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A SCHUR–PARLETT ALGORITHM FOR COMPUTING

MATRIX FUNCTIONS∗

PHILIP I. DAVIES† AND NICHOLAS J. HIGHAM‡

Abstract. An algorithm for computing matrix functions is presented. It employs a Schur
decomposition with reordering and blocking followed by the block form of a recurrence of Parlett,
with functions of the nontrivial diagonal blocks evaluated via a Taylor series. A parameter is used to
balance the conflicting requirements of producing small diagonal blocks and keeping the separations
of the blocks large. The algorithm is intended primarily for functions having a Taylor series with an
infinite radius of convergence, but it can be adapted for certain other functions, such as the logarithm.
Novel features introduced here include a convergence test that avoids premature termination of the
Taylor series evaluation and an algorithm for reordering and blocking the Schur form. Numerical
experiments show that the algorithm is competitive with existing special-purpose algorithms for
the matrix exponential, logarithm, and cosine. Nevertheless, the algorithm can be numerically
unstable with the default choice of its blocking parameter (or in certain cases for all choices), and we
explain why determining the optimal parameter appears to be a very difficult problem. A MATLAB
implementation is available that is much more reliable than the function funm in MATLAB 6.5 (R13).

Key words. matrix function, matrix exponential, matrix logarithm, matrix cosine, Taylor
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1. Introduction. Matrix functions play a diverse role in science and engineer-
ing. They arise most frequently in connection with the solution of differential equa-
tions, with application areas including control theory [2], nuclear magnetic resonance
[6], [15], Lie group methods for geometric integration [22, Sec. 8], and the numerical
solution of stiff ordinary differential equations [9]. A large body of theory on matrix
functions exists, with comprehensive treatments available in [12] and [21], for exam-
ple. In this work a function f(A) of a matrix A ∈ C

n×n has the usual meaning,
which can be defined in terms of a Cauchy integral formula, a Hermite interpolating
polynomial, or the Jordan canonical form, and we assume that f is “defined on the
spectrum of A” (see any of the above references for details). The main property we
need is that for each A, f(A) is expressible as a polynomial in A (and of course that
polynomial depends on A).

A wide variety of computational methods have been proposed, most of them
geared to particular functions such as the exponential, the logarithm and the square
root. However, apart from the method of K̊agström [24] discussed below, no numer-
ically reliable method exists for computing f(A) for a general function f . Such a
method is needed for several reasons. First, software packages cannot provide special-
purpose routines for all the functions that might be required. For example, MAT-
LAB 6.5 (R13) provides routines to evaluate the matrix functions eA (expm) and A1/2

(sqrtm), but the matrix logarithm and matrix cosine, for example, must be computed
via the routine funm for general f . (MATLAB has a routine logm that computes
the matrix logarithm, but it calls funm). MATLAB’s funm has the capabilities that
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we are arguing for, but it is not numerically reliable, as is shown by our numerical
experiments in Section 7. The second benefit of a general purpose routine is that it
provides a benchmark for comparison. Methods for specific f can be rejected if they
offer no advantage over the best general method.

A general approach to compute f(A) for A ∈ C
n×n is to employ a similarity

transformation

A = ZBZ−1,(1.1)

where f(B) is easily computable. Then

f(A) = Zf(B)Z−1.(1.2)

If A is diagonalizable, for example, we can take B = diag(λi) and then f(B) =
diag(f(λi)) is trivially obtained. The drawback with this approach is that errors in
evaluating f(B) are multiplied by as much as κ(Z) = ‖Z‖‖Z−1‖ ≥ 1, yet the condi-
tioning of f(A) is not necessarily related to κ(Z), so this approach may be numerically
unstable. It is therefore natural to restrict to well conditioned transformations Z. Two
ways do so are to take (1.1) to be a Schur decomposition, so that Z is unitary and
B triangular, and to block diagonalize A using well conditioned transformations. We
consider these two possibilities in the next two subsections.

1.1. Schur method. Computation of a Schur decomposition A = QTQ∗, where
Q is unitary and T is upper triangular, is achieved with perfect backward stability
by the QR algorithm [13, Chap. 7], so in computing f(A) = Qf(T )Q∗ the interest
is in how to obtain F = f(T ). Since T is upper triangular, so is F (since it is a
polynomial in T ). Parlett [33] proposed using the following recurrence, which comes
from equating (i, j) elements (i < j) in the commutativity relation FT = TF :

fij = tij
fii − fjj

tii − tjj
+

j−1∑

k=i+1

fiktkj − tikfkj

tii − tjj
.(1.3)

From (1.3) we see that any element of F can be calculated so long as all the elements
to the left and below it are known. Thus the recurrence allows us to compute F a
superdiagonal at a time, starting with the diagonal elements fii = f(tii). MATLAB’s
funm implements this Schur method.

Unfortunately, Parlett’s recurrence breaks down when tii = tjj for some i 6= j,
that is, when T has repeated eigenvalues, and it can give inaccurate results in floating
point arithmetic when T has close eigenvalues. For example, if all the elements of
F and T are O(1) but T has two close eigenvalues with tii − tjj = O(ǫ) (a not

unreasonable scenario), then tij(fii − fjj) +
∑j−1

k=i+1(fiktkj − tikfkj) = O(ǫ), so that
the sum suffers massive, and probably very damaging, cancellation.

Parlett [32] notes that if T = (Tij) is block upper triangular then F = (Fij) has
the same block structure and, for i < j,

TiiFij − FijTjj = FiiTij − TijFjj +

j−1∑

k=i+1

(FikTkj − TikFkj).(1.4)

This recurrence can be used to compute F a block superdiagonal at a time, provided
we can evaluate the blocks Fii = f(Tii) and solve the Sylvester equations (1.4) for the
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Fij . For the Sylvester equation (1.4) to be nonsingular we need that Tii and Tjj have
no eigenvalue in common. Moreover, for the Sylvester equations to be well condi-
tioned a necessary condition is that the eigenvalues of Tii and Tjj are well separated.
Therefore to implement this block form of Parlett’s recurrence we need first to reorder
the Schur factor T into a block triangular matrix having two properties: distinct di-
agonal blocks have “sufficiently distinct” eigenvalues and, to aid the evaluation of f
on the diagonal blocks, the eigenvalues within a block are “close”. A parameter is
required to define “close” and “sufficiently distinct”.

1.2. Block diagonalization. An alternative approach is first to compute A =
XDX−1, where X is well conditioned and D is block diagonal. Then f(A) =
Xf(D)X−1 and the problem reduces to computing f(D). The usual way to com-
pute a block diagonalization is first to compute the Schur form and then to eliminate
off-diagonal blocks by solving Sylvester equations [4], [13, Sec. 7.6.3], [28]. In order
to guarantee a well conditioned X a bound must be imposed on the condition of the
individual transformations; this bound will be a parameter in the algorithm.

Computing f(D) reduces to computing f(Dii) for each diagonal block Dii. The
Dii are triangular but, unlike for the Schur method, no particular eigenvalue distribu-
tion is guaranteed, because of the limitations on the condition of the transformations;
therefore f(Dii) is still a nontrivial calculation.

