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This paper uses the interface between two disciplines—phylogenetics and functional data
analysis—to aid the analysis of rich ancestral data like continuous curves. We place Gaus-
sian processes on phylogenies in order to perform evolutionary inference on such functional
data objects. Unlike morphological summaries, which reduce data dimension, this approach
allows one to make inferential statements about curves themselves. We provide a modified
covariance function that corrects for the relationships between states at different points on
a phylogeny and discuss its use in inference. In general, this covariance is expressed as the
solution of an integral equation and we note that, for a given Gaussian process, a set of
solutions sufficient for all phylogenies may be precomputed as a library which, for station-
ary processes, is one dimensional. This work has relevance for those wanting to perform
inference on functional data objects related by an evolutionary process; it also specifies a
class of hierarchical clustering algorithms for functional data objects and can be used for
multivariate time series forecasting.

Conventional methods for phylogenetic inference [21] take a set of symbolic sequences and
attempt to infer a phylogeny which relates them. In this paper we consider the corresponding
problem for a set of functions rather than a set of sequences. The sets of functions one might
consider may be of diverse form and might represent bird songs, landscapes, zebra stripes or
skull shapes. One might attempt to summarize each function by a symbolic sequence (e.g. the
presence or absence of certain characters) [9, 28, 38] or by one or more continuous characters
(e.g. continuous summary statistics such as the distances between landmarks) [6, 25], and existing
methods for phylogenetic inference can then be employed. These methods obviously only give
indirect access to the values of ancestral functions, since the map from data to summary is
many-to-one. Alternatively, one could impose the restriction that all curves come from a certain
parameterized class; while this assumption again allows the use of existing approaches, it will,
in general, restrict the palette of curves available for modelling. In the following, we shall adopt
a straightforward nonparametric approach. We represent the time evolution of any function on
the spatial domain R

d by a function on the space-time domain R
d+1. We assume that the data

points observed constitute a sample from a Gaussian process (GP), which may then be specified
uniquely by its mean and covariance functions on R

d+1. The observations that we have about
the function at one point in time and space will thus be encoded in its posterior distribution at
another through the covariance function of the GP. We explain below how this GP on R

d+1 can be
extended to a GP on a phylogeny. This allows us to exploit the considerable existing machinery
for inference with GP’s [33]. The work presented here may be understood as a generalization
of the work of Felsenstein and Martins and Hansen [6, 25] which uses GP’s for the study of
continuous characters. The methods described here are most directly appropriate for functional
data representing signals, curves and patterns; more general shapes lie outside this paper’s
immediate purview. In the remainder of this introduction we will recall some relevant areas of
morphometrics for phylogenetic inference, functional data analysis and GP’s, and pattern matching.

Phylogenetic inference for continuous characters: There is an established relationship between
the study of morphology and the practice of phylogenetic inference [17, 23] and this has direct
bearing on questions in Anthropology, Paleontology and Evolution. In this setting, phylogenetic
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inference is typically mediated via real-valued morphometric phenotypes, or ‘characters’—that is,
reduced versions of the data acquired [4]. While discrete versions of characters are widely used
e.g. [9, 23, 28, 38] there has also been investigation of continuous characters e.g. [6, 7, 11,
25]. Debate over whether continuous characters are the best way of reasoning about unobserved
shapes continues to be lively [13, 22]. Felsenstein [6] presents a method for comparative studies
of continuous real-valued phenotypes or characters. The key innovation in this statistical model is
a correction for branching phylogenies: in previous studies, the assumption of independence had
caused the overstatement of the significance in hypothesis tests. Felsenstein’s method requires that
the phylogeny is known and that the characters may be modelled by Brownian motion. Despite,
in the author’s words, the “considerable barriers to making practical use of this technique”, his
method has become widely used to infer correlations in character evolution. The method, based
as it is on Brownian motion, is a GP model (for an implementation see the corBrownian function
of the ape package of the R statistical language [6, 25]). We will see that it satisfies our definition
of a phylogenetic GP, supplied in the next section; indeed, since the state is a single real value,
it is perhaps the simplest nontrivial phylogenetic GP. Felsenstein discusses key practical issues
for inference with his phylogenetic GP model, such as uncertainty over phylogenies, confounding,
selection and drift, Gaussian modelling assumptions, non-stationarity, and punctuated evolution.
Further, the author hints directly at the possibility of richer GP models but notes “the difficulty
is that quantitative characters will evolve at different rates, and in a correlated fashion”.

