= (I − zz+)V AA+ + (I − zz+)V (I − AA+) + zz+V

= (I − zz+)BA+ + (I − zz+)V (I − AA+) + z(zT z)−1wT ,

CHAPTER 4. STRUCTURE PRESERVING TRANSFORMATIONS 86

which is of the form (4.4.4) with U :=
(
I − zz+

)
V satisfying zTU = 0.

4.5 Deflation for Symmetric Quadratics

Symmetric quadratics have the property that if x is a right eigenvector associated

with the eigenvalue λ then y = x is the corresponding left eigenvector. If we

therefore use congruence transformations to preserve the symmetry of the quadratic

we need only consider the deflation of eigenpairs rather than eigentriples. We

denote by (λ1, x1) and (λ2, x2) the two eigenpairs to be deflated. We use congruence

transformations to preserve the symmetry of the quadratic. We begin by showing

that when x1 and x2 are parallel there exists an n× n congruence transformation

which, when applied directly to Q, deflates λ1 and λ2. When x1 and x2 are linearly

independent, we show how to construct a class two SPT that transforms Q to a

new quadratic Q1 for which λ1 and λ2 share the same eigenvector. In other words,

the SPT allows us to transform the original deflation problem into one we know

how to handle.

4.5.1 Linearly Dependent Eigenvectors

We begin by treating the case where the eigenvalues λ1 and λ2 have a common

eigenvector z ∈ Rn. The next lemma is crucial to proving the existence of a

congruence transformation that deflates these two eigenvalues. Some relations in

this lemma have already been observed by Chu, Hwang, and Lin [11]

Lemma 2. Consider the n× n symmetric quadratic Q(λ) = λ2M + λC +K.

(i) If Q(λj)z = 0, j = 1, 2 with z ∈ Rn \ {0} and λ1 6= λ2 then Cz = cMz and

Kz = kMz with c = −(λ1 + λ2) and k = λ1λ2. Moreover, zTMz 6= 0 if and

only if zTQ′(λj)z 6= 0, j = 1, 2.

CHAPTER 4. STRUCTURE PRESERVING TRANSFORMATIONS 87

(ii) If Cz = cMz and Kz = kMz for some nonzero z ∈ Cn and c, k ∈ C then

Q(λj)z = 0, j = 1, 2 with λ1,2 = −(c±
√
c2 − 4k)/2.

Proof. (i) It follows from λ2jMz+λjCz+Kz = 0, j = 1, 2 that when λ1 6= λ2,

Cz = −(λ1+λ2)Mz = cMz and then Kz = −λ21Mz+λ1(λ1+λ2)Mz = λ1λ2Mz =

kMz. If λ1, λ2 are semisimple then 0 6= zTQ′(λj)z = (2λj + c)zTMz (Q′(λ) is the

first derivative of Q with respect to λ, that is Q′(λ) = 2λM + C), which implies

that zTMz 6= 0.

(ii) If Cz = cMz and Kz = kMz then Q(λj)z = (λ2j + λjc + k)Mz = 0,

j = 1, 2, from which the formula for λ1,2 follows.

Assume there exists a nonsingular matrix G such that

Gen = z, GT (Mz) = men, m = zTMz (4.5.1)

where en is the last column of the n-by-n identity matrix. Since G and M are

nonsingular we must have m 6= 0, or equivalently, zTMz 6= 0 which by Lemma 2(i)

holds when λ1 and λ2 are distinct and semisimple. Thus we have that

GTMGen = GTMz = men.

If λ1 and λ2 are distinct then by Lemma 2(i), Cz = cMz and Kz = kMz, so that

GT (λ2M + λC +K)G = λ2

M̃ 0

0 m

+ λ

C̃ 0

0 mc

+

K̃ 0

0 mk

 , (4.5.2)

where c = −(λ1 + λ2) and k = λ1λ2; thus G deflates the two eigenvalues λ1 and

λ2. Note that if λ1 = λ2 and, Cz and Kz are multiples of Mz then, as long as

zTMz 6= 0, G in (4.5.1) deflates λ1 and λ2 from Q. It is easily seen from (4.5.2)

that in this case λ1(= λ2) must be a defective eigenvalue with partial multiplicity

CHAPTER 4. STRUCTURE PRESERVING TRANSFORMATIONS 88

2.

We build the matrix G in two steps. We begin by constructing a Householder

reflector H [21] such that

H(Mz) = ‖Mz‖2en.

We then form L = In + rsT , where sT en = 1 and r = ‖Mz‖2
m

Hz − en, so that

Len =
‖Mz‖2
m

Hz, LT en = en

since rT en = ‖Mz‖2
m

zTHen − 1 = zTMz
m
− 1 = 0. Hence

G =
m

‖Mz‖2
HL (4.5.3)

satisfies (4.5.1). It is shown in [18] that taking

s = en −
1 +
√

1 + rT r

rT r
r

minimizes the condition number κ(L) of L and that with this choice,

κ2(G)2 = κ2(L)2 =

√
1 + ‖r‖22 + ‖r‖2√
1 + ‖r‖22 − ‖r‖2

,

which is reasonably small as long as ‖r‖2 is not much smaller than 1. Using

‖Mz‖2Hen = Mz and the definition of r we have that

‖r‖22 = rT r = (zTM2z)(zT z)/(zTMz)2 − 1

showing that ‖r‖2 does not depend on the norm of z or M .

CHAPTER 4. STRUCTURE PRESERVING TRANSFORMATIONS 89

4.5.2 Linearly Independent Eigenvectors

When x1 and x2 are linearly independent there is clearly no nonsingular transfor-

mation mapping the full rank matrix [x1 x2] to the rank-one matrix [en en].

The idea in this case is to build an SPT T that transforms Q(λ) with eigenpairs

(λj, xj), j = 1, 2 to Q1(λ) with eigenpairs (λj, z), j = 1, 2 that can then be deflated

using the procedure described in Section 4.5.1. We only consider the case where

λ1 6= λ2. Indeed when the two eigenvalues are equal and x1 is not parallel to x2, λ1

and λ2 belong to two distinct Jordan blocks. In this case, the decoupling (4.5.2)

cannot be achieved.

Since we aim to treat the deflation of real eigenpairs together with that of

complex conjugate eigenpairs, we introduce the real matrices Λ ∈ R2×2 and X ∈

Rn×2 defined by

Λ =



λ1 0

0 λ2

 if λ1 and λ2 are real,

 α β

−β α

 if λ1 = λ̄2 = α + iβ with β 6= 0,

(4.5.4)

and

X =


[x1 x2] for real eigenpairs,

[u v] for complex eigenpairs with x1 = x̄2 = u+ iv.

(4.5.5)

We want to construct a class two elementary SPT T = I2n +
[
abT

afT
adT

ahT

]
with

a, b, d, f, h ∈ Rn and a nonzero vector z ∈ Rn (for simplicity we assume ‖z‖2 = 1)

CHAPTER 4. STRUCTURE PRESERVING TRANSFORMATIONS 90

such that

T−1

XΛ
X

 =

zeTΛ
zeT

 , (4.5.6)

where e =
[
1
1

]
. This constraint means that T−1

[
λjxj
xj

]
=
[
λjz
z

]
, for j = 1, 2. Hence

if T transforms Q(λ) to Q1(λ) then by Lemma 1(iii), Q1(λj)z = 0, j = 1, 2. We

rewrite (4.5.6) in terms of the 6n unknown vectors a, b, d, f, h, z as

zeTΛ+ (bT z)aeTΛ+ (dT z)aeT = XΛ, (4.5.7)

zeT + (fT z)aeTΛ+ (hT z)aeT = X, (4.5.8)

and solve (4.5.7)–(4.5.8) for a, z and the scalars bT z, dT z, fT z, hT z as follows.

Let nonzero p, q ∈ R2 be such that

eTp = 0, eTΛp = 1, eTq = 1, eTΛq = 0.

