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In this thesis we focus on algorithms for matrix polynomials and structured matrix
problems.

We begin by presenting a general purpose eigensolver for dense quadratic eigen-
value problems, which incorporates recent contributions on the numerical solution
of polynomial eigenvalue problems, namely a scaling of the eigenvalue parameter
prior to the computation, and a choice of linearization with favourable conditioning
and backward stability properties. Our algorithm includes a preprocessing step that
reveals the zero and infinite eigenvalues contributed by singular leading and trail-
ing matrix coefficients and deflates them. Numerical experiments are presented,
comparing the performance of this algorithm on a collection of test problems, in
terms of accuracy and stability.

We then describe structure preserving transformations for quadratic matrix
polynomials. Given a pair of distinct eigenvalues (A1, A2) of an n X n quadratic
matrix polynomial Q(\) = A?Ay + AA; + Ay with a nonsingular leading coeffi-
cient and their corresponding eigenvectors, we show how to transform Q(\) into
Qd(g)\) . (0 )\)} having the same eigenvalues as (), with
Q4 (N) an (n—1) x (n— 1) quadratic matrix polynomial and ¢(\) a scalar quadratic
polynomial with roots A\; and As.

a quadratic of the form [
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Chapter 1

Introduction

1.1 Outline and Motivation

The main theme of this thesis is developing algorithms that preserve structure in
matrix problems in finite precision arithmetic. We motivate the importance of

structure preservation by the following quote [62]:

“When a problem has any significant structure, we should design and
use algorithms that preserve and exploit that structure. Observation
of this principle usually results in algorithms that are superior in speed

and accuracy.”

David S. Watkins

A number of benefits can therefore result from developing structure preserving
algorithms. Making use of the inherent structure in the problem can lead to more
efficient algorithms and a reduction in storage requirements. Preserving structure
can also lead to an increase in accuracy, stability, and necessarily the key qualities of
the problem are preserved, for example spectral symmetries, location of eigenvalues,

and physical properties such as positive definiteness.

15



CHAPTER 1. INTRODUCTION 16

A recent example of the importance of structure preserving methods is illus-
trated by a quadratic eigenvalue problem that results when modelling vibrations
on railway tracks [35]. It is shown in [48] that deflation and taking into account
the structure of the problem is crucial to obtaining an accurate solution. Indeed,
solving the problem directly with the QZ algorithm, even in quadruple precision,
returns a solution with no correct significant figures [45].

This thesis focusses on algorithms for matrix polynomials, after introducing
background material in Chapter 1, we give an outline of the solution of polynomial
eigenvalue problems by linearization. Chapter 3 describes theory and implementa-
tion of a general purpose algorithm quadeig for solving quadratic eigenvalue prob-
lems. This algorithm incorporates recent contributions on the numerical solution
of polynomial eigenvalue problems, namely a scaling of the eigenvalue parameter
prior to the computation, [6], [14] and a choice of linearization with favourable con-
ditioning and backward stability properties [30], [32], [33]. Our algorithm includes
a preprocessing step that reveals the zero and infinite eigenvalues contributed by
singular leading and trailing matrix coefficients and deflates them. The algorithm
is tested on quadratic eigenproblems from the NLEVP collection of nonlinear eigen-
problems [7], illustrating the improved performance of this new algorithm quadeig,
with the existing MATLAB routine polyeig, both in terms of accuracy and sta-
bility and reduced computational cost.

Chapter 4 describes a structure preserving technique for the deflation of eigen-
pairs from quadratic matrix polynomials (a special case of general degree matrix
polynomials). Structure preserving transformations (SPTs) and associated con-
straints needed to determine them are defined in [17], the contribution of this
thesis is to use them to construct a family of nontrivial elementary SPTs that
have a specific action of practical use: that of “mapping” two linearly independent

eigenvectors to a set of linearly dependent eigenvectors. Using this family of SPTs,
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given two eigentriples (\;, z;,y;), j = 1,2 satistying appropriate conditions, we can
decouples Q()) into a quadratic Qu(\) = A2M,; + AC; + K, of dimension n — 1 and
a scalar quadratic ¢(A) = XN*m + Ac+ k = m(A — A\;)(A — \g) such that (a)

A(Q) = A(Qd) U {)\17 )\2};

where A(Q) denotes the spectrum of @ and (b) there exist well-defined relations

between the eigenvectors of Q(A) and those of the decoupled quadratic

Q(\) = Qad) 0 (1.1.1)
0 q(V)

This procedure applies to symmetric and nonsymmetric quadratics, and when the

quadratic is symmetric preserves the symmetry.

1.2 Notation and Background Linear Algebra

In this work we generally adopt the Householder convention with regard to naming

variables, using the notation below.

e [, denotes the n-by-n identity matrix.

Matrices are denoted by capital letters: A.

Elements of matrices by lower case letters of the respective matrix: a;;.

Vectors are denoted by lower case Latin letters: a, b, c.

Scalars are denoted by Greek lower case letters: a, 3, 7.

We adopt the MATLAB matrix notation, thus A(i: j, k: [) represents the inter-

section of rows i to j and columns k to [, while A(:, k) denotes the kth column,
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the colon means to take all elements in the kth column. “I” denotes transpose,
while in complex arithmetic “x¥” denotes conjugate transpose. We write the names
of routines from LAPACK (linear algebra package [2]) or MATLAB [49] as for

example polyeig.
e A vector norm is a function || - || : C* — C satisfying the following

— ||z|]| = 0 for all x € C™ (with equality if and only if x = 0),
— ||az|| = |a||z] for all « € C,z € C",

= llz+yll < ll=ll + [lyl for all z,y € C".

A matrix norm || - || : C"*" — C satisfies a similar definition. Two examples
are the Frobenius norm ||A||p = /trace(A*A) and the 2-norm (or spectral
norm) ||Allz = v/Amax(A*A). Both the Frobenius and 2-norms are consistent
norms (||AB|| < ||A||||B]|), and unitarily invariant, that is if A, Q,Z € C"*"
with @, Z unitary (Z*Z = Q*Q = I), then ||QAZ||r = ||Al|r and ||QAZ||, =
Az

e The spectrum or set of all eigenvalues of a matrix A is denoted by A(A).
e We denote the Kronecker product by ® and give a definition below.

Definition 1 (Kronecker Product, see [20]). Given A € C™*™ and B € C"*"
the Kronecker product A® B € C™*™" of A and B is given by

(IHB CL12B cee almB

A9 B— anB  axpB -+ ay,B

a1 B ameB -+ ammB
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e The null space of a matrix null(A) is a set of linearly independent vectors,

where each vector x # 0 satisfies Ax = 0.

e The rank of an n-by-n matrix A is the number of linearly independent rows

or columns, and we have the relation rank(A) = n — dim(null(A)).

1.3 Matrix Factorizations

In this section we define the following matrix factorizations that will be used in the

algorithms presented in this thesis:
e Singular value decomposition.
e QR factorization and QR factorization with column pivoting.
e Schur, generalized Schur and generalized real Schur decomposition.

Definition 2 (Singular Value Decomposition [21, Thm. 2.5.2]). Any A € R™*"
can be decomposed as

A=Uxv"

U e R™™V € R are orthogonal, ¥ = diag(oy,...,0,) € R™™ contains the
singular values of A. The singular values are ordered such that o1 = 09 > -+ >

o, = ---0, = 0 where rank(A) = r and p = min(m, n).
Computing the SVD is one possible method of computing the rank of a matrix.

Definition 3 (Schur Decomposition [21, Thm. 7.1.3]). Given A € C"™*™ then there
exists a unitary matriz QQ € C™*™ such that Q*AQ =T, where T is upper triangular
and A(A) = diag(T'), Q can be chosen such that the eigenvalues appearing on the

diagonal of T appear in any order.
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Definition 4 (Generalized Schur Decomposition [21, Thm. 7.7.1]). Given A, B €

C™™ there exist unitary matrices QQ, Z € C™ "™ such that
Q(A—AB)Z =T —\S

where T and S are upper triangular.

If t;; = s;; = 0 for some j then A\(A, B) = C otherwise

Lii
A(A,B) = {_}
Sii
and if s; = 0 for some 7 the eigenvalue ); is said to be infinite.
Given a real matrix pencil, and working only in real arithmetic there is the

generalized real Schur form. In this case given A, B € R™*"™ there exist orthogonal

matrices (), Z € R™"™ such that
QTA—AB)Z =T - \S

where T is quasi-upper triangular and S is upper triangular. In general T — AS
will be quasi upper triangular. The eigenvalues of the pencil A — AB comprise the
ratios of the diagonal elements of 7" — \S for real eigenvalues, and the eigenvalues
of the blocks appearing on the diagonal of T'— AS yield the complex eigenvalues of
A—)\B.

Definition 5 (QR Factorization [21, Sec. 5.2]). Given a matriz A € R"™*"™ with

m = n, then its QR factorization is given by
A=0QR,

where Q) € R™™ 4s orthogonal and R € R™*"™ is upper triangular.
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Definition 6 (QR Factorization with Column Pivoting [21, Sec. 5.4.1]). Given

A € R™™ with m > n, its QR factorization with column pivoting is given by

OTAP — Ru Rip
0o 0

where Q is orthogonal, P a permutation matriz, R1; € R¥** is upper triangular,
and k = rank(A). To define P, consider the jth stage of Householder QR factor-

1zation, at the start of which we have

j—1 j—1
Ry Ry

Q1+ Qi) APy -+ Pjy) = (1.3.1)

0 Ry

with jofl) nonsingular. The next permuation matrix P; is chosen so that the
column of largest norm in R%_l) is move to the lead position, then the next House-

holder transformation @Q); has the action of zeroing the subdiagonal components.

1.4 Algorithms Implementation in Finite Preci-
sion

In this thesis we implement algorithms in finite precision, not exact arithmetic. In

this section we highlight some of the relevant details.

1.4.1 Measuring Accuracy and Stability of Computed So-

lutions

When considering solutions to problems in finite precision we are interested in two

quantities. Firstly, when we have a problem to solve with initial sampled data,
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there is the possibility that the sampled data contains errors. The conditioning of
the data measures the sensitivity of the solution of the problem to perturbations
in the data. The extent to which the problem is well conditioned is an inherent
property of the problem. Secondly, given a method or algorithm for computing a
solution to a problem we would like to assess the quality of the computed solution.
Backward error is a measure of how much the problem must be perturbed for the
computed solution to be an exact solution of the perturbed problem.

An important quantity involved with working in finite precision is the unit
roundoff u, which characterizes the worst-case error inherent in representing real

numbers as floating point numbers in finite precision arithmetic.

Theorem 1 ([29]). If z € R lies in the range of a floating point number system F'

(a subset of the real numbers) then
fil@) = 2(1+8), 13 <u,

where fl(x) denotes x evaluated in floating point arithmetic.

When implementing algorithms in MATLAB, the inbuilt function eps (machine
precision) can be used as a tolerance. This is not the same as the unit roundoff
but characterizes spacing of floating point numbers, thus eps returns the distance
from 1.0 to the next largest floating point number. The unit roundoff in MATLAB
is u =27 = eps/2 ~ 1.1e-16.

When developing algorithms to work in finite precision we would ideally like to
work with orthogonal transformations (U a real square matrix such that UTU = I,
for U complex T is replaced by conjugate transpose *). If we carry out a transfor-
mation on a matrix with errors: A = A + E to form UT(A + E)U and take the
norm, then for orthogonal /unitary matrices and a unitarily invariant matrix norm

|- |l, [IUTEU|| = ||E|| so we do not increase error inherent in the data.
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1.4.2 Matrix Rank Computation

A key stage in many of the algorithms in this thesis is computing accurately (or
inferring information about) the rank of a matrix in finite precision arithmetic.
Given a matrix A € R™*" whose rank we wish to compute, we can take the SVD,
an eigendecomposition, or compute a QR factorization with column pivoting.

Theoretically the SVD yields a factorization A = UX V7T with
Y =diag(oy,...,00,0041,...04)

where, if the matrix is singular we have o,, ... 0, equal to zero exactly. In finite
precision, however, we will have the computed SVD USVT where 7 denotes the
computed value of z. Thus 6,41 ...d, will not be exactly zero, rather some ‘small’
quantity. We will then have to take a rank decision and neglect (set to zero) any
singular values less than a particular tolerance 7 which will need to be chosen, we

then call the resulting rank the numerical rank.

Definition 7 (Numerical Rank). Given a matriz A € C™*" and a tolerance T > 0

then the numerical rank of A is the largest integer k such that oy, > 7.

It is worth noting that some existing routines such as GEQP3 in LAPACK, which
computes a QR factorization with column pivoting, will only return the factors
defining the factorizations and do not attempt to determine the numerical rank of
the matrix within the routine. Hence when implementing algorithms we will need
to use a suitable tolerance, for example 7 = u||A|| where u is the unit roundoff.

Setting to zero quantities close to the unit roundoff can be justified by the
argument that doing so involves making perturbations of the same size as the error

inherent in storing the data as floating point numbers.
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The most accurate (although also most expensive) way to determine the nu-
merical rank of a matrix is via the SVD [25]. A less expensive alternative to the
SVD is a QR factorization with column pivoting, which is implemented robustly
and efficiently in LAPACK. However, this factorization does not yield the correct
numerical rank for some matrices. An example of such a matrix is the Kahan ma-
trix (defined by the parameters n = 90 and 6 = 1.2) described in [61]. Computing
a QR factorization with column pivoting in MATLAB yields an upper triangular
matrix whose smallest diagonal element is 1.9039¢-3 and not small (relative to the
unit roundoff), but the smallest singular value is 3.9607e-15 and the matrix has
numerical rank 89 based on a tolerance 7 ~ u. In this case QR with column piv-
oting has provided an overestimate of the rank. Further information on QR with
column pivoting overestimating the rank of a matrix is contained in Section 3.3.1
on page 59. After computing a QR factorization the resulting R matrix is up-
per triangular, so it would be inexpensive to apply a condition number estimator
(such as MATLAB’s condest) to check the singularity, as the condition number
estimator normally tries to computes an LU factorization which is unnecessary
for upper triangular matrices. We note that, for the algorithms we later present,
overestimating the rank is much more favorable than underestimating the rank.
For example, in the case of preprocessing the standard eigenproblem to remove a
zero eigenvalue, overestimating the rank means we fail to remove a zero eigenvalue;
underestimating the rank would be much worse however, since it would mean we
are essentially setting to zero an eigenvalue which is not close to zero relative to
the unit roundoff.

Another option to find the numerical rank of a matrix is to compute a rank
revealing QR factorization [10]—for example one of the UTV type factorizations
[26]. Some of these methods are iterative however, so the cost of their computation

cannot be determined a priori. They are also not currently implemented in a robust,
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blocked and efficient form in a library such as LAPACK.

1.5 The Polynomial Eigenvalue Problem

The polynomial eigenvalue problem (PEP) is to find scalar eigenvalues A, and as-

sociated nonzero left and right eigenvectors y, x such that
Yy PN =0, P(Nz=0, =zy#0,

where

PiN) = XAy -+ NA + A

with A, € C™", i =0: ¢, and A, # 0, and throughout this thesis we will assume
that the degree ¢ matrix polynomial Py(\) is regular, that is, det(FP,(\)) # 0.

The most commonly occurring case in applications is the quadratic eigenvalue
problem (QEP), a special case of the PEP with ¢ = 2. In these applications, the

quadratic matrix polynomial Q(\) is often written as
Q(\) = MM + \C + K,
where M is the mass matrix, C' the damping matrix and K is the stiffness matrix.

1.5.1 Structures and Properties of Matrix Polynomials

A matrix polynomial may exhibit a number of structures, for example symmetric
coefficients, hyperbolicity, and properties such as real or complex coefficients, and
singular leading or trailing coefficients. Such structure will be exhibited in particu-
lar properties of the eigenvalues and eigenvectors. For example, when M, C, and K

are symmetric, then if A is an eigenvalue with right eigenvector x, then x is a left
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eigenvector of the eigenvalue A. A summary of properties associated with different

structures is given in the review article [58].

1.5.2 Singular Leading and Trailing Coefficients

We call the Aj coefficient of a matrix polynomial P, the trailing coefficient, and
the Ay coefficient the leading coefficient. If either or both of these matrices are
singular then we know the matrix polynomial will have zero or infinite eigenvalues.
Specifically, if rank(Ag) = ry and rank(A4,) = r, then we have the following lower

bounds:

# of zero eigenvalues > n —

# of infinite eigenvalues > n — ry.

Also, if A = 0 is an eigenvalue contributed by Ag then its corresponding eigenvector
is in fact a null vector of Ay (a null vector x # 0 of A satisfies Ax = 0). A similar
argument applies to infinite eigenvalues with null vectors of A,. There may be
additional zero or infinite eigenvalues if the leading or trailing coefficients have a
nontrivial null space intersection with the coefficients A;, i =1: ¢ — 1.

Infinite eigenvalues A = oo are in fact zero eigenvalues of the reversal polynomial

rev(P;). The reversal polynomial of Py(\) = AN2A, + - -+ + AA; + Ay is given by

rev(P(N)) == A P(1/A) = XA + A1 A + -+ A,

and A = oo as an eigenvalue of P, is mapped to A = 0 as an eigenvalue of rev(F;(A)).
In order to treat infinite eigenvalues more comfortably, one can work with the
eigenvalue parameter written in homogeneous form, that is writing A = a//3, with

not both of o and 8 zero. For real eigenvalues a and § can be normalized and
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thought of as a point on the unit circle. The matrix polynomial in homogeneous

form is obtained upon substituting A = o/ and defining
Pia,B) = BP(\) = " Ag + -+ a7 A + B Ap.

Thus zero eigenvalues take the form (a, 8) = (0, 8) with 5 # 0 and infinite eigen-
values the form (o, 8) = (o, 0) with « # 0.