Martins and Hansen [25] extended Felsenstein’s model, recasting it in the framework of
generalized least squares (GLS). Their work makes clear that GLS models, which are also special
cases of GPs, provide a unified approach capable of addressing a wide range of questions for
single character evolution. In particular, the authors give simple linear point estimates both for
ancestral states and for certain model parameters. The authors show that the GLS framework
(and hence the phylogenetic GP framework) is rich enough to include covariance functions
motivated by different evolutionary assumptions. These include random genetic drift, directional
and stabilizing selection, and environmental fluctuations—in the words of the authors: “In essence,
by applying different [covariance] matrices, we create a new phylogenetic comparative method for
each situation”.

Functional Data Analysis and GP’s: Though the study of shape evolution is well established,
the disciplinary emphasis has been on the use of a few morphometric characters [4, 23]. In
statistics, both the parametric and non-parametric study of curves and contours have been lively,
see Refs. [8, 32] for reviews and examples. As a classic example, Functional Data Analysis can
be used to discriminate between people who have been asked to draw the same shape [32]. After
work in Refs. [5, 35], nonparametric estimation of mean and covariance functions has developed
into the area of Functional Principal Component Analysis (FPCA). This approach can be aided
by assuming the underlying process to be Gaussian with covariance function drawn from a known
class, since the distribution of a GP is uniquely specified by its mean surface and covariance
function. The study of GP’s is a corner-stone of the theory of stochastic processes [34] (example
GP’s include the Wiener and Ornstein-Uhlenbeck Processes) and recently GP’s have been adopted
by those working in statistical machine learning [33]. Before this recent activity they have seen
practical use in Geostatistics under the name of kriging [36]. The literature on GP’s defines a clear
mathematical and computational framework for inference and it will be the integration of this
approach within phylogenies that will enable evolutionary inference on functional data in this paper.

Pattern Matching and Evolving Shapes: The approach outlined here may also be viewed in the
context of methods for clustering sets of functions: as an evolutionary hierarchical clustering algo-
rithm. If a phylogeny can be inferred then distances between the different functions observed are
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defined by the the time to a common ancestor. In common with some other methods, the approach
we consider is suitable for clustering sparsely or irregularly sampled data [16, 32]. How to register,
or align, one functional data object with another is also a lively area of applied mathematics,
geometry and computer vision [14, 37, 40, 43]; note that good alignment of sequence data is also
an important problem in conventional sequence phylogenetics [21]. For the purposes of this paper,
however, we assume that functions are available pre-aligned. As well as aligning and clustering
functional data, some authors have considered evolving new shapes from given grammars: these
often combine a shape alphabet/grammar with ideas from evolutionary/genetic computing and are
used for design tasks [2, 3, 10, 19, 29]. It is possible that the methods outlined below could be run
forwards in time to yield new forms.

The paper is organised as follows. Having introduced the reader to a few definitions we obtain
the Phylogenetic covariance and discuss challenges and simplifications (Sections I and II). We
then consider how these tools could be used to infer the nature of an evolutionary process, given
observations and a known phylogeny (Section IIIA). Our next task is to explain how one can
use knowledge of a process and a phylogeny to make predictions about past, future or missing
data (Section IIIB). Having outlined how we might take a set of observed functions and infer an
evolutionary tree, we present our discussion (Sections IIIC and IV).