1.3. Choice of method. The Schur method and the block diagonalization
method are closely related. Both employ a Schur decomposition, both solve Sylvester
equations, and both must compute f(Tii) for atomic triangular blocks Tii (“atomic”
refers to the fact that these blocks cannot be further reduced). Parlett and Ng [34,
Sec. 5] show that the two methods are mathematically equivalent, differing only in
the order in which two commuting Sylvester operators are applied. In this work we
have chosen to use the Schur method, because it has the advantage that it produces
atomic blocks with “close” eigenvalues—a property that we can exploit.

Our algorithm for computing f(A) consists of several stages. The Schur decom-

position A = QTQ∗ is computed, T is reordered to T̃ , the diagonal blocks f(T̃ii) are

computed, the rest of f(T̃ ) is computed using the block form of the Parlett recur-
rence, and finally the unitary similarity transformations from the Schur decomposition
and the re-ordering are applied. We consider first, in Section 2, the evaluation of f
on the atomic blocks, for which we use a Taylor series expansion. This approach is
mainly intended for functions whose Taylor series have an infinite radius of conver-
gence, such as the exponential and the trigonometric and hyperbolic functions, but
for some other functions, such as the logarithm, this step can be adapted or replaced
by another technique. In Section 3 we analyze the use of Parlett’s recurrence. Based
on the conflicting requirements of these two stages we describe our Schur reordering
strategy in Section 4.

Our algorithm is summarized in Section 5 and the relevance of several preprocess-
ing techniques is discussed in Section 6. An extensive set of numerical experiments is
described in Section 7.

For real matrices, it is natural to use the real Schur decomposition in the first
step of the algorithm and to attempt to work entirely in real arithmetic. However,
the algorithm’s strategy of placing eigenvalues that are not close in different blocks
requires splitting complex conjugate pairs of eigenvalues having large imaginary parts,
forcing complex arithmetic, so the algorithm does not lend itself to exploitation of the
real Schur form.
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We note that an attraction of the algorithm developed here is that it allows a
function of the form f(A) =

∑
i fi(A) (e.g., f(A) = sin A + cos A) to be computed

with less work than is required to compute each fi(A) separately, since the Schur
decomposition and its reordering need only be computed once.

We emphasize that our goal is to develop a method applicable for a wide range
of f . For particular f it will usually be possible to produce a more efficient or more
accurate algorithm. For example, for matrix pth roots reordering the Schur form
is not necessary—the Schur-based methods of [5], [17] and [36] achieve essentially
perfect numerical stability by exploiting elegant recurrences for pth roots of triangular
matrices. In the case of the logarithm function our algorithm in its general form is
not applicable, but we will specialize it to the logarithm and thereby obtain a method
that is a candidate for the best general purpose log A method.

Ours is not the first work to exploit reordered Schur decompositions or the Parlett
recurrence for computing matrix functions. Parlett’s recurrence was used by K̊agström
in his thesis [24]. There are three main differences between K̊agström’s approach and
ours. First, he used an initial block diagonalization, carried out with the method of
K̊agström and Ruhe [26], whereas we compute a Schur decomposition and reorder
the triangular form. Second, K̊agström uses the scalar rather than the block form of
the Parlett recurrence and when tii and tjj are sufficiently close he uses an explicit
formula for fij involving derivatives (this formula is given in [13, Thm. 11.1.3], for
example). Finally, we use a combination of Taylor series and the Parlett recurrence,
whereas K̊agström investigated the separate use of these two tools upon his block
diagonal form. More recently, Parlett and Ng [34] developed an algorithm specifically
for the matrix exponential that employs the Schur form with reordering and two levels
of blocking, exponentiates the diagonal blocks using the Newton divided difference
form of the interpolating polynomial, and uses the Parlett recurrence to obtain the
off-diagonal blocks.

2. Evaluating functions of the atomic blocks. Given an upper triangular
matrix T ∈ C

n×n whose eigenvalues are “close”, and an arbitrary function f , we need
a method for evaluating f(T ) efficiently and accurately. One approach, suggested by
Stewart [30, Method 18] for the matrix exponential and investigated for general f by
K̊agström [24], is to expand f in a Taylor series about the mean of the eigenvalues of
T . Write

T = σI + M, σ = trace(T )/n,(2.1)

which defines M as T shifted by the mean of its eigenvalues, and let λ(T ) denote the
set of eigenvalues of T . If f has a Taylor series representation

f(σ + z) =

∞∑

k=0

f (k)(σ)

k!
zk(2.2)

for z in an open disk containing λ(T − σI), then

f(T ) =

∞∑

k=0

f (k)(σ)

k!
Mk.(2.3)

If T has just one eigenvalue, so that tii ≡ σ, then M is strictly upper triangular
and hence is nilpotent with Mn = 0; the series (2.3) is then finite. More generally, if
the eigenvalues of T are sufficiently close then the powers of M can be expected to
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decay quickly after the (n−1)st, and so a suitable truncation of (2.3) should yield good
accuracy. We make this notion precise in the following lemma, in which we represent
M = D + N , with D diagonal and N strictly upper triangular (that is, having zero
diagonal) and hence nilpotent. For matrices, absolute values and inequalities are
defined componentwise.

Lemma 2.1. Let D ∈ C
n×n be diagonal with |D| ≤ δI and let N ∈ C

n×n be

strictly upper triangular. Then

|(D + N)k| ≤

min(k,n−1)∑

i=0

(
k

i

)
δk−i|N |i

and the same inequality holds with absolute values replaced by any consistent matrix

norm.

Proof. The bound follows from

|(D + N)k| ≤ (|D| + |N |)k ≤ (δI + |N |)k,

followed by a binomial expansion of the last term. Since |N |n−1 = 0 we can drop the
terms involving |N |i for i ≥ n − 1. An analogous argument holds for any consistent
matrix norm.

If δ < 1 and δ ≪ ‖N‖ in Lemma 2.1 then, for k ≥ n − 1,

‖(D + N)k‖ = O(δk+1−n‖N‖n−1),

and hence the powers of D + N decay rapidly after the (n − 1)st, irrespective of N .
This analysis shows that as long as the scalar multipliers f (k)(σ)/k! in (2.3) are

not too large we should be able to truncate the series (2.3) soon after the (n − 1)st
term (and possibly much earlier if M is small).

We need a reliable criterion for deciding when to truncate the Taylor series. When
summing a series whose terms decrease monotonically it is safe to stop as soon as a
term is smaller than the desired error. Unfortunately, our matrix Taylor series can
exhibit very non-monotonic convergence. Indeed when n = 2, M = T − σI always
has the form

M =

[
ǫ α
0 −ǫ

]
,(2.4)

and its powers are

M2k =

[
ǫ2k 0
0 ǫ2k

]
, M2k+1 =

[
ǫ2k+1 αǫ2k

0 −ǫ2k+1

]
.

For |ǫ| < 1, ‖Mk‖ → 0 as k → ∞, but ‖M2k+1‖ ≫ ‖M2k‖ for α ≫ 1. The
next theorem shows that this phenomenon of the “disappearing nonnormal part” is
connected with the fact that f can map distinct λi into the same value.