Since λ1 6= λ2, it is easily seen that

p = γ(λ1 − λ2)−1
 1

−1

 , q = Λp− (λ1 + λ2)p, Λq = −λ1λ2p,

with γ = 1 for real eigenpairs and γ = i for complex eigenpairs. Multiplying

(4.5.8) on the right by p yields (fT z)a = Xp. Since the columns of X are linearly

independent, we have that fT z 6= 0. Now without loss of generality, we normalize

a such that aTa = 1. It follows that

a = (fT z)−1Xp, fT z = ‖Xp‖2 6= 0. (4.5.9)

Multiplying (4.5.7) on the right by p yields z + (bT z)a = XΛp. If we choose to

CHAPTER 4. STRUCTURE PRESERVING TRANSFORMATIONS 91

normalize z such that eT` z = 1, where ` is such that |eT` a| = ‖a‖∞ then

bT z = (eT` XΛp− 1)/(eT` a), z = XΛp− (bT z)a. (4.5.10)

Multiplying (4.5.7)–(4.5.8) on the right by q and on the left by eT` gives

dT z = (eT` XΛq)/(e
T
` a), hT z = (eT` Xq − 1)/(eT` a). (4.5.11)

What is now left is the construction of V := [b d f h] such that zTV = wT ,

where wT = [bT z dT z fT z hT z], and V A = B, since T is structure preserving

(see Section 4.2.1), where B = −[Ma Ca Ka] and A is as in (4.4.2) with αM =

aTMa, αC = aTCa 6= 0 and αK = aTKa. We know from Theorem 4 that a solution

V to V A = B, zTV = wT exists if and only if

wTA = zTB. (4.5.12)

The next lemma, crucial for the deflation process, provides a necessary and suffi-

cient condition on the eigenpairs (λj, xj), j = 1, 2 for (4.5.12) to hold.

Lemma 3. The relation wTA = zTB holds if and only if the eigenpairs (λ1, x1)

and (λ2, x2) of Q(λ) satisfy

xT1Q
′(λ1)x1 = εxT2Q

′(λ2)x2 (4.5.13)

with ε = −1 for real eigenpairs and ε = 1 for complex conjugate eigenpairs.

Proof. Tedious calculations left to Section 4.8 show that the row vector gT =

wTA− zTB has the form

gT = γ
(
xT1Q

′(λ1)x1 − εxT2Q′(λ2)x2
)
[1 c k],

CHAPTER 4. STRUCTURE PRESERVING TRANSFORMATIONS 92

where γ is a nonzero scalar, c = −(λ1 + λ2), k = λ1λ2, ε = −1 for real eigenpairs

and ε = 1 for complex eigenpairs.

For real eigenpairs, the condition (4.5.13) implies that λ1 and λ2 must have

opposite type, (the type of a real eigenvalue λ of Q(λ) with associated eigenvector

x being the sign of xTQ′(λ)x = 2λxTMx+xTCx). Note that this is to be expected

from the theory of Hermitian matrix polynomials since for a symmetric quadratic

with 2r distinct real eigenvalues, r of them are of positive type and r of them

are of negative type (see [20] or [40, Appendix]). Hence when deflating two real

eigenpairs, one must be of positive type and the other of negative type. Under this

condition, (4.5.13) is achieved with the scaling

x1 ← x1/
√
|xT1Q′(λ1)x1|, x2 ← x2/

√
|xT2Q′(λ2)x2|

as long as both λ1 and λ2 are semisimple, so that xTj Q
′(λj)xj 6= 0, j = 1, 2.

For complex conjugate eigenpairs, (4.5.13) is achieved with the scaling

x1 ← x1/
√
xT1Q

′(λ1)x1, x2 = x̄1

if xT1Q
′(λ1)x1 6= 0 and no scaling otherwise. (Note here the use of “T” rather than

“∗”.)

With the above scaling, Lemma 3 together with Theorem 4 tells us that the

equations V A = B and zTV = wT have the solutions

V =
(
I − zzT

zT z

)
BA+ + U(I − AA+) +

z

zT z
wT , (4.5.14)

where U ∈ Rn×4 is any matrix such that zTU = 0. It follows that (4.5.9)–(4.5.11)

and (4.5.14) define a family of class two elementary SPTs T transforming Q(λ)

with eigenpairs (λj, xj) to Q1(λ) with eigenpairs (λj, z), j = 1, 2. Identifying which

CHAPTER 4. STRUCTURE PRESERVING TRANSFORMATIONS 93

solution minimizes the condition number κ2(T) = ‖T‖2‖T−1‖2 remains an open

problem.

4.6 Deflation for Nonsymmetric Quadratics

The deflation procedure described in Section 4.5 extends to the case where M,C,

and K are nonsymmetric. We denote by (λj, xRj, xLj), j = 1, 2 the two eigentriples

to be deflated from Q(λ) with (λ2, xR2, xL2) = (λ̄1, x̄R1, x̄L1) when Im(λ1) 6= 0. In

contrast with the symmetric deflation procedure we use equivalence transformations

rather than congruence transformations since we do not need to preserve symmetry.

Three situations must be considered.

4.6.1 Parallel Left Eigenvectors and Parallel Right Eigen-

vectors

Without loss of generality let us assume in this case that xL1 = xL2 ≡ zL and

xR1 = xR2 ≡ zR with zL, zR ∈ Rn so that

zTLQ1(λj) = 0, Q1(λj)zR = 0, j = 1, 2, (4.6.1)

since both the left and right eigenvectors are parallel, Q1 = Q. As in Lemma 2 it

is easily shown that if (4.6.1) holds with λ1 6= λ2 then

C1zR = cM1zR, K1zR = kM1zR, (4.6.2)

zTLC1 = czTLM1, zTLK1 = kzTLM1, (4.6.3)

CHAPTER 4. STRUCTURE PRESERVING TRANSFORMATIONS 94

where c = −(λ1 + λ2) and k = λ1λ2. Moreover if λ1 and λ2 are semisimple then

zTLMzR 6= 0. Suppose there exist nonsingular matrices GL and GR such that

GT
LMzR = men, GLen = zL, (4.6.4)

GT
RM

T zL = men, GRen = zR, (4.6.5)

where m = zTLMzR. (The left (right) transformation GL (GR) depends on the right

(left) eigenvector.) Since M , GL, and GR are nonsingular we must have m 6= 0

which is guaranteed when λ1 and λ2 are distinct and semisimple. With GL and GR

satisfying (4.6.4) and (4.6.5) we have

GT
LMGRen = GT

LMzR = men, eTnG
T
LMGR = zTLMGR = meTn

and on using (4.6.2)–(4.6.5) it follows that

GT
L(M,C,K)GR =

M̃ 0

0 m

 ,
C̃ 0

0 mc

 ,
K̃ 0

0 mk

 . (4.6.6)

If we let uL = MzR and uR = MT zL, the matrices GL and GR can be taken in the

form

GS =
m

‖uS‖2
HSLS, S = L,R,

where HS is a Householder reflector such that HSuS = ‖uS‖2en and LS = In−rSsTS
with

rS =
‖uS‖2
m

HSzS − en, sS = en −
1 +

√
1 + rTS rS
rTS rS

rS

so that

LSen =
‖uS‖2
m

HSzS, LTSen = en.

CHAPTER 4. STRUCTURE PRESERVING TRANSFORMATIONS 95

Thus it is easy to check that the pair (GL, GR) satisfies (4.6.2) and (4.6.3) and

therefore deflates λ1 and λ2 from Q.

4.6.2 Non Parallel Left Eigenvectors and Non Parallel Right

Eigenvectors

Our aim, as for the symmetric case, is to build a class two elementary SPT (TL, TR),

with TL not necessarily equal to TR, that transforms Q(λ) to a new quadratic Q1(λ)

for which λ1 and λ2 share the same left eigenvector zL and the same right eigenvec-

tor zR. In order to apply the deflation process of Section 4.6.1, we assume that λ1

and λ2 are semisimple and distinct. When λ1 = λ2 with linearly independent eigen-

vectors then λ1 and λ2 belong to two distinct Jordan blocks and the decoupling

(4.6.6) cannot be achieved.

Let TS be such that

T−1S

XSΛS

XS

 =

zSeTΛS
zSe

T

 , (4.6.7)

with ΛL = ΛT and ΛR = Λ where Λ, XL and XR are formed as in (4.5.4) and

(4.5.5), and e =
[
1
1

]
. If the pair (TL, TR) is structure preserving and transforms

Q(λ) to Q1(λ) then the constraint (4.6.7) for S = L and S = R together with

Lemma 1(iv) implies that zTLQ1(λj) = 0 and Q1(λj)zR = 0, j = 1, 2.