I. DEFINITIONS

GP models indexed by time have found wide applicability, for example in time series analysis.
A Gaussian graphical model is indexed by the vertices of a graph, and its covariance function is
encoded by the presence or absence of edges, which represent conditional independences. In this
paper we combine these two approaches, regarding a phylogeny T as having both linear structure
and graph structure, and using T as the index set for a GP Y (in the following, all GPs will be
understood to have mean 0). The covariance function of Y is then defined via both the linear and
graph structure, as follows.

Clearly, any phylogenetic tree may be represented as a planar straight-line graph: the edge
lengths may be chosen to represent evolutionary time, while the angles are not important and are
chosen arbitrarily. Modulo this choice of angles, we therefore have a branched linear space, which
we will call a phylogeny.

Definition I.1 (Phylogenetic GP). Given a rooted phylogenetic tree S, represented as a planar

straight-line graph whose edge lengths represent evolutionary time, the corresponding phylogeny is

the branched linear space T obtained from S by neglecting the choice of angles. A Phylogenetic GP
on a phylogeny T is a GP indexed by T and a phylogenetic covariance function is the covariance

function of a phylogenetic GP.

Note that the branched linear space T described above is topologically equivalent to a loop-free
train track [30]. We use the graph structure of the phylogeny to represent conditional independences
in a manner which is, in general, different to that commonly used in graphical models. For u, v ∈ T ,
we denote

• the path between u and v by q(u, v),

• the most recent common ancestor (MRCA) of u and v by c(u, v), and

• {Y (w) : w ∈ q(v0, c(u, v))} by A(u, v) (the Ancestry of u and v).
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The most recent common ancestor c(u, v) of example points u and v on a phylogeny can be seen
in Fig. 1a), and example realisations of the states of u, v and c(u, v) for a simple phylogenetic GP
are given in Fig. 1b).

Assumption I.1 (Graph structure). Conditional on their ancestry A(u, v), the states Y (u) and

Y (v) are independent.

The linear structure of the phylogenetic GP is specified by the choice of a single marginal

covariance Σ on R. Again for u, v ∈ T , denote

• the evolutionary time coordinate at u by tu (taking tv0
= 0),

• u ≺ v if u is a direct ancestor of v.

Assumption I.2 (Linear structure). If u ≺ v then σ(u, v) = Σ(tu, tv).

If u ≺ v then the path q(u, v) is naturally parameterised by the evolutionary time interval
[tu, tv] ⊂ [0,∞), and in this way we may use Σ to specify a covariance function on ‘rays’ through
T . We now use this parameterisation to show that there exists a unique phylogenetic covariance
function satisfying assumptions I.1-I.2.

Construction of the phylogenetic GP. First note that if assumptions I.1-I.2 hold then, in equa-
tions (6)-(7) below, the terms E[Y (u)|A(u, v)], E[Y (v)|A(u, v)] are specified by Assumption I.2 and
so the phylogenetic covariance function is specified fully. Therefore, if a phylogenetic GP can be
constructed to satisfy assumptions I.1-I.2 then it is unique. We may construct a realisation from
such a GP Y by exploring the edges of T in a breadth-first search, and progressively generating the
values of Y on each edge, as follows. First generate y(v0) according to its unconditional distribution.
By induction, when the edge (v,w) (setting v ≺ w) is first visited, the values y(u) : u ∈ q(v0, v)
have already been generated; for each u ∈ q(v,w) we may therefore set y(u) = z(tu), where z

is a realisation of a GP Z on [0, tw], with covariance Σ, conditioned on Z(tu) = y(u) for each
u ∈ q(v0, v) and independent of all other randomness. Assumption I.1 holds for the GP Y by
construction, and assumption I.2 holds by the Law of Total Expectation.

It can be seen that under the above definitions, Felsenstein’s model in [6] may be interpreted
as a phylogenetic Brownian motion. In general we may consider phylogenetic GPs on the multidi-
mensional branched space T ×R

d by assuming space-time separability—that is, that the covariance
factorizes as a product of a covariance on the phylogeny T and a covariance on R

d. Examples can
be found in Fig. 1a,b). It is not difficult to show that space-time separability at the phylogenetic
level is equivalent to space-time separability at the marginal level: the assumption of separability
will therefore be justified when the process which governs the evolution of any single functional
data object is space-time separable. Alternatively, we note that the formalism in this section can
be extended to include multidimensional phylogenetic GPs that are not space-time separable.