Theorem 2.2. Let D ∈ C
n×n be diagonal with distinct eigenvalues λ1, . . . , λp

(1 ≤ p ≤ n) of multiplicity k1, . . . , kp respectively, and let f(z) be an analytic function

on an open set containing λ1, . . . , λp. Then f(D+N) = f(D) for all strictly triangular

N ∈ C
n×n if and only if f(D) = f(λ1)I and

f (j)(λi) = 0, j = 1: ki − 1.(2.5)
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Note that (2.5) is vacuous when ki = 1.
Proof. (⇐) For any strictly triangular N let D + N = Zdiag(J1, . . . , Jq)Z

−1

(q ≥ p) be the Jordan canonical form of D + N with Jordan blocks

Ji =




λi 1
λi 1

. . .
. . .
. . . 1

λi



∈ C

mi×mi ,

where, necessarily, mi does not exceed the kj corresponding to λi. Then

f(D + N) = Zdiag(f(J1), . . . , f(Jq))Z
−1,

where (from (2.3), for example)

f(Ji) =




f(λi) f ′(λi) . . . . . . f(mi−1)(λi)
(mi−1)!

f(λi) f ′(λi) . . .
...

. . .
. . .

...
. . . f ′(λi)

f(λi)




.(2.6)

Since the derivatives of f are zero on any repeated eigenvalue and f(λi) = f(λ1) for
all i, f(D + N) = Zf(D)Z−1 = Zf(λ1)IZ−1 = f(λ1)I = f(D).

(⇒) Let F = f(D + N) and note that by assumption F = f(D) and hence F is
diagonal. The equation F (D + N) = (D + N)F reduces to FN = NF , and equating
(i, j) elements for j > i gives (fii−fjj)nij = 0. Since this equation holds for all strictly
triangular N it follows that fii = fjj for all i and j, and hence that F = f(λ1)I.

If at least one of the λi is repeated then we can find a permutation matrix P
and a strictly upper bidiagonal matrix B such that PDPT + B = P (D + PT BP )PT

is nonderogatory and is in Jordan canonical form, and N = PT BP is strictly upper
triangular. We have λ(D) = λ(D + N) and so the requirement f(D + N) = f(D)
implies that f(PDPT + B) = Pf(D)PT = f(λ1)I, and hence, in view of (2.6), (2.5)
holds.

Applying Theorem 2.2 to the function f(x) = xk we obtain the following corollary.
Corollary 2.3. Let D ∈ C

n×n be a nonzero diagonal matrix and let k ≥ 2.
Then (D + N)k = Dk for all strictly triangular matrices N ∈ C

n×n if and only if

D = β diag(e2k1πi/k, e2k2πi/k, . . . , e2knπi/k),

where β 6= 0, ki ∈ {0, 1, . . . , k − 1} and the ki are distinct (and hence k ≥ n).
Proof. By Theorem 2.2, all the diagonal elements of D must be kth roots of the

same number, βk say. The condition (2.5) implies that any repeated diagonal element
dii must satisfy f ′(dii) = kdk−1

ii = 0, which implies dii = 0 and hence D = 0; therefore
D has distinct diagonal elements.

As a check, we note that the diagonal of M in (2.4) is of the form in the corollary
for even powers k. The corollary shows that this phenomenon of very non-monotonic
convergence of the Taylor series can occur when the eigenvalues are a constant multiple
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of kth roots of unity. As is well known, the computed approximations to multiple
eigenvalues occurring in a single Jordan block tend to have this distribution. We will
see in Experiment 4 in Section 7 that this eigenvalue distribution also causes problems
in finding a good blocking.

We now develop a strict bound for the truncation error of the Taylor series, which
we will use to decide when to terminate the series.

Theorem 2.4 ([13, Thm. 11.2.2]). Let Q∗AQ = T = diag(λi) + N be a Schur

decomposition of A ∈ C
n×n, where N is strictly upper triangular. If f(z) is analytic

on a closed convex set Ω whose interior contains λ(A), then

‖f(A)‖∞ ≤

∥∥∥∥∥

n−1∑

r=0

ωr
|N |r

r!

∥∥∥∥∥
∞

≤ max
0≤r≤n−1

ωr

r!
‖(I − |N |)−1‖∞,

where

ωr = sup
z∈Ω

|f (r)(z)|.

Theorem 2.5 ([29, Cor. 2]). If f has the Taylor series

f(σ + y) =

∞∑

k=0

αkyk, αk =
f (k)(σ)

k!

for y in an open disk containing the eigenvalues of Y ∈ C
n×n, then

∥∥∥∥∥f(σI + Y ) −

s−1∑

k=0

αkY k

∥∥∥∥∥
∞

≤
1

s!
max
0≤t≤1

‖Y sf (s)(σI + tY )‖∞.(2.7)

We need to apply Theorem 2.5 with Y = M in (2.1), and so we need to be able
to bound max0≤t≤1 ‖M

sf (s)(σI + tM)‖∞. The term Ms is needed anyway if we
form the next term of the series. To bound max0≤t≤1 ‖f

(s)(σI + tM)‖∞ we can use
Theorem 2.4 to show that

max
0≤t≤1

‖f (s)(σI + tM)‖∞ ≤ max
0≤r≤n−1

ωs+r

r!
‖(I − |N |)−1‖∞,(2.8)

where ωs+r = supz∈Ω |f (s+r)(z)|. By using (2.8) in (2.7) we can therefore bound the
truncation error. The term ‖(I − |N |)−1‖∞ can be evaluated in just O(n2) flops1 for
the ∞-norm, since I−|N | is an M -matrix: we solve the triangular system (I−|N |)y =
e, where e = [1, . . . , 1]T , and then ‖y‖∞ = ‖(I − |N |)−1‖∞ [20, Sec. 8.3].

We now state our algorithm for evaluating a function of an atomic block via the
Taylor series. We denote by u the unit roundoff.

Algorithm 2.6 (Evaluating function of atomic block). Given a triangular

matrix T ∈ C
n×n whose eigenvalues λ1, . . . , λn are “close”, a function f having

the Taylor series (2.2) for z in an open disk containing λi − σ, i = 1:n, where

σ = n−1
∑n

i=1 λi, and the ability to evaluate derivatives of f , this algorithm computes

F = f(T ) using a truncated Taylor series.

1One flop is a floating point addition, multiplication or division.
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σ = n−1
∑n

i=1 λi, M = T − σI, tol = u
µ = ‖y‖∞, where y solves (I − |N |)y = e and N is the strictly
upper triangular part of T .
F0 = f(σ)In

P = M
for s = 1:∞

Fs = Fs−1 + f (s)(σ)P
P = PM/(s + 1)
if ‖Fs − Fs−1‖∞ ≤ tol‖Fs‖∞

% Successive terms are close so check the truncation error bound.
Estimate or bound ∆ = max0≤r≤n−1 ωs+r/r!, where
ωs+r = supz∈Ω |f (s+r)(z)|, with Ω a closed convex set containing λ(T ).
if µ∆‖P‖∞ ≤ tol‖Fs‖∞, quit, end if

end if
end for

Unless we are able to exploit particular properties of f , we can in practice take
ωs+r = max{ |f (s+r)(λi)| : λi ∈ λ(T ) }.