Now if we choose TS to have the form (4.2.1) then with the following normal-

izations of aS and zS,

aTSaS = 1, eT`SzS = 1, |eT`SaS| = ‖aS‖∞, (4.6.8)

we obtain in a similar way to the symmetric case described in Section 4.5.2, that

CHAPTER 4. STRUCTURE PRESERVING TRANSFORMATIONS 96

under the constraint (4.6.7),

fTS zS = ‖XSpS‖2 6= 0, aS = (fTS zS)−1XSpS,

bTSzS = (eT`SXSΛSpS − 1)/(eT`SaS), zS = XSΛSpS − (bTSzS)aS,

dTSzS = (eT`SXSΛSqS)/(eT`SaS), hTSzS = (eT`SXSqS − 1)/(eT`SaS),

(4.6.9)

where pS, qS ∈ R2 are such that

eTpS = 0, eTΛSpS = 1, eTqS = 1, eTΛSqS = 0.

Assuming that aTLCaR 6= 0, the class two elementary SPT (TL, TR) is completely

determined if we can find two matrices VL, VR ∈ Rn×4 of the form [bS dS fS hS]

with S = L,R such that

VLA = BR, zTLVL = wTL , (4.6.10)

VRA = BL, zTRVR = wTR, (4.6.11)

whereA ∈ R4×3 andB ∈ R2n×3 are as in (4.4.2) and wS = [bTSzS dTSzS fTS zS hTSzS],

S = L,R. From Theorem 4, a solution VL to (4.6.10) and a solution VR to (4.6.11)

exist if and only if wTLA = ZT
LBR and wTRA = ZT

RBL.

Lemma 4. The relations

wTLA− ZT
LBR = 0, wTRA− ZT

RBL = 0

hold if and only if the eigentriples (λ1, xR1, xL1) and (λ2, xR2, xL2) of Q(λ) satisfy

xTL1Q
′(λ1)xR1 = εxTL2Q

′(λ2)xR2, xTL1Q
′(λ2)xR2 = εxTL2Q

′(λ1)xR1, (4.6.12)

with ε = −1 for real eigentriples and ε = 1 for complex conjugate eigentriples.

CHAPTER 4. STRUCTURE PRESERVING TRANSFORMATIONS 97

Proof. Let gTL = wTLA−ZT
LBR and gTR = wTRA−ZT

RBL. Calculations along the

same lines as those presented in Section 4.8 for the symmetric case show that for

real eigentriples,

gTL = γL (ξ1 + ξ2 − ξ3 − ξ4) [1, c, k],

gTR = γR (ξ1 + ξ2 − ξ5 − ξ6) [1, c, k],

where γL and γR are nonzero scalars, c = −(λ1 + λ2), k = λ1λ2 and

ξ1 = xTL1Q
′(λ1)xR1, ξ3 = xTL1Q

′(λ1)xR2, ξ5 = xTL1Q
′(λ2)xR2,

ξ2 = xTL2Q
′(λ2)xR2, ξ4 = xTL2Q

′(λ2)xR1, ξ6 = xTL2Q
′(λ1)xR1.

(4.6.13)

From xTL1Q(λj)xR2 = 0, j = 1, 2 we find that xTL1CxR2 = −(λ1 + λ2)x
T
L1MxR2,

from which it follows that xTL1Q
′(λ1)xR2 = −xTL1Q′(λ2)xR2, that is, ξ3 = −ξ5. In

an analogous way we find that xTL2Q
′(λ1)xR1 = −xTL2Q′(λ2)xR1, that is, ξ4 = −ξ6.

Hence, gL = gR = 0 if and only if ξ1 + ξ2 = 0 and ξ5 + ξ6 = 0.

For complex conjugate eigentriples, we find that

gTL = γ̃L (iξ7 − iξ8 + ξ5 + ξ6) [1, c, k],

gTR = γ̃R (iξ1 − iξ2 + ξ5 + ξ6) [1, c, k],

where γ̃L and γ̃R are nonzero complex scalars, ξj, j = 1, 2, 5, 6 are defined in (4.6.13)

and ξ7 = xTL1Q
′(λ2)xR1, ξ8 = xTL2Q

′(λ1)xR2. Using x∗L1Q(λj)xR2 = 0, j = 1, 2 it is

easily shown that x∗L1Q
′(λ1)xR2 = −x∗L1Q′(λ2)xR2 which, by taking the conjugate,

becomes ξ7 = −ξ1. We show similarly that ξ8 = −ξ2. Hence, gL = gR = 0 if and

only if ξ1 − ξ2 = 0 and ξ5 + ξ6 = 0 which completes the proof.

The assumption that λ1 and λ2 are semisimple implies that the terms on the

left-hand side for real eigentriples and the terms on the right-hand side relation

CHAPTER 4. STRUCTURE PRESERVING TRANSFORMATIONS 98

in (4.6.12) for complex conjugate eigentriples are nonzero. xTLjQ
′(λj)xRj = 0 or

xTLjQ
′(λk)xRk = 0, j 6= k, then a scaling similar to that described after Lemma

3 can be applied to ensure that (4.6.12) holds. When both xTL1Q
′(λ1)xR1 and

xTL1Q
′(λ2)xR2 are nonzero, we let

ρ1 =
xTL2Q

′(λ2)xR2

xTL1Q
′(λ1)xR1

, ρ2 =
xTL2Q

′(λ1)xR1

xTL1Q
′(λ2)xR2

.

Thus for real eigentriples, (4.6.12) can be achieved for an appropriate scaling of the

eigenvectors only if sign(ρ1) = sign(ρ2), in which case we can apply the scaling

xL1 ← |ρ1|1/2xL1, xR1 ← |ρ1|1/2xR1,

xL2 ← |ρ2|−1/2xL2, xR2 ← |ρ2|1/2xR2.
(4.6.14)

When the left and right eigenvectors are scaled so that (4.6.12) holds, Lemma 4

and Theorem 4 tell us that the set of solutions to (4.6.10) and (4.6.11) is given by

VL =

(
I − zLz

T
L

zTLzL

)
BRA

+ + UL(I − AA+) +
zL
zTLzL

wTL ,

VR =

(
I − zRz

T
R

zTRzR

)
BLA

+ + UR(I − AA+) +
zR
zTRzR

wTR,

where UL, UR ∈ Rn×m are any matrices such that zTSUS = 0, S = L,R.

The matrices VL and VR together with aL and aR in (4.6.9) define an SPT

(TL, TR) that transforms Q(λ) into Q1(λ) such that (4.6.1) holds.

4.6.3 Non Parallel Left (Right) Eigenvectors and Parallel

Right (Left) Eigenvectors

When for example rank([xL1, xL2]) = 1 and rank([xR1, xR2]) = 2 we might want

to look for an SPT of the form (I2n, TR) with TR a class two elementary SPT,

CHAPTER 4. STRUCTURE PRESERVING TRANSFORMATIONS 99

since the left eigenvectors are already parallel to each other. Unfortunately, the

pair (I2n, TR) is not structure preserving. We can however still use the procedure

described in Section 4.6.2 to map (λj, xRj, xLj) to (λj, zR, zL), j = 1, 2 as long as

we make sure that after the scaling (4.6.14), the vector XLpL is nonzero so that aL

in (4.6.9) is defined. If XLpL = 0 then we replace xL1 by γxL1 and xR1 by γxR1,

where γ = −1 for real eigentriples and γ = i for complex conjugate eigenpairs so

that (4.6.14) still holds but XLpL is nonzero.

4.7 Numerical Experiments

We now describe some numerical experiments designed to give insight into our de-

flation procedure. It is not our aim to investigate the numerical stability properties

of the procedure. This is a separate issue that will be addressed in future work.

In all our experiments we take U = 0 in (4.4.4).

Experiment 1. Our first example is a 2 × 2 quadratic Q(λ) = λ2M + λC + K

defined by

M =

 2 −1

−1 3

 , C =

0 1

1 0

 , K =

3 2

2 3

 (4.7.1)

with Λ(Q) = {−0.34± 1.84i, 0.14± 0.51i} to two decimal places. Note that M−1C

does not commute with M−1K thus Q(λ) is not proportionally damped. Therefore

the system cannot be decoupled by a 2 × 2 congruence transformation directly

applied to Q(λ).

Given the pair of complex conjugate eigenvalues λ1,2 = −0.34± 1.84i and their

associated eigenvectors our symmetric deflation procedure, decouples Q(λ) into

λ2

 5.6 2.0e –16

2.0e –16 −1.4e –1

+ λ

 −1.6 −9.4e –16

−9.4e –16 −9.3e –2

+

 1.6 −9.8e –17

−9.8e –17 −4.8e –1



CHAPTER 4. STRUCTURE PRESERVING TRANSFORMATIONS 100

Table 4.1: Relative magnitude of the off-diagonal elements of the deflated quadratic
Q2(λ) = λ2M2 + λC2 +K2 experiment 2 and condition number of the transforma-
tions.

