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When a mining company begins extraction from a finite resource, it does so in the
presence of numerous uncertainties. One key uncertainty is the future price of the
commodity being extracted, since a large enough drop in price can make a resource
no longer cost-effective to extract, resulting in the mine being closed down. By spec-
ifying a stochastic price process, and implementing a financial-type model which
leads to the use of partial differential equations, this paper creates the framework
for efficiently capturing the probability of a mine remaining open throughout its
planned extraction period, and derives the associated expected lifetime of extrac-
tion. An approximation to the abandonment price is described, which enables a
closed-form solution to be derived for the probability of operational success and ex-
pected lifetime. This approximation compares well with the full solution obtained
using a semi-Lagrangian numerical technique.

Keywords: Partial Differential Equations, Finite Resource Valuations,

Feynman-Kac, Real Options.

1. Introduction

To make effective plans for a commercial venture, a company is often required to
consider the associated probability of project completion. This is particularly rele-
vant to the mining industry, where large up-front capital investments are required.
When a mining company takes the decision to extract from a reserve, it does so
in the presence of numerous uncertainties, which will be present for (potentially)
decades to come. These uncertainties can come from many sources, such as polit-
ical risk and labour market changes, however, the key financial uncertainties are
captured by the commodity price variations and errors in the estimated ore-grade,
since it is the product of these two quantities that generates the cash in-flows for
a mining operation. Such fluctuations in the underlying commodity price can help
produce large profits for some mines, whilst at the other extreme they can cause
others to close down and abandon operation altogether, since the extraction project
will no longer be cost effective.

The option to abandon a project has been considered in the context of numerous
commercial ventures such as the optimal management of shipping operations, ma-
chine plants and investment projects, to name but a few (Trigeorgis 1993; Dixit &
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Pindyck 1994). Whilst the application of an abandonment option within mine valu-
ation was first analysed by Brennan & Schwartz (1985), the associated probability
of project completion, or expected duration (lifetime) of extraction, has not been
previously considered. However, if known, the probability of project completion can
be of great use to a company, as it is a quantitative measure of a project’s risk,
and easily interpreted by non-specialists. Why such probabilistic stopping problems
have been considered in many fields, such as physics, biology and finance, but not
as yet within mining, is clear: it is because the added difficulty of including the
extra dimension of reserve size has greatly hindered making representative mine
valuations (MacCarthy & Monkhouse 2002). However recent advances in the ap-
plication of numerical techniques by Thompson et al. (2004) and Chen & Forsyth
(2007, 2009) now make possible such contingent claims valuations, and allow us to
consider problems such as those posed in this paper.

Mine valuations in the presence of price uncertainty are typically made using
a contingent claims approach, as first studied in a simplified mine by Brennan &
Schwartz (1985). In this earlier work, the authors allowed the operational mine
to either be abandoned or mothballed, depending upon the underlying price. It is
not uncommon to consider additional financial uncertainties (such as interest rate)
in other, more standard, contingent claims valuations, such as forward contracts
(Hilliard & Reis 1998; Gibson & Schwartz 1990). However these additional factors
are not such a pressing concern in a finite resource valuation, as the next most
important uncertainty (after price) is the estimated ore-grade. The inclusion of
ore-grade uncertainty has been considered by Menabe et al. (2004), Jewbali &
Dimitrakopoulos (2009) and Martinez (2009), amongst others, who specified the
ore-grade to behave in a Gaussian fashion, and solved their models using a Monte-
Carlo simulation approach. By using such an approach, valuations often take a
long time to be computed (Caccetta & Hill 2003), with model sensitivities being
difficult to extract. In addition, no method to determine the parameter estimates
surrounding the uncertainty is explicitly given. Evatt et al. (2010) showed how
grade uncertainty could be addressed within an efficient partial differential equation
(PDE) framework, providing estimated parameter values for each individual dataset
from a mine, thus allowing accurate and representative solutions to be derived
quickly. Whilst this work created a readily usable framework for valuation under
both price and ore-grade uncertainties, the overall effect of including ore-grade
uncertainty proved to be minor in comparison to that of the price. As such, the
present paper will only consider price uncertainty.

