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The Hurewicz image of the ηi family

Peter J. Eccles, Hadi Zare

Abstract

We consider the problem of detecting Mahowald’s family ηi ∈ 2π
S
2i in homology. This allows us to

identify specific spherical classes in H∗Ω2i+1−8+k
0 S2i−2 for 0 6 k 6 6. We then identify the type of the

subalgebras that these classes give rise to, and calculate the A-module and R-module structure of these
subalgebras. We shall the discuss the relation of these calculations to the Curtis conjecture on spherical
classes in H∗Q0S

0.

1 Introduction and statement of results

Consider the problem of understanding the homology of spaces when loop beyond there connectivity. Of
particular interest, is the problem of understanding the homology of the infinite loop spaces associated with
desuspensions of the sphere spectrum, and describing a part of these homology algebras in a geometric way.
Our work here provides an example in this direction by identifying specific subalgebras inside homology of
iterated loop spaces associated with spheres of the form Ωn+kSn.
The infinite loop space associated with S−k is given by

QS−k := colim Ωn+kSn

where k > 0. Notice that QS−k = ΩQS−k+1. This provides a translation between stable unstable homotopy
of spheres through the isomorphism

2π
S
∗+k ' 2π∗QS

−k.

There is very little known on the homology algebras H∗Ωn+k
0 Sn and H∗Q0S

−k where H∗ denotes H∗(−; Z/2);
Ωn+k

0 Sn and Q0S
−k denote the base point component of the related spaces. In fact, we only know about

the homology algebras H∗Ωn+1Sn and H∗Ωn+2Sn due to Hunter [H89, Theorem 1.2, Corollary 1.3], as well
as the algebras H∗Q0S

−1 and H∗Q0S
−2 due to Cohen and Peterson [CP89, Theorem 1.1, Theorem 1.2]. In

both of these works the calculations are based on applying the Eilenberg-Moore spectral sequence machinery
to the path loop fibrations over QS−k. The problem remains open for k > 2.
Of course, for the purpose of applications in homotopy theory, the main motivation of studying these ho-
mology algebras is to understand the geometry of the spaces in question with the hope that they might give
some information on the homotopy groups of spheres. However, in other direction, it appears that we can
use the available geometric information to shed a light on the homology algebras H∗Ωn+kSn and H∗QS

−k.
Recently, the second named author has provided a “geometric” description for the generators of H∗Q0S

−1,
as well as some information on H∗Q0S

−2 [Z09, section 5.8]. In a separate work, the second named author
has used the real and complex J-homomorphisms to detect infinite families of subalgebras inside H∗Q0S

−n

[Z09a]. Such calculations are related to the Curtis conjecture on spherical classes H∗Q0S
0 which is explained
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in Section 5.
Our aim in this paper is to detect Mahowald’s ηi family using the Hurewicz homomorphism, and to exhibit
its implications on the homology of iterated loop spaces associated with spheres. This turns out to be fruitful
as it provides examples of some cases that were not known before. In the rest of this section, we fix our
notation and list our main results.
The ηi ∈ 2π

S
2i family was constructed by Mahowald in [M77, Theorem 2] as a stable composite

S2i
fi // Xi

gi // S0

with Xi = D2i−3(R2, S7), i > 3, chosen to be one of pieces in the Snaith splitting for Ω2S9 [S74]. The
complex Xi has the property that it is highly connected such that the mapping fi can be assumed a genuine
map. Moreover, the complex Xi has its top cell in a dimension less than 2i which means that the mapping fi
is trivial in homology. The mapping gi is clearly a stable mapping and can be realised as a genuine map after
finitely many suspensions. These together imply that the stable adjoint of ηi may be reaslied as a mapping

S2i
fi // Xi

// Q0S
0

where the component fi is trivial in homology. This implies that the above composite is trivial in homology,
i.e. the mapping ηi maps trivially under the Hurewicz homomorphism

h : 2π2iQ0S
0 → H2iQ0S

0.

Despite the above observation, one might hope to detect it using the Hurewicz homomorphism, if keep
adjointing down the mapping S2i → Q0S

0. This is of course is a natural thing to expect. Our main results
reads as following.

Main Theorem. Let ηi ∈ 2π
S
2i denote Mahowald’s family. This class is detected by the Hurewicz homo-

morphism
h : 2π6Q0S

−2i+6 → H6Q0S
−2i+6.

The spherical class [ηi]6 = hηi has the following property. Let j∞2 : QS2i−3 → QΣ2i−3P2i−3 be the second
stable James-Hopf invariant. We then have

(Ω2i+1−9j∞2 )∗[ηi]6 = (Σ−2i+6a2i−3)2 6= 0

where Σ−2i+6a2i−3 ∈ H3QΣ−2i+6P2i−3 is the class given by the inclusion of the bottom cell S3 → QΣ−2i+6P2i−3.

We note that the space Q0S
−2i+6 is an infinite loop space and it is natural to think of the subalgebra

of H∗Q0S
−2i+6 generated by the classes of the form QI [ηi]6. The problem becomes easier to answer when

we consider the unstable case and replace infinite loop spaces with finite loop spaces. First we have the
following observation which is an unstable version of our main theorem.

Theorem 1. Let ηi ∈ 2π
S
2i denote Mahowald’s family. This class is detected by the Hurewicz homomorphism

h : 2π6Ω2i+1−8
0 S2i−2 → H6Ω2i+1−8

0 S2i−2.

The spherical class [ηi]6 = hηi has the following property. Let j2 : ΩS2i−2 → QS2i+1−6 be the second
James-Hopf invariant. We then have

(Ω2i+1−9j2)∗[ηi]6 = g2
3 .