Algorithm 2.6 costs O(n4) flops, since even if T has constant diagonal, so that M
is nilpotent, the algorithm may need to form the first n−1 powers of M . Although we
usually insist on O(n3) flops algorithms in numerical linear algebra, this higher order
operation count is mitigated by three factors. First, n here is the size of a block, and
in most cases the blocks will be of much smaller dimension than the original matrix.
Second, M is an upper triangular matrix, so forming all the powers M2, . . . ,Mn−1

costs n4/3 flops—a factor 6 less than the flop count for multiplying full matrices.
Third, for certain particular f the function of the atomic blocks can be evaluated in
O(n3) flops by a method particular to that f .

Since in our overall f(A) algorithm we are not able to impose a fixed bound on
the spread maxi,j |tii − tjj | of the diagonal of T , Algorithm 2.6 is suitable in its stated
form only for functions that have a Taylor series with an infinite radius of convergence,
such as exp, cos, sin, cosh and sinh.

We now turn to the effects of rounding errors on Algorithm 2.6. Ignoring trun-
cation errors, standard error analysis [20] shows that the best possible forward error
bound is of the form

|F − F̂ | ≤
nu

1 − nu

∞∑

k=0

|f (k)(λ)|

k!
|M |k.

If there is heavy cancellation in the sum (2.3) then a large relative error ‖F−F̂‖/‖F‖ is
possible. This danger is well known, particularly in the case of the matrix exponential
[30]. A mitigating factor here is that our matrix T is chosen to have eigenvalues that
are clustered, which tends to limit the amount of cancellation in the sum. However,
for sufficiently far from normal T , damaging cancellation can take place. For general
functions there is little we can do to improve the accuracy; for particular f we can
of course apply alternative methods, as illustrated in the next subsection for the
logarithm.

2.1. Matrix logarithm. We show how Algorithm 2.6 can be adapted in the
important case of the matrix logarithm. We need to evaluate log T , where log denotes
the principal logarithm [8] and T is triangular with close eigenvalues. The basic
approximation tools at our disposal are a Taylor series and a Padé approximation,
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both of which are applicable to log(I +E) with ‖E‖ < 1. We write log T = log(I +E),
with E = T −I. If ‖E‖∞ ≤ θ, for some tolerance θ < 1, then we will compute a degree
m diagonal Padé approximation to log(I +E), for a suitable m. If ‖E‖∞ > θ then we
compute the principal square root of T , using the method of Björck and Hammarling

[5], and make the same test on the square root. Since T 1/2k

→ I as k → ∞, we
will eventually be able to apply the Padé approximation, after which we recover the
desired logarithm from the relation (see, e.g., [8])

log T = 2k log T 1/2k

.(2.9)

The method we have described is the inverse scaling and squaring method introduced
by Kenney and Laub [27]. Note that this method does not exploit the clustered
nature of the eigenvalues of T . We might hope to exploit this property by writing
log T = log(α · α−1T ) = log(α−1T ) + (log α)I, where α = n−1

∑
i tii (say), so that

diag(α−1T ) ≈ I. However, the multi-valued nature of the log function can cause the
second equality to fail (more precisely, it holds only if some of the logarithms are
interpreted as non-principal logarithm) and so we have not pursued this approach.

3. Evaluating the upper triangular part of f(A). We evaluate the upper
triangular part of F = f(T ) using Parlett’s recurrence (1.4), which we rewrite here as

TiiFij − FijTjj = FiiTij − TijFjj +

j−1∑

k=i+1

(FikTkj − TikFkj).(3.1)

We assume that T has been reordered and blocked so that Tii and Tjj have no eigen-
value in common, for all i 6= j. This Sylvester equation is therefore nonsingular and
it is easy to see that Fij can be computed a column at a time, with each column ob-
tained as the solution of a triangular system. Of particular concern is the propagation
of errors in the recurrence. These errors are of two sources: errors in the evaluation
of the diagonal blocks Fii, and rounding errors in the formation and solution of (3.1).
To gain insight into both types of error we consider the residual of the computed
solution F̂ :

T F̂ − F̂ T =: R,(3.2)

where Rij is the residual from the solution of the Sylvester equation (3.1). Although
it is possible to obtain precise bounds on R, these are not important to our argument.
Writing F̂ = F + ∆F , on subtracting TF − FT = 0 from (3.2) we obtain

T∆F − ∆FT = R.

As for the original equation TF − FT = 0, this equation uniquely determines the
off-diagonal blocks ∆F in terms of the diagonal blocks. Equating (i, j) blocks yields

Tii∆Fij − ∆FijTjj = Rij + ∆FiiTij − Tij∆Fjj +

j−1∑

k=i+1

(∆FikTkj − Tik∆Fkj)

=: Bij ,(3.3)

and these equations can be solved to determine ∆Fij a block superdiagonal at a time.
It is straightforward to show that

‖∆Fij‖F ≤ sep(Tii, Tjj)
−1‖Bij‖F ,(3.4)
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where sep is the separation of Tii and Tjj [13, Sec. 7.2.4], [38],

sep(Tii, Tjj) = min
X 6=0

‖TiiX − XTjj‖F

‖X‖F
.

It follows that rounding errors introduced during the stage at which Fij is com-
puted (i.e., represented by Rij) can lead to an error ∆Fij of norm proportional to
sep(Tii, Tjj)

−1‖Rij‖. Moreover, earlier errors (represented by the ∆Fij terms in (3.3))
can be magnified by a factor sep(Tii, Tjj)

−1. It is also clear from (3.3) that even if
sep(Tii, Tjj)

−1 is not large, serious growth of errors in the recurrence (3.3) is possible
if some off-diagonal blocks Tij are large.

To maximize the accuracy of the computed f(T ) we clearly need the blocks Tii

to be as well separated as possible in the sense of sep. However, trying to maximize
the separations between the diagonal blocks Tii tends to produce larger blocks with
less tightly clustered eigenvalues, which increases the difficulty of evaluating f(Tii),
so any strategy for reordering the Schur form is necessarily a compromise. Moreover,
the unitary transformations that produce and then re-order the Schur form may be
ill-determined functions of the original matrix A, and can be the dominant source of
error in the whole computation (see Experiment 9 in Section 7), making attempts to
maximize the separations ineffective.

Computing sep(Tii, Tjj) exactly when both blocks are m × m costs O(m4) flops,
while condition estimation techniques allow an estimate to be computed at the cost
of solving a few Sylvester equations, that is, in O(m3) flops [7], [18], [25]. It is
unclear how to develop a reordering and blocking strategy for producing “large seps”
at reasonable cost; in particular, it is unclear how to define “large”. Indeed the
maximal separations are likely to be connected with the conditioning of f(T ), but little
or nothing is known about any such connections. More generally, how to characterize
matrices for which the condition number of f is large is not well understood, even for
the matrix exponential [13, Sec. 11.3.1], [23], [37]. Recalling the equivalence mentioned
in Section 1.3 between block diagonalization and the use of the Parlett recurrence, a
result of Gu [14] provides further indication of the difficulty of maximizing the seps:
he shows that, given a constant τ , finding a similarity transformation with condition
number bounded by τ that block diagonalizes a triangular matrix is NP-hard.