Deflated
eigenvalues

off(M2) off(C2) off(K2) κ2(TL) κ2(TR) κ2(GL) κ2(GR)

Real 3.0e-15 1.7e-13 1.6e-13 6.0e+5 2.0e+2 3.6e+1 3.3e+0
Complex 2.0e-16 1.4e-14 5.6e-14 1.8e+3 4.5e+1 1.0 1.1

to two significant digits with κ2(T) = 7.9 and κ2(G) ≈ 1.

Experiment 2. Our second example is a 2 × 2 quadratic matrix polynomial

arising in the study of the dynamic behaviour of a bicycle [50]. The coefficient

matrices are nonsymmetric. They can be generated using the NLEVP MATLAB

toolbox [7] via nlevp(’bicycle’). This quadratic has two real eigenvalues, λ1 =

−0.32 and λ2 ≈ −14 and two complex conjugate eigenvalues −0.78 ± 4.5i. Table

4.1 shows that the left and right transformations corresponding to the deflation

of the complex conjugate eigentriples have a smaller condition number than that

used for the deflation of the real eigentriples. The large condition number of TL in

the real case affects the size of the off-diagonal elements of the deflated quadratic.

Here off(E) = ‖E − diag(E)‖2/‖E‖2, E = M2, C2, K2.

Experiment 3. Our next example is a 4 × 4 hyperbolic symmetric quadratic

eigenvalue problem generated as in [24, Sec. 6]. The eigenvalues, real since the

quadratic is hyperbolic, are uniformly distributed between 1 and 8. Since this

problem is overdamped, the eigenvalues are real and if we order them increasingly

then λ1, . . . , λ4 have negative type and λ5, . . . λ8 have positive type [5, Proof of

Thm. 1]. Any pairs (λj, λk) with 1 ≤ j ≤ 4 and 5 ≤ k ≤ 8 can be deflated from

the quadratic. Table 4.2 displays the condition numbers of the SPT T and deflating

transformation G for different pairings. It shows that the choice of pairings affects

the conditioning of the transformations.

CHAPTER 4. STRUCTURE PRESERVING TRANSFORMATIONS 101

Table 4.2: Condition numbers of the SPTs T and deflating transformations G for
different pairs of eigenvalues for experiment 4.

(λ1, λ5) (λ1, λ6) (λ1, λ7) (λ1, λ8)
κ2(T) 4.62e+1 1.43e+3 4.41e+2 7.15e+1
κ2(L) 2.09e+0 6.41e+0 1.61e+0 4.61e+0

Experiment 4. We now consider a symmetric quadratic eigenvalue problem

coming from a model describing the motion of a beam simply supported at both

ends and damped at the midpoint. This quadratic can be generated via the com-

mand nlevp(’damped−beam’,nele), where nele is the number of finite elements.

It is shown in [33, Thm. A1] that the damped problem Q(λ) = λ2M +λC+K and

the undamped problem Qu(λ) = λ2M + K have n eigenvalues and n eigenvectors

in common: those corresponding to the anti-symmetric modes. Because M and

K are positive definite, the eigenvalues of Qu(λ) are pure imaginary; they come in

pairs (λ, λ̄), each pair sharing the same eigenvector.

We computed the n eigenpairs corresponding to the anti-symmetric modes of

Qu(λ) using MATLAB function eig with the option ’chol’ and deflated all of

them from Q(λ) using the procedure described in section 4.5.1. Let

Q̃(λ) = GT
accQ(λ)Gacc = λ2M̃ + λC̃ + K̃

be the deflated quadratic, where Gacc is the matrix which accumulates the product

of the n/2 deflating transformations of the form (4.5.3) and M̃, C̃, K̃ are block

2 × 2 diagonal with (n/2) × (n/2) blocks, the lower block being diagonal. Table

4.3 displays the scaled residuals res(M), res(C), and res(K), where

res(E) =
‖GT

accEGacc − Ẽ‖2
‖Gacc‖22‖E‖2 + ‖Ẽ‖2

,

and the 2-norm condition numbers κ2(Gacc) for different values of n = 2×nele.

CHAPTER 4. STRUCTURE PRESERVING TRANSFORMATIONS 102

Table 4.3: Scaled residuals and condition numbers for transformations in Experi-
ment 4.

n res(M) res(C) res(K) κ2(Gacc) κ2(U)
8 3.07e-15 4.63e-18 3.90e-16 1.69e+1 1.52e+1
16 5.52e-15 5.08e-17 3.59e-15 4.47e+1 3.79e+1
32 1.34e-13 3.15e-16 1.68e-14 9.57e+1 7.84e+1
64 3.22e-12 6.09e-15 3.56e-14 1.95e+2 1.57e+2

The quadratic of the beam problem can be block diagonalized as (see [33, Ap-

pendix A1])

UTQ(λ)U =

 λ2M1 + λD1 +K1 0

0 λ2M2 +K2

 ,
where U is orthogonal, M2 and K2 are both symmetric positive definite and λ2M2+

K2 contains the anti-symmetric modes. The last column of Table 4.3 displays the

condition number of the transformation U that block diagonalizes λ2M2 +K2. As

a comparison, we note that κ2(Gacc) is not much larger than κ2(U).

4.8 Proof of Lemma 3, Symmetric Quadratics

In this section we give the proof of Lemma 3. We start by recalling the notation. Let

(λ1, x1) and (λ2, x2) be two eigenpairs of a symmetric quadratic Q(λ) = λ2M +

λC + K such that λ1 6= λ2. For real eigenpairs let Λ = diag(λ1, λ2) and let

X = [x1 x2]. For complex conjugate eigenpairs let Λ =
[
α
−β

β
α

]
and X = [u v],

where λ1 = λ̄2 = α + iβ, β 6= 0 and x1 = x̄2 = u+ iv. Let

p = γ(λ1 − λ2)−1
 1

−1

 , q = Λp− (λ1 + λ2)p

CHAPTER 4. STRUCTURE PRESERVING TRANSFORMATIONS 103

with γ = 1 for real eigenpairs and γ = i for complex eigenpairs and let

fT z = ‖Xp‖2 6= 0, a = (fT z)−1Xp,

bT z = (eT` XΛp− 1)/(eT` a), z = XΛp− (bT z)a,

dT z = (eT` XΛq)/(e
T
` a), hT z = (eT` Xq − 1)/(eT` a),

where ` is such that a` = eT` a 6= 0. Define

A =


αM

1
2
αC 0

0 αM
1
2
αC

1
2
αC αK 0

0 1
2
αC αK


,

B = −
[
Ma Ca Ka

]
,

V =
[
b d f h

]
,

wT =
[
bT z dT z fT z hT z

]
,

where αM = aTMa, αC = aTCa and αK = aTKa. The next lemma contains useful

relations.

Lemma 5. The following relations hold.

xT1Cx2 = c xT1Mx2, (4.8.1)

xT1Kx2 = k xT1Mx2, (4.8.2)

dT z = −k fT z, (4.8.3)

hT z − bT z = c fT z, (4.8.4)

where c = −(λ1 + λ2) and k = λ1λ2. In addition, for any symmetric matrix E we

have

aTEa = αE = (fT z)−2pTXTEXp, (4.8.5)

zTEa = (fT z)−1pTΛTXTEXp− (bT z)(fT z)−2pTXTEXp, (4.8.6)

CHAPTER 4. STRUCTURE PRESERVING TRANSFORMATIONS 104

with

pTXTEXp =


µ(xT1Ex1 + xT2Ex2 − 2xT1Ex2) for real eigenpairs,

µ
4
(ixT1Ex1 − ixT2Ex2 + 2xT1Ex2) otherwise,

(4.8.7)

pTΛTXTEXp =


µ(λ1x

T
1Ex1 + λ2x

T
2Ex2 + cxT2Ex1) for real eigenpairs,

µ
4
(iλ1x

T
1Ex1 − iλ2xT2Ex2 − cxT2Ex1) otherwise,

(4.8.8)

where µ = (λ1 − λ2)−2 6= 0 is defined since λ1 6= λ2.