We may apply this to detect some subalgebras living in H∗Ω2i+1−8
0 S2i−2 and determine their algebraic

structure. In fact we are able to detect polynomial subalgebras in H∗Ω2i+1−8+k
0 S2i−2 for k = 0, 1, 2, 3.
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Notice that the space Ω2i+1−8+k
0 S2i−2 is a (2i+1 − 8 + k)-loop space, and admits operations [CLM76, Part

III, Theorem 1.1]
Qa : H∗Ω2i+1−8+k

0 S2i−2 → Ha+2∗Ω2i+1−8+k
0 S2i−2

for a < (2i+1 − 8 + k) − 1. Hence, when k = 0, we may consider to the subalgebra of H∗Ω2i+1−8
0 S2i−2

generated by the classes QI [ηi]6 where I = (i1, . . . , ir) is any sequence with 0 < i1 6 i2 6 · · · 6 ir < 2i+1−9.
In fact we can do more. First, notice that realising ηi as an element in 2π0Q0S

−2i

we know that this maps
nontrivially under the Hurewicz homomorphism

h : 2π0QS
−2i

→ H0QS
−2i

.

Let [ηi] = hηi = (ηi)∗1 where 1 ∈ H0S
0 is the generator. One then may hope that this class will survive

under the homology suspension finitely many times. Second, consider the Hurewicz homomorphism

h : 2πjΩ
2i+1−8+(6−j)
0 S2i−2 → HjΩ

2i+1−8+(6−j)
0 S2i−2,

where 0 6 j 6 6, and let
[ηi]j = h(ηi).

This then implies that
σ∗[ηi]j = [ηi]j+1.

Note that the classes [ηi]j are A-annihilated and primitive as they are spherical. Observe that according to
Theorem 1, we have [ηi]6 6= 0. This implies that [ηi]j 6= 0 for j < 6. In particular, we have

[ηi]5 ∈ H5Ω2i+1−7
0 S2i−2,

[ηi]4 ∈ H4Ω2i+1−6
0 S2i−2,

[ηi]3 ∈ H∗Ω2i+1−5
0 S2i−2.

Hence, we may consider to the subalgebra spanned by the classes of the form QI [ηi]5, QI [ηi]4 and QI [ηi]3
living inside the correcponding algebras. Notice that we still don’t know the structure of these algebras, nor
even if the classes QI [ηi]j are nontrivial. We state the next theorem in terms the operations Qi and their
iterations. Recall that having a d-dimensional class ξ we have Qi+dξ = Qiξ. We call I = (i1, . . . , ir) an
admissible sequence if ij 6 2ij+1. We also define the excess of I by excess(I) = i1− (i2 + · · ·+ ir). Our next
result now reads as following.

Theorem 2. The homology algebra H∗Ω2i+1−8
0 S2i−2 contains a primitively generated polynomial subalgebra

given by
Z/2[QI [ηi]6 : I ∈ I6, excess(I) > 6, ir < 2i+1 − 3]

where I = (i1, . . . , ir) ∈ I6 if and only if it is admissible and all of its entries are even numbers. The action
of the Steenrod algebra on this subalgebra is determined by the Nishida relations. Moreover, let the ideal a6

in H∗Ω2i+1−8
0 S2i−2 be given by

a6 = 〈QI [ηi]6 : excess(I) > 6, I 6∈ I6〉.

This ideal belongs to the kernel of (Ω2i+1−9j2)∗ where j2 : ΩS2i−2 → QS2i+1−6 is the second James-Hopf
invariant.

In other cases, we have a similar statement.
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Theorem 3. For k = 1, 2, 3, the homology algebra H∗Ω2i+1−8+k
0 S2i−2 contains a primitively generated

polynomial subalgebra given by

Z/2[QI [ηi]6−k : I ∈ I6−k, excess(I) > 6− k, ir < 2i+1 − 3],

with
I5 = {I : I admissible , QIQ3 6= 0},
I4 = {I : I admissible , QIQ3 6= 0, or I = 4J},
I3 = {I : I admissible , QIQ3 6= 0, or QIQ2Q1 6= 0},

where I = 4J means that I is an admissible sequence whose all entries are divisible by 4. The action of the
Steenrod algebra on this subalgebra is determined by the Nishida relations. Moreover, let the ideal a6−k in
this algebra be given by

a6−k = 〈QI [ηi]6−k : excess(I) > 6− k, I 6∈ I6−k〉.

This ideal then belongs to the kernel of (Ω2i+1−9+kj2)∗ where j2 : ΩS2i−2 → QS2i+1−6 is the second James-
Hopf invariant.

Remark 4. The method of proving the above theorem can be applied to obtain a set of generators for
certain subalgebras of H∗Ω2i+1−8+k

0 S2i−2 for k = 4, 5, 6. However, it does not tell anything about the
algebraic structure of these subalgebras.

We have some comments on the above theorems. First, notice that having QI [ηi]6−k with I 6∈ I6−k,
where k = 0, 1, 2, 3, does not tell us much in the following sense. We don’t know whether or not if these
terms are trivial. Moreover, assuming that these classes are nontrivial the method of proof does not tell us
about the subalgebras that they generate. Second, we note that there is some indeterminacy in determining
the action of the Steenrod algebra on the stated polynomial algebras in the following sense. If we are given
a class QI [ηi]6−k with I ∈ I6−k, then it is not clear at all if Sqr∗Q

I [ηi]6−k = QJ [ηi]6−k for some J ∈ I6−k.
Finally, notice that in general, calculating the homology algebras mentioned above will mostly depends on
spectral sequence based arguments. However, our method firstly provides some information about a part of
these algebras; and secondly gives geometric meaning to some of its generators.
It is almost certain that our theorems here, Theorem 2 and Theorem 3, do not calculate the homology
algebras completely, nevertheless they shed light on some cases that have not been known previously, as well
as they provide some knowledge about the algebraic structure of these algebras. In fact, they seem to detect
a part of H∗Q0S

−n which is not detected by previous methods. We finish by stating a conjecture, which
predicts the behavior of the class [ηi]6 under the homology suspension. This reads as following.