1.5.3 Measuring the Accuracy of Computed Eigensolutions

In this section we describe two quantities important in measuring the accuracy of
computed solutions to problems in finite precision arithmetic: backward error and
condition numbers. In Chapter 3 we explain an implementation of a general purpose
code to solve polynomial eigenvalue problems which will return both eigenvalue
condition numbers and backward errors for computed eigenpairs. In this section
we give the formulae used to compute these two quantities for the case of general
degree ¢ matrix polynomials. In our algorithms we allow for the possibility of both
infinite and zero eigenvalues, so to allow an equal treatment of finite, zero and
infinite eigenvalues we represent the eigenvalues in homogeneous form as mentioned
in the previous section.

The definition of backward error of a right eigenpair (z;a, ) of a degree ¢

matrix polynomial written in homogenous form
¢
Pya,B) =) a'BA
=0

is given next. In this section AA; denotes an unstructured perturbation to the A;

coeflicient.
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Definition 8 (Relative normwise backward error of an approximate right eigen-
pair). The relative normwise backward error of an approximate right eigenpair

(z;, B) of a polynomial Py(c, 5) is defined as

e, (x5, f) = min{e: (Py(e, ) + AP(a, §) ) =0, [[AA]l, <ellAilly, i =0: £},
(1.5.1)
where APy(a, ) = S0_ o/ AA;.

An explicit expression [58] for relative backward errors of right eigenpairs (z; o, 3)

of degree ¢ matrix polynomials is given by

|PesBall,
S iolal81= Al ) el

np,(z;a, f) = ( (1.5.2)
The representation («, 3) of an eigenvalue \ is not unique, however (1.5.2) is inde-
pendent of the scaling of («, ).

Moving to condition numbers, Dedieu and Tisseur [13] present condition num-
bers for eigenvalues of matrix polynomials. The condition number kp, (e, 3) is
defined for simple eigenvalues both finite (including zero) or infinite. It provides a
bound on the angle between an exact eigenvalue («, ) and a perturbed eigenvalue
(&, B) The angle is based on viewing an eigenvalue as a line that goes through
the origin in the complex plane to the point (a, 8) solving det(P;) = 0. For an
eigenvalue («, ) of a degree ¢ matrix polynomial, this condition number is defined
as

kp,(a, ) = max | Kla, 5) AAl, (1.5.3)

1aai<t — la, A,

where AA = [AAg, AAy, ..., AA,). K(a,B) : (C>™)EHD Tiap)Pr, TP is a
tangent space at (a, ) to Py the projective space of lines through the origin in

C2. The condition operator for the eigenvalue («, 3) is defined as the differential
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of the map from the (¢ 4 1)-tuple (Ay,..., As) to («, 8) in projective space. The

condition number can be computed using the expression given below.

Theorem 2 (see Theorem 2.3 [32]). The normwise condition number kp,qp) of a
simple eigenvalue («, ) with right eigenvector x and left eigenvector y of a degree

¢ matriz polynomial is given by

0 i — 2
(Zizo\alzjﬁ\w A1)yl 2],
|y*(BDa Py — aDpPy)las 7|

/ipz(aﬁ) = (154)

where Dy, = 7= and Dy = 7.

An alternative condition number is r£p,(A) which is a direct generalization of
Wilkinson’s condition number [63] for the standard eigenvalue problem Az = A\x
and measures the relative change in an eigenvalue, however it is not defined for
zero or infinite eigenvalues. In Chapter 3 we describe an algorithm which allows

for the possibility of zero and infinite eigenvalues, hence we use kp,(«, 3).

1.5.4 Applications

Quadratic eigenvalue problems arise in many applications, for example, dynamic
analysis of mechanical systems in acoustics, structural mechanics, electrical circuit
simulation, gyroscopic systems, molecular dynamics and constrained least squares.
Information about many more applications can be found in the review article [58].
NLEVP [7] is a collection of nonlinear eigenvalue problems, some from applications
and some constructed to have specific properties. The problems are described and
the matrices defining the problems are available in a MATLAB toolbox.

A quadratic eigenvalue problem often results from vibrational /dynamic analysis

of structures discretized by the finite element method. The equations of motion
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are:

Md(t)+ Cq(t) + Kq(t) = f(2), (1.5.5)

where M, C', and K € C™*" are mass, damping and stiffness matrices arising from
a finite element discretization, the vector f(¢) is a forcing term, and ¢(t), f(¢) are
n-vectors. When looking for exponential solutions, of the form ¢(t) = ez, the first
step is the solution of the homogeneous equation, which arises from setting f(¢) = 0
in (1.5.5). Then, substituting ¢(t) = e*z we obtain the QEP (MM + A\C' + K)z =
0 with Q(\) = X*M + MC + K. We now describe in more detail a number of

applications that yield quadratic eigenvalue problems.

Shaft Problem

A finite element model of a shaft on bearing supports with a damper, modelled
with the finite element package MSC/Nastran [27], yields a quadratic eigenvalue
problem Q(\) = \>M + AC + K, with M,C, K € R190*4%_Tn this example the
coefficients are very sparse. The mass matrix M has rank 199 and contributes
a large number of infinite eigenvalues. A schematic of the shaft can be found in

Figure 1.1.

Damped Beam Problem

A model of a beam as seen in Figure 1.2, simply supported at both ends and
damped at the midpoint is considered in [33].
The transverse displacement u(x,t) is governed by the partial differential equa-
tion,
0?u ou o*u

with associated boundary conditions: u(x,t) = u”(x,t) =0, x = 0, L. Solving for

exponential solutions of the form u(z,t) = e*v(x, \) yields an eigenproblem for
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Figure 1.1: Schematic of a shaft on bearing support

Center Support

Damper ‘

Figure 1.2: Simply supported beam with damping

/1] /1]
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free vibrations of the form

4

NpAv(z, \) 4+ Ae(z)v(x, \) + EI 0

%’U(C{T, A) =0.

After discretizing the PDE to obtain a finite dimensional problem, one is left
with a quadratic matrix polynomial with mass, damping and stiffness matrices,
M,C and K with the properties M, K > 0 and C > 0. Due to the inherent
structure of the problem, it is known that the spectrum of the quadratic lies in the

closed left hand half of the complex plane.

Linear Spring Dashpot with Maxwell Elements

Gotts [22] describes a quadratic eigenvalue problem arising from a finite element
model of a linear spring in parallel with Maxwell elements (a Maxwell element is a
spring in series with a dashpot), for a diagram see Figure 1.3. This quadratic is also
included in the MATLAB toolbox NLEVP [7] under the name spring dashpot.

The quadratic is of the form
Q\) = M+ NXC+ K, MC,K¢cRYXY

where the mass matrix M is symmetric and rank deficient (and hence contributes
infinite eigenvalues), the damping matrix C' is rank deficient and block diagonal,

and the stiffness matrix K is symmetric and exhibits “arrowhead” structure. The
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form of the matrix for 4 Maxwell elements is given below

M = diag(pﬁn,O), C= diag((),mffu,-“ 7774;(55)7

_apj;vll B ]
61[?22 0 0
K - )
BT 0 0
i 0 0 eskss ]

where
B = [_51[?127 c —545615] :

]\Zj and IN(Z-]- are the ijth element mass and stiffness matrices, and

mi, + =1:5,& 7 =0:5, e, k= 1:4 and p (the material density) are scalar

parameters.
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Figure 1.3: Spring/dashpot with Maxwell elements

Eo=
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Chapter 2

Solving PEPs by Linearization

Generalized eigenvalue problems (A — AB)z = 0 can be solved by computing the
generalized Schur form. There is no extension however, of the generalized Schur
form for matrix pencils to matrix polynomials of degree two or higher. The standard
approach to solve PEPs both theoretically and numerically is to convert the degree
¢ matrix polynomial with n-by-n matrix coefficients to a linear matrix pencil AX+Y
of dimension ¢n-by-¢n, a process known as linearization. The linearized problem
is a generalized eigenproblem which can be solved by computing the generalized
Schur form. In this chapter we explain the linearization process, solution of the
linear problem, and recovery of the solution of the polynomial problem from that

of the linear problem.

2.1 Linearizations of Matrix Polynomials

The first step in solving the PEP by linearization is to find an n-by-¢n linear matrix
pencil L(A) that is a linearization of the polynomial P;()) in that it satisfies the

following definition.
Definition 9 (Linearization [20]). The pencil L(A\) = AX +Y is a linearization of

35
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the degree ¢ matriz polynomial Py(X\) if

0 Ty

where E(X) and F(X) are matriz polynomials with constant nonzero determinants
(and are said to be unimodular, and have inverses that are defined over the field of

matriz polynomials).

Research on linearizations of matrix polynomials has been very active lately
including generalization of its definition [42], [41], derivation of new (structured)
linearizations [1], [3], [4], [31], [46], [47] and analysis of the influence of the lin-
earization process on the accuracy and stability of computed solutions [30], [32],
[33]. Factors influencing the choice of linearization include the properties of the
matrix polynomial—for example structure in the coefficients, and the properties of
the linearization with regard to solving the original polynomial problem.

Recent work [47] has identified vector spaces of pencils that are potential lin-
earizations of degree £ matrix polynomials Py(\) = XA, +- -+ A; + Ay. Defining
A= U200 1)T these vector spaces, which contain an infinite number of

linearizations of P, are

Li(P) = {L(A\): L) (A® L) =v® P(N), veC}, (2.1.1)
Ly(Py) = {L(\): (A" ® L,)L(\) = w" ® Py(\),w € C'}, (2.1.2)
DL(P;) = Ly (P;) N Ly(P)). (2.1.3)

In practice, the most commonly used linearizations are the companion forms.

For example the first companion linearization of a quadratic Q(\) = A2 Ay+AA;+ 4,
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has the form

Ay 0 A A
Ci(A) = A + ; (2.1.4)

0 I, —I, 0

which is in the vector space L;(Q) with vector v = e;. An example of a symmetry
preserving linearization of a real symmetric quadratic Q (4; = AT, i = 0: 2), with
det(Ap) # 0, is

Ay 0 A1 A

Li(\) = A + (2.1.5)
0 —Ao| |4 0

which is in the space DL(Q) with vector v = e;. Such symmetry preserving lin-
earizations will be relevant in Chapter 4 in the area of structure preserving trans-

formations for quadratic matrix polynomials.

2.2 Solving PEPs by Linearization in Finite Pre-
cision Arithmetic

We begin by first considering a numerical example which illustrates the theme of
this section. In finite precision arithmetic we have computed the spectrum of the
damped beam quadratic [33], solving the quadratic eigenproblem by linearization
(using MATLAB’s eig function) with three different linearizations of the original
quadratic: L; and C; already mentioned (equations (2.1.4) and (2.1.5)), and for

det(As) # 0,

0 Ay [-4, 0
Ly(A) = A + , (2.2.1)

Ay Ay 0 Ao

which is in the space DIL(Q) with vector v = ey. Theoretically, in exact arithmetic
we know the eigenvalues of the quadratic problem are identical to those of the

linearized problem, and further, the eigenvalues should be the same regardless of
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which linearization is taken.

The three plots in the left hand side of Figure 2.1 show the computed spectrum
of the damped beam quadratic solved using the three linearizations (2.1.4)—(2.2.1).
It is shown in [33] that due to the properties of the problem, all the eigenvalues
should be in the left half of the complex plane. Even visually we can see that the
spectrum for the three different linearizations is different, and not all eigenvalues
are in the left half of the complex plane, both in contradiction to the theory.

In the next section we discuss recent theory which explains this situation and
techniques that can be used to improve the accuracy of computed eigenvalues.

The three plots in the right hand side of Figure 2.1 show the computed spectrum
when these techniques have been applied to the damped beam quadratic. We see

that at least visually the computed spectrum is the same for the three linearizations.

2.3 Accuracy and Conditioning of Solutions to

QEPs Solved by Linearization

In this section we discuss recent developments in the theory that can help explain
the accuracy of computed eigenvalues of matrix polynomials, solved by linearization
in finite precision arithmetic, and techniques that can be applied to attempt to
improve the situation. What follows is phrased for quadratic matrix polynomials.
In Section 2.3.1 we comment on matrix polynomials of degree higher than two.
We now define notation used in the rest of this chapter. Let Q()\) be the original
(unscaled) matrix polynomial, and @(,u) the quadratic scaled using the Fan, Lin
and Van Dooren scaling (which we will define). Let L be the linearization of the
scaled quadratic @, where L(u)z = 0 such that the right eigenvector has the form

z = [z, 2F]T where 2, is the first and 2y the last n components of z. We write
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Figure 2.1: Computed spectrum of unscaled/scaled damped beam quadratic for
linearizations Cy, Ly, and Lo, (as defined in (2.1.4)—(2.2.1)) using MATLAB’s eig
to solve the linear problem

C of unscaled Q C1 of scaled @)

x 10° x 10°

- ¥ o
2 . K2 ;’ 2
45 10 5 0 5 4s 10 5 0 5
Ly of unscaled @ Ly of scaled @
4x10° 4x10°

Ly of unscaled @ Ly of scaled @
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quantities computed in finite precision as [, 21, 2 etc.

Linear problems/generalized eigenvalue problems of the form (A — AB)z = 0
can be solved with the QZ algorithm which gives backward stable solutions for the
linear problem. However, if we linearize a quadratic matrix polynomial, solve the
resulting linear problem with QZ and extract a solution for the quadratic matrix
polynomial, that solution will not in general be backward stable for the quadratic
problem. The theorem below shows that backward stable solutions will be returned
when solving by linearization with companion type linearizations, if the coefficient

matrices have unit norm.

Theorem 3 ([56, Thm. 7]). When solving the QEP Q(N)x = 0 with Q(\) =
N Ay + NAL + Ao, if |As]l, = [|Aill, = || 4oll, = 1 then solving the GEP using
a companion type linearization, with a backward stable algorithm (e.g., the QZ

algorithm) for the GEP is backward stable for the QEP.

The scaling of Fan, Lin and Van Dooren [14] attempts to achieve the above, by
rescaling the eigenvalue parameter to A = pd and multiplying the original quadratic

by a nonzero scalar . This yields the scaled quadratic
Q) = 6Q(n) = p* Az + pAy + Aq.
The coefficients of the scaled quadratic have the form

Ay =254y, Ay =~84,, Ag =34

— /1 Aolly -2 ; : "
where v = s and 0 = AT AT This scaling has no effect on condition
numbers or backward errors for eigenvalues of the quadratic, but attempts to im-
prove the condition numbers and backward errors of eigenpairs of () recovered from

solving the linear problem L(u)z = 0 and w*L(u) = 0 using a linearization L.
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We now present the link between this scaling and recent theory that explains
the impact of scaling on backward error and conditioning.

The scaling of () can be measured by the quantity [32]

_ (A
min (|| Aol[, , [|A2]l5)’

where for well scaled problems p =~ 1, and scaling () generally decreases p.

Sufficient conditions for approximate equality between backward errors for eigen-
pairs of the quadratic and linearization, ng = 7, are given in [30, 32]. Where there
is a choice of which component of the eigenvector of the linearization (z; or z;)
to take as an eigenvector of the quadratic (here we focus on right eigenvectors x,
results for left eigenvectors also exist), the theory says which of the first or last n
components to take. We give the details for L = C} and L, (see [30, 32] for L = Ls).
In Chapter 3 the second companion linearization Cy()) is used, we present relevant
information in that chapter.

Starting with companion linearizations for np ~ nc we require || 4| < ||Az|| =
| Ao|| then if [A\| > 1 choose x = z1, else choose z = zs.

For the linearization L, the sufficient conditions depend on eigenvalue magni-
tude as well as the choice of eigenvector. For |A| > 1 the condition is p ~ 1 in
which case choose x = z; as the eigenvalue of (). For |A| < 1 the condition is
pmax(1, (|[A1] + ||4o])||A5Y) ~ 1 and take z = 2.

Upon proceeding from the quadratic to the linear problem, we can measure the
growth of the eigenvalue condition number and the backward error of eigenpairs of
@ recovered from the solution of the linear problem.

We now look at what happens to the backward error ¢)(u) and condition number
¢(zx) growth factors  np(p) = Yo(z)ko(p), ko(p) = én(pw)kg(p), when we

scale () using the Fan, Lin and Van Dooren scaling. We will need the quantities
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[33]
A 1
T = 141l , and w(p) = —+|:|- )
VI Aolly 1Az, 1+ e

The following expressions for the growth factors for L = Cy, Ly, and L, are

presented in [33]:

A~

121l

¢C1 ~ w(ﬁ)v 7/)01(2k) ~ w(p\“) ~ 5 (2'3'1)
1]
oo~ 2, biaa) ~ v w(@) 12 (2.32)
7 D
b1 ~ (11 |B1) (D), bra () ~ (k) (@) ‘{';'}f , (2.3.3)
2

where for Li: v(1) = 1 and v(2) = ||A;'|2, and for Ly: v(1) = 1 and v(2) =
145 ]2

For the scaled problem it holds that

1 <w(p) < min{l + 7,

1+ W}
)

thus, both backward error and condition number are essentially optimal for C for
all A\, for Ly if |g| > 1 and for Ly if || < 1, if w(p) = O(1), the physical interpreta-
tion of this is that for mechanical systems, this is the case for systems that are not
too heavily damped, that is [| 41|, S v/ Aoll, A2, where 7 < 1. The class of ellip-
tic quadratics fall into this category (of not too heavily damped problems), since Ay
is positive definite, and for all nonzero x it holds that (z*A;2)* < 4(z* Agz)(z* Agz).
Optimality also holds if |u| = O(1).

Due to the choice of eigenvector of the quadratic from the solution of the linear
problem, the expressions of backward error growth factor depend on z; (whether
the first or last n components of Z are selected as an eigenvector z of the quadratic).