II. PHYLOGENETIC COVARIANCE FUNCTION

Given the preceding assumptions and definitions we are now in a position to obtain the covari-
ance function, σ(u, v), between different points u, v on the phylogeny T . We begin by supposing
that for each τ > 0 there exists a kernel θτ on (−∞, τ ] × [τ,∞) which makes the covariance Σ an
eigenfunction with eigenvalue 1, in the sense that for each t > τ > s we have

∫ τ

−∞

θτ (w, t)Σ(w, s)dw = Σ(t, s). (1)
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We now use the kernel θτ to explicitly construct the GP Y as described in Section I, and so obtain
an expression for the covariance σ. Consider a GP Z on (−∞, τ ] with covariance Σ, and for t > τ

define the Gaussian random variable Zτ
t by

Zτ
t =

∫ τ

−∞

θτ (w, t)Z(w)dw. (2)

Then Zτ
t is the conditional expectation of Z(t) given {Z(s) : s < τ}, since for each s < τ we have

by (1) and Fubini’s Theorem

E[Zτ
t Z(s)] = Σ(t, s) = E[Z(t)Z(s)]. (3)

Choose now u, v ∈ T , set τ = tc(u,v), and extend the construction of Y given in section I as follows.
When constructing Y on the path (c(u, v), u), define

y(u) = z(tu) (4)

yτ
u =

∫ τ

−∞

θτ (w, tu)z(w)dw. (5)

With this extended construction, we have Y τ
u = E[Y (u)|A(u, v)] and Y τ

v = E[Y (v)|A(u, v)]. Using
the fact that σ(u, v) = E[Y (u)Y (v)] and the Law of Total Expectation we have

σ(u, v) = E[E[Y (u)Y (v)|A(u, v)]]. (6)

By assumption I.1 we find

σ(u, v) = E[E[Y (u)|A(u, v)]E[Y (v)|A(u, v)]] (7)

= E[Y τ
u Y τ

v ]. (8)

It follows by Fubini’s Theorem and (1) that

σ(u, v) =

∫ τ

w=−∞

∫ τ

z=−∞

θτ (w, tu)θτ (z, tv)Σ(w, z)dwdz (9)

=

∫ τ

−∞

θτ (w, tu)Σ(tv, w)dw (10)

(note that, since tv > τ , (1) cannot be used again in (10)). The phylogenetic covariance sought in
this section is thus Equation (10), and in the remainder of this section we show how this equation
simplifies in certain special cases.

Time-domain Markov processes. If Σ is the covariance of a Markov process then the edges of
the phylogeny represent conditional independences exactly as the edges of a Gaussian graphical
model, and σ(u, v) also takes a particularly simple form, so it is interesting to recover this case.
By equation 2.19 of [33], the kernel θτ (w, t) defined in (1) takes the form

θτ (w, t) =
Σ(tu, τ)

Σ(τ, τ)
δ(w − τ)

where δ is the Dirac delta function. Equation (10) then simplifies to

σ(u, v) = Σ(tu, τ)Σ(τ, τ)−1Σ(tv, τ), (11)
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FIG. 1: A) A schematic of a phylogenetic GP. The most recent common ancestor of points u and v, c(u, v),
is given. B) A small sample from a Phylogenetic GP which is space-time separable: an Ornstein-Uhlenbeck
process in time (7 samples) and with a squared exponential covariance in a 1-d space (4 samples). A notional
forking event occurs at time indicated by the left-most solid black line labeled c(u, v). For visualization
purposes, after this time a linear trend is respectively added and subtracted from the two sets of points
which lie on different rays.

confirming that in this case the phylogenetic covariance σ may be evaluated directly from the
time-domain covariance Σ.