In §2 we show how a general PDE framework can be created for generating the
probability of project completion, the expected lifetime and the mine valuation of an
optimally managed mine. Using the valuation equation, we then show in §3 how the
optimal position of abandonment can be derived and how a constant approximation
to it can be easily calculated. With this approximation, §4 shows how a convenient
closed-form solution for the probability of project completion and expected lifetime
can be constructed. The semi-Lagrangian numerical scheme used to solve the full
problem is detailed in §5. With our model built and solution method constructed,
we apply it to a real mine (which is planned to last no more than 15.3 years) in
§6, to see how the probability of closure varies during its extraction schedule. Our
conclusions are presented in §7.
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2. Modified Feynman-Kac equation

The derivation of the probability of project completion (which we shall now refer to
as ‘completion’) and the expected lifetime are closely linked to the valuation of the
mine, since they share the same underlying uncertainty. By writing t for (chrono-
logical) time, and St, Qt for the commodity price and resource size respectively at
time t, the valuation is a function of t, St and Qt. As explained in §1, we do not
treat the ore-grade, G, as a state variable for these valuations. Instead we regard it
as an input function of resource size, which has been calculated (estimated) from
geological surveying (e.g. drilling). There are two standard methods we might use to
arrive at the core equation which governs the mine valuation. However, one of these
methods is perhaps more naturally extended to deriving the probability of comple-
tion and the expected duration of extraction. The first method is the contingent
claims approach, where hedging arguments are used to create a riskless portfolio
which contains the mine and is short (owes) a number of commodity contracts. This
type of analysis has been extensively covered, e.g. Black & Scholes (1973), Black
(1976) and Heath et al. (1992). Indeed, when mine valuations in the presence of
uncertainty are considered, a contingent claims approach is typically used, see for
example Brennan & Schwartz (1985), Cherian et al. (2000) and Evatt et al. (2010).
The second approach uses hedging arguments to specify the stochastic dynamics
of the risk-adjusted commodity price process, and then applies probabilistic meth-
ods to obtain a modified Feynman-Kac equation, see for example Øksendal (2003).
Whilst either method may be used to value the mine, we believe that the appli-
cation of the modified Feynman-Kac equation in this context is novel. Since this
probabilistic method also provides a convenient framework in which we may derive
the probability of completion and expected lifetime, we use this method within this
paper.

We first develop a general PDE which governs a quantity u, within a solution
domain H . This PDE can subsequently be used to describe the mine valuation
V (St, Qt, t), the probability of completion P (St, Qt, t), and the expected lifetime of
extraction D(St, Qt, t), where (St, Qt, t) is a particular point in time of the solu-
tion domain given by (S,Q, t). To achieve this we first consider a general class of
expectations of the form

u(x) = Ex

[

e−cνf(Xν) +

∫ ν

0

e−cug(Xu)du

]

, (2.1)

where f and g are functions to be defined, c is a constant, Xt is an Ito diffusion in
R

n such that
dX = b(X)dt+ σ(X)dB, (2.2)

where B is a standard Wiener process in R
n, with drift b ∈Rn and volatility

σ ∈Rn×n, ν is the (random) first time that Xt exits the solution domain H , and Ex

denotes the expected value when X0 = x ∈ R
n. We may now use a generalisation of

the Feynman-Kac formula to link this stochastic process construction to PDEs. For
a full derivation we refer to Øksendal (2003), which shows that the above equation
is the solution to the problem

Lu(x)− cu(x) = −g(x) in H

lim
x→y

u(x) = f(y) for y ∈ ∂H (2.3)
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where,

L ≡

n
∑

i,j=1

aij
∂2

∂xi∂xj

+

n
∑

i=1

bi
∂

∂xi

(2.4)

and [aij ] =
1

2
σσ′. Although (2.3) may at first appear to be an elliptic equation, by

specifying time to follow the trivial stochastic process dt = 1.dt+ 0.dB as part of
(2.2), equation (2.3) turns into a parabolic form.

With this formulation, the expectation (2.1) is sufficiently general to represent
any one of our three desired quantities P,D, V , if the parameter c and functions f, g
are chosen appropriately for the problem. The parameter c is the (possibly zero)
constant discount rate appropriate to the problem, f is the solution’s boundary
value, and g is the instantaneous source term appropriate to the problem. In other
words, the solution u is the expectation of the boundary value, where Xt exits H ,
plus accumulated source terms, under appropriate discounting.

The solution domain in which we work is parametrised by (S,Q, t), and thus we
work with an Ito diffusion in R

3. Indeed, it is the presence of the extra dimension
Q that distinguishes the valuation of a mine from more classical finance problems,
which are typically obtained in (S, t) solution domain. How Q and t interact is
governed by the relation

dQ = −qdt, (2.5)

where q is the rate of extraction of ore-bearing material from the mine and is
bounded by the physical constraint q ∈ (0, qmax). The form of q will be specified
by the mining operators, but can be a function of all three variables, S,Q and t.
The mining operation will cease when either the lease has reached expiry, at time
T , or when the mine is exhausted, Q = 0.

The uncertainty we consider within this paper is a standard price process,
namely geometric Brownian motion, described by,

dS = µSdt+ σSdB, (2.6)

where µ is the percentage drift and σ the percentage volatility of S. Other Ito diffu-
sions may be chosen to model the price process, such as mean-reverting Brownian
motion (which is often quite suitable for commodities, see Bessembinder et al. 1995)
or those suggested by Schwartz (1997), and they may also be treated utilising the
modified Feynman-Kac equation framework described here.