Proof. The relations (4.8.1) and (4.8.2) follow from xT1Q(λ1)x2 = xT2Q(λ1)x1 =

0 and xT1Q(λ2)x2 = 0. The relations (4.8.3)–(4.8.6) follow from the definition of p,

q, a and z and (4.8.7)–(4.8.8) follow from the definition of Λ and X and p.

With these relations in hand we can now prove the formula for gT = wTA−zTB

in Lemma 3. From the definition of A, B w and z we find that

g =


(bT z)αM + 1

2
(fT z)αC + zTMa

1
2
(bT z)αC + (dT z)αM + (fT z)αk + 1

2
(hT z)αC + zTCa

1
2
(dT z)αC + αKh

T z + zTKa

 .

Using (4.8.5) with E = M and E = C and (4.8.6) with E = M we obtain that the

first component of g satisfies

2(fT z)g1 = pTXTCXp+ 2pTΛTXTMXp. (4.8.9)

In a similar way we find that the other components of g satisfy

2(fT z)g2 = cpTXCXp− 2kpTXMXp+ 2pTΛTXTCXp+ 2pTXKXp,

2(fT z)g3 = −kpTXTCXp+ 2cpTXTKXp+ 2pTΛTXTKXp.

CHAPTER 4. STRUCTURE PRESERVING TRANSFORMATIONS 105

Using (4.8.7) and (4.8.8) with E = M,C and K and the relations (4.8.1)–(4.8.4)

we find that for real eigenpairs,

2(fT z)gT = µ
(
xT1Q

′(λ1)x1 + xT2Q
′(λ2)x2

) [
1 c k

]
and that for complex conjugate eigenpairs,

2(fT z)gT =
i

4
µ
(
xT1Q

′(λ1)x1 − xT2Q′(λ2)x2
) [

1 c k
]
.

4.9 Proof of Lemma 4, Nonsymmetric Quadrat-

ics

We start by recalling the notation. In the real case (λ1, xL1, xR1) and (λ2, xL2, xR2)

are two real eigentriples of a nonsymmetric quadratic Q(λ) = λ2M + λC + K

such that λ1 6= λ2. Since the eigenpairs are real let Λ = diag(λ1, λ2) and let

XL = [xL1 xL2], and XR = [xR1 xR2].

In the complex case we have two complex conjugate eigentriples (λ1, xL1, xR1)

and (λ2, xL2, xR2) (where λ2 = λ̄1) and let Λ =
[
α
−β

β
α

]
and XS = [uS vS], S = L,R,

where λ1 = λ̄2 = α + iβ, β 6= 0 and

XS =

xS1
xS2

 =

uS + ivS

uS − ivS

 , S = L,R

x1 = x̄2 = u+ iv. Let

p = γ(λ1 − λ2)−1
 1

−1

 = pL, q = Λp− (λ1 + λ2)p

CHAPTER 4. STRUCTURE PRESERVING TRANSFORMATIONS 106

with γ = 1 for real eigenpairs p = pR = pL)and γ = i for complex eigenpairs (with

pR = −pL) and let

fTS zS = ‖XSpS‖2 6= 0, aS = (fTS zS)−1XSpS,

bTSzS = (eT`SXSΛSpS − 1)/(eT`SaS), zS = XSΛSpS − (bTSzS)aS,

dTSzS = (eT`SXSΛSqS)/(eT`SaS), hTSzS = (eT`SXSqS − 1)/(eT`SaS),

(4.9.1)

where

aTSaS = 1, eT`SzS = 1, |eT`SaS| = ‖aS‖∞, (4.9.2)

and pS, qS ∈ R2 are such that

eTpS = 0, eTΛSpS = 1, eTqS = 1, eTΛSqS = 0.

Define

A =


αM

1
2
αC 0

0 αM
1
2
αC

1
2
αC αK 0

0 1
2
αC αK


,

BR = −
[
MaR CaR KaR

]
,

BL = −
[
MTaL CTaL KTaL

]
,

wTR =
[
bTRzR dTRzR fTRzR hTRzR

]
,

wTL =
[
bTLzL dTLzL fTL zL hTLzL

]
,

VS =
[
bS dS fS hS

]
, S = L,R,

where αM = aTLMaR, αC = aTLCaR and αK = aTLKaR. The next lemma contains

useful relations.

Lemma 6. The following relations hold,

xTL1KxR1 = kxTL1MxR2, xTL2KxR1 = kxTL2MxR1 (4.9.3)

xTL1CxR2 = cxTL1MxR2, xTL2CxR1 = cxTL2MxR1 (4.9.4)

xTLjKxRj = −λ2jxTLjMxRj − λjxTLjCxRj, for j = 1, 2 (4.9.5)

CHAPTER 4. STRUCTURE PRESERVING TRANSFORMATIONS 107

and

dTSzS = −k fTS zS, (4.9.6)

hTSzS − bTSzS = c fTS zS, (4.9.7)

where S = L,R, c = −(λ1 + λ2) and k = λ1λ2. Also for any matrix E we have

aTLEaR = αE = (fTL zL)−1(fTRzR)−1pTLX
T
LEXR pR (4.9.8)

zTREaL = (fTL zL)−1pTRΛRX
T
REXL pL (4.9.9)

− (bTRzR)(fTL zL)−1(fTRzR)−1pTRX
T
REXL pL (4.9.10)

zTLEaR = (fTRzR)−1pTLΛRX
T
LEXR pR (4.9.11)

− (bTLzL)(fTL zL)−1(fTRzR)−1pTLX
T
LEXR pR (4.9.12)

where for real eigenpairs replace pR and pL by p (since p = pL = pR) and for

pTLX
T
LEXR pR = (4.9.13)

µ(xTL1ExR1 − xTL1ExR2 − xTL2ExR1 + xTL2ExR2) real case,

µ
2 (ixTL1ExR1 + xTL1ExR2 + xTL2ExR1 − ixTL2ExR2) otherwise,

(4.9.14)

pTLX
T
LEXRΛpR = (4.9.15)

µ(λ1x
T
L1ExR1 − λ2xTL1ExR2 − λ1xTL2ExR1 + λ2x

T
L2ExR2) real case,

µ
2 (iλ1x

T
L1ExR1 + λ2x

T
L1ExR2 + λ1x

T
L2ExR1 − iλ2xTL2ExR2) otherwise,

(4.9.16)

where µ = (λ1 − λ2)−2 6= 0 is defined since λ1 6= λ2.

Proof. The relations (4.9.3) and (4.9.4) follow from xTL2Q(λ1)xR1 = xTL2Q(λ2)xR1 =

0. The relations (4.9.6)–(4.9.12) follow from the definition of p, q, a and z and

(4.9.14)–(4.9.16) follow from the definition of Λ and X and p.

For the complex nonsymmetric case, we have the two eigenvalues λ1 = λ and

λ2 = λ̄2 with left eigenvectors xL1 = y = uL + ivL, xL2 = ȳ = uL − ivL and

right eigenvectors xR1 = x = uR + ivR and xR2 = x̄ = uR − ivR, where XS =

CHAPTER 4. STRUCTURE PRESERVING TRANSFORMATIONS 108

[uS, vS], S = L,R.

Relations (4.9.14)—(4.9.16) for the complex case follow from substituting the

expressions below

ΛR ← W ∗diag(λ1, λ2)W, XR ← 1
2
[x, x̄]W, pR =

−i
(λ1 − λ2)

 1

−1

W, (4.9.17)

ΛL ← ΛTR, XL ← 1
2
[y, ȳ]W pL =

i

(λ1 − λ2)

 1

−1

W, (4.9.18)

where W = 1√
2

1 −i

1 i

 with W ∗W = I.

With these relations in hand we can now prove the formula for W T
RA− zTRBL =

gTR in Lemma 4.6.12. We omit the proof of the formula for W T
LA − zTLBR = gTL

which is almost identical.

For the real nonsymmetric case, we show that

gTR = γR(ξ1 + ξ2 − ξ5 − ξ6)[1, c, k]

where ξ1 = xTL1(2λ1M +C)xR1, ξ2 = xTL2(2λ2M +C)xR2, ξ5 = xTL1(2λ2M +C)xR2,

ξ6 = xTL2(2λ1M + C)xR1 and γR = 1
2
(fTL zL)−1. Let gTR = [gR1, gR2, gR3]

T and

gR1 = bTRzRαM +
1

2
αCf

T
RzR + zTMTaL

gR2 = bTRzRαC + dTRzRαM + fTRzRαK +
1

2
hTRzRαC + zTRC

TaL

gR3 =
1

2
dTRzRαC + hTRzRαK + zTRK

TaL.