Stationary time-domain processes. If Σ is stationary in the sense that Σ(tu, tv) is a function
only of the distance tu − tv, then the solution of (1) simplifies. If there exists a kernel θ on
(−∞, 0] × [0,∞) satisfying, for each s < 0 < t,

∫ 0

−∞

θ(w, t)Σ(w, s)dw = Σ(t, s) (12)

then by stationarity this implies that for each τ > 0, the kernel θτ (w, t) := θ(w − τ, t − τ) on
(−∞, τ ] × [τ,∞) satisfies (1) for each s < τ < t. Equation (10) then becomes

σ(u, v) =

∫ 0

−∞

θ(w, tu − τ)Σ(tv − τ, w)dw. (13)

We note that, while the evaluation of the phylogenetic covariance σ for non-Markovian time-
domain covariances may require the solution of the integral equations (1) by numerical methods,
this is an established problem in numerical analysis [26, 31]. Further, for a stationary time-domain
covariance Σ, the single kernel θ solving (12) is sufficient to calculate the phylogenetic covariance
for any phylogeny.

III. INFERENCE TASKS USING THE PHYLOGENETIC COVARIANCE

Suppose now that we are given a set of observations {y(t, x) : (t, x) ∈ L} (L being the set of
co-ordinates of observation) from a GP with space-time separable covariance function K indexed
by T × R

d, so that

K((t1, x1), (t2, x2)) = σ(t1, t2)k(x1, x2).
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We consider the following three inference tasks, summarized in the table below: A) given the
phylogeny T , to infer the evolutionary process as represented by the covariance K; B) given a
known evolutionary process and phylogeny, to predict unobserved states {Y (t, x) : (t, x) ∈ M}
where M ⊂ (T × R

d) \ L, whether those states are ancestral, future, missing, or outside the
sampled range; C) given knowledge only of the evolutionary process, to infer the phylogeny.

Problem

Data type A) Parameter B) Prediction C) Phylogeny

Observed states, y(L) Given Given Given

Phylogeny, T Given Given Unknown

Covariance function, K Unknown Given Given

A. Parameter Estimation

Given observations from functional data objects (which may or may not all be sampled at the
same point in evolutionary time) and a known evolutionary history relating them, encoded by a
phylogeny T , one may wish to make inferences about the evolutionary process that yielded the
data. In the GP setting, this evolutionary process is encoded in the covariance matrix and there
is a large literature on the estimation of covariance matrices. In this section we discuss maximum
likelihood and Bayesian estimation of phylogenetic covariances drawn from a parametrized class,
making a number of assumptions which are common in practice. Under these assumptions the
analysis simplifies, and the effect of including branched phylogenies in GP regression may be seen
more explicitly.

Given a phylogeny T and a time-domain covariance Σ, the phylogenetic covariance σ on T is
specified by the construction in section II. Given also a space-domain covariance k, a separable
GP with covariance K = σ · k may be defined on T × R

d. Many widely-used covariance functions
for GP regression are smooth functions of a parameter vector θ, and we make this assumption in
this section. We suppose further that data has been sampled discretely and systematically, in the
sense that the set L of co-ordinates of observation has the product form t × x, where t ⊂ T and
x ⊂ R

d are finite sets.
The maximum likelihood estimate of θ may be obtained as follows. Our sample y = y(L) is a

Gaussian vector with covariance matrix which we will denote KL(θ); its log-likelihood given θ is

log p(y|θ) = −
1

2
yT K−1

L y −
1

2
log(detKL). (14)

This likelihood may be maximised by finding the zeroes of the function

∂

∂θj

log p(y|θ) =
1

2
tr

(

(ααT − K−1
L )

∂KL

∂θj

)

, where α = K−1
L y (15)

([33], equation (5.9)). Writing ⊗ for the Kronecker matrix product, it follows from our assumptions
of separability and systematic sampling that

KL = σt ⊗ kx (16)

and therefore

K−1
L = σ−1

t
⊗ k−1

x
(17)