The boundary ∂H is that described by the two planes t = T and Q = 0, corre-
sponding respectively to expiry of the mine’s lease and exhaustion of the resource,
the far field condition as S → ∞, and the price surface of abandonment, denoted
by S∗(Q, t). Any point upon the surface of abandonment may be regarded as the
price for which the mining company is currently indifferent as to whether the mine
is kept open or abandoned altogether. Our goal here is to compute the probability
of the price crossing this price surface, at which moment the mining operation is
abandoned. How to calculate this surface was first discussed by Brennan & Schwartz
(1985), and is described in §3.

With our particular choice of Ito diffusion X(t) = (St, Qt, t), the quantity
u(S,Q, t) of prime interest, and making the substitution τ = T − t, the PDE in
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(2.3) becomes

1

2
σ2S2 ∂

2u

∂S2
−

∂u

∂τ
− q

∂u

∂Q
+ µS

∂u

∂S
− cu+ g = 0, (2.7)

and holds throughout our chosen solution domain H . This will be subject to the
specific boundary conditions which relate to the abandonment surface, far field
conditions, expiry and exhaustion of the mine. We shall refer to (2.7) as the modified
Feynman-Kac equation.

(a) Probability of project completion

We first show how equation (2.7) can describe the probability of completion.
In this case we set u = P in (2.7). In this instance we are not dealing with a
monetary quantity, so therefore there is no discounting present, and so c = 0. Next,
we must consider the prescription of f , which is the limit of P on the boundary.
The probability of completion is evidently zero at abandonment, f(S = S∗) = 0. At
expiry, exhaustion and in the far field (S → ∞), completion is guaranteed, implying
f = 1 on these portions of the boundary. Finally, we may set g = 0 as we do not
consider a source term: we are simply interested in the expected value of f .

Making the above substitutions in (2.7) we find that the probability of comple-
tion is determined by the PDE

1

2
σ2S2 ∂

2P

∂S2
−

∂P

∂τ
− q

∂P

∂Q
+ µS

∂P

∂S
= 0, (2.8)

subject to

P = 0 on S = S∗,

P = 1 when min{Q, τ} = 0,

P → 1 as S → ∞. (2.9)

(b) Expected lifetime

We now set u = D in equation (2.7) corresponding the expected lifetime of
extraction. Since D is also a non-monetary quantity, and there are no source terms
present, again we have c = 0 and g = 0. However, the value of f (which is the limit
of the expected lifetime D, on the boundary) must be equal to the present time,
t, and for large values of price the probability of abandonment becomes negligible,
and so the mine will extract until expiry. These mean that equation (2.7) becomes

1

2
σ2S2 ∂

2D

∂S2
−

∂D

∂τ
− q

∂D

∂Q
+ µS

∂D

∂S
= 0, (2.10)

subject to the boundary conditions

D = T − τ when min{S − S∗, Q} = 0,

D = T when τ = 0,

D → T as S → ∞. (2.11)
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(c) Mine valuation

For completeness, we finally recover the equation for mine valuation. In this
instance we set u = V into (2.7), apply discounting equal to the interest rate, c = r,
and because the mine will be worthless at abandonment, exhaustion and expiry, f
(the limit of V on the boundary) will be zero there. The far field boundary condition
is obtained by noting that the extraction rate will have a physical upper bound,
and therefore the extraction costs are also bounded, and so the valuation will grow
linearly in S for large S. Finally we must now include the economic source terms
generated during extraction. The costs incurred come in the form of extraction costs,
ǫM , and processing costs for refining the ore-bearing material, ǫP , and both these
terms may be functions of Q (indirectly functions of time t), or even S, allowing
known future changes in extraction and processing costs to be incorporated into
the costs. The revenues arise from the amount of saleable ore, qGS, where G is the
amount of ore obtained per unit of material extracted. As mentioned previously in
§1 random variations in the ore grade G have been justifiably suppressed in this
model, so that it may be expressed as a known function of Q.

This means g is equal to the instantaneous cashflow qG(Q)S − ǫP (Q)− ǫM (Q),
and thus the mine valuation equation is described by

1

2
σ2S2 ∂

2V

∂S2
−

∂V

∂τ
− q

∂V

∂Q
+ µS

∂V

∂S
− rV + qGS − ǫP − ǫM = 0, (2.12)

subject to the conditions

V = 0 when min{S − S∗, τ, Q} = 0,

V ∼ S as S → ∞. (2.13)

This equation is of the standard form derived for mining by Brennan & Schwartz
(1985) and derived for optimal gas storage by Chen & Forsyth (2007).