Conjecture. The class [ηi]6 ∈ H6Q0S
−2i+6 dies under the homology suspension σ∗ : H∗Q0S

−2i+6 →
H∗+1Q0S

−2i+7. Consequently, the subalgebra of H∗Q0S
−2i+6 generated by QI [ηi]6 belong to kerσ∗.

Finally we note that techniques to prove the above results maybe applied in a wider generality. For
instance, we may use the classical Hopf invariant one elements to do a similar job. Notice that the Hopf
invariant one elements map nontrivially under the Hurewicz homomorphism h : 2π∗Q0S

0 → H∗Q0S
0. We

state the following and leave the proof to reader.

Theorem 5. Let i = 0, 1, 2, 3 and consider ν ∈ 2π
S
3 , and let [ν]i ∈ HiQ0S

−3+i be the image of ν under the
Hurewicz homomorphism

h : 2π∗Q0S
−3+i → H∗Q0S

−3+i.

This class pulls back to a spherical class [ν]i ∈ HiΩ7−iS4. This class gives rise to a primitively generated
polynomial algebra inside H∗Ω7−iS4 given by

Z/2[QI [ν]i : I ∈ admissible , excess(I) > 0, ir < 6].
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The action of the Steenrod algebra on this polynomial algebra is completely determined by the Nishida re-
lations. Moreover, this subalgebra maps monomorphically under (Ω6−ij2)∗ where j2 : ΩS4 → QS6 is the
second James-Hopf invariant.

The key fact in the proof will be that ν maps to the identity element under j2 : 2π6ΩS4 → 2π6QS
6.

A similar statement can be made about σ ∈ 2π
S
7 , and the outcome seems to be more interesting as we get

more loops!

Theorem 6. Let i = 0, 1, 2, . . . , 7 and consider σ ∈ 2π
S
7 , and let [σ]i ∈ HiQ0S

−7+i be the image of ν under
the Hurewicz homomorphism

h : 2π∗Q0S
−7+i → H∗Q0S

−7+i.

This class pulls back to a spherical class [σ]i ∈ HiΩ15−iS4. This class gives rise to a primitively generated
polynomial algebra inside H∗Ω15−iS4 given by

Z/2[QI [σ]i : I ∈ admissible , excess(I) > 0, ir < 14].

The action of the Steenrod algebra on this polynomial algebra is completely determined by the Nishida re-
lations. Moreover, this subalgebra maps monomorphically under (Ω14−ij2)∗ where j2 : ΩS4 → QS6 is the
second James-Hopf invariant.

Note 7. We have detected polynomial subalgebras inside the homology algebras H∗Ω2i+1−8+k
0 S2i−2 for

k = 4, 5, 6. The application of the Steenrod operations then will detect infinitely many other terms inside
these algebras that give rise to polynomial subalgebras like the work of Cohen and Peterson in [CP89, Lemma
6.3]. If we have a class QI [ηi]j such as given by previous theorems, and a class ξ such that Sqr∗ξ = QI [ηi]j ,
then we know that ξ 6= 0. The relations such as

Sq2r
∗ ξ

2 = (Sqr∗ξ)
2 = (QI [ηi]j)2 6= 0

show that ξ2t 6= 0. Therefore, the class ξ, as well as classes of the form QIξ for suitable choices of I, will
give rise to polynomial subalgebra inside H∗Ω2i+1−8+k

0 S2i−2 for k = 4, 5, 6.

The rest of this paper is devoted to the proof of these observations and related calculation. We start by
proving our results in the unstable case. We shall then provide the reader with the proof of our main result.
We note that in other sections the numbering of theorems is done by sections, where here we used a single
numbering to single out our main results.

Acknowledgement. The second named author has been a self-funded visitor at the University of Manch-
ester during this work, and wishes to express his gratitude towards the School of Mathematics for providing
him with the facilities to carry on with this work, as well as support of many individuals within the School.
He is also grateful to his family for the financial support. Both authors are grateful to Fred Cohen for helpful
comments.

2 Proof of Theorem 1

The proof of our theorems are based on two basic observations. The first observation is an equivalence
between two definitions of the Hopf invariant. We recall the following result of Eccles [E93, Proposition 4.4].
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Lemma 2.1. Let α ∈ 2π2mQX. Then hα = x2
m with xm ∈ HmX if and only if the stable adjoint of α is

detected by Sqm+1 on xm in its stable mapping cone. Here h is the Hurewicz homomorphism

h : 2π∗QX → H∗QX.

We also need to fix our terminology. By the statement that “f : St → Y is detected by Sqr on y ∈ H∗Y ”
we mean that Sqr∗gt+1 = y in Cf = Y ∪f et+1, the mapping cone of f , where gt+1 ∈ Ht+1Cf is a generator
given by the attached (t + 1)-cell provided that f∗ = 0. Here Sqr∗ : H∗Cf → H∗−rCf is the operation dual
to Sqr.
The second observation is provided by the fact that the class ηi ∈ 2π

S
2i pulls back to 2π2i+1−2S

2i−2, i.e.