∂KL

∂θj

=
∂

∂θj

σt ⊗ kx + σt ⊗
∂

∂θj

kx. (18)
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Given observations from functional data on R
d which arise from an evolutionary process, the

phylogenetic covariance function may be regarded as correcting for branching in the shared evo-
lutionary history. Equations (15)-(18) emphasise that, under the above assumptions, the compu-
tational cost of introducing this correction is relatively low. When estimating the phylogenetic
covariance matrix, if the time-domain covariance has m unknown parameters then the added com-
putational overhead that comes from taking a branched phylogeny is the inversion of |t| × |t|
matrices in (17), and an additional m dimensions in the search space for the zeroes of (18). We
note that separable covariance matrices such as (16) can in general impose certain identifiability
constraints on the parameter vector θ; general discussion on computational issues for the estimation
of covariance functions may be found in Ref. [33].

In the context of Bayesian parameter estimation, given a prior distribution for θ, one might
instead attempt to maximize the posterior probability of θ given the observations y. This leads to
a modified version of the right-hand side of (14), although the computational issues raised by the
introduction of branched phylogenies are essentially unchanged.

In contrast to the theory of sequence evolution, the choice of particular parametrized classes for
Σ and k may be, a priori, unclear. The problem of model selection for GP regression is discussed
in [33], including exploratory data analysis and the formation of complex covariances from several
different kinds of simple covariance function. In certain applications one may, however, wish to
specify a priori that the marginal time-domain covariance Σ has the Markov property, which leads
to the special class of Gauss-Markov processes (including, for example, Brownian motion and the
Ornstein-Uhlenbeck process) and the simplified representation (11) for σ.

B. Prediction of unobserved states

Given the same set of observations {y(t, x) : (t, x) ∈ L} from functional data objects related
by the known phylogeny T , and assuming now that the covariance function K is known, one may
alternatively wish to give a predictive distribution for a set of unobserved states {Y (t, x) : (t, x) ∈
M}, where for each (t, x) ∈ M , the element t ∈ T may be at a past, present or future evolutionary
time, and the element x ∈ R

d may be inside or outside the sampled range {x : (t, x) ∈ L}. We
write KM for the covariance matrix of the Gaussian vector Y (M), and K(M,L) for the covariance
matrix between Y (M) and Y (L). The predictive formula for GP’s from [33] then gives

Y (M)|y(L) ∼ N(A,B)

where

A = K(M,L)K−1
L y(L), (19)

B = KM − K(M,L)K−1
L K(L,M). (20)

As noted above, these formulae simplify when L and/or M are product sets. Example applications
of these predictive distributions for phylogenetic GPs are discussed below in section IV.

C. Phylogeny

For a given phylogeny T , a finite subset L ⊂ T × R
d and a given marginal covariance Σ on

[0,∞) and spatial covariance k on R
d, one can calculate the (separable) covariance KL = KL(T )

of the Gaussian vector Y (L) using Equation (10). A given set of observations y = y(L) will then
occur with probability density

p(y|T ) = (2π)−
|L|
2 (det KL)−

1

2 exp

(

−
1

2
yTK−1

L y

)

. (21)



9

One can maximize this likelihood by varying over the set of phylogenies; this is a hard but very
standard problem within phylogenetics and is typically addressed with MCMC methods [21]. The
phylogeny that maximizes this likelihood should inform about the evolutionary relationships be-
tween the observations y(L). Note that the right-hand side of (21) is a function of T , since the
phylogenetic covariance σ and hence the separable covariance KL encode the evolutionary relation-
ships between the co-ordinates of observation L. Since recalculating KL for each new phylogeny
T for a non-Markov marginal covariance Σ involves solving integral equations, it might seem that
this will be a difficult task; however, as noted above, if the marginal covariance Σ is stationary then
one can use a one-dimensional precomputed library of covariances to fully resolve KL across the
phylogeny T . We further note that in our setting of space-time separable covariances, the spatial
part k of KL is independent of the phylogeny, and further if L has product form then from (16)
one need only recalculate the factor σt of KL for each new T .