Applications yielding examples of quadratics for which the scaling of Fan, Lin,
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and Van Dooren does not improve the inherent scaling of the problem are available.
One such example is the cd_player problem from NLEVP [7]. Before applying

scaling we have
| A2ll, = 1.0, ||A4|l, = 1.0e7, || Ao|l, = 2.3€5,
and after scaling,
[As]ls = 9e-5,  [[Aa]ls =2, [[Aollo = 9e-5.
This is an example of a quadratic that is heavily damped with
[A1lly > max([|Agl, , [[Aoll2)-

As seen in equations (2.3.1)—(2.3.3), the theory explains that eigenvalues of
linearizations L of heavily damped quadratics can have large condition numbers
(for L) and backward errors of the original quadratic.

Another scaling strategy is tropical scaling [19], of the same type as the scaling
as Fan, Lin and Van Dooren, of the form Q(\) + Q (). The parameters 6 and ~y are
formed after computing the tropical roots of a scalar quadratic tropical polynomial,
whose coefficients are the norms of the coefficients of (). This yields two roots and
therefore two scalings. Analysis in [52] shows that if the roots are equal this is
equivalent to the scaling of Fan, Lin and Van Dooren. When the roots are unequal,
one scaling attempts to improve the accuracy of small eigenvalues and the other

the accuracy of large eigenvalues.
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2.3.1 Scaling Higher Degree Matrix Polynomials

For higher degree matrix polynomials (cubics and above), the eigenvalue parameter
scaling of Fan, Lin and Van Dooren is extended to higher degree polynomials in [6]

to a scaling of the form

Py() = 7Py(0)). (2.3.4)

The previously mentioned quantity p, which measures the scaling of the problem

naturally extends to
_ max(Aily)
min ({| Aol , [ Aell,)

The choice of § = /||4oll,/||A¢l|, can be shown [6] to minimize p(J) for Py(0\)

in (2.3.4). If p = 1 then for a given eigenvalue there is a linearization in the

space DIL(P;) such that the eigenvalue condition number for the linearization is
approximately the same as the condition number for the original polynomial [32].
For companion linearizations, which are not in DL(/F;), in addition to p ~ 1 we
also require [32] that ||4;]|, = 1, ¢ =0: ¢ and 7 in (2.3.4) is chosen to attempt to
achieve ||4;]|, ~ 1, i = 0: £. The choice of v = a’1/a”a where a is a vector with
a; = ||Asll,, i =0: £ and 1 is a vector of ones of length £ + 1 minimizes ||ya — 1||;
or we might choose v = max; (|| A4;||,) " provided || A;||, # 0. If || Ao]|, = || Asll, then

0 = 1 and scalings of the form p = d\ will not improve p.

2.3.2 Techniques to Improve Accuracy of Eigenvalues of

Specific Magnitude

For problems that are not too heavily damped, the Fan, Lin and Van Dooren scaling
yields optimal conditioning and backward error results for all eigenvalues for C',
for all eigenvalues inside the unit circle for L; and for all eigenvalues outside the

unit circle for Ly. If however, we are mainly interested in computing eigenvalues
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of a specific magnitude ¢ > 0, then the technique of balancing can be attempted.

Balancing is based on the observation that for computed eigenvalues X of a
single matrix A (the standard eigenvalue problem) A is perturbed by at least u|| Al
with u the unit roundoff. We can attempt to increase the accuracy of the computed
eigenvalue by reducing ||A||. For the standard eigenvalue problem see [54]. The
technique is extended to matrix pencils in [59] and [44] (the methods differ in
the cost function minimized). The method for matrix pencils in [44] is extended
to matrix polynomials in [6], and involves determining diagonal scaling matrices
D1, Dy to form a scaled matrix polynomial E()\) = D1 Py(\)D;y. The matrices D,

and D, aim to achieve

J4 14
ST ID A =1, Y Rl DyADy|, =1, i =1:n,  (2.3.5)

k=0 k=0

where ( > 0 is the magnitude of the desired eigenvalues. Numerical experiments
are also presented, showing improvement of the accuracy of computed eigenvalues

after applying the technique.

2.4 The QZ Algorithm

To solve the generalized eigenvalue problem that arises from the linearization pro-
cess we use the QZ algorithm [51] as implemented robustly and efficiently in the
LAPACK [2] routine xGGEV. For simplicity we will describe the process working
with real arithmetic (DGGEV); ZGGEV is the version implemented working with com-
plex arithmetic. The LAPACK routines are also used when the MATLAB eig
function is called. In this section we focus on aspects of the algorithm that are
relevant to later chapters in this thesis—full details can be found in [2, 51] or [21].

The QZ algorithm computes the generalized Schur decomposition of a matrix
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pair (A, B) (see Definition 4) to obtain the eigenvalues of the pencil A — AB; ad-
ditional steps can then be carried out to obtain eigenvectors. The implementation
of the QZ process in DGGEV computes the eigenvalues A of a given matrix pencil
A—AB with A, B € R™™" and optionally the associated right and left eigenvectors

x,y € C".

Algorithm 1 (QZ Algorithm, [51, 21]). Given the matriz pencil A — \B with
A, B € R™" | the QZ algorithm computes orthogonal Q and Z such that QT AZ =
T is quasi upper triangular and QT BZ = S is upper triangular. The stages can be

summarized as:

Step 1. Attempt to permute the pencil A — AB to block upper triangular form, as
in Equation (2.4.1)

Step 2. Transform B to upper triangular form
Step 3. Reduce to Hessenberg triangular form

Step 4. Apply QZ iterations to the Hessenberg triangular form (accumulate the

orthogonal transformations if eigenvectors are desired).

Step 5. (Optional) Compute eigenvectors of the permuted pencil, taking into ac-
count the matrices that put the pencil into generalized real Schur form, then

transform again to recover eigenvectors of the original unpermuted pencil.

We briefly expand on the first two stages which will be relevant to Chapter 3.
Step 1 is implemented with DGGBAL which attempts to permute the pencil A—\B

to the block upper triangular form below:

An A Agg By Biz By
Wi(A=AB)Wy = | 0 Agy Ags| —A| 0 By Bl (2.4.1)
0 0 A33 0 0 B?>3
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where W7 and W5 are permutation matrices, A1, By1, Ass, Bss are upper triangular,
and Ass, Bog are full. If this form can be achieved then the problem decouples and
the remaining spectrum can be computed from the smaller pencil Agss — ABos.
Step 2 starts with the matrix B and transforms it to upper triangular form by
computing its QR factorization, B = QR, then setting A < QTA and B + R,
this is done using the routine DGEQRF. A general purpose algorithm for solving
quadratic eigenvalue problems presented in Chapter 3 achieves this step using one
of the factorizations computed for checking the rank of the leading and trailing

coefficients.

2.5 Eigenvectors of Matrix Polynomials from Lin-
earizations

In this section we briefly comment on the recovery of eigenvectors of the polynomial
from eigenvectors of the linearization when working in finite precision. We consider
the two linearizations C7 and C5 shown in Table 2.1, where we use the notation

that if z is an exact quantity then 7 is its computed value in finite precision.

Table 2.1: Theoretical and computed eigenpairs of first (C}) and second (Cy) com-
panion linearizations of quadratic @ with det(Ag) # 0. (Finite nonzero eigenvalues

Linearization Theoretical  Finite Precision
. -AQ 0 1 -Al Ao | . AT ~ /):/fl
Cl()\) = )\ i 0 In_ + I O —In_ 21 = T 2 = /$\2

B 7S O I - Ry % I IO V' IR B VA
OQ(/\) = A + 9 — [_on:| Z9 = |:—A0/I’\J

In finite precision we have the situation in the last column of Table 2.1 where
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the eigenvectors x of the quadratic () that appear in the eigenvectors z; and 25 of
the linearization are not generally equal. In theory, all the eigenvectors x of the
quadratic that appear in the eigenvectors z; and z, are identical and eigenpairs
(A, z) satisfy Q(A\)z = 0. However, in finite precision, we have computed eigenpairs
(/)\\, 7;) that satisfy Q(/):)/fl =¢~0fori=1:4.

It can be seen that for the linearization C we could return either Z; or T,
and for Cy we either return z3 or (when det(Ay) # 0) solve the linear system
—ApZTy = Zo(n + 1: 2n) for T4. The key point is that there is a choice to be made
as to how the eigenvector is returned. In practice we would like to return the most
accurate solution possible. One option implemented by the MATLAB function
polyeig is to return whichever of the possible eigenvectors yields the smallest
backward error for the polynomial problem.

For a general purpose algorithm, we have the potential for zero, infinite, or
finite eigenvalues. In this case, working with the homogeneous representation of
an eigenvalue as A = «/f, the forms of the left and right eigenvectors split into
different cases depending on o and 3, rather than a single form for the eigenvector.
For example, given the quadratic Q(«, ) = a?Ay + afA; + B*Ay with eigenvalue

A = «/f and left and right eigenvectors z and y, the second companion form

Ay 0 A -1,
Cs(a, B) of @ in homogenous form is Cy(a, f) = « I6] . The
0 I, Ay O

left and right eigenvectors (w and z) of Cy(cv, B) have the form

_ay ox ]
A=a/B, (a,f#0), w= z= )
5y ~BAgz
_0_ ) -
A=0, (=0, f#0), w= z = ,
y_ A]_Qf_
_y_ x_

)\:OO, (Q#O>B:0)7 w = gz =
_O— O_




Chapter 3

A General Purpose Algorithm for
Solving Quadratic Eigenvalue

Problems

3.1 Introduction

Quadratic eigenvalue problems (QEPs) arise in a wide variety of science and en-
gineering applications, such as the dynamic analysis of mechanical systems, where
the eigenvalues represent vibrational frequencies. For many practical examples of
QEPs, see the NLEVP collection [7] and the survey article [58].

The QEP is to find scalars A and nonzero vectors x,y satisfying
QN)r =0, ¥y Q) =0, (3.1.1)

where
Q(N\) = N4y + MA; + Ay, (3.1.2)

the A;, 7 = 0: 2 are n X n matrices and z,y are the right and left eigenvectors,

49
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respectively, corresponding to the eigenvalue .

QEPs are an important class of nonlinear eigenproblems that are less routinely
solved than the standard eigenvalue problem (A — AI)x = 0 or generalized eigen-
value problem (A — AB)x = 0. Quadratic, and more generally, polynomial eigen-
value problems are usually converted to a degree one problem of larger dimension—

the process of linearization. For example the pencil
A
A—-\B = —A (3.1.3)

has the same eigenvalues as (4.1.1) with right eigenvectors of the form z = [ ]
for finite eigenvalues. This is the pencil used by the MATLAB function polyeig
for quadratics of the form (3.1.2). This conversion to linear form allows standard
numerical methods (e.g., the QZ algorithm [51] or Krylov subspace methods for
large sparse problems) to be applied. In doing so however, it is important to un-
derstand the influence of the linearization process on the accuracy and stability of
the computed solution. Indeed Tisseur showed that solving the QEP by applying a
backward stable algorithm (e.g. the QZ algorithm) to a linearization can be back-
ward unstable [56]. Also, unless the block structure of the linearization is respected
(and it is not by standard techniques), the conditioning of the solutions of the larger
linear problem can be worse than those for the original quadratic (4.1.1), since the
class of admissible perturbations is larger. For example, eigenvalues that are well
conditioned for problem (4.1.1) may then be ill conditioned for linearizations [32],
[33]. For these reasons, the numerical solution of QEPs requires special attention.

In a number of applications, such as structural mechanics [15], constrained

multibody systems [9], 3D computer vision problems [39], vibration of railtracks

[45], either, or both, of the leading Ay or trailing Ay coefficients are singular.
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When both Ay and A, are singular, the quadratic Q(\) may be nonregular (i.e.,
det(Q(A)) = 0). In this case the QZ algorithm when applied to a linearization of
Q may deliver meaningless results. Regular quadratics (i.e., det(Q())) # 0) with
singular Ay and/or Ay have zero and/or infinite eigenvalues. Theoretically, the QZ
algorithm handles infinite eigenvalues well [60]. However, experiments of Kagstrom
and Kressner [36] show that if infinite eigenvalues are not extracted before starting
the QZ steps, they may never be detected due to the effect of rounding errors in
floating point arithmetic.

In one quadratic eigenvalue problem occurring in the vibration analysis of rail
tracks under excitation arising from high speed trains [35], [45, p.18], the defla-
tion of zero and infinite eigenvalues had a significant impact on the quality of the
remaining computed finite eigenvalues.

In this work we present a general purpose eigensolver for dense QEPs, which in-
corporates recent contributions on the numerical solution of polynomial eigenvalue
problems, namely a scaling of the eigenvalue parameter prior to the computation,
[6], [14] and a choice of linearization with favourable conditioning and backward
stability properties [30], [32], [33]. Our algorithm includes a preprocessing step
that reveals the zero and infinite eigenvalues contributed by singular leading and
trailing matrix coefficients and deflates them. The preprocessing step may also
detect nonregularity (although this is not guaranteed). Our algorithm takes ad-
vantage of the block structure of the chosen linearization. We have implemented it
as a MATLAB [49] function called quadeig, which makes use of functions from the
NAG Toolbox for MATLAB [53]. Our eigensolver can in principle be extended to
matrix polynomials of degree higher than two. The preprocessing step can easily
be extended using the same type of linearization, merely of a higher degree matrix
polynomial. For scaling of the eigenvalue parameter prior to the computation we

can use the method described in Section 2.3.1 on page 44 [6], which extends the
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Fan, Lin and Van Dooren scaling for matrix polynomials of degree two.

In this chapter we write Q to represent (in addition to matrices A, B) the
quadratic matrix polynomial Q(A) (that was previously written as Q(\)), so we can
use () to represent a matrix transformation, for example from a QR factorization.

We also write a matrix pencil as A — AB rather than A\A + B.

3.2 Choice of Linearization

The definition of a linearization, £L(A) = A — AB is a of a quadratic Q(\) was given
earlier in Definition .

For a given quadratic Q, there are an infinite number of linearizations (the
pencil (3.1.3) is just one example). These linearizations can have widely varying
eigenvalue condition numbers [32], and approximate eigenpairs of Q(\) computed
via linearization can have widely varying backward errors [30]. In the following
subsection we define the terms backward error and condition number more precisely

focusing on the particular linearization that our algorithm will employ.

3.2.1 Backward Error and Condition Number

Definitions of backward error and condition number for quadratics and lineariza-
tions are contained in Section 1.5.3, we recall only the special case for quadratics.

Explicit expressions for backward errors for Q and L are given by [30]:

1Q(cx, B)x |2
Yo a8 Allz) llzll2

1£(a, B)z|2
(IBI[IAll2 + Il |1Bl[2) 112"
(3.2.1)

77[1(27057ﬁ) =

77@(957 a, ﬂ) = (

The definitions and explicit expressions for the backward error ng(y*, «, 5) and
ne(w*, a, B) of a left approximate eigenpair (y*, a, ) and (w*, «, 5) of Q and L are

analogous to those for right eigenpairs.
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The eigenvalue condition number r.(«, 3) for the pencil L(a, ) = BA — aBB
is obtained by a trivial extension of a result of Dedieu and Tisseur [13, Thm. 4.2]

that treats the unweighted Frobenius norm, this yields the explicit formula

[w][2]|=[]2
re(e, B) = \/IB1IAIE + o213 —— ! L (322
[w*(BDuL — aDsL) (52|
where D, = and Dg = 8%, where z,w are right and left eigenvectors of L

5o
associated with (a, #). Note that the denominators of the expressions (3.2.2) is
nonzero for simple eigenvalues. Also, these expressions are independent of the
choice of representative of (a, #) and of the scaling of the eigenvectors. Let (o, 5)
and (@&, 5) be the original and perturbed simple eigenvalues, normalized such that
(o, )]l = 1 and (e, B)(&, 5)* = 1. Then the angle between the original and

perturbed eigenvalues satisfies

10((cr, B), (@, 5))] < rola, B)| AA + o [|AA]). (3.2.3)

Note that ||AA|| ~ no(@, B) := ming.no(r, &, ) = min,no(y*, &, 3). Hence
the product of the condition number (1.5.4) with the backward error (3.2.1) pro-
vides an approximate upper bound on the angle between the original and computed
eigenvalues. The condition numbers and backward errors are optionally returned
by our algorithm.

We want to use a linearization £ that is as well conditioned as the original
quadratic @ and for it to lead, after recovering approximate left and right eigen-
vectors of Q from those of £, say w and z, to a backward error of the same order

of magnitude as that for £, that is, we would like

KQ(aaﬂ) %KE(O@B)’ UQ(%Oéaﬁ) %nﬁ(?%aaﬁ)v UQ(?J*aOéaﬂ) %UL(W*aOéaﬂ)
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for all eigenvalues (o, 3).

3.2.2 Companion Linearizations

Companion linearizations are the most commonly used linearizations in practice.
Several forms exist. The first and second companion linearization of Q (defined

earlier in Table 2.1) are given by

A A —A, 0 A —I, —4, 0
Ci(\) = —A ;G\ = —A
~I, 0 0 —I, Ay 0 0 -I,
(3.2.4)

Note that Cy()\) is the block transpose of C1(\). Other companion forms can be

obtained, for example, by taking the reversal of the first or second companion form

of rev(Q),

Ay 0 —-A A Ay 0 A I,
Cs(A) = —A ) Ca(A) = —A
0 I, I 0 0 I —Ay 0

or simply by swapping the block rows or block columns of these linearizations.

Companion linearizations have a number of desirable properties:

(a) They are always linearizations even if Q(\) is nonregular. Moreover they are
strong linearizations [42]: they preserve the partial multiplicities of infinite

eigenvalues.

(b) The left and right eigenvectors of Q(\) are easily recovered from those of the
companion form ([23], [30] and (3.2.5) for C5).

(c) If the quadratic is well scaled (i.e., ||A;]|2 = 1, ¢ = 0: 2), companion lineariza-

tions have good conditioning and backward stability properties (see below).
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Amongst companion linearizations C;(\) = A; — AB; we are looking for one for

which

(d) the A; matrix is in block upper triangular form, thereby reducing the compu-

tational cost of the Hessenberg-triangular reduction step of the QZ algorithm,

(e) the linearization can easily be transformed to a block upper triangular form

revealing zero and infinite eigenvalues, if any.

