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Abstract

The border collision normal form is a two dimensional continuous, piecewise
affine map which arises naturally in models where the dynamics is defined by
different systems of equations in different regions of phase space, but which
are continuous across the boundaries between regions. There are theorems
which establish the existence of invariant measures for chaotic attractors
of these systems, but the conditions are hard to establish analytically. By
verifying these conditions numerically it is possible to describe regions of
parameter space for which invariant measures do exist (up to numerical con-
fidence) and compare this with what is known about the dynamics in these
regions.

Keywords: border collision bifurcation, chaotic attractor, invariant
measure

1. Introduction

Some control systems use different strategies under different conditions.
This leads to switched systems: dynamical systems where the defining equa-
tions change as a variable crosses some switching (or critical) surface. Switch-
ing also occurs in models of friction, some electric circuits and contact me-
chanics, see [2, 3, 4, 6, 16]. In this paper we consider maps which are piecewise
smooth and have discrete time and continuous variables. There is a switching
surface (or critical line) Σ dividing the regions in which the dynamics is de-
termined by smooth maps, and the equations are continuous across Σ. Thus
the left and right sides of Σ could be labelled by L and R respectively, and a
discrete variable defined to take values in {L,R} according to which side of
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Σ the continuous variables are at time n. This discrete variable then deter-
mines which dynamical system is applied at the next time step. In particular
we consider the normal form of the bifurcation which occurs as a fixed point
of one of the systems moves to intersect the critical surface as a parameter
is varied. This normal form, called the border collision normal form [17] is a
two dimensional map defined by a pair of affine maps, one holding in L and
the other in R. There maps have a very rich array of possible dynamics and
novel bifurcations (e.g. [13]). Here we concentrate on parameters for which
there are chaotic attractors, and we will seek to determine when these have
invariant measures.

The existence of a ‘natural’ invariant measure for a chaotic attractor
means that the attractor has a number of nice properties: the evaluation of
(almost all) functions on (almost all) orbits of the attractor converge to the
integral of the function over the measure, and the support of the measure
defines the attractor itself as a geometric object. Thus the existence of an
invariant measure gives the chaotic set a certain regularity and makes predic-
tions possible for averaged quantities. Hunt et al [10] provide an admirable
introduction to invariant measures of dynamical systems, and some of the
techniques and results which are known. Unfortunately it is relatively hard to
prove existence theorems for any particular example, and even when classes
of examples are considered the conditions which need to be verified for the
theorems to apply are often difficult to check by hand. The aim of this paper
is to use numerical simulations to verify the conditions of existence theorems
for a class of two-dimensional maps of the plane, and to investigate how this
meshes with results about the dynamics of these maps.

In the context of switched systems, the normal form for the bifurcation
which occurs if a fixed point of one of the maps strikes the switching sur-
face was developed by Nusse and Yorke [17]. By transforming the switching
surface to the y−axis (x = 0) the local dynamics with x = (x, y)T is

xn+1 =

{
ALx + m if x ≤ 0
ARx + m if x ≥ 0

(1)

where the matrices AL and AR, and the vector m are defined as

Ak =

(
Tk 1
−Dk 0

)
and m =

(
µ
0

)
(2)

for k = L,R. The constants Tk and Dk are the trace and determinant of
the Jacobian of the defining equations evaluated at the bifurcation point on
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the left and right of Σ, whilst µ is the bifurcation parameter. By scaling,
only the sign of µ changes the behaviour of the map, and in this paper we
will assume that µ ∈ {−1, 1} (ignoring the ‘bifurcation’ value µ = 0) and
the aim is to understand the structure of attractors of these systems, not to
make a comparison between the bifurcation states µ = −1 and µ = 1, so in
any particular discussion µ will be fixed and the trace and determinant of
the two defining maps AR and AL will act as parameters.

The border collision normal form (1,2) is a very natural set of continuous
systems to write down, and the equations were discussed by mathemati-
cians before the application to the border collision bifurcation was discov-
ered. Hence special cases arise in the literature, and in the early 1980s they
provided one of the first test-beds for the development of techniques to prove
the existence of strange attractors with ergodic, absolutely continuous in-
variant measures; a program which eventually led to the breakthrough of
Mora and Viana [15] proving the existence for some parameters of the Hénon
map. Early work by Misiurewicz [14] centred on the Lozi map, which can be
though of as (1) with

1 < TL ≤ 2, TR = −TL, DR = DL. (3)

Young [19] extended these results to more general maps of the plane (cf. [8]),
and it is her theorem that is used here. It is worth stressing that nothing
genuinely new is added to her result in this paper, but in order to apply
the result to the border collision normal form it is necessary to rescale the
system and make small modifications to the statement. Although this is not
theoretically deep, we believe it is valuable to understand explicitly how and
where the theorems apply, rather than leaving them as implicit statements.
The discussion of Young’s Theorem and its adaptation to the border collision
normal form is given in Section 2. In Section 3 the results of Misiurewicz [14]
for the Lozi map are revisited and extended with numerical aid. Section 4
considers the case of robust chaos described in [4], and the final sections
consider more abstruse examples.