Beyond the above, there is a spectrum of more sophisticated approaches that could be consid-
ered. It might be the case that the parameters θ of k and Σ are unknown. The simplest approach
would be to maximize p(y|T, θ) by varying over θ as well as T ; as noted, this could be computation-
ally challenging for non-Markov covariances. One might, alternatively, seek to identify the most
probable phylogeny given only the data. To achieve this requires a choice of priors over possible T

(given, for example, by the coalescent prior) and θ and an integration over θ [21].

IV. DISCUSSION

In this paper we have explained how the powerful inference architecture provided by GP’s can in
principle be used for evolutionary inference with functional data. Where the data objects are related
by an evolutionary process with a given phylogeny, phylogenetic GP’s perform regression using a
covariance function which is modified to correct for correlations caused by shared evolutionary
history. In the evolutionary setting we should therefore expect phylogenetic GP’s to improve upon
conventional GP inference for problems of parameter estimation and prediction. From a different
viewpoint, phylogenetic GP’s offer a highly flexible approach to evolutionary inference in that they
model a rich palette of functional data objects, and offer straightforward approaches to model
selection and prediction of unobserved data.

A new approach to the study of the evolution of curves offers to contribute to a number of areas
in biology. We noted in the introduction how morphological information can aid phylogenetic
inference in animal evolution; in other areas of biology, it may be the evolution of functional
data that is important. Two examples are in disease progression and speech sound evolution.
Physicians frequently collect functional data from their patients as diseases progress e.g. gait
time series, speech records or heart rhythms. We might suppose that healthy patients start at
the root of a tree and disease progression might act as a modulation of their functional data.
Different disease variants would correspond to different branches away from a healthy initial state.
Language evolution has already been studied from an evolutionary perspective using ideas from
sequence phylogenetics [1, 12, 27]. It seems reasonable that functional data, in the form of speech
sounds, could also evolve. In this case linguistics can equip us with known phylogenies [44] allowing
us to address the parameter or prediction problems.

We now mention some further open and relevant areas. We explain, in Section IIIC, how one
might attempt to infer a phylogeny given knowledge of functional data at a set of leaves. This is
practically useful as it provides a method for a hierarchical clustering of functional data in which
the position of the internal nodes contains useful information. When the functional data are signals
(or time series, where the shape of the time series is the functional data object to be modelled) then
the phylogenetic inference described above could be interpreted as an exercise in (evolutionary)



10

network inference. The inference of networks of relatedness from time series data is a lively area of
econometrics, neuroscience, and systems biology [39, 41, 42]. In systems biology, one often wants
to pass from time series measurements of gene expression via mRNA concentrations to networks
summarizing their relationships [24]. This approach would relate the mRNAs through a tree with
unseen nodes. As well as its relevance for unseen ancestral functions, the prediction problem has
other roles: rather than making statements about the past, a given phylogeny and parameterized
covariance give predictive distributions for unobserved present states. As an example, if the func-
tional data objects are time series and one assumes that the fitted covariance function applies in
a neighbourhood around the observed signal data then our methods could also provide predictive
distributions for data points lying outside the observed range. In this way, phylogenetic GP’s
allow multivariate time series forecasting from multiple series related by an evolutionary process,
again corrected for evolutionary relatedness. We mentioned in our introduction that there is in-
terest in methods of evolving new shapes for applications in design. In this case one evolves an
observed present state forward in time; given knowledge of the parameters of a Markovian covari-
ance this evolution is independent of other present states, and the phylogenetic perspective is thus,
perhaps, uninteresting. However, for non-Markov processes, or Markov processes with unknown
covariance functions, the forward evolution of any observed state is statistically dependent on all
other observed states and on the phylogeny itself; this makes for an interesting class of forward
shape evolutions which takes families of functions (and possibly phylogenies also) and generates
new functions which are dependent on the whole of that family, in a way which is statistically
consistent with the fitted phylogeny.

An area for further work is to extend the formalism we have presented from functional data
evolution to the evolution of more general shapes.
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