The first and second companion linearizations in (3.2.4) satisfy desideratum
(d) and we will show in Section 3.3 that in the presence of singular leading and
trailing matrix coefficients, desideratum (e) can easily be achieved for the second
companion linearization. Hence our eigensolver will use Cy(\).

Concerning property (b), the second companion form Cy(\) in (3.2.4) has right

eigenvectors z and left eigenvectors w of the form

)
ax
if a # 0,
z —BApx w o
=7 = p40 w= | =", (3.2.5)
z x w
2 B if o =0, 2 By
ﬁAlx

where x, y are right and left eigenvectors of Q(\) with eigenvalue A = /5. The
formulae in (3.2.5) show that x can be recovered from the first n entries of z or by
solving Agx = 29, whereas y can be recovered from either the n first entries or the
last n entries of w.

The experiments in [30] and [32] show that for the first companion linearization

in (3.2.4),

HQ(a76> < kg (Oé,ﬂ), 77@(9570475) > e, (Z,Oé,ﬁ), 779(1/*70475) > Nc, (w*,a,ﬂ)
(3.2.6)
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can happen when the coefficient matrices A;, i = 0: 2 vary largely in norm, (3.2.6)
also holds for the second companion linearization C5. The scaling of Fan, Lin,
and Van Dooren [14] tries to bring the 2-norms of A,, A;, and Ay close to 1, in
order to overcome this problem. It converts Q(A\) = A2A4, + AA; + Ay to O(u) =

MZZZ + pr + ZO, where

A=p, QNS = i (V20 Az) + u(v0 A1) + 640 = Q(p), (3.2.7)

v =vAo/As, 6 =2/(Ao+ Ary). (3.2.8)

Note that no(z, a, 8) = na(z, &, 5) , where p = d/B, so this scaling has no effect
on the backward error for the quadratic, however kg(a, ) is scale-dependent.
Let (z,w, i, ) be an approximate eigentriple of the second companion lineariza-

tion Cy in (3.2.4) of the scaled quadratic Q with |a|? +|8[2> = 1. Define

w=w(a,p): Ler T = Al (3.2.9)

- L+ V1Al TAoll,

Using the framework developed in [23], [30] we can show that

1 o) wf"’a/’
V2 T g, (W o, B) [[wi]l2
1 o\%1, &,
I 77Q( 1, B) < 22y, IE2IE: (3.2.11)
V2 N, (25, B) [[21]]2
1 Koy (a, B)
— <=2 < 43w, 3.2.12
2v/2 g, B) ( )

where w; = w(l: n), wy = w(n + 1: 2n) and 2; = z(1: n). In interpreting these

bounds recall that, for an exact left eigenvector of Cy(\),

]l

o, =L orlalzisl

~1 for o] <|B| (3.2.13)
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and that for an exact right eigenvector z of Cy(A), ||z||2/]|21]]2 = 1.
Hence (3.2.10)—(3.2.11) show that if w = O(1) then g ~ 5, for both left and
right eigenpairs. It is shown in [30] that

| < 1—1—17'
1+§T

gwgmin{l—i—r,i}gl—l—r (3.2.14)
||

Hence, w = O(1) if 7 < 1, or equivalently, |42 < (||A2]l2]|Aoll2)/?, which in
the terminology of damped mechanical systems means that the problem is not too
heavily damped. When 7 > 1 the penultimate inequality in (3.2.14) will still be
of order 1 if |a||8] = |a|y/T — |[a]2 = O(1), which is the case unless |\| = |a|/|B| =
la]/4/1 = Jaf? is small or large.

This analysis and the numerical experiments in Section 3.6 suggest applying
the scaling of Fan, Lin, and Van Dooren to the original quadratic Q(\) prior to
building the second companion linearization Cy(\). For quadratics that are not too
heavily damped, the bounds in (3.2.10)—(3.2.11) guarantee that if the eigenpairs of
C5(A) are computed with a small backward error (this is the case if we use the QZ

algorithm) then we can recover eigenpairs for Q(\) with a small backward error.

Algorithm 2 (Fan, Lin and Van Dooren scaling [14]). Given n x n matrices
Ay, Ay, Ay, this algorithm overwrites Ao, Ay, Ag with scaled matrices, attempting
to achieve |As||r = ||A1||F = ||Ao||lF = 1 and returns a scalar vy such that if X\, p
are eigenvalues of the unscaled and scaled quadratic then X = pvy. No scaling is

performed when ||Ag||lr =0 or ||Az||r = 0.

=1 92 = [|A:2lr, g0 = [ AollF
if go #0 and go # 0

g1 = [|Aillr

Y =/90/9:

6 =2/(g0 + g17)
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Ay = ’725142, Ay =70Ay, Ay = Ay

end

3.3 Deflation of 0 and oo Eigenvalues

The eigenvalues of a regular n x n quadratic Q(\) are the zeros of the charac-
teristic polynomial det(Q()\)) = det(A)A* + lower order terms, so when A, is
nonsingular, Q(\) has 2n finite eigenvalues. When A, is singular Q(\) has d finite
eigenvalues to which we add 2n — d infinite eigenvalues, where d is the degree of
det(Q(N)).

Recall that A is an eigenvalue of Q if and only if 1/) is an eigenvalue of the

reversal of O,

rev(Q(N\)) := A A + \A; + A,

where 0 and oo are regarded as reciprocals. If rqg = rank(Ap) < n then Q has at
least n — g zero eigenvalues and if 7o = rank(Ay) < n, Q has at least n —ry infinite
eigenvalues.

As an example, the quadratic

01
Q(\) = A2 +AA +
00 10

with A; such that det(Q(\)) # 0 has at least one infinite eigenvalue and at least

one zero eigenvalue. If A; = then the remaining eigenvalues are co and
0 1

—1.
Let us denote by M,.(4) = {z € C": Az =0} and MVj(A) = {y e C": y*A =0}
the right and left nullspace, respectively of A € C"*™. Note that the right and left

eigenvectors of Q associated with the 0 and oo eigenvalues generate the right and
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left nullspace of Ag and A,, respectively.

Our algorithm checks the rank of Ay and As; when one or both of them are
singular, it deflates the corresponding zero and infinite eigenvalues. In the next
section we describe and justify how our algorithm checks the rank of the leading and
trailing coefficients using a matrix factorization, and how a basis for the nullspace

can be obtained from the factorization.

3.3.1 Rank and Nullspace Determination

A QR factorization with column pivoting (see Definition 6) can be used to deter-
mine the numerical rank of an n x n matrix A.
For sufficiently small ||E|2, it is shown in [28, Thm. 5.2] that A 4+ E has the

QR factorization with column pivoting

k n—k
RS U S
n—k 0 Roo
with . 2
H|€j|2||z|2 < Hi”j(H IR Ryslls) + O (Hi”z) | (332)

The quantity ||R;'R,,|l2 can be arbitrarily large and (3.3.2) shows that even if
| E||2 is small, || Rasll2 can be much larger than the distance oy, 1(A + E) < ||E||2
from A + E to the rank k& matrices. Empirical observations show however, that
| Ry Rial|2 is usually small. Hence if A + E is close to a rank k matrix then Roy
will be small. Our algorithm sets Roy to zero if ||Raslls < nulAll2, where u is
the unit roundoff. This test can yield a numerical rank that is an overestimate of
the rank but this does not affect the stability of our algorithm. Indeed we only

deflate zero and infinite eigenvalues using QR factorizations with column pivoting.
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Overestimating the rank results in deflating fewer eigenvalues than we could have
done, had the rank been computed correctly. The QZ algorithm then has to solve
a generalized eigenproblem of larger dimension.

The last n — k columns of @) in (6) span the left null space of A. A basis
for the right nullspace of A is obtained by postmultiplying (6) by a sequence of
Householder transformations Hi, ..., H; that reduce Ris to zero. This leads to a

complete orthogonal decomposition of A,

k n—k
k Tll 0
QO AZ — , (3.3.3)
n—k 0 0

where Z = PH, --- H, and () and P are as in (6) (see [21, p. 250]). Then the last
n — k columns of PH span the right nullspace of A.
The LAPACK routine xGEQP3 computes (6). In floating point arithmetic, how-

ever, XxGEQP3 computes

. v | Ru R
flUQ*AP) = e (3.3.4)
n—r 0 R22

because of rounding errors. We set Ryy to zero if || Rasl|a < nul| A2, where u is the
unit roundoff and call r in (3.3.4) the numerical rank of A. Once (3.3.4) is computed
and Egg set to zero, the LAPACK routine xTZRZF can be used to eliminate the Ry

block to yield a complete orthogonal decomposition.
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3.3.2 Block Triangularization of Cy(\)

Throughout this section we assume that ro := rank(Ag) > ro =: rank(Ay) (if o <

ro we work with rev(Q(\)) instead of Q(A) and swap the factorizations (3.3.5)).

Let
. R(i) R(i) R
QrAP = 51 012 =11 i=0,2, (3.3.5)
n—ro

be QR factorizations with column pivoting of Ay and A,. With the help of these
factorizations and another complete orthogonal decomposition when both Ay and

A,y are singular (i.e., 19,79 < n), we show how to transform the second companion

form Cy(\) = [ﬁé 701} - )\[7‘32 ] in (3.2.4) into block upper triangular form

All A12 A13 Bll B12 Bl3
QC2()‘)V = 0 A22 A23 - A 0 On,T2 ng , (336)
0 0 Opr 0 0 I,

where the 2n x 2n matrices are partitioned conformably. When Ay is singular
then det(Q(\)) = det(Cy(A)) = 0 and hence Q(A) is nonregular. When Agy is
nonsingular, (3.3.6) reveals n — rg zero eigenvalues and n — 75 infinite eigenvalues.
The remaining eigenvalues are those of the (r; + r3) X (11 + r3) pencil Aj; — ABy;.

We consider three cases.

(i) 7o = 79 = m. In this case there are no zero or infinite eigenvalues. We

make use of the factorization of A, in (3.3.5), however, to reduce the leading

A2 0

coefficient [ o7

] of the linearization to upper triangular form, a necessary
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step in the QZ algorithm. This is achieved with

£ 0 P o0
oo @ o] L _[»
0 I, 0 I,
so that
Qs APy —Q; Ry 0
Qe V = | 277 T T = Ay - ABy
APy 0 0 1

(ii) ro < re =mn. In this case there are at least n — 1y zero eigenvalues, which we

deflate with

o Q5 0 v P, 0
0 @ 0 Qo
so that
nr n-ro
n | X X Xis R® 0 0
QC:NV =4 | Xy 0 0 |=A] 0 L, 0 (3.3.7)
nre | 00 0 0 0 I,

where X1y = Q3A, Py, [X19, X13) = —Q3Q, and X5y = R By P,. The pencil
(3.3.7) is in the form (3.3.6) with A;; = [Xll Xm] and By = [—R@) 0 } of

X210 0 —In,

dimension (n + 79) X (n+rp). As in case (i), By; is upper triangular.

(iii) 7o < 72 < m. There are at least n — ry zero eigenvalues and at least n — ry

infinite eigenvalues that we deflate as follows. With

~ 5 0 ~ I, 0
G| 0 Hl

0 @ 0 Qo
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we obtain

where

T2
T2 Xll
n—ro X21
ro | Xa
n—ro 0

(X351, Xsgo] = ROP,

and [Y11, Yio] = —RP Py, Let

T2

n—ro

X21

be a complete orthogonal decomposition and let

I, 0
0 0
0 @3
0 0

0 0
L, 0

0 0

0 I,

63
n—rg T0 n—ro
X12 X13 X14 lel Y'12 O 0
Xoo Xoz Xou ) 0 0 0 0
Xz 0 0 o 0 —IL, 0
0 0 0 0 0 0 —I,
] ) (3.3.8)
X X . X1z Xua .
= Q2A17 = _QZQOa
X21 X22 X23 X24
n—ro 0 n—rz  To+7T2
Xog Xos :| = Q3 [ Rs 0 :|Z3
n—+ro n—ro
0 In, O
N ~ |z 0
Qa V = V Irg—i—ro 0 O
0 [nfm

Then easy calculations show that () C3(A\)V has the form (3.3.6) with Ay =

Rs.



CHAPTER 3. ALGORITHM FOR QUADRATIC EIGENPROBLEMS 64

3.4 Left and Right Eigenvectors

The computation of the left and right eigenvectors differ so we consider them

separately.

3.4.1 Right Eigenvectors

When either or both of Ay and A, are singular, the vectors spanning their right
nullspaces N,.(4g) and N, (As) are right eigenvectors associated with the 0 and co
eigenvalues of Q(A). These nullspaces can be obtained from (3.3.5) by zeroing R\},

i = 0,2 to obtain a complete orthogonal decomposition as in (3.3.3), that is,

A g = T 0
QjA,Z; =
TL*'I’j O 0

The last n — oy columns of Zj are eigenvectors of Q with eigenvalue 0 and the last
n — ry columns of Zy are eigenvectors of @ with eigenvalue oo.

The eigenvectors associated with the remaining eigenvalues are recovered from
those of the linearization Cy(\). If Z'is a right eigenvector of the (rg+1y) X (rg+7r2)

pencil AH - )\BH in (336) then

is a right eigenvector of Cy(\). We also know that z must have the form displayed

in (3.2.5). However, in floating point arithmetic when Ay is nonsingular and for
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finite nonzero eigenvalues,

Z1 T

22 —/8A0$2

We can use the QR factorization of Ay in (3.3.5) to solve the linear system z, =
—B Aoz, for xs efficiently. We return as approximate eigenvector of Q corresponding
to the eigenvalue A = «/f the vector x;, i = 1,2 which minimizes ng(z;, @, [3).
Given two approximate eigenpairs (A, x1) and (A, xs), with backward errors
no(A, 1) and ng (A, x2), if neither of x nor z, yields an acceptable backward error,
we could attempt to obtain an improvement by determining a linear combination

T3 = a1 T1 + aeT9 that solves

in Q) Xl
el || Xals

where X = [z1, z3]. For that we take the GSVD [2, pp. 257-259] of the pair of
n X 2 matrices (Q(\)X, X),

QNX =UCY !, X =Vsy

where U,V are unitary, Y is nonsingular and C' = diag(cy,¢2), S = diag(sy, s2)

with ¢1, ¢o, 51,89 > 0. Thus if we let a = Y'b,

min 1QXalE IO O Ch
acC? || Xall3 bec: ||SBI2 ~ bec: b*S*Sh

which is the smallest eigenvalue of C*C' — AS*S . So the minimum is achieved at
b = e;, where |c;/s;| is minimal. Hence a = Ye;.

In finite precision, however, there can be a problem if either one or both of
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|Q(N) X2 or || X2 are close to the unit roundoff. This can result in an ill-
conditioned Y matrix which causes problems in returning an accurate eigenvector
when we solve for a; and ay to yield x3. In addition, from numerical experiments

no(A, z3) is rarely significantly smaller than ng(X, z;), i = 1,2 (if at all).

3.4.2 Left Eigenvectors

When Ay is singular, the last n — rq columns of Qg in (3.3.5) are eigenvectors of
Q associated with the n — ry deflated zero eigenvalues and when A, is singular,
the last n — 75 columns of @), in (3.3.5) are eigenvectors of Q associated with the
deflated n — 75 infinite eigenvalues.

Let w be a left eigenvector of Cy(A) corresponding to an eigenvalue A = a/f
of A1 — ABy; in (3.3.6). In exact arithmetic w has the form displayed in (3.2.5)
but in floating point arithmetic, wy and wq are generally not parallel. If w = O(1)
then (3.2.10) and (3.2.12) predict optimal backward error for wy if |A\| > 1 and wy
if [A\] < 1. If w > O(1) then we choose whichever of w; or wy yields the smallest

backward error.

3.5 Algorithm

Algorithm 3 (Quadratic Eigenvalue Solver). Given three nxn matrices As, Ay, Ay,
and a rank tolerance tol this algorithm computes a vector E of length 2n containing
the eigenvalues of Q(\) = A\2As + ANA; + Ao, and optionally, two n x 2n matrices

X and'Y containing the corresponding right and left eigenvectors.

1. Scale Ag, Ay, Ay using Algorithm 2 (Fan, Lin and Van Dooren scaling).
Optionally scale using diagonal scaling with scaling parameter (.

2. Build block upper triangular form (3.3.6) using Algorithm 3.
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If eigenvectors are desired, store transformation matrices ) and V.

3. Compute the Schur decomposition of A;; — ABi;.
To summarize, our eigensolver performs the following steps:
1. Scaling of eigenvalue parameter using Algorithm 2.
2. Rank determination of Ay and Ay (see Section 3.3.1).
3. Block triangularization of second companion linearization to achieve (3.3.6).
4. Compute the Schur decomposition of A1 — ABy;.
5. Optionally compute:

e Right/left eigenvectors.
e Eigenvalue condition numbers.

e Backward errors of approximate right/left eigenpairs.

3.6 Numerical Experiments

We now describe a collection of numerical experiments designed to give insight into
Algorithm 3, its performance in floating point arithmetic, and the implementation
issues. Our computations were done in MATLAB 7.9.0 (R2009b) under Windows
XP (SP3) with a Pentium E6850, for which u =275 ~ 1.1 x 107.

Experiment 1. We ran our algorithm quadeig on some quadratic eigenvalue
problems from NLEVP [7]. Table 3.1 displays for each problem the largest back-
ward error for the right eigenpairs returned by the MATLAB function polyeig and
the largest backward errors for the right and left eigenpairs returned by quadeig.
For this set of problems quadeig returns right/left eigenpairs with backward er-

rors close to the machine precision except for the cd player and pdde stability
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problems. For these problems, the large values for the right/left backward errors
are predicted by the upper bounds for the growth in backward errors of eigenpairs
of the scaled quadratic from those of those of the linearization in (3.2.10)—(3.2.11).
The quantity w forms part of these growth factors and we see that w ~ 10* for the

cd player problem and w & 0.5 x 10? for the pdde stability problem.