In the next section we will adopt a reordering and blocking strategy that bounds
the right-hand side of the approximation

sep(Tii, Tjj)
−1 ≈

1

min{ |λ − µ| : λ ∈ λ(Tii), µ ∈ λ(Tjj) }

by the reciprocal of a given tolerance. The right-hand side is a lower bound for the
left that can be arbitrarily weak, but it is a reasonable approximation for matrices
not too far from being normal.

It is natural to look for ways of improving the accuracy of the computed F̂ from
the Parlett recurrence. One candidate is fixed precision iterative refinement of the
systems (3.1). However, these systems are essentially triangular, and standard error
analysis shows that the backward error is already small componentwise [20, Thm. 8.5];
fixed precision iterative refinement therefore cannot help. The only possibility is to
use extended precision when solving the systems.

4. Reordering and blocking the Schur form. Given the upper triangular
Schur factor T we will reorder it into a partitioned upper triangular matrix T̃ =
U∗TU = (T̃ij), where U is unitary and two conditions hold:
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1. separation between blocks:

min{ |λ − µ| : λ ∈ λ(T̃ii), µ ∈ λ(T̃jj), i 6= j } > δ,(4.1)

2. separation within blocks: for every block T̃ii with dimension bigger than 1,
for every λ ∈ λ(T̃ii) there is a µ ∈ λ(T̃ii) with µ 6= λ such that |λ − µ| ≤ δ.

Here, δ > 0 is a tolerance. The second property implies that for T̃ii ∈ R
m×m (m > 1)

max{ |λ − µ| : λ, µ ∈ λ(T̃ii), λ 6= µ } ≤ (m − 1)δ,

and this bound is attained when, for example, λ(T̃ii) = {δ, 2δ, . . . ,mδ}.
The following algorithm is the first step in obtaining the ordering. It can be

interpreted as finding the connected components of the graph on the eigenvalues of
T in which there is an edge between two nodes if the corresponding eigenvalues are a
distance at most δ apart.

Algorithm 4.1 (Block pattern). Given a triangular matrix T ∈ C
n×n with

eigenvalues λi ≡ tii, and a tolerance δ > 0, this algorithm produces a block pattern,

defined by an integer vector q, for the block version of Parlett’s method: the eigenvalue

λi is assigned to the set Sqi
, and it satisfies the conditions that min{|λi − λj |:λi ∈

Sp, λj ∈ Sq, p 6= q} > δ and, for each set Si with more than one element, every

element of Si is within distance at most δ from some other element in the set. For

each such set Sq, all the eigenvalues in Sq are intended to appear together in an upper

triangular block T̃ii of T̃ = U∗TU .

p = 1
Initialize the Sp to empty sets.
for i = 1:n

if λi /∈ Sq for all 1 ≤ q < p
Assign λi to Sp.
p = p + 1

end if
for j = i + 1:n

Denote by Sqi
the set that contains λi.

if λj /∈ Sqi

if |λi − λj | ≤ δ
if λj /∈ Sk for all 1 ≤ k < p

Assign λj to Sqi
.

else
Move the elements of Smax(qi,qj) to Smin(qi,qj).
Reduce by 1 the indices of sets Sq for q > max(qi, qj).
p = p − 1

end if
end if

end if
end for

end for
Algorithm 4.1 provides a mapping from each eigenvalue λi of T to an integer qi

such that the set Sqi
contains λi. Our remaining problem is equivalent to finding

a method for swapping adjacent elements in q to obtain a confluent permutation
q′. A confluent permutation of n integers, q1, . . . , qn, is a permutation such that
any repeated integers qi are next to each other. For example, there are 3! confluent
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permutations of (1, 2, 1, 3, 2, 1) which include (1, 1, 1, 3, 2, 2) and (3, 2, 2, 1, 1, 1). Ideally
we would like a confluent permutation that requires a minimal number of swaps to
transform q to q′. Ng [31] notes that finding such a permutation is an NP-complete
problem. He proves that the minimum number of swaps required to obtain a given

confluent permutation is bounded above by n2

2 (1 − 1
k ), where k is the number of

distinct qi, and that this bound is attainable [31, Thm. A.1]. In practice, since the
QR algorithm tends to order the eigenvalues by absolute value in the Schur form,
complicated strategies for determining a confluent permutation are not needed. The
following method works well in practice: find the average index of the integers in q
and then order the integers in q′ in ascending average index. If we take our example
(1, 2, 1, 3, 2, 1) and let gk denoted the average index of the integer k, we see that
g1 = (1 + 3 + 6)/3 = 3 1

3 , g2 = (2 + 5)/2 = 3 1
2 and g3 = 4. Therefore we try to obtain

the confluent permutation q′ = (1, 1, 1, 2, 2, 3) by a sequence of swaps of adjacent
elements:

q = (1, 2, 1, 3, 2, 1) → (1, 1, 2, 3, 2, 1)

→ (1, 1, 2, 3, 1, 2)(4.2)

→ (1, 1, 2, 1, 3, 2)(4.3)

→ (1, 1, 1, 2, 3, 2)(4.4)

→ (1, 1, 1, 2, 2, 3) = q′.

Swapping adjacent diagonal elements of T requires 20n flops, plus another 20n flops
to update the Schur vectors, so the cost of the swapping is 40n times the number of
swaps. The total cost is usually small compared with the overall cost of the algorithm.

Having determined the blocking and the desired confluent permutation we can
make repeated calls to the LAPACK routine xTREXC [1] to obtain it. This routine
applies a unitary similarity transformation to move the diagonal element of T with
row index j = IFST to row i = ILST, which is achieved by performing a sequence of
|j − i| swaps of adjacent diagonal elements. For example, if j > i, the diagonal of T
has the ordering

. . . , λi−1, λj , λi, λi+1, . . . , λj−1, λj+1,(4.5)

after application of xTREXC. Notice that swaps (4.2)–(4.4) can be achieved through
one call to the LAPACK routine xTREXC by requesting that λ6 ∈ S1 be moved to
row 3. The following algorithm is expressed with MATLAB indexing notation, for
conciseness.

Algorithm 4.2 (Obtaining a confluent permutation). Given a vector q ∈ R
n

containing all the integers 1, . . . , k (some repeated if k < n), this algorithm obtains a

confluent permutation according to the average indices of the integers in q. Returned

is a swapping strategy, stored in vectors ILST and IFST, to be used by the LAPACK

routine xTREXC to obtain a block form of T .

Let φ(j) denote the number of j’s in q. β = 1.
for i = 1: k

gi = (
∑

qk=i k)/φ(i)

end for
Sort g into ascending order gy1

≤ · · · ≤ gyk
, where y is an index vector.

for i = y
if any(q(β:β + φ(i) − 1) 6= i)

f = find(q == i); g = β:β + φ(i) − 1
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Concatenate g(f ∼= g) and f(f ∼= g) to the end of ILST and IFST,
respectively.
Let v = β: f(end) and delete all elements of v that are elements of f .
q(g(end) + 1: f(end)) = q(v)
q(g) = [i, . . . , i]
β = β + φ(i)

end if
end for

The routine xTREXC implements the swapping algorithm of Bai and Demmel [3],
which has guaranteed backward stability and, since we are swapping only 1×1 blocks,
always succeeds.