S2i+1−2 → S2i−2,

and maps to ν ∈ 2π
S
3 under the second James-Hopf invariant [M77]. Here by the 2nd James-Hopf invariant

we mean
j2 : ΩΣX → Q(X ∧X),

where in our case X = S2i−3. In this case, the fact that ηi has Hopf invariant ν means that j2ηi = ν. This
implies that as an unstable mapping ν is given by the following composite

S2i+1−3
ηi // ΩS2i−2

j2 // QS2i+1−6.

Here ηi : S2i+1−3 → ΩS2i−2 is the adjoint to the mapping S2i+1−2 → S2i−2. The mapping ν is detected by
Sq4 on g2i+1−6 in its mapping cone, where g2i+1−6 ∈ H2i+1−6QS

2i+1−6 is the generator given by the inclusion
S2i+1−6 → QS2i+1−6. We may adjoint down the above composite to obtain the following composite

ν : S7
ηi // Ω2i+1−9

0 S2i−2
Ω2i+1−10j2 // QS4.

This composite it detected by Sq4 on g4 ∈ H4QS
4 in its mapping cone. Applying Lemma 2.1 implies that

if adjoint down once more, we then obtain a mapping which is detected by homology. More precisely, the
composite

ν̃6 : S6
ηi // Ω2i+1−8

0 S2i−2
Ω2i+1−9j2 // QS3 (1)

is detected by
ν̃6∗g6 = g2

3

where ν̃6 denotes adjoint of ν, and g3 ∈ H3QS
3 is a generator given by the inclusion S3 → QS3. Setting

[ηi]6 = hηi we then have [ηi]6 6= 0 in H6Ω2i+1−8
0 S2i−2 and that

(Ω2i+1−7j2)∗[ηi]6 = g2
3

where h : 2π6Ω2i+1−8
0 S2i−2 → H6Ω2i+1−8

0 S2i−2 denotes the Hurewicz homomorphism.

As we mentioned earlier, the homology of the space Ω2i+1−8
0 S2i−6 admits operations

Qa : H∗Ω2i+1−8+k
0 S2i−2 → Ha+2∗Ω2i+1−8+k

0 S2i−2

for a < (2i+1 − 8) − 1. We like to investigate the R-module spanned by [ηi]6, i.e. the module spanned by
elements of the form QI [ηi]6 with I = (i1, . . . , ir) such that

0 < i1 6 i2 6 · · · 6 ir < 2i+1 − 9.
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The mapping
Ω2i+1−9j2 : Ω2i+1−8

0 S2i−2 → QS6

is a (2i+1 − 9)-fold loop map. This implies that (Ω2i+1−9j2)∗ commutes with all classes of the form QI [ηi]6
with ir < (2i+1 − 9)− 1 = 2i+1 − 9, i.e. having QI [ηi]6 with 0 < i1 6 · · · 6 ir < 2i+1 − 9 then we have

(Ω2i+1−9j2)∗QI [ηi]6 = QI(Ω2i+1−9j2)∗[ηi]6 = QIg
2
3 .

Let us write I = 2K if K = (k1, . . . , kr) with ij = 2kj for any 1 6 j 6 r. We then have

(Ω2i+1−9j2)∗QI [ηi]6 =

 0 if ij is odd for some j

(QKg3)2 if I = 2K.

This implies that if I = 2K, then QI [ηi]6 6= 0. On the other hand notice that Ω2i+1−7j2 is an iterated
loop map, which in particular implies (Ω2i+1−7j2)∗ is a multiplicative map. Also, notice that H∗QS3 is a
polynomial algebra. Hence, if we have an arbitrary pair of terms QI [ηi]6, QL[ηi]6 which map nontrivially
under (Ω2i+1−7j2)∗ then their product will map nontrivially under this homomorphism. This then implies
that

Z/2[QI [ηi]6 : I = 2K increasing, i1 > 0, ir < 2i+1 − 9]

is a polynomial algebra living in H∗Ω2i+1−8
0 S2i−2. Recall that for a d-dimensional class ξ we have Qaξ =

Qa+dξ. Hence, we may rewrite the above polynomial algebra as

Z/2[QI [ηi]6 : I = 2K admissible i1 > 0, ir < 2i+1 − 3].

We note that I = 2K are all of the sequences living in I6. Finally notice that the class [ηi]6 is an A-
annihilated class. Hence, to describe the action of Steenrod operations Sqt∗ on QI [ηi]6 we only need to apply
Nishida relations. This completes the proof of Theorem 1.

3 Proof of Theorem 2

The proof of this result is similar to the proof of Theorem 1. We like to draw reader’s attention to the
following table, where the left hand side denotes the mapping ν, suspended down, and the right hand side
denotes the Hurewicz image of the corresponding mapping

ν̃6 : S6 → QS3 hν̃6 = Q3g3,
ν̃5 : S5 → QS2 hν̃5 = Q3g2,
ν̃4 : S4 → QS1 hν̃4 = Q3g1 +Q2Q1g1,
ν̃3 : S3 → Q0S

0 hν̃3 = x3 +Q2x1 +D,
ν̃2 : S2 → Q0S

−1 hν̃2 = w′2,

ν̃1 : S1 → Q0S
−2 hν̃1 = pS

−2

1 ,

where D denotes a sum of decomposable terms, w′2 ∈ H2Q0S
−1 is an A-annihilated primitive class with

σ∗w
′
2 = p′3 = x3 + Q2x1 + D, and pS

−2

1 ∈ H1Q0S
−2 is an A-annihilated primitive class with σ∗p

S−2

1 = w′2.
Recall that (1) provided us with a decomposition for ν̃6. This allows us to have the following decompositions
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for ν̃5, ν̃4, and ν̃3 respectively

ν̃5 : S5
ηi // Ω2i+1−7

0 S2i−2
Ω2i+1−8j2 // QS2,

ν̃4 : S4
ηi // Ω2i+1−6

0 S2i−2
Ω2i+1−7j2 // QS1,

ν̃3 : S3
ηi // Ω2i+1−5

0 S2i−2
Ω2i+1−6j2 // Q0S

0.