FExperiment 2. We tested quadeig against polyeig on QEPs with singular lead-
ing and/or trailing coefficient matrices. Table 3.2 shows that deflating speeds up
the execution time. We do not see a signficant decrease in the computation time
for the spring dashpot quadratic where n = 1002 and the leading coeffient M has
low rank ro = 2, however as seen in Section 1.5.4 the leading coefficient is of the
form M = diag(pM1,0). Due to the structure in M the routine DGGBAL (used in
MATLAB’s eig which is called by polyeig to solve the linear problem) is able to
permute the linearization to peform deflation. As a result there is not as signficant

a decrease in the compuation time when quadeig is used to solve the problem.

polyeig cannot cope with computing both eigenvalues and eigenvectors for the
railtrack?2 problem on the machine used for these computations (hence this test

was omitted from Table 3.1).

The speaker box problem is a 107 x 107 quadratic in the NLEVP collection,
which comes from a finite element model of a speaker box [37, Ex. 5.5]. The stiffness
matrix Ay has rank 106 < n and the matrix coefficients have large variation in the
norms: |[Mlly =1, ||C|l2 = 5.7 x 1072, ||K|]2 = 1.0 x 107. The zero eigenvalue is

not detected by polyeig and is computed as £7.4e-2.

FExperiment 3. We investigate the effect of applying the diagonal scaling of Sec-
tion 2.3.2 with the scaling parameter set to ¢ = 1 which is the default suggested in
[6] if there is no knowledge of the desired magnitude of eigenvalues. We first apply

the Fan, Lin and Van Dooren scaling and then diagonal scaling. Table 3.3 contains



CHAPTER 3. ALGORITHM FOR QUADRATIC EIGENPROBLEMS 69

Table 3.1: Quadratic eigenvalue problems from NLEVP collection. Largest back-
ward errors of eigenpairs, and corresponding eigenvalue A, computed by polyeig
and quadeig. D indicates that deflation was performed by quadeig since the
problem has singular leading or trailing coefficients.

polyeig quadeig

Problem n_ A=a/f g3.0.6) | n5™(x.a.6) 13" 0. )
acoustic_wave_1d 10 2.8e+000 2.2e-015 6.5e-016 6.2e-016
acoustic_wave_2d 30 -2.6e+000 5.3e-016 5.1e-016 5.5e-016
bicycle 2 -7.8e-001 1.3e-015 1.1e-016 4.6e-017
bilby 5 -8.8e-018 2.9e-016 4.9e-016 1.9e-016
cd_player 60 -1.7e4+006 1.7e-010 2.2e-012 4.9e-012
closed_loop 2 -1.1e+000 1.8e-016 1.5e-016 1.2e-016
damped_beam 200 -8.2e+000 3.7e-009 8.6e-016 7.1e-016
dirac 80 -7.0e4+000 3.7e-015 1.3e-015 1.6e-015
gen_hyper?2 15 9.8e+000 7.8e-016 5.2e-016 6.8e-016
intersection 10 2.5e+001 3.7e-017 1.3e-016 1.3e-016
hospital 24 -2.5e4+000 2.5e-013 1.1e-015 1.1e-015
metal_strip 9 -4.5e+000 3.1e-014 4.9e-016 3.8e-016
mobile_manipulator 5 -5.2e-002 1.2¢-018 5.8e-017 1.5e-017 D
omnicaml 9 3.7e-001  1.8e-015 1.2e-016 4.4e-017
omnicam?2 15 2.6e-001  3.9e-017 1.5e-016 2.8e-016
pdde_stability 225 -4.0e+001 4.5e-014 1.3e-014 1.4e-014
power_plant 8 -3.2e+000 1.3e-008 4.9e-016 4.2e-017
gepl 3 3.3e-001 2.0e-016 7.1e-017 3.5e-017
gep2 3 0.0e+000 9.6e-017 1.2e-016 1.2e-016
qep3 3 3.0e+000 9.4e-017 1.1e-016 9.0e-017
railtrack 1005  9.2e+000  2.0e-008 2.3e-015 5.9e-015 D
relative_pose_6pt 10 -8.4e-003 1.8e-015 5.0e-016 1.5e-016
shaft 400 1.7e-003  5.2e-008 7.2e-016 7.1e-016 D
signi 81 -6.1e-001 2.1e-016 7.1e-016 6.9e-016
sign2 81 2.7e4+000 5.1e-016 1.7e-015 1.1e-015
sleeper 10 -1.3e+001 1.1e-015 4.7e-016 4.7e-016
speaker_box 107 -2.0e-008 1.7e-011 2.7e-016 3.0e-016 D
spring 5 -2.9e+001 2.6e-016 4.7e-016 5.6e-016
spring_dashpot 10 -6.0e-003 1.1e-015 3.3e-016 1.3e-016 D
spring_dashpot 1002 -1.0e-001 7.4e-015 4.0e-015 6.3e-015 D
wing 3 9.5e-002 4.8e-015 2.1e-016 4.8e-016
wiresawl 10 1.0e-015 1.9e-014 3.4e-016 3.5e-016
wiresaw?2 10 -8.0e-001 3.5e-014 9.1e-016 8.3e-016
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Table 3.2: Execution time in seconds for eigenvalue computation of quadratics in
NLEVP with singular Ay and/or As.

Problem n rg T polyeig quadeig

speaker_box 107 106 107 0.20 0.10
shaft 400 400 199 1.94 1.68
spring_dashpot 1002 1002 2 15.06 13.95
railtrack 1005 67 67 25.76 4.69
railtrack2 1410 705 705 203.06 97.98

maximum backward errors for the cd_player and speaker box quadratics from
the NLEVP collection, for which diagonal scaling has a significant impact on the
solution compared with applying just the scaling of Fan, Lin and Van Dooren as

in Table 3.1.

For the cd_player problem the use of diagonal scaling reduces 7 and we see a
significant improvement in the maximum backward error. After applying diagonal
scaling to the speaker box problem, however, the value of 7 increases from when

only the scaling of Fan, Lin and Van Dooren is applied.

Table 3.3: cd_player and speaker_box problems from NLEVP collection. Largest
backward errors of eigenpairs computed by quadeig comparing two scaling types,
FLV (Fan, Lin and Van Dooren scaling only) and DS, FLV (diagonal scaling, then
Fan, Lin and Van Dooren scaling).

Problem Scaling  n3™(z,a,8) Ny, a,B) max(w) T
cd_player FLV 5.2e-012 1.1e-011 2.2e+04  2.2e+04
DS, FLV 8.7e-014 8.9e-014 4.0e+01 3.9e+01
speaker_box FLV 3.5e-016 5.1e-016 1.0e4+-00  1.8e-05

DS, FLV 2.1e-013 3.4e-015 6.1e4+02  6.0e+02
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3.7 Conclusion

We have presented a general purpose eigensolver for dense QEPs, which, in compar-
ison to the existing MATLAB routine polyeig incorporates recent contributions on
the numerical solution of polynomial eigenvalue problems, namely a scaling of the
eigenvalue parameter prior to the computation, and a choice of linearization with
favourable conditioning and backward stability properties and, if they are present,
deflation of infinite and zero eigenvalues using rank revealing factorizations.

The algorithm quadeig has been tested on real problems from the NLEVP
benchmark collections, and from the results we can see an increase in accuracy
of the solution in terms of backward error. These improvements are a result of a
combination of implementing the scaling of Fan, Lin and Van Dooren, and using
recent theory to recover the eigenvectors, and including a preprocessing step that
reveals the zero and infinite eigenvalues contributed by singular leading and trail-
ing matrix coefficients and deflates them. For problems with singular leading or
trailing coefficients, the preprocessing step can lead to a signficant decrease in the
computation time, for example in the railtrack and railtrack2 problems.

The use of diagonal scaling can result in an improvement in accuracy, but
requires the order of magnitude of desired eigenvalues. Since we are producing
a general purpose algorithm we cannot in general expect the user to specify the
magnitude of the desired eigenvalues. Hence we only include diagonal scaling in

our algorithm as an option.



Chapter 4

Deflating Quadratic Matrix
Polynomials with Structure

Preserving Transformations

4.1 Introduction

We consider the quadratic matrix polynomial Q(\) = MM + AC + K, where
M,C, K € R™" with M nonsingular, and the associated quadratic eigenvalue

problem

QNx =0, y"Q(\) =0, (4.1.1)

where X is an eigenvalue, x and y are corresponding right and left eigenvectors,
respectively (where if M, C' and K are symmetric x = ). Throughout, we use
the subscript R to denote right eigenvectors or when referring to transformations
applied to the right, and the subscript L for left eigenvectors and transformations
applied to the left. We also denote by A(Q) the spectrum of Q.

Given two eigentriples (\;,x;,y;), j = 1,2 satisfying appropriate conditions,

72
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we propose a deflation procedure that decouples Q(\) into a quadratic @Q4(\) =
AN2M,+ \Cy+ K, of dimension n — 1 and a scalar quadratic ¢(\) = \>m+ Ac+k =
m(A — A1)(A — Ay) such that (a)

A(Q) = A(Qd) U {)\17 )\2}7

where A(Q) denotes the spectrum of @ and (b) there exist well-defined relations

between the eigenvectors of Q(A) and those of the decoupled quadratic

Q) = Q) 0 (4.1.2)
0 q(\)
This is termed “strong deflation” in the engineering community as opposed to
“weak deflation” which is achieved by introducing zeros in the last rows or last
columns of the matrices.

We cannot in general construct an n x n equivalence transformation with non-
singular matrices P and T’ such PTQ(A\)T = Q()), where Q()) is the decoupled
quadratic in (4.1.2) [43], unlike the case for linear polynomials A — AB. The
standard way of treating quadratic matrix polynomials, both theoretically and
numerically, is to convert them into equivalent linear matrix pencils of twice the
dimension, a process called linearization [20], described earlier in Section 2.1. De-
flation procedures for matrix pencils ignore the block structure of linearizations
such as Ls(A). They produce a deflated pencil that is not in general a linearization
of a quadratic matrix polynomial [38].

Garvey, Friswell and Prells [16] and later Chu and Xu [12] showed that for
quadratics with symmetric coefficients and semisimple eigenvalues (i.e., each eigen-

value A appears only in 1 x 1 Jordan blocks in a Jordan triple for @ [20]), there
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exists a real nonsingular matrix W € R?"*?" such that W7 Ly(A\)W = Lp(\), where

0 D ~Dy 0
Lo(\) = A S , (4.1.3)

Dy De 0 Dy

with Dy, Do, Dk diagonal. The pencil Lp(\) is a linearization of the diagonal
quadratic Qp(\) = A\?>Dy; + AD¢ + Dy, which clearly has the same eigenvalues
as @Q(X). The proof of the diagonalization of the blocks of Lo(A) to achieve Lp(\)
in (4.1.3) is constructive and requires the knowledge of all the eigenvalues and
eigenvectors of (). Most importantly it shows that by increasing the dimension of
the transformations from n x n when working directly on @ to 2n x 2n by working
on a pencil of twice the dimension of (), total decoupling of the underlying second
order system can be achieved. The congruence in (4.1.3) is an example of a structure
preserving transformation (SPT). More generally, we say that a pair (W, Wg) of
2n x 2n real nonsingular matrices defines a structure preserving transformation for
an n x n quadratic matrix polynomial Q(\) = A*M + AC' + K with M nonsingular
if
sT 0 M | —-M 0 5, — 0 M | —M; O 1)
M C 0 K M, C 0 K
where M, C}, and K are n x n matrices [34] that define a new quadratic Q1(\) =
A2M; + A\C; + K, sharing the same eigenvalues as Q(\).
The distinction between the work in [17] and this chapter is that, whereas
[17] attempts complete diagonalization given that all eigenvalues and eigenvectors
are known, this work attempts to block diagonalize the quadratic (subject to the

eigenvalues satisfying a number of constraints), knowing only two eigenvalues and
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corresponding eigenvectors. This block diagonalization of ) by deflating two eigen-
values has a number of applications, one example is in the area of model updating.
Model updating is the modification of an existing inaccurate model with measured
data. The eigenvalue embedding problem is a special instance of model updating

and can be defined as follows: consider a quadratic matrix polynomial
Q) = M+ XC+ K

resulting from a second-order dynamical system with a few known eigenvalues \;,
J = 1: k. Now suppose that new eigenvalues o;, j = 1: k have been measured.
There are several types of eigenvalue embedding problems but one of them consists
of updating the quadratic Q(\) to a new quadratic @()\) with eigenvalues o0}, j =
1: k replacing the eigenvalues \;, j = 1: k of Q(\) while the remaining 2n — k
eigenvalues of Q()) are kept the same as those of the original problem Q(A). This
is sometimes referred to as eigenvalue updating with no spill-over.

A number of solutions to this problem has been proposed often with additional
constraints such as preservation of the symmetry of the coefficient matrices and
preservation of the positive definiteness of the mass and stiffness matrices.

The deflation procedure in this chapter can be used to update eigenvalues of
a quadratic matrix polynomial, knowing only the eigenvalues to be updated and
their corresponding eigenvectors, maintaining the symmetry of the problem if the
original quadratic is symmetric. Further work involves investigating the potential of
this process for updating systems, its reliability and performance in finite precision
arithmetic, and comparison with existing techniques.

We deflate two eigenvalues at a time, since the problem is quadratic. For a given
pair of eigenvalues A1, A2 and their associated left and right eigenvectors z;, xp;,

j = 1,2, we identify conditions under which there exist elementary SPTs (Sy, Sg)
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which are rank-two modifications of the 2n x 2n identity matrix and transform Q(\)
into a new quadratic @1(\) for which A; and A, share the same left eigenvector z,

and same right eigenvector zg, that is,

Zz@l()\j) = O, Ql()\j)ZR = O, j = 1, 2. (415)

In particular we find that A\; and Ay must be semisimple and distinct and that, if

they are both real, they must also satisfy

sign (x%Q/()@)fRz) — sign (9352 /(A1)$R1> ’

211 Q' (M)2 gy 271Q'(A2)Z o
which for symmetric quadratics ) means that A\; and A\ must have opposite type
[20] (the type of a real eigenvalue A of Q(\) with associated eigenvector x being
the sign of 27Q'(\)x = 2 \z” Mx + 27 Cz). Under these conditions we characterize
a family of elementary SPTs that maps (\;,zgr;,2r;) to (Aj,2r,21), 7 = 1,2.
Since our transformations are structure preserving we never work with the 2n x
2n matrices in (4.1.4). Indeed the matrix coefficients of Q1(A) are just low rank
modifications of M,C" and K and are therefore not expensive to compute. When
(4.1.5) holds we then show how to construct two nonsingular matrices G, G such
that GLQ,(\)Gr = Q(X) with Q()) as in (4.1.2), that is, the pair (G, Gr) deflates
the two eigenvalues \p, \s.

This chapter is organized as follows. After some preliminary results in Sec-
tion 4.2 on structure preserving transformations, in Section 4.5 we explain how to
deflate eigenvalues of symmetric quadratic matrix polynomials. In the following
section we then extend the symmetric deflation procedure to quadratics with non-
symmetric coefficient matrices. In Section 4.7 we present some numerical examples

that illustrate our deflation procedure. To the best of our knowledge, this work
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is the first attempt at constructing a family of nontrivial elementary SPTs that
have a specific action of practical use: that of “mapping” two linearly independent

eigenvectors to a set of linearly dependent eigenvectors.

4.2 Structure Preserving Transformations

In this section we recall some necessary results from [17] and [34]. SPTs, defined
in (4.1.4), have a number of important and useful properties that we begin by

summarizing.
Lemma 1. [34] Let (Wg,Wg) be an SPT transforming Q(\) = N>M + \C + K
with M nonsingular into Q(\) = XM + AC + K. Then

(i) Q(\) and Q(N\) share the same eigenvalues.

(ii) M is nonsingular.

(iii) If (A, z,y) is an eigentriple of Q(X) then

A AT Ay Ny
Rl - 9 WLl I

for some nonzero T,§ € C" such that QI\)T = 0 and 7*Q(\) = 0.

(iv) Consider the vector space of pencils [47], [31]

UlM UQM Ulc — ’UQM UIK 9
DL(Q) =< A + cveR
UQM ’UQO - UlK UlK ’UQK

If L(\) € DL(Q) with vector v then L(\) = WIL(\)W,, € DL(Q) with vector
v. In other words, the SPT (W, Wg) preserves the block structure of DIL(Q).

Moreover if L()) is a linearization of Q then L(\) is a linearization of Q(N).
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(v) If W, = Wgr and Q(X) is symmetric (i.e., M,C and K are symmetric) then

Q()\) is symmetric.

4.2.1 Elementary SPTs

Matrix pairs (G, Gr) of the form
Gs 0 ~
Gs = " s det(Gs) 7é 0, S = L, R
0 Gs

always define an SPT for any quadratic (). They have the property that if (G, Gg)
transforms Q()) into Q(A) then Q(A\) = GTQ(A\)Gp. The pair (G, Gg) is called a
class one elementary SPT when és =1- msng for some nonzero vectors mg, ng,
S=1L,R [17].