(d) Actual drift, or risk-neutral drift?

The mine valuation obtained in part (c) above is the expected net present value
of the mine. Of course, this valuation is only correct under the risk-neutral mea-
sure. Indeed, an important consequence of a contingent claims-derived valuation is
that the real-world percentage drift of the commodity price is not present in the
valuation equation. This is a standard consequence of the hedging approach, in
which a portfolio is created that contains the mine and is short a specified number
of commodity contracts. The valuation equation thus obtained is

1

2
σ2S2 ∂

2V

∂S2
−

∂V

∂τ
− q

∂V

∂Q
+ (r − δ)S

∂V

∂S
− rV + qGS − ǫP − ǫM = 0, (2.14)

where δ is the convenience yield, which reflects transportation and storage costs
(amongst other things) of the commodity. This relates to (2.8), (2.10) and (2.12)
as follows. Under the risk-neutral measure, the price dynamics are given by

dS = (r − δ)Sdt+ σSdX. (2.15)

Therefore, setting µ = r − δ in equation (2.12) restores the PDE (2.14), and we
make the same substitution to equations (2.8) and (2.10). We emphasise that this
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adjustment to the drift is well accepted and used throughout the literature, e.g.
Hull (1993) and Hilliard & Reis (1998). However, if hedging can not be performed,
then the real-world percentage price drift is used for µ in (2.8), (2.10) and (2.12),
and the solutions obtained are not risk-adjusted.

3. Optimal position of abandonment

To determine the surface of abandonment, S∗ = S∗(Q, t), we must find the position
for which the valuation is indifferent between remaining operational or being aban-
doned. Whilst we acknowledge that there might be some penalty function incurred
in abandoning (for example, those caused by terminating contracts early) which
will alter the value, (McCarthy & Monkhouse 2002), it is without loss of generality,
and for clarity that we shall seek our abandonment position at V = 0. As such, the
option to abandon must satisfy the requirement

V (S,Q, t) ≥ max(V̄ , 0), (3.1)

where V̄ is the solution to the mine valuation (2.12) without the option to abandon.
In other words, the value of the option to abandon is greater than the value of
the regime which will always be extracting and the value of a mine which has
been abandoned (which, in our case, is zero dollars). This is a similar approach
to valuing American options, which are financial contracts which allow the owner
to exercise at any point up till expiry (Wilmott et al. 1995). As such the problem
can be expressed as a free-boundary problem, where the surface for where V first
becomes zero describes the free boundary in price for which it is optimal for the
mining company to abandon. This problem is now nonlinear since V depends on
the free boundary, but the position of the free boundary is not known a priori. In
order to determine this position precisely, one must do so during the calculation of
the option using numerical techniques as described in §5.

As an alternative to using numerical techniques, a constant-valued approxima-
tion to S∗ enables a probability to be derived as a closed-form solution (see §4).
To determine a suitable constant abandonment position one can use a price, Ŝ∗

say, for which the mine valuation is approximately zero when one is not including
the option to abandon. This approximate price to abandon will be greater than
the actual abandonment price, because even though the lower actual abandonment
price implies some negative cash flows can be incurred, this is justified by the prob-
ability that the price will rise again and the mine will regain profitability (Dixit &
Pindyck 1993). To give a clear methodology for this particular case of determining
a constant valued abandonment price approximation, Ŝ∗, we average each of our
input functions over the interval [0, Qmax] making them constant, which also has
the convenient effect of removing Q from the model. This removal occurs because
the extraction rate is now a constant, and therefore the size of the resource at any
point in time is known a priori (see equation (2.5)) which means the valuation we
are interested in is now a function only of S and t. If we assume a risk-adjusted
price process (2.15), then this averaging of the functions (and subsequent removal
of the Q derivative) reduces equation (2.12) to

1

2
σ2S2 ∂

2V

∂S2
−

∂V

∂τ
+ (r − δ)S

∂V

∂S
− rV + q̄ḠS − ǭP − ǭM = 0, (3.2)
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where the over-bars denote an averaged value for a function, and when coupled
with the boundary conditions the solution is given by,

V =
Sq̄Ḡ

δ

(

1− e−δτ
)

−
ǭP + ǭM

r

(

1− e−rτ
)

. (3.3)

The omission of σ from this equation is expected, since the absence of the option
to abandon means the cashflows of the mine can be replicated in advance via the
purchase of forward contracts on the particular commodity (Brennan & Schwartz
1985). An approximation to Ŝ, which can easily be implemented, is applicable when
either rτ and δτ and both are large, or when r ≈ δ, and is given by,

Ŝ =
δ(ǭP + ǭM )

rq̄Ḡ
. (3.4)