Now we can complete proof of Theorem 2. We only do one case and leave the other cases to the reader.
Consider ν̃4 : S4 → QS1 with hν̃4 = Q3g1 + Q2Q1g1, see for example [E80, Proposition 3.4]. This then
implies that

[ηi]4 = hηi 6= 0.

Moreover, this shows that
(Ω2i+1−7j2)∗[ηi]4 = Q3g1 +Q2Q1g1.

Next, we like to consider the subalgebra of H∗Ω2i+1−6S2i−2 generated by classes QI [ηi]4. The homology of
the space Ω2i+1−6S2i−2 admits operations

Qa : H∗Ω2i+1−6
0 S2i−2 → Ha+2∗Ω2i+1−6

0 S2i−2

with a < (2i+1 − 6) − 1. This then implies that the mapping (Ω2i+1−7j2)∗ commutes with QI [ηi]4 where
I = (i1, . . . , ir) such that 0 < i1 6 · · · 6 ir < 2i+1 − 7. Notice that written with operations QI we then look
for the subalgebra generated by the classes of the form QI [ηi]4 with I admissible and ir < 2i+1 − 3. This
yields the following

(Ω2i+1−7j2)∗QI [ηi]4 = QI(Ω2i+1−7j2)∗[ηi]4
= QI(Q3g1 +Q2Q1g1)
= QIQ3g1 +QIQ2Q1g1.

Notice that in the above sum the second term is of the form QIg4
1 . Therefore, the above sum is nontrivial

only if either QIQ3 6= 0, or all entries of I are divisible by 4. Notice that this characterises the set of
sequences belonging to I4. The fact that H∗QS1 is a polynomial algebra, combined with the fact that
(Ω2i+1−7j2)∗ is a multiplicative map, implies that the subalgebra of H∗Ω2i+1−6

0 S2i−2 generated by classes
of the form QI [ηi]4 is a polynomial algebra, i.e. we have a primitively generated subalgebra sitting inside
H∗Ω2i+1−6S2i−2 determined by

Z/2[QI [ηi]4 : I ∈ I4, excess(I) > 4, ir < 2i+1 − 3].

Notice that if I 6∈ I4 then (Ω2i+1−7j2)∗QI [ηi]4 = 0. This means that the ideal a4 ⊆ H∗Ω2i+1−6
0 S2i−2

generated by such classes belongs to the kernel of (Ω2i+1−7j2)∗, i.e.

a4 = 〈QI [ηi]4 : excess(I) > 4, I 6∈ I4〉 ⊆ ker(Ω2i+1−7j2)∗.

This completes the proof of Theorem 2.
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4 Stablisation: The Main Theorem

We like to restate our results when the finite loop spaces are replaced with infinite loop spaces. More
precisely, notice that there is a mapping

E : ΩS2i−2 → QS2i−3.

Applying the iterated loop functor Ω2i+1−9 to this mapping we obtain

Ω2i+1−9E : Ω2i+1−8S2i−2 → QS−2i+6

where restricting to base point components yields

Ω2i+1−8
0 S2i−2 → Q0S

−2i+6.

We then may consider the mapping

(Ω2i+1−9E)∗ : H∗Ω2i+1−8
0 S2i−2 → H∗Q0S

−2i+6

and the image of the polynomials identified by Theorem 2.
Previously, we used James-Hopf invariant j2 : ΩS2i−2 → QS2i+1−6 and its iterated loop. In the stable case,
we consider the stable James-Hopf invariant

j∞2 : QS2i−3 → QΣ2i−3P2i−3

where the upper index ∞ is used to note that this is a map associated with infinite loop spaces. Applying
Ω2i+1−9 to j∞2 we obtain

Q0S
−2i+6 → Q0Σ−2i+6P2i−3.

We recall that there is a commutative diagram given by

ΩS2i−2
j2 //

E

��

QS2i+1−6

i

��
QS2i−3

j∞2 // QΣ2i−3P2i−3.

(2)

In particular, the mapping S2i+1−6 → QS2i+1−6 → QΣ2i−3P2i−3 may be viewed as the inclusion of the
bottom cell, and is nontrivial in homology. Applying Ω2i+1−9 to this diagram we obtain

Ω2i+1−8
0 S2i−2 //

��

QS3

��
Q0S

−2i+6 // Q0Σ−2i+6P2i−3.

We like to study the composite

j∞2 ηi : S2i+1−3 → QS2i−3 → QΣ2i−3P2i−3.

This allows us to restrict our attention to

j∞2 ηi : S2i+1−3 → QS2i−3 → QΣ2i−3P 2i

2i−3. (3)
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The fact that ηi maps to ν ∈ 2π
S
3 under the Hopf invariant implies that (3) should be detected by Sq4 on

the bottom cell, i.e. by Sq4 on Σ2i−3a2i−3. Like the proof of Theorem 2, adjointing down, (2i+1−10)-times,
we obtain

S7 // QS−2i+7
Ω2i+1−10j∞2 // QΣ−2i+7P2i−3 . (4)

Our claim then is that this mapping is detected by Sq4 on a 4-dimensional homology class, say Σ−2i+7a2i−3 ∈
H4QΣ−2i+7P2i−3. It is not difficult to see that there is a such homology class. Applying the iterated loop
functor Ω2i+1−10 to diagram (2) and taking homology results the following commutative diagram

H∗QS
2i+1−6

i∗ // H∗QΣ2i−3P2i−3

H∗QS
4

σ2i+1−10
∗

OO

(Ω2i+1−10i)∗ // H∗QΣ−2i+7P2i−3.