The key elementary SPT used in our deflation procedure has the form

I+agbl  agdl
Ty = S S S (4.2.1)

agf I+ aghg

where ag, b, ds, fs,hs € R™ with ag, dg, fs nonzero. The matrix Ty differs from

the identity matrix by a matrix of rank at most 2 and it is nonsingular if [8], [34]
det(Ts) = (1 + agbs)(1 + aghg) — (agdg)(ag fs) # 0.
With the notation
an = a;Mag, ac:=arCap, ok :=a;Kap,

a pair (17, Tg) of nonsingular matrices with Tg, S = L, R, as in (4.2.1) forms a
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class two elementary SPT if [17], [34]
ac=a;Cap #0
and

§OéCfL + aybr

1
agfr + §Oéc(bL + hr) + andy
1
aghr + §OéCdL
1
QOéch + anbr

1
ak fr+ 5040(51% + hgr) + apdp

1
OéKhR + éacdR

79

(4.2.2)

(4.2.3)
(4.2.4)
(4.2.5)
(4.2.6)
(4.2.7)

(4.2.8)

The constraints (4.2.3)—(4.2.8) (see Section 4.3 for the derivation) force preservation

of structure. Multiplying the constraints (4.2.3)—(4.2.5) on the left by a’ and the

constraints (4.2.6)—(4.2.8) on the left by a% allows us to rewrite the determinant

of Tt and Tg as

det(Ts) = ag”(1+ afbg)(1 + aghg)(ag — dagay,),

which shows that

o —daga,, #0

is a necessary condition for (717, 7Ts) to be an SPT.

S=LR

(4.2.9)
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From (4.2.3)—(4.2.8) we have that if (7%, Tx) transforms Q(A) to Q(A) then

C = C—oaglhpfi+ frhy) — ac(hpby +boh + dpff + frdg) /2
—any (d by + bydp),

M = M_O‘Kfog_QC(bLf£+be£)/2_aMbLb£

which shows that M. , C , and K are low rank modifications of M ,C, and K.

4.3 Derivation of Structure Preserving Constraints

We now summarize the derivation of the constraints (4.2.3)—(4.2.8), that must be
satisfied in order that the pair (7},7) forms a class two elementary SPT [16, 17].
On requiring that a congruence transformation with (77 ,7) on the standard basis

pencil coefficients preserves the block structure we obtain three equations,

radp adf | fo k] [rrat o ][R CER)
afl T+ahf] |K 0] | apfh  T+aghl| |K 0
. - T~
I+apbl apdl M 0 | [I+agby agdp M0
apff  T+ahf| |0 —K| | apfk I+agh} : o K]
(4.3.2)
. iy
I+a b7 a,dl 0 M| |I+aghh apdh 0 M
aff  T+ahf] (M C| | anff Itaghh) [ C
(4.3.3)

To obtain the structure preserving constraints, we first set the expressions for
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K equal in (4.3.1), and simplify the result to obtain
(b, — hy)apK(I +aghp) + [(I+b.a)C+ fral K —dya; M]agdy = 0. (4.3.4)

Similarly, setting the (1,2) and (2,1) blocks in (4.3.2) equal to one of the corre-

sponding matrices in (4.3.1) we obtain
drap [CI+ agby) + Kagff + Magdy] + (I +hpap)Kag(by — hy)" = 0. (4.3.5)

Next, setting the (1,1) and (2,2) blocks of (4.3.3) and (4.3.1) to zero and simplifying

we have

fralM(I 4 agby) + (I +bpap)Magfh + fraiCagpff =0, (4.3.6)

frarCapdh+ (I +hpal)Kapds + frat K(I 4+ aghk) = 0. (4.3.7)
Finally, setting the off diagonal blocks of (4.3.2) to zero we have

(I +byat)Mapdy — frat K(I +aphk) =0, (4.3.8)

dyat M(I+ apbh) — (I + hyat)Kapfl = 0. (4.3.9)

Equations (4.3.8) and (4.3.9) can be satisfied by choosing

fo =B +brap)Mag (4.3.10)
fr= B +brag)M"a, (4.3.11)
d;, = B(I + hya;)Kag (4.3.12)
dp = B(I + hpap)K ay, (4.3.13)

where 8 # 0 is an arbitrary constant. For convenience we take 8 = —2/a}Cap
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and obtain

2

= —— (I +b;a"\M 4.3.14

fL ajL“CaR< + LaL> aR’ ( )
2

=——" ([ +bpat)MT 4.3.15

fR afC’aR( + RCLR) Qy,, ( )
2

d =——= (I+h d K 4.3.1

L aECaR( +hpap)Kag, (4.3.16)
2

dp = —iﬁkjaR(I-+}h#ﬁQ}(TaL. (4.3.17)

Equations (4.3.14)-(4.3.16) simplify to

1 1
1 1
Each +ayb, = —Mapg, QOéch + oy by = ~M7a,. (4.3.19)

Equations (4.3.18) and (4.3.19) form four structure preserving constraints. To ob-
tain the final two structure preserving constraints, we rearrange (4.3.4) and (4.3.8)

to

2

byJ%:axU+%%ﬂC+hﬁK+%ﬁMﬁﬂ (4.3.20)
2

%_%:EiU+%%wT”M?€+%£Mﬂ%' (4.3.21)

Next we substitute (4.3.14) and (4.3.16) for fr, and dj, in (4.3.20), (4.3.15) and
(4.3.17) for fgr, and dg in (4.3.21) and assuming axay — (ac/2)* # 0 we have

5 Cap —axMag —ayKag
Aoy — (Oéc/Q)Z
byt By wClay, —agMTay, —ayK'ay,
AN — (a(;/2)2

?

(4.3.23)
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Now after multiplying (4.3.18) by ays and (4.3.19) by ak, we obtain two equa-
tions, the first by adding the two equations with K and M terms, and the second

by adding the equations with K7 and M7 terms to obtain,

O;—CaKfL +agMay =0, (4.3.24)

s+ ay K a; + %a[( fatoagMTa, =0, (4.3.25)

a
g (by +hy) + 7CO‘MdL +ayKap +

o}
—Cq

Finally substituting (4.3.22) and (4.3.23) for a,,Kap + axMay in (4.3.24) and
ayKta;, + apMTa; in (4.3.25) respectively we obtain the two final structure

preserving constraints,

1
OéMdL+OéKfL+§OéC(bL—|—hL) + Cagr =0, (4.3.26)

1
aydp + ok fr+ §OJC<bR+hR) +CTCLL =0. (4.3.27)

To summarize, we now have six structure preserving constraints which the SPT

(T,,Ty) must satisfy:

%aCfL+aMbL = —Map, (4.3.28)
aydr + ag fr + %ac(bL + hy) = —Cag, (4.3.29)
%aCdL +agh;, = —Kag, (4.3.30)
%aCfR +aybp=—M"a,, (4.3.31)
apdr + ag fr+ %ac(bR—l—hR) =—-C"ay, (4.3.32)
1oszR +aghp=—-K"a;. (4.3.33)

2
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4.4 Computing the Vectors Defining a Class Two
SPT

Once the two vectors a; and ap are chosen such that (4.2.2) and (4.2.9) hold the
structure preserving constraints (4.2.3)—(4.2.8) are linear in the remaining unknown

vectors. They can be rewritten in matrix form as
VA=1B <~ VI A= BR7 ViRA = BL; (441)

where A € R**3 and B € R?"*3 are given by
_ 1 ;
(03 50[0 0

e 0 aum %ac B_ Mar Car Kap B Br
sac ag 0 MTa; CTa; KTap B

0 %Oéc [677¢

(4.4.2)
and V = [‘2] € R with Vs = by dg fs hS] € R4 for S = L, R contains

the remaining unknown vectors. Some calculations show that
1
det(A”A) = 21(()% — dayop)? (0 + ady + ad)

which is nonzero by (4.2.9), so that A has full rank and all solutions to (4.4.1) are

given by

Vi = BRrAT + Qr(I — AA™),
Vr = BLAT + Qgr(I — AA™),

V =BA"+Q(I — AA") +—

for some arbitrary Q = [8]];} € R?™4 Here AT is the pseudoinverse of A, which

is given by AT = (ATA)7' AT since A has full rank (see Stewart and Sun [55, Sec.
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3.1]).

The transformation Tg used in our deflation procedure performs a specific ac-
tion: that of mapping two non parallel eigenvectors of () associated with a pair of
eigenvalues to just one eigenvector for @ associated to that same pair of eigenval-
ues. This results in an extra constraint of the form 27V = w? for some given z
and w that the solution V of (4.4.1) must satisfy. The next result will be needed
for the existence and characterization of all the class two SPTs performing that

specific action.

Theorem 4. Let A € R™* r > k have full rank, B € R™* w € R", and nonzero

z € R™ be given. The problem of finding V€ R™ " such that
VA=B, AV =w, (4.4.3)
has a solution if and only if wT A = 2T B. In this case the general solution is
V=(—-22NBA" +U(I — AAT) + z(z"2) "™, (4.4.4)

where U € R™" is any matriz such that 27U = 0.

Proof. If V is a solution to (4.4.3) then 2B = 2TV A = wT A. Conversely, if
2B = w” A then since ATA = I multiplying V in (4.4.4) on the right by A yields
VA = B and since 27U = 0 we have that 27V = w” so that V in (4.4.4) is a
solution to (4.4.3).

Every solution V' to (4.4.3) can therefore be rewritten as

V = (I—22"YVAAT — (I — 22" VAAT +V — 227V + 227V
= (I — 22" )WAAT + (I — 22NV (I — AAT) + 227V

= (I — zz+)BA+ + (] — zz+)V(I - AA+> + Z(ZTZ)_IZUT,
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which is of the form (4.4.4) with U := (I — z2™)V satisfying z"U = 0. O

4.5 Deflation for Symmetric Quadratics

Symmetric quadratics have the property that if x is a right eigenvector associated
with the eigenvalue A then y = 7 is the corresponding left eigenvector. If we
therefore use congruence transformations to preserve the symmetry of the quadratic
we need only consider the deflation of eigenpairs rather than eigentriples. We
denote by (A1, 1) and (g, 22) the two eigenpairs to be deflated. We use congruence
transformations to preserve the symmetry of the quadratic. We begin by showing
that when 7 and x5 are parallel there exists an n x n congruence transformation
which, when applied directly to @), deflates \; and As. When x; and x5 are linearly
independent, we show how to construct a class two SPT that transforms () to a
new quadratic (); for which A\; and Ay share the same eigenvector. In other words,
the SPT allows us to transform the original deflation problem into one we know

how to handle.

4.5.1 Linearly Dependent Eigenvectors

We begin by treating the case where the eigenvalues A\; and A have a common
eigenvector z € R™. The next lemma is crucial to proving the existence of a
congruence transformation that deflates these two eigenvalues. Some relations in

this lemma have already been observed by Chu, Hwang, and Lin [11]
Lemma 2. Consider the n x n symmetric quadratic Q(\) = N>M + \C + K.

(1) If Q(N\j)z =0, j = 1,2 with z € R*\ {0} and Ay # Xy then Cz = c Mz and
Kz =k Mz with c = —(\; + \2) and k = M\ \o. Moreover, 2T Mz # 0 if and
only if 27Q'(N\j)z #0, j =1,2.
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(i) If Cz =cMz and Kz = k Mz for some nonzero z € C" and ¢,k € C then
Q(Aj)z =0, j =12 with M2 = —(cxVc*—4k)/2.

Proof. (i) It follows from AJMz + \;Cz+ Kz = 0, j = 1,2 that when A\; # A,
Cz=—(M\+X)Mz=cMzand then Kz = —=\N2Mz+ (M + )Mz = Mo Mz =
kMz. If A, Ay are semisimple then 0 # z7Q'(\;)z = (2)\; + ¢)z" Mz (Q'()) is the
first derivative of () with respect to A, that is Q'(\) = 2AM + C'), which implies
that 2T Mz # 0.

(i) If Cz = ¢cMz and Kz = k Mz then Q(\;)z = (A} + Ajc + k)Mz = 0,

J = 1,2, from which the formula for \; 5 follows. 0

Assume there exists a nonsingular matrix G such that
Ge, =z G'(Mz)=me,, m=2z"Mz (4.5.1)

where e,, is the last column of the n-by-n identity matrix. Since G and M are
nonsingular we must have m # 0, or equivalently, 27 Mz # 0 which by Lemma 2(i)

holds when A\; and Ay are distinct and semisimple. Thus we have that
GTMGe, = GT Mz = me,,

If Ay and A are distinct then by Lemma 2(i), Cz = cMz and Kz = kM z, so that

oy ,[M 0 c 0 E 0
G (NM+XC+K)G =)\ + A + , (4.5.2)

0 m 0 mc 0 mk
where ¢ = —(A\; + A2) and k& = A\ )\g; thus G deflates the two eigenvalues A; and
Ao. Note that if A\ = Ay and, C'z and Kz are multiples of Mz then, as long as
2TMz # 0, G in (4.5.1) deflates A\; and )y from Q. It is easily seen from (4.5.2)

that in this case A\j(= Ay) must be a defective eigenvalue with partial multiplicity
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We build the matrix G in two steps. We begin by constructing a Householder
reflector H [21] such that
H(Mz) = ||Mz||2e,.

We then form L = I,, + rs’, where s’e,, =1 and r = % Hz — e,, so that

M
Le, = wl—[z, LT, =e,
m
since r’e, = %zTHen —1= LTQ/[Z —1=0. Hence
m
G = HL (4.5.3)
[ M z]]2

satisfies (4.5.1). It is shown in [18] that taking

1++V1+7rTr

S:en_—TTT r

minimizes the condition number x(L) of L and that with this choice,

/QQ(G)2 _ KQ(L)Z _ V 1+ HTH% + HTH2
VI+IrIE=lIrl2’

which is reasonably small as long as |||z is not much smaller than 1. Using

|Mz||2He, = Mz and the definition of r we have that

)12 = rTr = (2T M?2)(272) /(2" M2)? — 1

showing that ||r||2 does not depend on the norm of z or M.
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4.5.2 Linearly Independent Eigenvectors

When x; and x5 are linearly independent there is clearly no nonsingular transfor-
mation mapping the full rank matrix [z, z,] to the rank-one matrix [¢, e, ]
The idea in this case is to build an SPT T that transforms Q(\) with eigenpairs
(Aj,xj), 7 =1,2to Q1(\) with eigenpairs (\;, 2), j = 1,2 that can then be deflated
using the procedure described in Section 4.5.1. We only consider the case where
A1 # 2. Indeed when the two eigenvalues are equal and x; is not parallel to x5, A\
and Ay belong to two distinct Jordan blocks. In this case, the decoupling (4.5.2)
cannot be achieved.

Since we aim to treat the deflation of real eigenpairs together with that of
complex conjugate eigenpairs, we introduce the real matrices A € R?*? and X €

R™*2 defined by

A0
if A\; and A\, are real,
0 Ao
A= (4.5.4)
o _

and

[ T xz] for real eigenpairs,
X = (4.5.5)
[u o] for complex eigenpairs with x; = Zy = u + 0.

We want to construct a class two elementary SPT T = I, + [ssﬁ; ZZ;} with

a,b,d, f,h € R™ and a nonzero vector z € R" (for simplicity we assume ||z||; = 1)
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such that

T! = : (4.5.6)

where e = [H This constraint means that 7! [’\Jx"’jj} = [/\JZ], for 7 = 1,2. Hence
if T transforms Q(X) to @1(A) then by Lemma 1(iii), @1 (A\;)z =0, j = 1,2. We

rewrite (4.5.6) in terms of the 6n unknown vectors a,b,d, f, h, z as

zel A+ (b 2)ae’ A+ (d" 2)ae” = X A, (4.5.7)

zel + (fT2)ae’ A + (h'2)ae” = X, (4.5.8)

and solve (4.5.7)—(4.5.8) for a, z and the scalars b' z,d” z, fTz, hTz as follows.

Let nonzero p, q € R? be such that
elp=0, eAp=1, elg=1, eTAg=0.
Since A\; # Ao, it is easily seen that

1
p=70— )" ; q=Ap— (M + A)p, Ag = —AiAap,
-1
with v = 1 for real eigenpairs and v = ¢ for complex eigenpairs. Multiplying
(4.5.8) on the right by p yields (f7z)a = Xp. Since the columns of X are linearly

independent, we have that f7z # 0. Now without loss of generality, we normalize

a such that a’a = 1. It follows that
a=(f"2)""Xp,  fTz=|Xplls #0. (4.5.9)

Multiplying (4.5.7) on the right by p yields z + (b"2)a = X Ap. If we choose to
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normalize z such that el 2 = 1, where ¢ is such that |e! a| = ||a]|o then
bz = (el XAp — 1)/ (e} a), z=XAp— (b"2)a. (4.5.10)

Multiplying (4.5.7)—(4.5.8) on the right by ¢ and on the left by el gives
d'z = (e} XAq)/(ef a), W'z = (e Xq—1)/(e] a). (4.5.11)

What is now left is the construction of V' := [ ¢ f h]such that 2TV =wT,
where w? = (bTz dTz Tz AT 2], and VA = B, since T is structure preserving
(see Section 4.2.1), where B = —[Ma Ca Ka] and A is as in (4.4.2) with ap =
a’Ma, ac = a’Ca # 0 and ag = a¥ Ka. We know from Theorem 4 that a solution

Vto VA= B, 2TV = w? exists if and only if
w' A =2"B. (4.5.12)

The next lemma, crucial for the deflation process, provides a necessary and suffi-

cient condition on the eigenpairs (\;,z;), j = 1,2 for (4.5.12) to hold.

Lemma 3. The relation wT A = z' B holds if and only if the eigenpairs (A, 1)
and (A, x2) of Q(N) satisfy

21 Q' (A)ay = ex3 Q' (Ny)x, (4.5.13)

with € = —1 for real eigenpairs and € = 1 for complex conjugate eigenpairs.

Proof. Tedious calculations left to Section 4.8 show that the row vector g7 =

wl A — 2T B has the form
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where v is a nonzero scalar, ¢ = —(A; + \2), k = A\ Ag, € = —1 for real eigenpairs

and € = 1 for complex eigenpairs. O

For real eigenpairs, the condition (4.5.13) implies that A\; and Ay must have
opposite type, (the type of a real eigenvalue A of Q(\) with associated eigenvector
x being the sign of z7Q'(\)x = 2A\x” Mx + 2T Cx). Note that this is to be expected
from the theory of Hermitian matrix polynomials since for a symmetric quadratic
with 2r distinct real eigenvalues, r of them are of positive type and r of them
are of negative type (see [20] or [40, Appendix]). Hence when deflating two real
eigenpairs, one must be of positive type and the other of negative type. Under this

condition, (4.5.13) is achieved with the scaling
v1 4 o /\/FTQ (M)l w2 ¢ 22/ [27Q(Ay) ]

as long as both \; and Ay are semisimple, so that a:JTQ'(/\j):vj #0,7=1,2.