4. Closed-form solution

To highlight a particular example of this model, which acts as a convenient ap-
proximation to the exact probability of completion, we shall derive a closed-form
solution under two simplifying, but reasonable, assumptions. These are that the
position of abandonment, S∗, is fixed (as discussed in §3), and the extraction rate,
q, is a known function of time up until abandonment. This second simplification
implies that Q is also a specified function of time until abandonment, and we there-
fore do not need to consider Q as an independent variable when solving away from
the abandonment barrier (as was argued in the derivation of (3.2)). In making these
two simplifications we are, in effect, collapsing the problem to a much simpler one,
namely: what is the probability of a particle obeying the motion of (2.15) hitting
a level barrier by a certain time? Since this particle problem has a well-known
solution, these simplifications act as a methodology check on numerical solutions.

With these assumptions we may seek a solution to (2.8) of the form,

P = 1 + P̂ (τ, S), (4.1)

which, when coupled with a substitution for S of the form

Y = log

(

S

S∗

)

, (4.2)

transforms (2.8) into

1

2
σ2 ∂

2P̂

∂Y 2
−

∂P̂

∂τ
+ (r − δ −

1

2
σ2)

∂P̂

∂Y
= 0. (4.3)

This is subject to the transformed boundary conditions,

P̂ = −1 on Y = 0,

P̂ → 0 as Y → ∞,

P̂ = 0 on τ = 0. (4.4)

The form of this equation allows us to reduce it to the well-known heat equation.
We achieve this by making the transformation,

P̂ = eαY +βτg(Y, τ), (4.5)
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and setting

α =
1

2
−

(r − δ)

σ2
, β = −

σ2

2

(

1

2
−

(r − δ)

σ2

)2

, (4.6)

which removes terms in g and ∂g
∂Y

respectively, allowing us to write

1

2
σ2 ∂

2g

∂Y 2
=

∂g

∂τ
, (4.7)

subject to,

g = −e−βτ on Y = 0,

g → 0 as Y → ∞,

g = 0 on τ = 0. (4.8)

This equation is simply the heat equation subject to homogeneous initial conditions
and a non-homogeneous Dirichlet boundary condition. As such, we can now use the
standard result (Cannon 1984) to write,

g(Y, T ) = −

∫ T

0

Y

2πσ2(T − z)3
exp

(

−
Y 2

2σ2(T − z)
− βz

)

dz. (4.9)

This exact solution to (4.7), means that we can therefore write the probability of
the mine remaining open until expiry as,

P = 1 + eαY+βT g(log

(

S

S∗

)

, T ), (4.10)

where g is given by (4.9). This can more conveniently be written as,

P = 1−

∫ T

0

log(S)− log(S∗)

2πσ2z3
exp

(

−
(log(S)− log(S∗)− σ2αz)2

2σ2z

)

dz, (4.11)

and is a known result from first passage problems, typically solved using probabilis-
tic methods (Rogers & Williams 2000).

A similar approach can be taken towards deriving the expected lifetime, D, from
equation (2.10). This time we seek a solution of the form,

D = T + D̂(τ, S), (4.12)

and then follow exactly the same approach as previously, to derive the result,

D = T −

∫ T

0

(log(S)− log(S∗))(T − z)

2πσ2z3
exp

(

−
(log(S)− log(S∗)− σ2αz)2

2σ2z

)

dz.

(4.13)
With these exact forms now derived, we can compare their behaviours with

those of the numerically derived solutions which can handle a variable surface of
abandonment.



10 Evatt, Johnson, Duck, Howell & Moriarty

5. Numerical method

Before one can numerically calculate the probability of completion or the expected
lifetime, one must first determine the optimal abandonment surface S∗, which is
calculated from the mine valuation equation (2.14). When Brennan & Schwartz
(1985) first solved for mine valuation, they did so using a standard implicit finite-
difference scheme. This type of numerical scheme is fine when there is no derivative
in Q present. However, such a scheme for solving (2.12), (2.8) and (2.10) can often
exhibit complications which arise from potential discontinuities across the char-
acteristic given by (2.5). These can cause large errors to permeate through the
system, unless grid nodes are placed so that they coincide with the most important
(characteristic) lines in the problem. To counter this, a recent and more suitable
numerical scheme, known as the semi-Lagrangian method, has been used for solving
systems similar to (2.12), e.g. Chen & Forsyth (2007) and Evatt et al. (2010), and is
equally applicable to (2.8) and (2.10). The advantage this scheme has over a regular
implicit scheme, is that it (in effect) solves along the characteristic (2.5), thus re-
moving issues arising from potential discontinuities (Falcone & Ferretti 2002; Chen
& Forsyth 2009). It cannot however remove them completely and there will still
exist some numerical diffusion in Q, so alternative methods such as those described
as total variation diminishing (TVD) may also be appropriate. However we find the
semi-Lagrangian approach to be robust and accurate enough for our needs. For a
general discussion on first exit times of multi-dimensional Ito diffusions - which do
not exhibit discontinuities - see Patie & Winter (2007).