CHAPTER 4. STRUCTURE PRESERVING TRANSFORMATIONS 109

For the first element of gR, gR1 we use (4.9.8) and (4.9.12)

gR1 = bTRzRαM +
1

2
αCf

T
RzR + zTMTaL

2(fTL zL)gR1 = pTXT
LCXR p+ 2pTΛTXT

LMXR p

then applying (4.9.14) and (4.9.16)

2(fTL zL)gR1 = µ(xTL1CxR1 + xTL2CxR2 − xTL1CxR2 − xTL2CxR1)

+ 2µ(λ1x
T
L1MxR1 − λ1xTL1MxR2 − λ2xTL2MxR1 + λ2x

T
L2MxR2)

(4.9.19)

which simplifies to

= µ(xTL1(2λ1M + C)xR1 + xTL2(2λ2M + C)xR2

− xTL2(2λ1M + C)xR1 − xTL1(2λ2M + C)xR2)

= µ(xTL1Q
′(λ1)xR1 + xTL2Q

′(λ2)xR2

− xTL2Q′(λ1)xR1 − xTL1Q′(λ2)xR2)

2(fTL zL)gR1 = µ(ξ1 + ξ2 − ξ5 − ξ6). (4.9.20)

For the second element of gR, gR2 we first use (4.9.6)–(4.9.7), (4.9.8) and (4.9.12)

gR2 = bTRzRαC + αMd
T
RzR + αKf

T
RzR +

1

2
αCh

T
RzR + zTMTaL

2(fTL zL)gR2 = cpTXT
LCXR p+ 2pTXT

LKXR p− 2kpTXT
LMXR p+ 2pTΛTXT

LMXRp

(4.9.21)

CHAPTER 4. STRUCTURE PRESERVING TRANSFORMATIONS 110

then, applying (4.9.14) and (4.9.16) we obtain

2(fTL zL)gR2 = µ
(
−(λ1 + λ2)(x

T
L1CxR1 − xTL1CxR2 − xTL2CxR1 + xTL2CxR2)

+ 2(xTL1KxR1 − xTL1KxR2 − xTL2KxR1 + xTL2KxR2)

− 2λ1λ2(x
T
L1MxR1 − xTL1MxR2 − xTL2MxR1 + xTL2MxR2)

+ 2(λ1x
T
L1CxR1 − λ1xTL1CxR2 − λ2xTL2CxR1 + λ2x

T
L2CxR2)

)
= µ

(
−(λ1 + λ2)(x

T
L1CxR1 − xTL1CxR2 − xTL2CxR1 + xTL2CxR2)

+ 2(−λ21xTL1MxR1 − λ1xTL1CxR1 − kxTL1MxR2 − kxTL2MxR1

− λ22xTL2MxR2 − λ2xTL2CxR2)

− 2k(xTL1MxR1 − xTL1MxR2 − xTL2MxR1 + xTL2MxR2)

+ 2(λ1x
T
L1CxR1 − λ2xTL1CxR2 − λ1xTL2CxR1 + λ2x

T
L2CxR2

)
.

(4.9.22)

Finally using (4.9.3)—(4.9.5) we have

2(fTL zL)gR2 = µ
(
cxTL1Q

′(λ1)xR1 − cxTL1Q′(λ2)xR2 − cxTL2Q′(λ1)xR1 + cxTL2Q
′(λ2)xR2

)
= µc(ξ1 + ξ2 − ξ5 − ξ6). (4.9.23)

For the final element gR3, we first use (4.9.6)—(4.9.12),

gR3 = dTRzR
1

2
αC + hTRzRαK + zTRK

TaL

2(fTL zL)gR3 = cpTXT
LKXR p+ 2pTΛTXRK

TXL p− 2kpTXT
LCXR p

(4.9.24)

CHAPTER 4. STRUCTURE PRESERVING TRANSFORMATIONS 111

applying (4.9.14) and (4.9.16) yields

= µ
(
−(λ1 + λ2)(x

T
L1KxR1 + xTL2KxR2 − xTL2KxR1 − xTL1KxR2)

+ 2(λ1x
T
L1KxR1 + λ2x

T
L2KxR2 − λ2xTL1KxR2 − λ1xTL2KxR1)

− 2λ1λ2(x
T
L1CxR1 + xTL2CxR2 − xTL2CxR1 − xTL1CxR2

)
2(fTL zL)gR3 = µ

(
−2λ2x

T
L1KxR1 + 2λ1x

T
L1KxR2 + 2λ2x

T
L2KxR1 − 2λ1x

T
L2KxR2

− λ1λ2(xTL1CxR1 + xTL2CxR2 − xTL2CxR1 − xTL1CxR2)
)
.

(4.9.25)

Next we use the relations (4.9.26)—(4.9.27) below

−xTL1KxR1 = λ21x
T
L1MxR1 + λ1x

T
L1CxR1, −xTL2KxR2 = λ21x

T
L2MxR2 + λ1x

T
L2CxR2,

(4.9.26)

−xTL1KxR2 = λ22x
T
L1MxR2 + λ2x

T
L1CxR2, −xTL2KxR1 = λ22x

T
L2MxR1 + λ2x

T
L2CxR1,

(4.9.27)

to obtain

2(fTL zL)gR3 = µ
(

2λ2(λ
2
1x

T
L1MxR1 + λ1x

T
L1CxR1)− 2λ2(λ

2
1x

T
L2MxR1 + λ1x

T
L2CxR1)

− 2λ1(λ
2
2x

T
L1MxR2 + λ2x

T
L1CxR2)2λ1(λ

2
2x

T
L2MxR2 + λ2x

T
L2CxR2)

− λ1λ2(xTL1CxR1 − xTL1CxR2 − xTL2CxR1 + xTL2CxR2)
)

= λ1λ2µ
(
xTL1(2λ1M + C)xR1 + xTL2(2λ2M + C)xR2

− xTL2(2λ1M + C)xR1 − xTL1(2λ2M + C)xR2

)
2(fTL zL)gR3 = kµ(ξ1 + ξ2 − ξ5 − ξ6). (4.9.28)

For the complex nonsymmetric case the same idea applies, but we substitute the

CHAPTER 4. STRUCTURE PRESERVING TRANSFORMATIONS 112

modified expressions (4.9.17)—(4.9.18), thus

gR1 = bTRzRαM +
1

2
αCf

T
RzR + zTMTaL

2(fTL zL)gR1 = pTLX
T
LCXR pR + 2pTLX

T
LMXRΛpR

note that (x = xR1, x̄ = xR2, and y = xL1, ȳ = xL2) then applying (4.9.14) and

(4.9.16)

2(fTL zL)gR1 = µ
(

(2iyTCx+ 2yTCx̄+ 2ȳTCx− 2iȳTCx̄) (4.9.29)

+ 2(i2λyTMx+ 2λ̄yTMx̄+ 2λȳTMx− iλ̄2ȳTMx̄)
)

= µ(iȳTQ′(λ)x− iyTQ′(λ̄)x̄+ yTQ′(λ̄)x̄+ ȳTQ′(λ)x
)

= µ
(
ixTL1Q

′(λ1)xR1 − ixTL2Q′(λ2)xR2

+ xTL2Q
′(λ2)xR1 + xTL1Q

′(λ1)xR2

)
2(fTL zL)gR1 = µ(iξ1 − iξ2 + ξ5 + ξ6). (4.9.30)

gR2 and gR3 are obtained in a similar manner to the real case, we omit the details.

Chapter 5

Conclusions

Polynomial eigenvalue problems, considered in the first half of this thesis, are an

important class of nonlinear eigenproblems that are less routinely solved than the

standard eigenvalue problem (A − λI)x = 0 or generalized eigenvalue problem

(A − λB)x = 0. Quadratic, and more generally, polynomial eigenvalue problems

are usually converted to a degree one problem of larger dimension—the process of

linearization.

In Chapters 1—2 we explained the linearization process, solution of the linear

problem, and recovery of the solution of the polynomial problem from that of

the linear problem. By considering a numerical example, we saw that appropriate

handling of the problem is essential to returning accurate solutions, when extracting

solutions of the polynomial problem from those of the linear problem.