For complex conjugate eigenpairs, (4.5.13) is achieved with the scaling
x4 o /A 2 Q' (N, xe =1

if z7Q'(M\1)z; # 0 and no scaling otherwise. (Note here the use of “T” rather than
44*77 .)
With the above scaling, Lemma 3 together with Theorem 4 tells us that the

equations VA = B and 2TV = w” have the solutions

T

V= (1 - ﬁ)B/ﬁ F UL — AAY) + ZTZsz, (4.5.14)

2Tz

where U € R™* is any matrix such that 27U = 0. It follows that (4.5.9)—(4.5.11)
and (4.5.14) define a family of class two elementary SPTs 7T transforming Q(\)

with eigenpairs (\;, z;) to Q1()\) with eigenpairs (\;, z), j = 1, 2. Identifying which
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solution minimizes the condition number ko(T) = ||T||2||T~!||2 remains an open

problem.

4.6 Deflation for Nonsymmetric Quadratics

The deflation procedure described in Section 4.5 extends to the case where M, C,
and K are nonsymmetric. We denote by (\;, zgj, zr;), j = 1,2 the two eigentriples
to be deflated from Q(\) with (A, Zgo, 212) = (A1, Zg1, Tr1) when Im(A;) # 0. In
contrast with the symmetric deflation procedure we use equivalence transformations
rather than congruence transformations since we do not need to preserve symmetry.

Three situations must be considered.

4.6.1 Parallel Left Eigenvectors and Parallel Right Eigen-

vectors

Without loss of generality let us assume in this case that xp; = xp2 = 2z and

TRl = Tpo = zr wWith z7, zgr € R" so that

ZEQ1()‘J‘) =0, Q1(A;)zr =0, J=12, (4.6.1)

since both the left and right eigenvectors are parallel, )y = (). As in Lemma 2 it
is easily shown that if (4.6.1) holds with A; # Ay then

Cizp=cMzp,  Kizr = kM zg, (4.6.2)

0, =cIM,, 2K, =kt M, (4.6.3)
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where ¢ = —(A\; + Ag) and k£ = A\ Ay, Moreover if A\; and Ay are semisimple then

2P Mzp # 0. Suppose there exist nonsingular matrices G, and G such that

Gt Mzp = me,, Gre, = 21, (4.6.4)

GEMT 2, = me,, Gren = 2g, (4.6.5)

where m = 2X M z,. (The left (right) transformation G, (Gr) depends on the right
(left) eigenvector.) Since M, G, and Gg are nonsingular we must have m # 0
which is guaranteed when \; and )\ are distinct and semisimple. With G and G

satisfying (4.6.4) and (4.6.5) we have
GIMGre, =G Mz =me,, e GIMGp =2 MGy =mel
and on using (4.6.2)-(4.6.5) it follows that

. M 0| [C of |KE o0
GT(M,C,K)Gp = , , . (4.6.6)

0 m 0 mec 0 mk

If we let up, = Mz and up = M* 2, the matrices Gy and Gy can be taken in the

form
m

Gg =
sl

HSL57 S:L7R7

where Hyg is a Householder reflector such that Hsug = ||ug||2¢, and Lg = I,, —rgsk

with
rs = Huﬂin Hszs — e, 88 = En — — 'r’%rt Tgrs?‘s
so that
Lge, = ||uS||2HSZS, Lgen =e€,.

m
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Thus it is easy to check that the pair (G, Ggr) satisfies (4.6.2) and (4.6.3) and

therefore deflates A\; and Ay from Q.

4.6.2 Non Parallel Left Eigenvectors and Non Parallel Right

Eigenvectors

Our aim, as for the symmetric case, is to build a class two elementary SPT (17, Tr),
with T, not necessarily equal to Tg, that transforms Q()\) to a new quadratic Q1(\)
for which A\; and A, share the same left eigenvector z;, and the same right eigenvec-
tor zg. In order to apply the deflation process of Section 4.6.1, we assume that Ay
and Ay are semisimple and distinct. When A\; = Ay with linearly independent eigen-
vectors then A\; and Ay belong to two distinct Jordan blocks and the decoupling
(4.6.6) cannot be achieved.

Let T be such that

T Xsds) _Joseids , (4.6.7)
Xg zgeT

with A, = AT and Ap = A where A, X, and Xy are formed as in (4.5.4) and
(4.5.5), and e = H] If the pair (77, Tg) is structure preserving and transforms
Q(N) to Q1(N) then the constraint (4.6.7) for S = L and S = R together with
Lemma 1(iv) implies that 2] Q,();) = 0 and Q,(};)zz =0, j = 1,2.

Now if we choose Ts to have the form (4.2.1) then with the following normal-

izations of ag and zg,
agag =1,  epzg=1, letgas] = llas]loo, (4.6.8)

we obtain in a similar way to the symmetric case described in Section 4.5.2, that
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under the constraint (4.6.7),

fsTZs = [ Xspsll2 # 0, ag = (ngS)_lXSpsv
bgzs = (engsAsps - 1)/(62%)7 zg = Xg/Agpg — (bgzs)as, (4.6.9)
dgzs = (eeTsXsAsCIs)/(eeTSaS)a hgzs = (eeTSXSQS - 1)/(8222@3),

where pg, gs € R? are such that
e'pg =0, eTAgpg =1, elqg = 1, eTAgqq = 0.

Assuming that al Cap # 0, the class two elementary SPT (77, Tr) is completely
determined if we can find two matrices V;,, Vi € R™*4 of the form [bs ds fs hg]

with S = L, R such that

Vi, A = Bg, 2V = wi, (4.6.10)

VrA = By, 2p VR = W, (4.6.11)

where A € RY® and B € R*? arcasin (4.4.2) and ws = [bLzy dlzg fLzg hhzgl,
S = L, R. From Theorem 4, a solution V, to (4.6.10) and a solution Vg to (4.6.11)

exist if and only if w] A = Z] B, and whA = Z}EB; .

Lemma 4. The relations
wiA— Z] By =0, whA — ZB; =0
hold if and only if the eigentriples (A, xr1,xr1) and (Ao, Tro, xr2) of Q(N) satisfy
1‘%1@,()‘1)%31 = WEQQ,()Q)sza $:LF1Q/(/\2)$R2 = Ex:LFzQ/(/\l)xRp (4.6.12)

with € = —1 for real eigentriples and e =1 for complex conjugate eigentriples.
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Proof. Let g7 = wl'A—Z] By and g}, = whA— Z} B, . Calculations along the
same lines as those presented in Section 4.8 for the symmetric case show that for

real eigentriples,

gg = VL(£1+£2_£3_§4) [17 Cy k]v

g = WmE+&L—&— &)L o k),
where 7, and g are nonzero scalars, ¢ = —(A; + \a), k = A Ay and

&1 = $€1Q/()‘1>$R1> §3= $£1Q/()‘1)x32a §s = $€1Ql(>‘2)mm,
& = $€2Q/()‘2)5’3Rz> §a= 33%2@,()‘2)5’531, §6 = x%zQ’O‘l)le-

(4.6.13)

From 27,Q(A\j)xrs = 0, j = 1,2 we find that 27,Cxpy, = — (A + Ao)zT, Mg,
from which it follows that z7,Q'(\)x gy = —2L,Q'(A2)z gy, that is, & = —&. In
an analogous way we find that 27,Q'( M)z, = —21,Q"(A\2)zp,, that is, & = —&.
Hence, g;, = gg = 0 if and only if & + & = 0 and & + & = 0.

For complex conjugate eigentriples, we find that

9, = L (i& —i&+ &+ &) [, ¢ K,

gg = :?R <Z§1 _i§2+£5+§6) [17 Gy k]a

where 7, and 7 are nonzero complex scalars, §;, 7 = 1,2, 5, 6 are defined in (4.6.13)
and & = 27,Q (\) gy, & = 215Q' (M) T po. Using 27,Q(Nj)zpe = 0, j = 1,2 it is
easily shown that z7,Q'(\)x gy = —27,Q'(A2)x R, which, by taking the conjugate,
becomes & = —&;. We show similarly that &g = —&;. Hence, g, = gr = 0 if and

only if & — & = 0 and &5 + & = 0 which completes the proof. O

The assumption that A\; and Ay are semisimple implies that the terms on the

left-hand side for real eigentriples and the terms on the right-hand side relation
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in (4.6.12) for complex conjugate eigentriples are nonzero. z7;Q'(\;)zg; = 0 or
xsz’ (Me)xge = 0, j # k, then a scaling similar to that described after Lemma
3 can be applied to ensure that (4.6.12) holds. When both z%,Q'(\)zy, and

¥ Q' (\9)x 5y are nonzero, we let

_ I%QQI(A2)$R2 _ xngl()w)le.

p - / 9 p - /
' 5”%1@()\1)351%1 ’ $€1Q (A2)T o

Thus for real eigentriples, (4.6.12) can be achieved for an appropriate scaling of the
eigenvectors only if sign(p;) = sign(pz), in which case we can apply the scaling

Tri < ’p1|1/2xL1= TR1 < |:01|1/2le7 (4.6.14)

Tr2 < |P2|71/2$L2> TR2 < |P2|1/2$R2-

When the left and right eigenvectors are scaled so that (4.6.12) holds, Lemma 4

and Theorem 4 tell us that the set of solutions to (4.6.10) and (4.6.11) is given by

ZLZ% ¥ + 2, T
VL: I — T BRA +UL<[—AA )+ T wy,,
RLAL RLAL

ZR7R + + “R_, T
VR: I — T BLA +UR([—AA)—|— Wpg,

T
ZRZR RRZR

where U, Ur € R™™ are any matrices such that zXUs =0, S = L, R.
The matrices V;, and Vi together with ar and ag in (4.6.9) define an SPT
(Ty,, Tg) that transforms Q(\) into Q1(A) such that (4.6.1) holds.

4.6.3 Non Parallel Left (Right) Eigenvectors and Parallel

Right (Left) Eigenvectors

When for example rank([z;,,z;,]) = 1 and rank([zp,, 25, ]) = 2 we might want

to look for an SPT of the form (ly,,Txr) with Tk a class two elementary SPT,
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since the left eigenvectors are already parallel to each other. Unfortunately, the
pair (Is,, Tr) is not structure preserving. We can however still use the procedure
described in Section 4.6.2 to map (\;, Zgrj, x1;) to (N, zr, 21), 7 = 1,2 as long as
we make sure that after the scaling (4.6.14), the vector X py, is nonzero so that ay,
in (4.6.9) is defined. If X p;, = 0 then we replace xy; by vxp; and zgr; by Yzg1,
where v = —1 for real eigentriples and v = ¢ for complex conjugate eigenpairs so

that (4.6.14) still holds but Xppy, is nonzero.

4.7 Numerical Experiments

We now describe some numerical experiments designed to give insight into our de-
flation procedure. It is not our aim to investigate the numerical stability properties
of the procedure. This is a separate issue that will be addressed in future work.

In all our experiments we take U = 0 in (4.4.4).

Experiment 1. Our first example is a 2 X 2 quadratic Q(\) = \*M + \C' + K

defined by

2 -1 0 1 3 2
M = . O = . K= (4.7.1)

-1 3 10 2 3

with A(Q) = {—0.344+1.844,0.14 £0.51¢} to two decimal places. Note that M ~1C
does not commute with M~ K thus Q()) is not proportionally damped. Therefore

the system cannot be decoupled by a 2 x 2 congruence transformation directly
applied to Q(\).
Given the pair of complex conjugate eigenvalues \; o = —0.34 = 1.847 and their
associated eigenvectors our symmetric deflation procedure, decouples Q(\) into
5.6 2.0e—16 —-1.6 —9.4e-16 1.6 —9.8e—-17

A2 + A +
2.0e-16 —1.4e—1 —9.4e-16 —9.3¢-2 —9.8¢-17 —4.8¢-1
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Table 4.1: Relative magnitude of the off-diagonal elements of the deflated quadratic
Q2(\) = \2My + A\Cs + K, experiment 2 and condition number of the transforma-
tions.

Deflated

eigenvalues Off(Mg) Off(Cg) Off(Kg) K9 (TL) K9 (TR) RQ(GL) KQ(GR)
Real 3.0e-15 1.7e-13 1.6e-13 | 6.0e+5 2.0e+2 3.6e+1 3.3e+0
Complex 2.0e-16 1.4e-14 5.6e-14 | 1.8e+3 4.5e+1 1.0 1.1

to two significant digits with k(7T") = 7.9 and ko(G) ~ 1.

Experiment 2. Our second example is a 2 x 2 quadratic matrix polynomial
arising in the study of the dynamic behaviour of a bicycle [50]. The coefficient
matrices are nonsymmetric. They can be generated using the NLEVP MATLAB
toolbox [7] via nlevp(’bicycle’). This quadratic has two real eigenvalues, \; =
—0.32 and Ay = —14 and two complex conjugate eigenvalues —0.78 4= 4.5:. Table
4.1 shows that the left and right transformations corresponding to the deflation
of the complex conjugate eigentriples have a smaller condition number than that
used for the deflation of the real eigentriples. The large condition number of 77, in

the real case affects the size of the off-diagonal elements of the deflated quadratic.

Here off(E) = ||E — diag(E)|]2/||Ell2, E = Ma, Cy, Ks.

Experiment 3. Our next example is a 4 x 4 hyperbolic symmetric quadratic
eigenvalue problem generated as in [24, Sec. 6]. The eigenvalues, real since the
quadratic is hyperbolic, are uniformly distributed between 1 and 8. Since this
problem is overdamped, the eigenvalues are real and if we order them increasingly
then A1,...,A\s have negative type and As,... g have positive type [5, Proof of
Thm. 1]. Any pairs (A\;, \y) with 1 < j <4 and 5 < k < 8 can be deflated from
the quadratic. Table 4.2 displays the condition numbers of the SPT T and deflating
transformation G for different pairings. It shows that the choice of pairings affects

the conditioning of the transformations.
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Table 4.2: Condition numbers of the SPTs T" and deflating transformations G for
different pairs of eigenvalues for experiment 4.
‘ (>\17)\5) ()\1;)\6) ()\17)\7) ()\17)\8)

ko(T) | 4.62e+1 1.43e+3 4.4le4+2 7.15e+1
Ka(L) | 2.09e+0 6.41e+0 1.61e+0 4.61e+0

Ezxperiment 4. We now consider a symmetric quadratic eigenvalue problem
coming from a model describing the motion of a beam simply supported at both
ends and damped at the midpoint. This quadratic can be generated via the com-
mand nlevp(’damped_beam’ ,nele), where nele is the number of finite elements.
It is shown in [33, Thm. A1] that the damped problem Q(\) = A2M + A\C' + K and
the undamped problem Q,(\) = A2M + K have n eigenvalues and n eigenvectors
in common: those corresponding to the anti-symmetric modes. Because M and
K are positive definite, the eigenvalues of @, () are pure imaginary; they come in

pairs (), ), each pair sharing the same eigenvector.

We computed the n eigenpairs corresponding to the anti-symmetric modes of
Q.(A) using MATLAB function eig with the option ’chol’ and deflated all of
them from Q(\) using the procedure described in section 4.5.1. Let

Q) = GreQN G = MM + X0 + K
be the deflated quadratic, where G, is the matrix which accumulates the product
of the n/2 deflating transformations of the form (4.5.3) and M,C, K are block

2 x 2 diagonal with (n/2) x (n/2) blocks, the lower block being diagonal. Table
4.3 displays the scaled residuals res(M), res(C'), and res(K), where

HGT EGacc - E|’2

acc

es(E) = 5 =,
1Gacell2 [ Ell2 + (1 £]]2

and the 2-norm condition numbers xka(G..) for different values of n = 2xnele.
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Table 4.3: Scaled residuals and condition numbers for transformations in Experi-
ment 4.

n  res(M) res(C)  res(K) k2(Gaee) £2(U)

8 3.07e-15 4.63e-18 3.90e-16 1.69e+1 1.52e+1

16 5.52e-15 5.08e-17 3.59e-15 4.47e+1  3.79e+1

32 1.34e-13 3.15e-16 1.68e-14 9.57e+1 7.84e+1

64 3.22e-12 6.09e-15 3.56e-14  1.95e+2 1.57e+2

The quadratic of the beam problem can be block diagonalized as (see [33, Ap-
pendix Al])

MM, + M\D; + K, 0

UTQ\NU =

0 N My + Ko

where U is orthogonal, M, and K, are both symmetric positive definite and A2 M, +
K5 contains the anti-symmetric modes. The last column of Table 4.3 displays the
condition number of the transformation U that block diagonalizes N\2Ms + Ky. As

a comparison, we note that ko(Gaee) is not much larger than ko (U).

4.8 Proof of Lemma 3, Symmetric Quadratics

In this section we give the proof of Lemma 3. We start by recalling the notation. Let
(A1, 1) and (Mg, z2) be two eigenpairs of a symmetric quadratic Q(\) = \>M +
AC' + K such that A\ # Ay. For real eigenpairs let A = diag(A1, A2) and let
X = [z1 xs]. For complex conjugate eigenpairs let A = [fﬁg] and X = [u v],
where Ay = Ao = a +if8, 8 # 0 and 2, = T = u + iv. Let

1
p="9\ — )" ., q=Ap— (M +N)p
~1
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with v = 1 for real eigenpairs and v = ¢ for complex eigenpairs and let

[Tz =|Xpll2 #0, a=(fTz)""Xp,
b'z= (e, XAp—1)/(eja), z=XAp— (b"2)a,
d"z = (ef X Aq)/(ef a), W'z = (ef Xq—1)/(efa),

where / is such that a, = e} a # 0. Define

_oz 1a 0 ]
Meane X B:_|:MCL Ca Ka]a
0 ay s00
A= 20 , v:[bdfh],
500 Ok
’ wh = [sz Tz Tz hTz],
0 %O&c [077¢

where ay; = a” Ma, ac = a”Ca and ag = a” Ka. The next lemma contains useful

relations.