5. Overall algorithm. Our complete Schur algorithm for computing f(A) is as
follows.

Algorithm 5.1 (Computing f(A)). Given A ∈ C
n×n, a function f analytic on

a closed convex set Ω whose interior contains the eigenvalues of A, and the ability to

evaluate derivatives of f , this algorithm computes F = f(A).
Compute the Schur decomposition A = QTQ∗ (Q unitary, T upper triangular).
If T is diagonal, F = f(T ), goto (∗), end if
Using Algorithm 4.1 with δ = 0.1, assign each eigenvalue λi to a set Sqi

.
Apply Algorithm 4.2 to the vector q to produce a swapping strategy
in ILST and IFST.
for k = 1: length(ILST)

call xTREXC(V, n, T, n, Q, n, IFST(k), ILST(k), info)
end for
% Now A = QTQ∗ is our reordered Schur decomposition, with block m × m T .
for i = 1:m

Use Algorithm 2.6 to evaluate Fii = f(Tii).
for j = i − 1:−1: 1

Solve the Sylvester equation in (3.1) for Fij .
end for

end for
(∗) F = QFQ∗

The cost of Algorithm 5.1 depends greatly on the eigenvalue distribution of A,
and is roughly between 28n3 flops and n4/3 flops. Note that Q, and hence F , can be
kept in factored form, with a significant computational saving. This is appropriate if
F needs just to be applied to a few vectors, for example.

Note that we have set the blocking parameter δ = 0.1, which our experiments
indicate is as good a default choice as any. This optimal choice of δ in terms of cost
or accuracy is problem-dependent.

Algorithm 5.1 has a property noted as being desirable by Parlett and Ng [34]: it
acts simply on simple cases. Specifically, if A is normal, so that the Schur decomposi-
tion is A = QDQ∗ with D diagonal, the algorithm simply evaluates f(A) = Qf(D)Q∗.
At another extreme, if A has just one eigenvalue of multiplicity n, then the algorithm
works with a single block, T11 ≡ T , and evaluates f(T11) via its Taylor series expanded
about the eigenvalue.

If we specialize to the matrix logarithm and use the inverse scaling and squaring
method in place of Algorithm 2.6, as described in Section 2, Algorithm 5.1 is similar
to a Schur method for the matrix logarithm proposed by Dieci, Morini and Papini
[10]. The main difference is that in the latter paper the eigenvalues are ordered in
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the Schur form by increasing modulus and then the Schur form is blocked, without
any further re-ordering, so that (4.1) holds; this tends to lead to larger blocks than
Algorithm 4.1. (Consider, for example, the case where δ = 0.1 and the diagonal of
T is 1, i, −i, 1.1, for which the ordering of [10] produces one 4 × 4 block, whereas
Algorithm 2.6 produces one 2 × 2 block and two 1 × 1 blocks.)

6. Preprocessing. In an attempt to improve the accuracy of Algorithm 5.1 we
might try to preprocess the data before applying a particular stage of the algorithm.
Two techniques that have been used in the past, notably in Ward’s implementation
of the scaling and squaring algorithm for computing the matrix exponential [39], are
translation and diagonal scaling, and in [39] their purpose is to reduce the norm of
the matrix.

Translation has no effect on our algorithm. Algorithm 2.6 for evaluating the
Taylor series already translates the diagonal blocks, and further translations before
applying the Parlett recurrence are easily seen to have no effect, because (3.1) is
invariant under translations T → T − αI and F → F − βI.

A diagonal similarity transformation could be applied at any stage of the algo-
rithm and then undone later. For example, such a transformation could be used in
conjunction with Parlett’s recurrence in order to make U := D−1TD less nonnormal
than T and to increase the separations between diagonal blocks. In fact, by choosing
D of the form D = diag(θn, θn−1, . . . , 1) we can make U arbitrarily close to diago-
nal form. Unfortunately, no practical benefit is gained: Parlett’s recurrence involves
solving triangular systems and the substitution algorithm is invariant under diagonal
scalings (at least, as long as they involve only powers of the machine base). Similar
comments apply to the evaluation of the Taylor series in Algorithm 2.6.

A diagonal similarity transformation may be beneficial at the outset, prior to
computing the Schur decomposition. One can balance A with the aid of the standard
balancing algorithm used in conjunction with the QR algorithm (function balance in
MATLAB); this algorithm computes B = D−1AD, where D is chosen so that the norm
of the ith row and ith column are of similar magnitude for all i. Ward’s algorithm
[39] uses an initial balancing. Balancing is a heuristic that is not guaranteed to lead
to a more accurate result. We omit balancing from Algorithm 5.1, while recognizing
that it is potentially useful when we are dealing with badly scaled matrices.

7. Numerical experiments. Our experiments were carried out in MATLAB 6.5
(R13) on a Pentium IV, for which the unit roundoff u ≈ 1.1×10−16. Our implementa-
tion of Algorithm 5.1 comprises several M-files and a MEX file that calls the LAPACK
routine ZTREXC (we call the LAPACK binary supplied with MATLAB). Unless oth-
erwise stated, δ = 0.1 in Algorithm 4.1.

In computing errors we take for the “exact” f(A) an approximation X computed
at high precision using MATLAB’s Symbolic Math Toolbox (which invokes the Maple

kernel). The (relative or forward) error in X̂ is defined to be

‖X − X̂‖∞/‖X‖∞.

In certain applications the componentwise relative error maxi,j(|xij−x̂ij |/|xij |) might
be of interest. However, while componentwise accuracy is potentially achievable in
evaluating f(T ), the subsequent similarity transformation by Q will, in general, de-
stroy any special structure in the error and lead at best to a small normwise error.
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Table 7.1
Errors for Experiment 1: A = gallery(’triw’,8).

Algorithm 5.1 funm

A 4.5e-16 7.0e-1
A + rand(n)*1e-8 6.4e-15 1.2e-10

A + triu(rand(n))*1e-8 3.4e-16 2.2e44

We also quote the (relative) condition number

cond(A, f) = lim
ǫ→0

max
‖E‖2≤ǫ‖A‖2

‖f(A + E) − f(A)‖2

ǫ‖f(A)‖2
,

which we estimate using the finite-difference power method proposed by Kenney and
Laub [27].

We present ten experiments that give insight into the many facets of the f(A)
problem and our particular algorithm.

Experiment 1. Our first experiment shows the importance of using a block form
of the Parlett recurrence. We take A to be the 8 × 8 triangular matrix with aii ≡ 1
and aij ≡ −1 for j > i, which is MATLAB’s gallery(’triw’,8). With f the
exponential, Table 7.1 shows the errors for A and two small perturbations of A, one
full and one triangular. The condition number of f(A) is about 2 in each case, so
we would expect to be able to compute f(A) accurately. Algorithm 5.1 provides very
good accuracy. MATLAB 6.5’s funm, which employs the point version of the Parlett
recurrence, performs badly, as expected in view of the repeated or close eigenvalues.
This is an extreme example, in that Algorithm 5.1 takes just one block, the whole
Schur factor T , and so reduces to evaluating the Taylor series of T .