σ2i+1−10
∗

OO

Here we have used σ2i+1−10
∗ to denote the iterated homology suspension. Notice that

σ2i+1−10
∗ (Ω2i+1−10i)∗g4 = i∗σ

2i+1−10
∗ g4 = i∗g2i+1−6 = Σ2i−3a2i−3.

This allows us to define
Σ−2i+7a2i−3 = (Ω2i+1−10i)∗g4

with the property that
σ2i+1−10
∗ Σ−2i+7a2i−3 = Σ2i−3a2i−3.

Here g4 ∈ H4QS
4 is the generator given by S4 → QS4. Similarly, we may define Σ−2i+6a2i−3 ∈ H3QΣ−2i+6P2i−3

by
Σ−2i+6a2i−3 = (Ω2i+1−9i)∗g3.

The observation that g3 ∈ H3QS
3 and g4 ∈ H4QS

4 are spherical implies that the classes Σ−2i+6a2i−3,
Σ−2i+7a2i−3 are also spherical classes in the respective homology groups. Notice that these are quite natural
to expect, as for instance Σ−2i+6a2i−3 corresponds to the bottom call of Σ−2i+6P2i−3 whereas we know that
bottom cells always give rise spherical classes.
Now we are ready to prove our Main Theorem. We recall the statement that we want to prove.

Main Theorem. Let ηi ∈ 2π
S
2i denote Mahowald’s family. This class is detected by the Hurewicz homo-

morphism
h : 2π6Q0S

−2i+6 → H6Q0S
−2i+6.

The spherical class [ηi]6 = hηi has the following property. Let j∞2 : QS2i−3 → QΣ2i−3P2i−3 be the second
stable James-Hopf invariant. We then have

(Ω2i+1−9j∞2 )∗[ηi]6 = (Σ−2i+6a2i−3)2 6= 0

where Σ−2i+6a2i−3 ∈ H3Q0Σ−2i+6P2i−3 is the class given by the inclusion of the bottom cell S3 → Q0Σ−2i+6P2i−3.

Here we use [ηi]6 to denote this spherical class as we like to remember that it is the class given by the
mapping

Ω2i+1−8
0 S2i−2 → Q0S

−2i+6.

To complete the proof, we need a more general version of Lemma 2.1. The result is as following.
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Lemma 4.1. Suppose f : S2m → ΩX is given with X having its bottom call in dimension m+ 1. Then the
adjoint mapping S2m+1 → X is detected by Sqm+1 on σ∗xm if and only if hf = x2

m 6= 0 where xm ∈ H∗ΩX.

We leave the proof of this lemma to another section.

Proof of the Main Theorem. We have already done a part of the proof above. To complete the proof, notice
that the composite

S7 // QS−2i+7
Ω2i+1−10j∞2 // QΣ−2i+7P 2i

2i−3

is detected by Sq4 on a 4-dimensional homology class, say Σ−2i+7a2i−3 ∈ H4QΣ−2i+7P2i−3. Moreover, we
know that

Σ−2i+7a2i−3 = σ∗Σ−2i+6a2i−3.

This then implies that adjointing down once, we have

S6
ηi // QS−2i+6

Ω2i+1−9j∞2 // QΣ−2i+6P 2i

2i−3
.

Lemma 4.1 now implies that the above composite is detected by

(Ω2i+1−9j∞2 ηi)∗g3 = (Σ−2i+6a2i−3)2 6= 0.

This completes the proof.

According to the above proof, there are some classes in H∗QΣ−2i+6P2i−3 with nontrivial square, e.g.
(Σ−2i+6a2i−3)2 6= 0. However, this does not imply that the subalgebra generated by such classes is a polyno-
mial algebra as one still has to eliminate the possible truncations, i.e. we don’t know if (Σ−2i+6a2i−3)2t 6= 0
for all t > 1.
Moreover, we don’t know if all classes of the form QIΣ−2i+6a2i−3 are nontrivial. However, there are two
families of such classes where it is easy to show they are not trivial. First, notice that

σ2i−6
∗ Σ−2i+6a2i−3 = a2i−3 + other terms.

This implies that if we choose I such that excess(I) > 2i − 3 then QIΣ−2i+6a2i−3 6= 0. This comes easy
from the fact that

σ2i−6
∗ QIΣ−2i+6a2i−3 = QIa2i−3.

Hence, we may consider the subalgebra spanned by such elements. Second, we use the method suggested by
Note 7. That is, if we have a class ξ with Sqr∗ξ = QIΣ−2i+6a2i−3 for some I with QIΣ−2i+6a2i−3 6= 0, then
we know that ξ 6= 0 as well as ξ2 6= 0. This then gives infinite number of generators inside H∗QΣ−2i+6P2i−3

whose generators has are of minimum height 2.

5 Relations to spherical classes homology of Q0S
0

The type of spherical classes in H∗Q0S
0 is predicted by a conjecture due to Curtis [C75, Thoerem 7.1]. This

predicts that only the Hopf invariant one elements η, ν, σ ∈ 2π2i−1Q0S
0 and the potential Kervaire invariant

one elements θi ∈ 2π2i+1−2Q0S
0 map nontrivially under the Hurewicz homomorphism

h : 2π∗Q0S
0 → H∗Q0S

0.
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Observe that the Hopf invariant one elements are the only elements which have Adams filtration one. More-
over, the only elements which have Adams filtration at least 2 are the potential Kervaire invariant one
elements and the classes ηi ∈ 2π2iQ0S

0. We recall from the introduction that the elements ηi map trivially
under the Hurewicz homomorphism h : 2π∗Q0S

0 → H∗Q0S
0. Hence, the Curtis conjecture states that if

α ∈ 2π
S
∗ has Adams filtration at least 3 then its stable adjoint viewed as an element of 2π∗Q0S

0 maps
trivially under the Hurewicz homomorphism 2π∗Q0S

0 → H∗Q0S
0.