Let us describe how the semi-Lagrangian scheme can be implemented to solve
(2.8), (2.10) and (2.12). Consider the path (the semi-Lagrangian trajectory) through
the domain Q× τ which satisfies the equation,

dQ

dτ
= qmax. (5.1)

Along this path the mine is always extracting at its maximum rate, q = qmax. Using
the initial condition that Q(τ = 0) = 0, this characteristic line can be expressed as
Q = qmaxτ . Since the extraction rate is bounded by qmax, we can say that in the
region above this line (Q > qmaxτ) the mine cannot be emptied before the contract
expires, so that trajectories in this region are no longer functions of Q, only of τ .
We therefore choose the grid spacing ∆Q = qmax∆τ , so that there is always a node
on the line Q = qmaxτ which separates the two regions.

In order to simplify the notation in the discretized equations, we write equation
(2.7) as

∂u

∂τ
+ q

∂u

∂Q
= L{u}+ g(S,Q, τ), (5.2)

where g is defined in §2 and the operator L is given by,

L{u} ≡
1

2
σ2S2 ∂

2u

∂S2
+ µS

∂u

∂S
− cu. (5.3)

Now consider a path through Q× τ which satisfies the equation,

dQ

dτ
= q, (5.4)
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then we define the left-hand-side of (5.2) as,

Du

Dτ
=

∂u

∂τ
+

dQ

dτ

∂u

∂Q
. (5.5)

We can ignore characteristics in S as they have only second order effects. Hence
the governing equation becomes

Du

Dτ
= L{u}+ g(S,Q, τ). (5.6)

To keep matters simple we choose to discretize the system with an equally
spaced grid in S, Q and τ so that Si = i∆S, Qj = j∆Q and τk = k∆τ . While
the right-hand-side of equation (5.6) can be expressed with standard second-order
finite differences at nodes in the grid, the left-hand-side may in general take val-
ues not located on a standard grid node, so that values on the latter will require
interpolation. If we assume a fully implicit scheme discretizing at the node (i, j, k)
with uk

i,j = u(Si, Qj , τk) and qki,j = q(Si, Qj , τk), then in order to evaluate the to-
tal derivative on the left-hand-side we need to find the path in Q that arrives at
the point Qj at time τk. The equation of the characteristic line (assuming qki,j is
constant across τ ∈ (τk−1, τk)) that satisfies this condition may be expressed as,

Qi,j(τ) = Qj + qki,j(τ − τk), (5.7)

enabling us to discretize the derivative on the left-hand-side to read

Du

Dτ
=

uk
i,j − u(Si,Q

k−1

i,j , τk−1)

∆τ
. (5.8)

If the point (Si,Q
k−1

i,j , τk−1) does not coincide with a node, then linear interpolation

is used to find the value u(Si,Q
k−1

i,j , τk−1). The full numerical scheme to solving
(2.8), (2.10) and (2.12) may be written as

uk
i,j − u(Si,Q

k−1

i,j , τk−1)

∆τ
= L{uk

i,j}+ g(Si, Qj, τk). (5.9)

If higher accuracy is required, Crank-Nicolson timestepping will yield a second-order
scheme, though care must be taken to difference the scheme at the half timestep
along the characteristic in order to maintain second-order convergence.

In the case of the mine valuation, where the option to abandon is included, we
have a nonlinear free-boundary problem which can be expressed as a constrained
matrix problem with,

V k
i,j ≥ 0. (5.10)

The constrained matrix problem can be solved using a Projected Successive Over
Relaxation (PSOR) method which is a standard numerical approach used on American-
style financial options (Wilmott et al. 1995). Once the valuation has been derived,
the determination of S∗(Q, t) is more straightforward: it is simply the root of
V (S∗, Q, t) = 0 (i.e. where the valuation is worthless). If there is a one-off penalty
cost associated with abandonment,K, say, then S∗ would satisfy V (S∗, Q, t) = −K.
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Figure 1. The estimated ore-grade variation of a mine along the extraction path of the
mine, as a function of time. The ore-grade data was supplied by Gemcom Software Inter-
national.