In Chapter 3 we presented a general purpose eigensolver for dense QEPs, which

incorporates recent contributions on the numerical solution of polynomial eigen-

value problems, namely a scaling of the eigenvalue parameter prior to the com-

putation, [6], [14] and a choice of linearization with favourable conditioning and

backward stability properties [30], [32], [33]. Our algorithm includes a prepro-

cessing step that reveals the zero and infinite eigenvalues contributed by singular

113

CHAPTER 5. CONCLUSIONS 114

leading and trailing matrix coefficients and deflates them. The preprocessing step

may also detect nonregularity (although this is not guaranteed), indeed robustly

detecting nonregularity of a quadratic is nontrivial and therefore future work. Our

algorithm takes advantage of the block structure of the chosen linearization. Imple-

mented as a MATLAB [49] function called quadeig, it makes use of functions from

the NAG Toolbox for MATLAB [53]. Our eigensolver can in principle be extended

to matrix polynomials of degree higher than two. The preprocessing step can easily

be extended using the same type of linearization, merely of a higher degree matrix

polynomial. For scaling of the eigenvalue parameter prior to the computation we

can use the method described in Section 2.3.1 on page 44 [6], which extends the

Fan, Lin and Van Dooren scaling for matrix polynomials of degree two.

Numerical examples were presented, illustrating the improved performance of

this new algorithm quadeig, with the existing MATLAB routine polyeig, both in

terms of accuracy and stability and reduced computational cost.

In Chapter 4 we described a structure preserving deflation procedure for quadratic

matrix polynomials, that given two eigentriples (λj, xj, yj), j = 1, 2 satisfying ap-

propriate conditions, decouples Q(λ) into a quadratic Qd(λ) = λ2Md+λCd+Kd of

dimension n− 1 and a scalar quadratic q(λ) = λ2m+ λc+ k = m(λ− λ1)(λ− λ2)

such that (a)

Λ(Q) = Λ(Qd) ∪ {λ1, λ2},

where Λ(Q) denotes the spectrum of Q and (b) there exist well-defined relations

between the eigenvectors of Q(λ) and those of the decoupled quadratic

Q̃(λ) =

Qd(λ) 0

0 q(λ)

 . (5.0.1)

This procedure applies to symmetric and nonsymmetric quadratics, and when the

CHAPTER 5. CONCLUSIONS 115

quadratic is symmetric preserves the symmetry.

Numerical examples that illustrate our deflation procedure were also presented.

To the best of our knowledge, this work is the first attempt at constructing a family

of nontrivial elementary SPTs that have a specific action of practical use: that

of “mapping” two linearly independent eigenvectors to a set of linearly dependent

eigenvectors.

This structure preserving deflation method has application in the area of model

updating. Model updating is the modification of an existing inaccurate model with

measured data. The eigenvalue embedding problem is a special instance of model

updating and can be defined as follows: consider a quadratic matrix polynomial

Q(λ) = λ2M + λC +K

resulting from a second-order dynamical system with a few known eigenvalues λj,

j = 1: k. Now suppose that new eigenvalues λ̂j, j = 1: k have been measured.

There are several types of eigenvalue embedding problems but one of them consists

of updating the quadratic Q(λ) to a new quadratic Q̂(λ) with eigenvalues λ̂j, j =

1: k replacing the eigenvalues λj, j = 1: k of Q(λ) while the remaining 2n − k

eigenvalues of Q̂(λ) are kept the same as those of the original problem Q(λ). This

is sometimes referred to as eigenvalue updating with no spill-over.

A number of solutions to this problem has been proposed often with additional

constraints such as preservation of the symmetry of the coefficient matrices and

preservation of the positive definiteness of the mass and stiffness matrices.

The deflation procedure in Chapter 4 can be used to update eigenvalues of a

quadratic matrix polynomial. Further work involves investigating the potential of

this process for updating systems, its reliability and performance in finite precision

arithmetic, and comparison with existing techniques.

Bibliography

[1] A. Amiraslani, R. M. Corless, and P. Lancaster, Linearization of

matrix polynomials expressed in polynomial bases, IMA J. Numer. Anal., 29

(2009), pp. 141–157.

[2] E. Anderson, Z. Bai, C. H. Bischof, S. Blackford, J. W. Demmel,

J. J. Dongarra, J. J. D. Croz, A. Greenbaum, S. J. Hammarling,

A. McKenney, and D. C. Sorensen, LAPACK Users’ Guide, Society for

Industrial and Applied Mathematics, Philadelphia, PA, USA, third ed., 1999.

[3] E. N. Antoniou and S. Vologiannidis, A new family of companion forms

of polynomial matrices, Electron. J. Linear Algebra, 11 (2004), pp. 78–87.

[4] , Linearizations of polynomial matrices with symmetries and their appli-

cations, Electron. J. Linear Algebra, 15 (2006), pp. 107–114.

[5] L. Barkwell and P. Lancaster, Overdamped and gyroscopic vibrating

systems, Journal of Applied Mechanics, 59 (1992), pp. 176–181.

[6] T. Betcke, Optimal scaling of generalized and polynomial eigenvalue prob-

lems, SIAM J. Matrix Anal. Appl., 30 (2008), pp. 1320–1338.

[7] T. Betcke, N. J. Higham, V. Mehrmann, C. Schröder, and

116

BIBLIOGRAPHY 117

F. Tisseur, NLEVP: A collection of nonlinear eigenvalue prob-

lems, MIMS EPrint 2008.40, Manchester Institute for Mathemati-

cal Sciences, University of Manchester, Manchester, UK, April 2008.

www.mims.manchester.ac.uk/research/numerical-analysis/nlevp.html.

[8] K. W. Brodlie, Corrections to matrices expressed in non-symmetric product

form, J. Inst. Math. Appl., 14 (1974), pp. 141–144.

[9] A. Bunse-Gerstner, R. Byers, V. Mehrmann, and N. K. Nichols,

Feedback design for regularizing descriptor systems., Linear Algebra Appl., 299

(1999), pp. 119–151.

[10] T. F. Chan, Rank revealing QR factorizations, Linear Algebra Appl., 88/89

(1987), pp. 67–82.

[11] M. T. Chu, T.-M. Hwang, and W.-W. Lin., A novel deflation technique

for solving quadratic eigenvalue problems, Tech. Rep. 2005-3-002, National

Center for Theoretical Sciences, National Tsing Hua University, Taiwan, 2005.

NCTS Preprints in Mathematics.

[12] M. T. Chu and S.-F. Xu, Spectral decomposition of real symmetric quadratic

λ-matrices and its applications, Mathematics of Computation, 78 (2008),

pp. 293–313.

[13] J.-P. Dedieu and F. Tisseur, Perturbation theory for homogeneous poly-

nomial eigenvalue problems, Linear Algebra Appl., 358 (2003), pp. 71–94.

[14] H.-Y. Fan, W.-W. Lin, and P. Van Dooren, Normwise scaling of second

order polynomial matrices, SIAM J. Matrix Anal. Appl., 26 (2004), pp. 252–

256.

BIBLIOGRAPHY 118

[15] A. Feriani, F. Perotti, and V. Simoncini, Iterative system solvers for

the frequency analysis of linear mechanical systems, Computer Methods in

Applied Mechanics and Engineering, 190 (2000), pp. 1719–1739.

[16] S. D. Garvey, M. I. Friswell, and U. Prells, Co-ordinate transforma-

tions for second order systems. I. General transformations, J. Sound Vibration,

258 (2002), pp. 885–909.

[17] , Co-ordinate transformations for second order systems. II. Elementary

structure-preserving transformations, J. Sound Vibration, 258 (2002), pp. 911–

930.

[18] S. D. Garvey, F. Tisseur, M. I. Friswell, J. E. T. Penny, and

U. Prells, Simultaneous tridiagonalization of two symmetric matrices, In-

ternat. J. Numer. Methods Engrg., 57 (2003), pp. 1643–1660.

[19] S. Gaubert and M. Sharify, Tropical scaling of polynomial matrices,

in Positive systems, vol. 389 of Lecture Notes in Control and Inform. Sci.,

Springer, Berlin, 2009, pp. 291–303.

[20] I. Gohberg, P. Lancaster, and L. Rodman, Matrix Polynomials, So-

ciety for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2009.

Reprinted by SIAM.

[21] G. H. Golub and C. F. Van Loan, Matrix Computations, Johns Hopkins

University Press, Baltimore, MD, USA, third ed., 1996.