Now, we can ask two related questions. First, notice that having α ∈ 2π∗Q0S
0 we may consider to adjoint

of α as elements of 2π∗−kQ0S
−k under the suspension isomorphism

2π
S
∗−kS

−k ' 2π∗−kQ0S
−k → 2π∗Q0S

0 ' 2π
S
∗ .

We then may ask what is the least k such that the adjoint of α maps nontrivially under the Hurewicz
homomorphism

2π∗−kQ0S
−k → H∗Q0S

−k.

This paper then provides an example by calculating an upper bound for k, a lower bound for −k, when
α = ηi.
Second, if we assume that the Curtis conjecture fails then how we can calculate the Hurewicz image of
those elements of which their Adams filtration is at least 3? Our calculation here then suggest that some
knowledge on the (iterated) Hopf invariant of α will be very useful in this regard. This then suggests that
an EHP -approach is the right approach to deal with these questions.
On the other hand, it is an immediate consequence of the homology of the J-homomorphism SO → Q0S

0

that apart from the Hopf invariant one elements any other element of 2π∗Q0S
0 which belongs to imJ maps

trivially under h : 2π∗Q0S
0 → H∗Q0S

0 [EZ09, Main Theorem], where the implications on of this observation
are investigated in [Z09a]. According to this observations, the Curtis conjecture then reduces to the following
statement.

The Curtis Conjecture. Suppose α ∈ 2π∗Q0S
0 which maps nontrivially under the projection 2π∗Q0S

0 →
2π∗cokerJ and does not correspond to a Kervaire invariant one element. Then α maps trivially under the
Hurewicz homomorphism

h : 2π∗Q0S
0 → H∗Q0S

0.

One then may do a similar job, as we did here, for those elements of 2π∗Q0S
0 that belong to 2π∗cokerJ

and determine the type of subalgebras inside H∗Q0S
−n that they give rise to. Notice that the ηi family

does not belong to imJ , i.e. it belongs to 2π∗cokerJ , i.e. we have already provided an example of how such
a calculation maybe carried out.

6 Proof of Lemma 4.1

Here we like to give a proof of Lemma 4.1. The following observation, which is a corollary of the Freudenthal’s
suspension theorem, will be used in the proof of lemma.

Lemma 6.1. Let Xi
n denote a cell complex with bottom cell at dimension n and top cell at dimension i. If

i < 2n then Xi
n admits at least one desuspension, i.e.

Xi
n ' ΣY i−1

n−1.

Proof. The proof is based on induction. If i = n, then Xi
n is a wedge of spheres and hence desuspends.

Assume that the statement is true for Xi
n, and we prove it for Xi+1

n . Let f : Si → Xi
n ' ΣY i−1

n−1 denote
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the attaching map of an (i + 1)-cell. Observe that f ∈ πiΣY i−1
n−1 with i < 2n. According to the suspension

theorem, f desuspends to πi−1Y
i−1
n−1. The fact that f desuspends implies that the cofibre of Xi

n ∪f ei+1 also
desuspends. Finally the fact that Xi+1

n is obtained by attaching some (i+1)-dimensional cells through a map
from a wedge of spheres to Xi

n shows that Xi+1
n also admits a desuspension. This completes the proof.

Now we proceed with the proof of Lemma 4.1.

Proof of Lemma 4.1. First, let f : S2m+1 → X be given such that X has its bottom cell at dimension
m+ 1. Assume that f is detected by Sqm+1 on xm+1 ∈ Hm+1X. We like to show that the adjoint of f , say
g : S2m → ΩX is detected in homology by hg = y2

m 6= 0 with ym ∈ HmΩX such that σ∗ym = xm+1.
Notice that f pulls back to the (2m+ 1)-skeleton of X, i.e. it is in the image of

i# : π2m+1X
2m → π2m+1X

where i : X2m+1 → X denotes the inclusion. We may apply Lemma 8 to X2m+1 to observe that there exists
a homotopy equivalence

X2m+1 '−→ ΣY 2m

where Y 2m has its bottom cell at dimension m and top cell at dimension 2m. Now we may adjoint f
to obtain a mapping g : S2m → ΩX where according to the above observation it pulls back to a map
S2m → ΩX2m+1 ' ΩΣY 2m, i.e. we have the following commutative diagram

S2m
g //

g′ %%JJJJJJJJJ ΩX

ΩX2m+1

Ωi

OO

' // ΩΣY 2m.

If we assume that f is detected by Sqm+1 on xm+1 ∈ Hm+1X, this then also implies that the pull back of
f to X2m+1 is also detected by Sqm+1 on xm+1 = Σym where y2m ∈ HmY

2m. Lemma 6 then implies that
the mapping

g′ : S2m → ΩX2m+1 ' ΩΣY 2m

is detected by homology, i.e. hg′ = y2
m where we have used ym to denote the preimage of ym under the

isomorphism HmΩX2m+1 → HmY
2m. The class ym has the property that σ∗ym = xm+1.

To complete the proof, we need to show that hg = (Ωi)∗y2
m 6= 0. This is straightforward once we consider

the pair (ΩX,ΩX2m+1) and the following commutative diagram with exact rows

· · · // π2m+1(ΩX,ΩX2m+1) ∂ //

h(')

��

π2mΩX2m+1
(Ωi)# //

h

��

π2mΩX //

h

��

· · ·

· · · // H2m+1(ΩX,ΩX2m+1) ∂ // H2mΩX2m+1
(Ωi)∗ // H2mΩX // · · · .