Experiment 2. It is easy to show numerically the need for the safeguard in the
test in Algorithm 2.6 for terminating the Taylor series. For the matrix

T =

[
0.5 1012

0 −0.5

]

Algorithm 5.1 evaluates the exponential with error less than u, treating the matrix
as one block and taking 10 terms of the Taylor series. If the Taylor series evalua-
tion is terminated solely based on comparison of successive terms, thus omitting the
derivative test in Algorithm 2.6, then only 4 terms are taken and the error is 5×10−8.

Experiment 3. We give an example to show that for the exponential function
Algorithm 5.1 can be much more accurate than the scaling and squaring method
implemented in MATLAB’s expm. We take the upper triangular matrix

T = gallery(’triw’,4,2^(60)) - diag([17 17 2 2])

which has diagonal elements −16,−16,−1,−1 and off-diagonal elements 260 ≈ 11 ×
1018. This badly scaled matrix causes great difficulty for expm, which yields a rel-
ative error of order 117. Algorithm 5.1 chooses the blocking (1: 2), (3: 4) (with no
reordering) and produces a result correct to machine precision. We note that the
more sophisticated scaling strategy proposed in [11] would improve the accuracy of
the scaling and squaring method. The significance of this experiment is that it shows
that our general purpose method can be significantly more accurate than one of the
best available eA implementations.

Experiment 4. The next experiment shows how Algorithm 5.1 can behave in an
unstable manner. We compute eT , where the upper triangular T is generated by the
MATLAB code
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Fig. 7.1. Eigenvalue distribution for Experiment 4. Circles denote eigenvalues and eigenvalues
in the same block are joined by lines.

n = 50; randn(’state’,1)

B = triu(randn(n),1) + eye(n);

Q = gallery(’orthog’,n);

B = Q*B*Q’; T = schur(B,’complex’);

Although T has n eigenvalues 1 if formed in exact arithmetic, the computed T has
eigenvalues mainly lying on and in an approximate circle of radius 0.4 centred on
(1, 0). Algorithm 5.1 requires just 2 swaps to produce the block pattern

(1: 35) : 25 terms, (36: 36), (37: 37), (38: 42) : 11 terms, (43: 50) : 13 terms,

where the number of terms required in the Taylor series evaluation of each nontrivial
diagonal block is shown. Figure 7.1 shows the eigenvalues and the blocking: the
eigenvalues are represented by circles and a path is drawn between two eigenvalues if
they belong to the same block. The condition number is cond(T, f) ≈ 293, but the
error is 7 × 10−4. Some insight is provided by Tables 7.2 and 7.3, which show, with
T now the reordered Schur form, the blockwise errors ‖Xij − X̂ij‖∞/‖Xij‖∞ and the
separations sep(Tii, Tjj) for i 6= j. The blocks with largest errors lie off the diagonal in
the first block row and correspond to very small values of sep. This is not surprising
in view of the bound (3.4).

An interesting feature of this example is that if we increase δ to 0.2 then Algo-
rithm 5.1 chooses just one block and so calculates the exponential by a Taylor series
of the whole of T , giving a result with error 1.4 × 10−14 < cond(T, f)u. Figure 7.2
gives further insight by showing δ plotted against the error. The data for this plot
was generated in such a way that all values of δ at which the blocking changes are
included. The error is of order 10−4 for all δ until the first δ for which only one
block is chosen. It seems that for this example any attempt to split eigenvalues into
different blocks has a disastrous effect on the error.

Experiment 5. The previous experiment might suggest that it is better to over-
estimate δ. However, the graph of δ versus error can be U-shaped. Consider the
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Table 7.2
Errors in blocks Xij computed by Algorithm 5.1 in Experiment 4.

j

i 1 2 3 4 5
1 1.6e-14 1.9e-6 2.9e-6 2.3e-5 2.0e-3
2 1.1e-14 5.4e-15 6.6e-15 2.2e-12
3 2.1e-14 1.1e-14 5.4e-13
4 1.0e-14 4.8e-13
5 4.5e-14

Table 7.3
Values of sep(Tii, Tjj) for Experiment 4.

j

i 1 2 3 4 5
1 2.2e-12 2.2e-12 3.4e-12 2.0e-13
2 5.4e-1 4.4e-2 8.3e-3
3 4.4e-2 8.3e-3
4 3.4e-5

exponential of minus the upper triangular Schur factor of the 50 × 50 Frank ma-
trix (MATLAB’s gallery(’frank’,50)), for which cond(A, f) ≈ 2× 103. Figure 7.3
shows the corresponding δ versus error plot; the error is near minimal for 2.3 <

∼ δ <
∼ 5.2

and increases rapidly outside this range.
Experiment 6. The next experiment shows that Algorithm 5.1 can fail to behave

in a stable way for all choices of δ. The matrix is a 65 × 65 upper triangular matrix
T constructed in MATLAB by

A = -schur(gallery(’frank’,125),’complex’)/2;

i = [26:60 96:125]; T = A(i,i);

Figure 7.4 plots δ versus the error for the exponential function; the error is always
at least 10−10, which is three orders of magnitude greater than cond(T, f)u. Note,
however, that varying δ does not generate all possible blockings, so we cannot rule
out the possibility that the Schur–Parlett method is stable on this example for some
other blocking. The following experiment provides further insight.

Experiment 7. For any particular matrix, it is of interest to know which blocking
produces the most accurate computed result. We can answer this question experi-
mentally by testing all possible blockings. The number Sn of blocking patterns for an
n × n matrix can be shown to be

Sn =
n∑

k=1

S(k)
n ,

where S
(k)
n is the number of ways a set of n elements can be partitioned into k disjoint,

non-empty subsets. The numbers Sn and S
(k)
n are known as Bell numbers and Stirling

numbers of the second kind, respectively. The Sn grow very quickly, so it is feasible
to try all orderings only for small n. We describe an example with n = 10, for which
there are S10 = 115, 975 different blockings. We generate an upper triangular T with
the MATLAB code

n = 10;

mu = 0.2; phi = 5;

randn(’state’,0)

B = phi*triu(randn(n),1) + eye(n);
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Fig. 7.2. Blocking parameter δ versus error for Experiment 4. Dotted line denotes level of cond u.
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Fig. 7.3. Blocking parameter δ versus error for Experiment 5. Dotted line denotes level of cond u.

Q = gallery(’orthog’,n); B = Q*B*Q’;

[U,T] = schur(B,’complex’);

d = diag(T - eye(n)); delta = abs(d(1)-d(2));

T(1:n+1:n^2) = mu/delta*d + ones(n,1);

The computed eigenvalues of T lie approximately equally spaced on a circle centre 1,
radius 0.3.

Again, the function is the exponential, for which the condition number for this
problem is 1.1 × 102. The results can be summarized as follows.

• Algorithm 5.1 chooses all 1 × 1 blocks and produces an error 2.8 × 10−10.
• For the trivial blocking {1: 10}, the error is 3.9×10−16. This blocking is produced

by Algorithm 5.1 when δ is increased to 0.2.
• The other 115,974 nontrivial blockings produce errors ranging from 8.7 × 10−12

(for the blocking (1: 5), (6: 10)), to 3.0 × 10−9 (for the blocking (1: 2), (3: 4),
(5: 6), 7, (8: 10)).