[22] A. Gotts, Report regarding model reduction, model compaction research

project, University of Nottingham. Unpublished manuscript, 2005.

BIBLIOGRAPHY 119

[23] L. Grammont, N. J. Higham, and F. Tisseur, A framework for analyz-

ing nonlinear eigenproblems and parametrized linear systems, Linear Algebra

Appl., (2010). To appear.

[24] C.-H. Guo, N. J. Higham, and F. Tisseur, Detecting and solving hyper-

bolic quadratic eigenvalue problems, SIAM J. Matrix Anal. Appl., 30 (2009),

pp. 1593–1613.

[25] S. Hammarling, The singular value decomposition in multivariate statistics,

SIGNUM Newsl., 20 (1985), pp. 2–25.

[26] P. C. Hansen, R. D. Fierro, and P. S. Hansen, UTV tools: Matlab

templates for rank-revealing UTV decompositions, Numerical Algorithms, 20

(1999), pp. 165–194.

[27] D. Herting, MSC/Nastran Advanced Dynamic Analysis User’s Guide, MSC.

Software Corporation, 1997.

[28] N. J. Higham, Analysis of the Cholesky decomposition of a semi-definite

matrix, in Reliable Numerical Computation, M. G. Cox and S. J. Hammarling,

eds., Oxford University Press, 1990, pp. 161–185.

[29] , Accuracy and Stability of Numerical Algorithms, Society for Industrial

and Applied Mathematics, Philadelphia, PA, USA, second ed., 2002.

[30] N. J. Higham, R.-C. Li, and F. Tisseur, Backward error of polynomial

eigenvalue problems solved by linearization, SIAM J. Matrix Anal. Appl., 29

(2007), pp. 1218–1241.

[31] N. J. Higham, D. S. Mackey, N. Mackey, and F. Tisseur, Symmet-

ric linearizations for matrix polynomials, SIAM J. Matrix Anal. Appl., 29

(2006/07), pp. 143–159.

BIBLIOGRAPHY 120

[32] N. J. Higham, D. S. Mackey, and F. Tisseur, The conditioning of

linearizations of matrix polynomials, SIAM J. Matrix Anal. Appl., 28 (2006),

pp. 1005–1028.

[33] N. J. Higham, D. S. Mackey, F. Tisseur, and S. D. Garvey, Scal-

ing, sensitivity and stability in the numerical solution of quadratic eigenvalue

problems, Internat. J. Numer. Methods Engrg., 73 (2008), pp. 344–360.

[34] N. J. Higham and F. Tisseur, On structure preserving transformations for

quadratic matrix polynomials, MIMS EPrint, Manchester Institute for Math-

ematical Science, University of Manchester, Manchester M13 9PL, England,

2008. In preparation.

[35] A. Hilliges, C. Mehl, and V. Mehrmann, On the solution of palin-

dromic eigenvalue problems, in Proceedings of the European Congress on

Computational Methods in Applied Sciences and Engineering (ECCOMAS

2004), Jyväskylä, Finland, P. Neittaanmäki, T. Rossi, S. Korotov, E. Oñate,

J. Périaux, and D. Knörzer, eds., 2004, p. 11.

[36] B. Kågström and D. Kressner, Multishift variants of the QZ algo-

rithm with aggressive early deflation, SIAM J. Matrix Anal. Appl., 29 (2006),

pp. 199–227.

[37] T. R. Kowalski., Extracting a few eigenpairs of symmetric indefinite ma-

trix pencils, PhD thesis, Department of Mathematics, University of Kentucky,

Lexington, KY 40506, USA, 2000.

[38] V. N. Kublanovskaya, V. B. Mikhailov, and V. B. Khazanov, Eigen-

value problem for an irregular λ-matrix, Journal of Mathematical Sciences, 13

(1980), pp. 251–260.

BIBLIOGRAPHY 121

[39] Z. Kukelova, M. Bujnak, and T. Pajdla., Polynomial eigenvalue solu-

tions to the 5-pt and 6-pt relative pose problems, in BMVC 2008: Proceedings

of the 19th British Machine Vision Conference, M. Everingham, C. Needham,

and R. Fraile, eds., vol. 1, Malvern, UK, 2008, pp. 565–574.

[40] P. Lancaster, Inverse spectral problems for semisimple damped vibrating

systems, SIAM J. Matrix Anal. Appl., 29 (2007), pp. 279–301.

[41] , Linearization of regular matrix polynomials, Electron. J. Linear Algebra,

17 (2008), pp. 21–27.

[42] P. Lancaster and P. Psarrakos, A note on weak and strong lineariza-

tions of regular matrix polynomials, Numerical Analysis Report No. 470,

Manchester Centre for Computational Mathematics, Manchester, England,

June 2005.

[43] P. Lancaster and I. Zaballa, Diagonalizable quadratic eigenvalue prob-

lems, Mechanical Systems and Signal Processing, 23 (2009), pp. 1134–1144.

[44] D. Lemonnier and P. Van Dooren, Balancing regular matrix pencils,

SIAM J. Matrix Anal. Appl., 28 (2006), pp. 253–263.

[45] D. S. Mackey, N. Mackey, C. Mehl, and V. Mehrmann, Struc-

tured polynomial eigenvalue problems: Good vibrations from good lin-

earizations, MIMS EPrint 2006.38, Manchester Institute for Mathemat-

ical Sciences, University of Manchester, Manchester, UK, March 2006.

http://eprints.ma.man.ac.uk/190.

[46] , Structured polynomial eigenvalue problems: Good vibrations from good

linearizations, SIAM J. Matrix Anal. Appl., 28 (2006), pp. 1029–1051.

BIBLIOGRAPHY 122

[47] , Vector spaces of linearizations of matrix polynomials, SIAM J. Matrix

Anal. Appl., 28 (2006), pp. 971–1004.

[48] , Numerical methods for palindromic eigenvalue problems: computing the

anti-triangular Schur form, Numer. Linear Algebra Appl., 16 (2009), pp. 63–

86.

[49] MATLAB, The MathWorks, Inc., Natick, MA, USA. http://www.mathworks.

com.

[50] J. P. Meijaard, J. M. Papadopoulos, A. Ruina, and A. L. Schwab,

Linearized dynamics equations for the balance and steer of a bicycle: a bench-

mark and review, Proceedings of the Royal Society A: Mathematical, Physical

and Engineering Sciences, 463 (2007), pp. 1955–1982.

[51] C. B. Moler and G. W. Stewart, An algorithm for generalized matrix

eigenvalue problems, SIAM J. Numer. Anal., 10 (1973), pp. 241–256.

[52] C. Munro, F. Tisseur, and S. Hammarling, A general purpose algorithm

for solving quadratic eigenvalue problems. In preparation, 2010.

[53] NAG Toolbox for MATLAB, The Numerical Algorithms Group Ltd., Oxford,

UK. http://www.nag.com.

[54] B. N. Parlett and C. Reinsch, Balancing a matrix for calculation of

eigenvalues and eigenvectors, Numer. Math., 13 (1969), pp. 293–304.

[55] G. W. Stewart and J. Sun, Matrix Perturbation Theory, Academic Press,

London, 1990.

[56] F. Tisseur, Backward error and condition of polynomial eigenvalue problems,

Linear Algebra Appl., 309 (2000), pp. 339–361.

BIBLIOGRAPHY 123

[57] F. Tisseur, S. D. Garvey, and C. Munro, Deflating quadratic matrix

polynomials with structure preserving transformations, Linear Algebra Appl.,

(2010). To appear.

[58] F. Tisseur and K. Meerbergen, The quadratic eigenvalue problem, SIAM

Rev., 43 (2001), pp. 235–286.

[59] R. C. Ward, Balancing the generalized eigenvalue problem, SIAM J. Sci.

Comput., 2 (1981), pp. 141–153.

[60] D. S. Watkins, Performance of the QZ algorithm in the presence of infinite

eigenvalues, SIAM J. Matrix Anal. Appl., 22 (2000), pp. 364–375.

[61] , Fundamentals of Matrix Computations, Pure and Applied Mathematics,

Wiley-Interscience [John Wiley & Sons], New York, 2002. Second editon.

[62] , The Matrix Eigenvalue Problem, Society for Industrial and Applied

Mathematics (SIAM), Philadelphia, PA, 2007.

[63] J. H. Wilkinson, The Algebraic Eigenvalue Problem, Oxford University

Press, 1965.