Lemma 5. The following relations hold.

viCx, = calMuz,, (4.8.1)

v Kz, = kalMaz,, (4.8.2)

d'z = —k Tz, (4.8.3)

Wlz—vrz = ¢ f1z, (4.8.4)

where ¢ = —(A1 + \2) and k = M Ao, In addition, for any symmetric matriz E we
have

a’Ea = ap=(f"2)p" XTEXp, (4.8.5)

dEa = (ff2) 'p"ATXTEXp — (07 2)(f12) " XTEXp,  (4.8.6)
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with

¢

wxl Exy + 2T Exy — 20T Ex,)  for real eigenpairs,
IXTEXp = P e (4.8.7)
L(ix{ Exy — izl Exy + 221 Ex,)  otherwise,

\
(

pMat Ex, + Nal Exy + cxl Ex))  for real eigenpairs,
T AT 5T

pr AP X EXp =
(iNaT Ex, —idyal Exy — cal Ex))  otherwise,

23
€
where = (A — X2) "2 # 0 is defined since \; # \o.

Proof. The relations (4.8.1) and (4.8.2) follow from 27 Q(\,)x, = 22 Q()\))z, =
0 and 27 Q(\y)z, = 0. The relations (4.8.3)—(4.8.6) follow from the definition of p,
q, a and z and (4.8.7)—(4.8.8) follow from the definition of A and X and p. O

With these relations in hand we can now prove the formula for g7 = wf A— 2B

in Lemma 3. From the definition of A, B w and z we find that

(" 2)an + 3(fT2)ac + 2" Ma
9= |530"2)ac+ (d"z)an + (fF2)a, + 3(h'2)ac + 27 Ca
(d™2)ac + axh’z + 2T Ka

Using (4.8.5) with £ = M and E = C and (4.8.6) with £ = M we obtain that the

first component of ¢ satisfies
2(fT2)gr = p" XTOXp + 20" AT XT M Xp. (4.8.9)
In a similar way we find that the other components of g satisfy

2(fT2)gs = cp" XCXp—2kp" XMXp + 20" ATXTCXp + 20" XK Xp,

2(fT2)gs = —kp" XTCXp+2ep" XTKXp+ 20" ATXTK Xp.
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Using (4.8.7) and (4.8.8) with F = M,C and K and the relations (4.8.1)—(4.8.4)

we find that for real eigenpairs,

Q(fTZ)gT = N(fcpo/()w)% + ng/(AQ)xQ) [1 c k?}

and that for complex conjugate eigenpairs,

2f12)g" = (@O — QO [1 ¢ 1],

4.9 Proof of Lemma 4, Nonsymmetric Quadrat-
ics

We start by recalling the notation. In the real case (A, xp1,2g1) and (Ao, X2, Tr2)
are two real eigentriples of a nonsymmetric quadratic Q(\) = A?M + \C + K
such that A\; # Ag. Since the eigenpairs are real let A = diag(A;, \2) and let
Xi = [z 2r2), and Xp = [2r1 Trol.

In the complex case we have two complex conjugate eigentriples (A1, Zp1,TRg1)
and (g, T12, Tro) (Where Ay = ;) and let A = [_aﬂg] and Xg = [ug vs|, S =L, R,
where \y = Ay = o+ i3, B # 0 and

s US+iUS
Xg = = . S=L,R

Ts2 us —z'vg

xlzigzu—i-iv. Let

1
p=7A\ — )" = pr, q=Ap— (A + N\o)p
—1
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with v = 1 for real eigenpairs p = pr = py)and v = i for complex eigenpairs (with

pr = —pr) and let

fézg = | Xspgll2 # 0, ag = (f§z5) "' Xgps,
bgzs = (eeTsXsAsps - 1)/(62‘13% zg = XgAgpg — (bgzs)a& (4.9.1)
digzs = (eg;XSASqS>/(eanS)7 hgzs = (eéTSXSQS - 1)/(€eTSaS)7
where
afgas =1, eéfszs =1, |e%sa5| = |lag||oo, (4.9.2)

and pg, ¢s € R? are such that
eTpS — 0, eT/lSpS - 1, 6TqS - 1, eTASqS - O

Define

_ - BR:_[MGR CCLR KCLR]y
1

ay sac 0
2 Br = — [MTaL CTay, KTaL],

A= T _ T T T T
» WR = |bpzp dizg frzr hpg|
[6700NN 07 'e 0
T _ |1T T T T
1 wr [bLZL drz, frzp hLZL} ’
0 sac ag

- T Vs=|bs ds fs hs|. S=LR

D=

where ay = al May, ac = alCay and ax = a] Kap. The next lemma contains

useful relations.

Lemma 6. The following relations hold,

T T T T
v Kap = kv Magy, x,Kvp =kv,Mzg, (4.9.3)
T _ T T _ T
27,00y = cx1, Mxpy, x7,Cxp = crioMxp, (4.9.4)

w1 Kap, = =Nal Mrp, — \jap,Cag,, for j=1,2 (4.9.5)
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and

dizg = —k fizg, (4.9.6)

thS - ngS = C ngS7 (497)

where S = L, R, c = —(A\1 + \2) and k = M\ As. Also for any matriz E we have

apBap = ap=(f{2,)""(fhzr) 'L X EXgpR (4.9.8)
zhEap, = (ffz) 'pRARXEEX, py (4.9.9)
—  (bRzr)(fLzL) ' (fher) 'PRXEEX DL (4.9.10)
siBag = (fr2r) 'PLARXL EXppr (4.9.11)
— Lz (fLz)  (fR2r) ' PL XL EXppg (4.9.12)

where for real eigenpairs replace pr and pr, by p (since p = pr, = pr) and for

pEXgEXR Pp= (4.9.13)
wat Exp — 2T Expy — 2T, Exp, + 21, FExp,) real case,

(4.9.14)
Blial Bxp + a1, Expy + 2]y FExg — izt Exp,)  otherwise,

pEXTEXpApy = (4.9.15)
pMzt Expy — Mal Bxpy — Moty Brp, + Mozl ,Exp,)  real case,

(4.9.16)
%(i)\lleEle + /\gxflEzRQ + )\11:€2E:17R1 — iA2I£2EIR2) otherwise,

where 1 = (A — Xo) 72 # 0 is defined since My # Xo.

Proof. The relations (4.9.3) and (4.9.4) follow from 27,Q(A\))zp; = 21,Q(\))zp =
0. The relations (4.9.6)—(4.9.12) follow from the definition of p, ¢, a and z and
(4.9.14)-(4.9.16) follow from the definition of A and X and p.

For the complex nonsymmetric case, we have the two eigenvalues \; = A and
Ao = Ay with left eigenvectors xp; = y = up + 1wy, T = Y = up — vy and

right eigenvectors xp; = * = ugr + twr and xry = T = ur — Wi, where Xg =
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[US7 Us], S = L,R
Relations (4.9.14)—(4.9.16) for the complex case follow from substituting the
expressions below

Ap < Wrdiag( M, \o)W, Xg < 3z, Z]W, pr= W, (4.9.17)

Ap = Ap, Xp < 3ly, YW pr = W, (4.9.18)

where W = with W*W = I. 0

1

v2 1
With these relations in hand we can now prove the formula for WEA — LB, =

gk in Lemma 4.6.12. We omit the proof of the formula for W/'A — 2T B, = ¢F

which is almost identical.

For the real nonsymmetric case, we show that

9k =Tr(E1 + & — & — &)L, ¢, K]

where § = z7; (20 M + C)zpy, & = 21,20 M + C)zpy, & = 21, (20 M + C)apy,
§6 = 21520\ M + C)z g, and vg = 5(f1z,)"". Let gf = [gr1, 9re, grs|" and
T 1 T T /T
Ir1 = brzray + 504ch23 +z" M a

1
Ipo = b%zRaC + dﬂzRaM + fngaK + ihngaC + zﬁC’TaL

1
I3 = §d£zRaC + hngozK + ZEKTCLL.
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For the first element of ggr, gr1 we use (4.9.8) and (4.9.12)

1
Ir1 = brzgan + §Ofcf1€ZR +2'M'ay,

2(fL21)9m = p' XLCXpp +2p" ATXT M Xpp
then applying (4.9.14) and (4.9.16)

2(JCLTZL)QPH = l‘(zacxm + x€2C$R2 - wﬂCwm - foC'le)

+2u(Ma [ Magy — Moy Ma gy — Ao ,Map + Aox[,Mag,)

(4.9.19)
which simplifies to
= M(ijﬂl(zAlM + C)le + x£2(2)\2M + C)xRQ
— 21520 M + Oz gy — 27, (2AM + C)agy)
= N($€1Ql(/\1)5”m + x€2Ql()\2)$R2
- x€2Q/(A1)xR1 - xle’(Az)wm)
2(fLz)gm = (& + & — & — &) (4.9.20)

For the second element of gg, gro we first use (4.9.6)—(4.9.7), (4.9.8) and (4.9.12)

1
gre = bhzpac + andrzg + ax fhzg + iachng +z2"'M"a,

2(ff2)gre = cp" X[CXpyp+ 20" XF KX pp — 2kp" X] M X p + 20" AT XT M Xpp

(4.9.21)
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then, applying (4.9.14) and (4.9.16) we obtain

2(f121)9me = M(_(/\l + ) (27, Cx gy — 27, Capy — 07,Cpyy + 21,0 py)
+2(a, Kapy — o, Kapy — 01, Kty + 07, K p,)
— 2\ (2 Moy — ap Mgy — a7, Mgy + 7, Magy)
+ 2\t Cxpy — Mot Cxpy — Aoxt Oy + )\QxEQme))
= M<_()\1 + )\2)(55%105531 - $€10x32 - $€20x31 + x€20x32)
+2(=Nzp Magy — Mg, Cegy — ko Magy — kaf,Mag,
— Ny Ma gy — Mt ,C )
- 2]{7(55€1Mx31 - leMxm - foMle + $:£2MxR2)
+ 2\t Cxpy — Mot Oy — Mwt,Capy + )\QZL‘EQOIFQ).

(4.9.22)

Finally using (4.9.3)—(4.9.5) we have

2(ngL>gRQ = M(nglQ/(Al>$Rl - nglQ/(A2)$R2 - 0-73:52@/()‘1)951%1 + 633:22@/()‘2)-771%2)

= pe(& + & — & — &) (4.9.23)
For the final element gpgs, we first use (4.9.6)—(4.9.12),

1
JRr3 = dﬁzlﬁac + hhzpog + 2K ay,
2(ff2)gps = cp" XE K Xpp+ 20" AT Xy KT X p — 2kp" X[ CXpp

(4.9.24)
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applying (4.9.14) and (4.9.16) yields

= N(_(/\l + o) (2 Kapy + 210 Kap, — w1, Kag — a7, Kap,)
+ 20\t Kap, + Moxto Koy — M@t KXy — MT 1o K2 py)
— 2\ (27, Capy + 27, Crpy — 27,Cpy — $€1C$R2>
2(f121)9rs = M(‘Q)\Zl’glKﬂle +2Ma ] Kpy + 2000, Kp — 2\ a7, K,

T T T T
— Mo (27, Crpy + 27,C0 gy — 17,C ) — xmcxm))-

(4.9.25)
Next we use the relations (4.9.26)—(4.9.27) below
_x:LF1K37R1 = )\%37:51]\/[3331 + /\155210551%1» _$:£2K33R2 = )\%szFQMsz + Alxﬂcxma
(4.9.26)
—2 ] Kxpy = Na [ Mapy + Mz, Capy,  —219Kag = NriaMag + Aeal,Cap,
(4.9.27)

to obtain

2(f121)9ms = ﬂ<2)\2()‘%$€1M$R1 + )\1$€1C$R1) - 2)‘2()‘%$€2Mx}21 + >\1$€2C$R1)
— 20 (A32 L M gy + A O )20 (A32 [ M gy + A5 Oy
— MAo(2],Ca gy — a7, C gy — 27,Cpyy + mfngRz))
= Mot (TE1 (2N M + Oy + 15(20M + C)ag,
— x5 (20 M + Crp — w11 (20 M + C)‘TR2>

2(f7 2)grs = k(& + & — & — &) (4.9.28)

For the complex nonsymmetric case the same idea applies, but we substitute the
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modified expressions (4.9.17)—(4.9.18), thus

1
gr1 = bpzgay, + §@cf1€ZR +2'M'ay,

2(fL2)9m = PL XL CXppp + 20, X[ MXpApp

note that (r = g1, T = Tge, and y = x11,y = wr2) then applying (4.9.14) and

(4.9.16)
2T 2, ) gm = u<(2inCx +2y7CT + 277 Cx — 257 CF) (4.9.29)
1 2(>i20yT M + 22T Mz + 2257 Ma — i5\2gTMoE)>
= ul(ig" @ W =iy QN7 +y"Q (N7 + 7" Q' (N)a)
= (i1, Q@A) — 2@ Ay
+75,Q Moo + THQ (g,
2(f1 zp)gr = pli€y — i& + & + &)- (4.9.30)

gr2 and grs are obtained in a similar manner to the real case, we omit the details.
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Conclusions

Polynomial eigenvalue problems, considered in the first half of this thesis, are an
important class of nonlinear eigenproblems that are less routinely solved than the
standard eigenvalue problem (A — Al)x = 0 or generalized eigenvalue problem
(A — AB)z = 0. Quadratic, and more generally, polynomial eigenvalue problems
are usually converted to a degree one problem of larger dimension—the process of
linearization.

In Chapters 1—2 we explained the linearization process, solution of the linear
problem, and recovery of the solution of the polynomial problem from that of
the linear problem. By considering a numerical example, we saw that appropriate
handling of the problem is essential to returning accurate solutions, when extracting
solutions of the polynomial problem from those of the linear problem.

In Chapter 3 we presented a general purpose eigensolver for dense QEPs, which
incorporates recent contributions on the numerical solution of polynomial eigen-
value problems, namely a scaling of the eigenvalue parameter prior to the com-
putation, [6], [14] and a choice of linearization with favourable conditioning and
backward stability properties [30], [32], [33]. Our algorithm includes a prepro-

cessing step that reveals the zero and infinite eigenvalues contributed by singular

113
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leading and trailing matrix coefficients and deflates them. The preprocessing step
may also detect nonregularity (although this is not guaranteed), indeed robustly
detecting nonregularity of a quadratic is nontrivial and therefore future work. Our
algorithm takes advantage of the block structure of the chosen linearization. Imple-
mented as a MATLAB [49] function called quadeig, it makes use of functions from
the NAG Toolbox for MATLAB [53]. Our eigensolver can in principle be extended
to matrix polynomials of degree higher than two. The preprocessing step can easily
be extended using the same type of linearization, merely of a higher degree matrix
polynomial. For scaling of the eigenvalue parameter prior to the computation we
can use the method described in Section 2.3.1 on page 44 [6], which extends the
Fan, Lin and Van Dooren scaling for matrix polynomials of degree two.

Numerical examples were presented, illustrating the improved performance of
this new algorithm quadeig, with the existing MATLAB routine polyeig, both in
terms of accuracy and stability and reduced computational cost.

In Chapter 4 we described a structure preserving deflation procedure for quadratic
matrix polynomials, that given two eigentriples (\;, z;,y;), 7 = 1,2 satisfying ap-
propriate conditions, decouples Q(\) into a quadratic Q,4(\) = A>M,;+ \C;+ K, of
dimension n — 1 and a scalar quadratic g(\) = \>m + Ac+k = m(A — A)(A — Xo)
such that (a)

AQ) = A(Qa) U{A1, Ao},

where A(Q) denotes the spectrum of @) and (b) there exist well-defined relations

between the eigenvectors of Q(A) and those of the decoupled quadratic

Q) = Q0 (5.0.1)
0 q(N)

This procedure applies to symmetric and nonsymmetric quadratics, and when the



CHAPTER 5. CONCLUSIONS 115

quadratic is symmetric preserves the symmetry.

Numerical examples that illustrate our deflation procedure were also presented.
To the best of our knowledge, this work is the first attempt at constructing a family
of nontrivial elementary SPTs that have a specific action of practical use: that
of “mapping” two linearly independent eigenvectors to a set of linearly dependent
etgenvectors.

This structure preserving deflation method has application in the area of model
updating. Model updating is the modification of an existing inaccurate model with
measured data. The eigenvalue embedding problem is a special instance of model

updating and can be defined as follows: consider a quadratic matrix polynomial
Q) =M+ MC+ K

resulting from a second-order dynamical system with a few known eigenvalues A;,
j = 1: k. Now suppose that new eigenvalues /):j, j = 1: k have been measured.
There are several types of eigenvalue embedding problems but one of them consists
of updating the quadratic Q(\) to a new quadratic @()\) with eigenvalues Xj, j=
1: k replacing the eigenvalues \;, j = 1: k of Q(A) while the remaining 2n — k&
eigenvalues of @()\) are kept the same as those of the original problem (). This
is sometimes referred to as eigenvalue updating with no spill-over.

A number of solutions to this problem has been proposed often with additional
constraints such as preservation of the symmetry of the coefficient matrices and
preservation of the positive definiteness of the mass and stiffness matrices.

The deflation procedure in Chapter 4 can be used to update eigenvalues of a
quadratic matrix polynomial. Further work involves investigating the potential of
this process for updating systems, its reliability and performance in finite precision

arithmetic, and comparison with existing techniques.
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