• For comparison, MATLAB’s expm produces an error 1.4 × 10−14.
Thus only the trivial blocking produces a computed result with error bounded by a
small multiple of condu. This example shows that the block Parlett recurrence can
fail to behave in a forward stable way for all nontrivial blockings.

Experiment 8. Now we consider the matrix cosine function. A method specialized
to this function is proposed by Serbin and Blalock [35] (see also [13, Sec. 11.2.3]). The
idea is to compute cos(A) by scaling by a power of 2 to produce a matrix with norm
of order 1, approximate the cosine of the scaled matrix, then use the double-angle
formula to recover the cosine of the original matrix:

C0 = Taylor series approximation to cos(A/2k)
for j = 1: k
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Fig. 7.4. Blocking parameter δ versus error for Experiment 6. Dotted line denotes level of cond u.

Cj = 2C2
j−1 − I

end
Here, we have specified a Taylor series approximation, though alternatives such as
Padé approximants could also be used. Although some analysis of the method is given
in [35], how to choose k and the degree of the Taylor approximation to strike a balance
between minimizing the truncation error, rounding errors, and the computational
effort, is not understood. We have therefore implemented the following approach: we
run the method with k = 0: ⌈2 log2 ‖A‖1⌉ and with the Taylor series evaluated with
convergence tolerance u and record the smallest error observed. In other words, we
find the most accurate solution that the method can provide, for a wide range of k.

For the 6 × 6 Pascal matrix (MATLAB’s pascal(6)), which has ∞-norm 462,
Algorithm 5.1 produces a computed solution with error 9.0×10−15; since this matrix is
symmetric Algorithm 5.1 simply evaluates the cosine function on the diagonal matrix
of eigenvalues. The double-angle method produces minimum error 8.5× 10−13, which
is achieved for k = 6 and using 35 terms of the Taylor series.

For the MATLAB matrix A = gallery(’invol’,8)*pi, which has ∞-norm of
order 106 and eigenvalues ±π, so that cos(A) = I, the relative error for Algorithm 5.1
is 4.73 × 10−11, resulting from the blocking (1: 4), (5: 8) with 4 Taylor series terms
for each block (with no reordering). If just one block is taken then 35 Taylor series
terms are required and the error is about 6 times larger. The minimum error from
the double-angle method is 8.6× 10−14, achieved for k = 15 and using 3 terms of the
Taylor series. Interestingly, the error for k = 0, which evaluates cos(A) directly from
the Taylor series, is 9.0 × 10−14, while k = 20 ≈ log2(‖A‖∞) (which is suggested in
[13]) produces a much larger error 2.0 × 10−11. The condition number cond(A, f) is
of order 108.

Our conclusion from this experiment is that Algorithm 5.1 is competitive in accu-
racy with the double-angle method, even when the optimal k is chosen for the latter
method.

Experiment 9. Next we consider the matrix logarithm. In Algorithm 5.1 we use
the inverse scaling and squaring method in place of Algorithm 2.6, as described in
Section 2; we take θ = 0.25 and m = 8 and evaluate the Padé approximant by a
partial fraction expansion, as recommended in [19]. We take the matrix A = ZJZ−1

from [4], where

J = diag(1, J3(1), 0.3, 0.4, 0.5, 0.6, 0.7, 0.8),

with Jm(λ) an m × m Jordan block with eigenvalue λ, and Z is a random matrix
with condition number 108. The re-ordered Schur triangular factor, denoted by T ,
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Fig. 7.5. Error measure (7.1) for 26 13 × 13 test matrices.

is blocked (1: 1), (2: 2), (3: 3), (4: 4), (5: 5), (6: 7), (8: 10). The error in the computed
X = log A is 8 × 10−4 ≈ cond(A, f)u. However the error in the computed log T is
only 1× 10−14, which is consistent with the fact that mini6=j sep(Tii, Tjj) = 1× 10−4.
In this example, then, the error is dominated by the error introduced by the unitary
transformations, and the error in the evaluation of the log Tii and in the block Parlett
recurrence is negligible, by comparison. Even if we evaluate log T to full working
accuracy, the unitary back-transformations increase the error to the level 10−3 once
again. This illustrates that although unitary transformations are perfectly backward
stable, they can be the dominant source of forward error in Algorithm 5.1.

Experiment 10. In the final experiment we use the quantity

β =
‖A − e

bX‖∞
‖A‖∞

,(7.1)

where X̂ is the computed logarithm of A, to test the quality of three matrix logarithm
methods: Algorithm 5.1 specialized to the logarithm as in the previous experiment,
MATLAB 6.5’s logm (which is essentially funm applied to the log function), and an
implementation of the inverse scaling and squaring method that computes a Schur
decomposition, takes square roots as necessary of the full triangular factor and then
computes a degree 8 diagonal Padé approximation. We use 27 13 × 13 matrices
obtained from the function matrix in the Matrix Computation Toolbox [16]; these
matrices include test matrices from MATLAB itself. The results, in Figure 7.5, show
that Algorithm 5.1 performs at least as well as the other two logarithm methods for
these test matrices.

8. Conclusions. Algorithm 5.1 is applicable to a wide range of functions and
imposes no restrictions on the matrix. It requires O(n3) flops unless close or repeated
eigenvalues force large blocks to be chosen when the Schur form is blocked, in which
case the operation count can be up to n4/3 flops. The algorithm needs to evaluate
derivatives of the function when there are blocks of dimension greater than 1. This
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is a price to be paid for catering for general functions and non-normal matrices with
possibly repeated eigenvalues.

The algorithm has a parameter δ that is used to determine the reordering and
blocking of the Schur form. This parameter serves to balance the conflicting require-
ments of producing small diagonal blocks and keeping the separations of the blocks
large. It is unclear how to choose δ to (nearly) maximize the accuracy of the com-
puted f(A). Indeed it is an open problem to understand fully the conditioning of
general matrix functions, and a good choice of δ is likely to require knowledge of the
conditioning. Our default choice of δ = 0.1 performs well much of the time. The most
difficult cases for our algorithm are when a substantial subset of the computed eigen-
values are approximately equally spaced on a circle in the complex plane, in which
case the default δ may yield an unnecessarily inaccurate result. The option of running
the algorithm with several different δ is not usually helpful in practice because for
most f we have no way to judge the quality of a computed f(A) without comparing
it with the exact answer. Moreover, it is possible that for all choices of δ the error
is greater than the condition of the problem warrants (see Experiment 6). Never-
theless, as our numerical experiments make clear, even specialized methods, such as
the scaling and squaring method for the matrix exponential, can behave unstably on
certain examples, and Algorithm 5.1 is competitive with all the specialized algorithms
to which we have compared it experimentally.

Our MATLAB implementation of Algorithm 5.1 is more robust and numerically
reliable than MATLAB 6.5’s funm, which ignores the dangers of close or repeated
eigenvalues and always uses the point version of the Parlett recurrence. We hope that
this implementation will serve as a benchmark with which to compare both specific
f(A) routines and other general purpose routines.
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