6. Application to a real mine

We now apply our model to a real mine data set, originally composed of some 30,000
data points, which has been provided by Gemcom Software International (a large
mining solutions provider). The annual processing capacity is set at 20,000,000 ore-
bearing tonnes per year, the cost of extraction, ǫM , is set at $1 per tonne, and the
processing cost, ǫP , is $4 per tonne. Figure 1 shows how the ore-grade, G, varies
throughout the path of extraction, having an average level of 9.74 grams per tonne.
Numerically, when more than one piece of measured ore-grade data lies between
two solution nodes of Q, it is the average value of those particular ore-grades which
is used in the region around that point in Q. As such, one may think of our use of
the ore-grade data as a localised moving average as one passes along the path of
extraction. The final parameter values we use are given by,

r = 10% yr−1, δ = 10% yr−1, σ = 30% yr−
1

2 . (6.1)

With the average ore-grade level we can use equation (3.4) to calculate an approx-
imate constant abandonment price to be $0.51 per gram, which - as explained in
§3 - will typically be larger than the optimal level of abandonment.

(a) One-dimensional abandonment price

We first consider a relatively basic case where the mine will extract at a constant
rate of 20,000,000 ore-bearing tonnes per year, which gives a maximum possible
lifetime of 15.3 years. The resulting abandonment level, S∗, is shown in figure 2,
which has been calculated numerically (see §5). The reason why this figure is one
dimensional, as opposed to a surface, is that in this particular mine example the
processing rate is fixed, and therefore the size of Q, is a known value which can be
determined a priori at all points in time prior to abandonment, and therefore S∗

only depends on time. As can clearly be seen, this particular solution of S∗ exhibits
quite a bit of variation, and we expect to see this passed into our solutions when
looking at prices near the abandonment surface.
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Figure 2. The optimal abandonment price during extraction where the rate of extraction is
held at a constant level, calculated using the ore-grade data of figure 1 and the parameter
values in (6.1).
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Figure 3. The probability density function of the probability of completion P , for three
different prices: from highest peak to lowest peak, S = 0.8, 1 and 1.2. This was solved using
numerical methods upon the data set shown in figure 1 and the parameters of (6.1). For
smaller values of price, a larger degree of roughness is passed from the highly oscillatory
abandonment surface, figure 2, to the solution of the PDFs shown here.

Using the numerically derived abandonment surface given by figure 2, we start
by calculating the probability density function (PDF) for P , figure 3; we do this for
three underlying prices, S = 0.8, S = 1 and S = 1.2. As can be seen, the closeness
of the commodity price, S, to the abandonment price is reflected in the degree of
variation of the PDF, as the roughness of the abandonment surface has not yet
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Figure 4. A comparison of probabilities of completion, P . The dashed line is the approxi-
mation (4.11), which assumes the position of abandonment is fixed for all time, S∗ = 0.51,
and the continuous line is the solution to the full model (2.8) solved numerically using
the real grade variation as shown in figure 1. The remaining parameter values are that of
(6.1)

negligibly diffused out for smaller price values. In addition, the lower the price is,
the shorter the modal time to expiry (maxima of PDFs) becomes, as one would
expect.

The probability of completion is shown in figures 4 and 5, where the absence of
the Q derivative enables us to use a regular implicit finite difference scheme (see
section §5). As can be seen from figure 4 (continuous line), the solution undergoes a
rapid period of change up to (approximately) $4 per gram, and thereafter has a 85%
probability of completion. Figure 5 shows how the probability of remaining open till
expiry varies during extraction. This is shown for three different underlying prices,
bottom to top, S = 0.8, S = 1 and S = 1.2. The figure shows that for higher prices,
the probability through time exhibits less curvature and approximately follows a
near linear path between the initial probability, and P = 1 at expiry.

Figure 4 also shows how the real-data numerical result (continuous line) com-
pares to the closed-form solution, equation (4.11), which assumes a constant aban-
donment price (dashed line) over the remaining life of the mine. The two solutions
exhibit a similar behaviour, where the key difference is a consequence of how the
initial position of abandonment, S∗(t = 0), compares to that of the averaged po-
sition, Ŝ. This is indeed a limiting factor for our approximation, since if the two
positions were the same, the exact and approximate solutions would lie at the same
point.

We now investigate the sensitivity of the probability of completion to the key
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Figure 5. The probability of completion, P , as the operation progresses through time. The
three solutions correspond to three different prices, S = 0.8, 1 and 1.2. These were solved
using numerical methods, the data sets shown in figure 1 and the parameters of (6.1).

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro
b
a
b
il
it
y

Time to Expiry (yr)
0 2 4 6 8 10 12 14 16 18 20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro
b
a
b
il
it
y

Price ($ per gram)

Figure 6. The sensitivity of the probability of completion, P , to price volatility, σ. From
top to bottom, σ = 20%, 30% and 40%. These were solved using numerical methods, the
data sets shown in figure 1 and all other parameters are kept as those in (6.1).

underlying parameters, σ and r − δ. Figure 6 shows how the probability varies for
three different values of σ, from bottom to top, 40%, 30% and 20%. The right-hand
graph shows the probability variation with price, and the left-hand graph shows
variations of time to expiry, where an increase in volatility, obviously, increases the
probability of closure. Although the forms of the solution remain similar, it is clear
that even by varying the volatility by an absolute amount of 10%, one can alter
the probability quite strongly, where increases in σ have a larger proportional effect
than decreases. This is to be expected since, strictly speaking, the solution depends
upon σ2, not σ.