If we assume that (Ωi)∗hg′ = (Ωi)∗y2
m = 0, then y2

m pulls back to H2m+1(ΩX,ΩX2m+1). One may use
homotopy excision property to show that

H2m+1(ΩX,ΩX2m+1) ' π2m+1(ΩX,ΩX2m+1),

i.e. g′ belongs to the image of ∂ : π2m+1(ΩX,ΩX2m+1)→ π2mΩX2m+1. This then implies that (Ωi)#g
′ = 0.

However, we know that 0 6= g = (Ωi)#g. This gives a contradiction to the assumption that (Ωi)∗y2
m = 0.

Hence, (Ωi)∗y2
m 6= 0 and the proof is complete.

The proof in the other direction is in a similar way and we leave it to the reader.
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7 One application and a conjecture

Consider the case when i = 3. In this case case we obtain spherical classes [η3]6 ∈ H6Q0S
−2 corresponding

to η3. A quick observation is that this class dies under the homology suspension σ∗ : H∗Q0S
−2 → H∗Q0S

−1,
and hence the subalgebra of H∗Q0S

−2 generated by QI [η3]6 belongs to kerσ∗. This is easy to see from the
following fact.

Lemma 7.1. A spherical class ξ−1 ∈ H∗Q0S
−1 survives under the homology suspension σ∗ : H∗Q0S

−1 →
H∗Q0S

0.

Proof. Recall from [CP89, Theorem 1.1] that the homology suspension σ∗ : QH∗Q0S
−1 → PH∗Q0S

0 is an
isomorphism where Q is the indecomposable quotient module functor, and P is the primitive submodule
functor. Moreover, the homology algebra H∗Q0S

−1 is an exterior given by

H∗Q0S
−1 ' EZ/2(σ−1

∗ PH∗Q0S
0).

Notice that a spherical class is primitive. This implies that a spherical class in H∗Q0S
−1 cannot be a

decomposable, as if this happens this it must be a square which is trivial in the exterior algebra. Hence, a
given spherical class ξ−1 ∈ H∗Q0S

−1 does not die under the suspension. This proves the lemma.

Now assuming that σ∗[η3]6 6= 0 would imply that ηi gives a spherical class in H∗Q0S
−1 and hence to a

spherical class in H∗Q0S
0. But this is a contradiction, as we observed at the beginning of the paper that ηi

does not give rise to a spherical class in H∗Q0S
0. Hence, σ∗[η3]6 = 0. In particular this detects a part of

H∗Q0S
−2 which does not come from pull back of any class in H∗Q0S

−1. We note that the existing literature
on the calculation of H∗Q0S

−2 has not detected this bit. This motivates the following conjecture.

Conjecture. the class [ηi]6 ∈ H6Q0S
−2i+6 dies under the homology suspension σ∗ : H∗Q0S

−2i+6 →
H∗+1Q0S

−2i+7. Consequently, the subalgebra of H∗Q0S
−2i+6 generated by QI [ηi]6 belong to kerσ∗.

8 A note on odd primary versions

This short section is dedicated to the problem of understanding H∗(Ωn+k
0 Sn; Z/p) and H∗(Q0S

−k; Z/p) when
p is an odd prime. As the reader has observed the essence of our calculations seems to be applicable in odd
primes, provided that one has the right machinery that we have used. We found mappings St → Y with a
factorisation through Ωn+kSn, i.e.

St → Ωn+kSn → Y

with nontrivial homology, for some choices of Y and mappings Ωn+kSn → Y . In our case, the spaces Y and
the mapping were provided by the James-Hopf invariants.
It is likely that one can do a similar job at odd primes. In the level of homotopy, assume that α ∈ pπ

S
k pulls

back to pπn+k+1S
n+1. We then may consider the James-Hopf invariant of the EHP -sequence at prime p,

and use the p-th James-Hopf invariant
jp : ΩΣSn → QSnp

inducing
pπn+kΩΣSn → pπn+kQS

np.
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Of course it is not known whether or not the p-analogue of Mahowald’s family exists in odd primary parts
of the stable homotopy groups, when at any odd prime p the ηi is defined to be a class which is detected by
h0hi in the Adams spectral sequence.

Remark 8.1. It is debatable what is the “right” analogous for Mahowald’s family, as it is observed by
Hunter and Kuhn [HK99] that there could be potential families in odd primes with “more similar” behavior
to the well known family at prime 2.

Assuming that the ηi exists at the odd prime p, Minami [M00, Theorem 4.1] has proved that ηi pulls back
to pπ(q(pi+1)−2)+2(pi−p)+3S

2(pi−p)+3, q = 2(p− 1), and maps to a multiple of a desuspension of β1 ∈ pπ
2
qp−2

under the James-Hopf invariant jp, i.e.
jpηi = kβ1

for some k with p - k. Hence, detecting the class β1, and in general βt, in H∗(−Z/p) as a map into a loop
space will be useful in this direction with to possible applications: as in one direction it may reveal informa-
tion on the homology algebras H∗(Ωn+kSk; Z/p), and it other direction it may provide some obstruction to
the existence of ηi in odd primes.

Finally, we note that at prime 2 a key tool for us was provided by Lemmata 2.1 and 4.1 which allowed
us to translate between “detecting a class by a primary operation” and “detecting the adjoint mapping in
homology”. It would be very interesting to see an odd primary version of any of these observations. We
postpone further work on this to a future work.
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