The sensitivity to the risk-adjusted drift, r−δ, is shown in figure 7. From bottom
to top, the value of r−δ is −5%, 0%, and 5%, where lower values of the risk-adjusted
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Figure 7. The sensitivity of the probability of completion, P , to the risk-adjusted drift
rate, r − δ. From top to bottom, r − δ = 5%, 0%, and −5%. These were solved using
numerical methods, the data sets shown in figure 1 and all other parameters are kept as
those in (6.1).
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Figure 8. A comparison of expected lifetimes of the mine, D. The dashed line is the
approximation (4.13) which assumes the position of abandonment is fixed, S∗ = 0.51, and
the continuous line is the full solution to (2.10) which is solved numerically using the real
grade variation as shown in figure 1. The parameters used are those of (6.1).

drift reduce the probability of remaining open. This makes intuitive sense, since
if the risk-adjusted price was, on average, following a lower trajectory, we would
expect the probability of it hitting the level of abandonment to be increased.

The expected time of closure (or first passage), is shown in figure 8. The con-
tinuous line is, once again, the numerical solution to (2.10), and the dashed line
is the approximation under the assumption of a constant abandonment price. The
results show a reasonable relationship between the two (albeit not as close as in the
probability case), with the approximation having a greater curvature. The expected
life of the mine exceeds 10 years for underlying prices over (roughly) $2 per gram.
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(b) Two-dimensional abandonment price
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Figure 9. The optimal abandonment price during extraction where the extraction rate
varies during extraction. Calculated using the ore-grade data of figure 1 and parameter
values in (6.1). From highest to lowest, the four lines refer to t = 0, 0.25T, 0.5T and T .

We next apply our model to the same mine, but with a more complex extraction
regime. This particular regime has been created so as to optimise the decision to
process ore-bearing tonnage or not (Johnson et. al. 2010), known as cut-off grade
optimisation. Whilst the cut-off grade is not the focus of this paper, it does provide
a convenient example where the resulting optimal abandonment surface is two-
dimensional, thus requiring the full array of numerical skills from §5. Figure 9
shows the optimal abandonment price throughout the mine, at each quartile of the
maximum duration of extraction, t = 0, 0.25T, 0.5T and T , where T is now 14.1
years. This figure uses the same ore-grade data as that of figure 1 and the parameter
values in (6.1).

By using the abandonment surface of figure 9 and the semi-Lagrangian method,
we can now solve (2.8) and (2.10) to give the probability of completion, which is
shown in figure 10 (left), and the expected lifetime of the mine, shown in figure 10
(right). The results are similar to those previously derived, where most change in
the probability occurs over prices below (around) $3 per gram, and above this price
the expected lifetime of the mine remains close to the maximum possible duration.

7. Conclusions

This paper has presented a method for analysing the probability of an extraction
project being completed in the presence of commodity price uncertainty. This prob-
lem is equivalent to a first-passage distribution, in which the project stops if the
price reaches a certain boundary. The method utilises the Feynman-Kac approach
to derive a governing PDE where the presence of a derivative in the resource size
makes this problem distinct from regular first-passage problems. The PDE can be
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Figure 10. The left hand figure shows the probability of completion against price, and the
right hand figure shows the expected lifetime of the mine. These were solved using the
semi-Lagrangian method as detailed in §5, the data set shown in figure 1, the abandonment
surface shown in figure 9, and the parameters in (6.1).

utilised to derive the probability of project completion, the expected lifetime of
extraction and the mine valuation itself. We explain how to solve for these by the
semi-Lagrangian numerical method, which overcomes the problem of potential dis-
continuities from the solutions. As an approximation to these numerical solutions,
we derived closed-form solutions for the probability of completion and the expected
time of stopping, under the simplifying assumption of a constant abandonment
price over the life of the mine. The results show that our approximation yields a
good resemblance to the solutions computed with real data.

Future work in this area may well focus upon the inclusion of a jump process
in price (such as a Lévy process), since for some commodities this is arguably a
more suitable representation (Hilliard & Reis 1998). In addition, the probability of
a specific event occurring can be calculated for a wide range of investor decisions
using the methods developed here.

This project was aided by funding from the ‘SPRIng’ project of the Engineering and
Physical Sciences Research Council, UK. The authors are grateful to Gemcom Software
International who supplied the ore-grade data, and provided valuable advice on mining
operations. The authors are also grateful to the two referees who helped make valuable
suggestions.
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