We end this introduction by providing a more formal definition of invari-
ant measures for a map F : X → X.

A measure µ on X is an F−invariant measure (or just invariant measure if
it is clear which map is being considered) if for every measurable set U ⊆ X,
µ(U) = µ(F−1(U)) where F−1(U) = {x ∈ X | F (x) ∈ U}. It is a probability
measure if µ(X) = 1. The invariant measures proved to exist by Young [19]
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have nice properties on invariant manifolds (the measures have absolutely
continuous conditional measures on unstable manifolds), and this implies
that they are Bowen-Ruelle measures with the natural ergodic property that
time averages over orbits equal spatial averages with respect to the measure.
More precisely an invariant probability measure is a Bowen-Ruelle measure
if there is a set U ⊆ X of positive Lebesgue measure such that for every
continuous function φ : X → X and almost all x ∈ U

1

n

n−1∑

k=0

φ(F k(x)) →
∫

U

φdµ

as n → ∞ (see [10] for more details). Intuitively it may be helpful to think
of U as a basin of attraction for some complicated invariant set (the support
of the invariant measure) which has nice statistical properties, i.e. it is a
classic strange attractor.

2. The existence of invariant measures

Very little has been written about the existence of invariant measures
for the dynamics of the normal form within the border collision community.
However, Lozi maps and their generalizations have been considered in this
light [8, 19, 10] and this provides a theoretical framework within which the
existence of measures can be established. The key to this is Young’s Theorem
[19]. This theorem, and the minor adaptations needed to apply it to the
border collision normal form are described in this section.

2.1. Young’s Theorem

Consider a general piecewise affine continuous map of the form (1) but
with linear parts AR and AL defined by

Ak =

(
αk βk

γk δk

)
(4)

k = R,L. To apply Young’s Theorem these coefficients must satisfy some
simple inequalities:

(|αk| − |βk|)− (|γk| − |δk|) ≥ 0, k = R, L
|αk| − |βk| > 1, k = R, L

(|βk|+ |δk|)/(|αk| − |βk|)2 < 1 k = R, L.
(5)
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Theorem 1. (Young’s Theorem [19]) Let F : R2 → R2 be a map of the
form (1) defined by matrices given by (4) with coefficients which satisfy (5).
Suppose that the map takes some rectangle D = [a, b]× [c, d] with a < 0 < b
into itself and let S = {0} × [c, d] (the segment of the y−axis in D). Let
u = mink=R,L(|αk| − |βk|). If there exists an integer N > 0 such that uN > 2
and F p(S) ∩ S = ∅ for 1 ≤ p < N then F has an attractor with a Bowen-
Ruelle measure.

N describes how many iterates of the map are applied before returning to
the critical set, and hence provides a bound on the horizontal expansion of
segments. If N = 1 then we interpret the final condition to be automatically
true (as a property of the empty set) and the condition becomes simply
|Tk| > 2. Note that in [19] the Theorem is stated with a small misprint:
the inequalities for p is given as 1 ≤ p ≤ N . The remark that the final
condition is automatically true if N = 1 makes no sense in this case, and the
replacement of F by FN is natural provided equality is excluded, so we are
confident this is the correct statement of the Theorem.

Young’s result applies to a much broader class of maps than those defined
here, but this is the application of her result to the piecewise affine continuous
maps defined here. For the border collision normal form where the matrices
AR and AL are defined in (2) the conditions (5) become

|Tk| − 1− |Dk| ≥ 0, k = R, L
|Tk| > 2, k = R, L

1/(|Tk| − 1)2 < 1 k = R, L.
(6)

The third if these equations is implied by the second, so only the the first two
of these equations need to be satisfied. Unfortunately the second condition
is restrictive in a way which means that (for example) the Lozi map, with
parameters (3), cannot be considered. But, as Young herself points out, this
problem can be avoided by a simple scaling, and this is part of what is done
in the next subsection. Two other problems need to be addressed before the
result can be applied: the rectangular region R must be identified and then
the exponent N computed. The first of these problems needs some thought,
and it is easier to use a non-rectangular region with a view to maximizing
N . The second is where computer simulations come into their own. These
three factors: scaling, existence of an invariant region (i.e. a connected set
U ⊂ R2 which is the closure of its interior – a region – such that if x ∈ U
then F (x) ∈ U – invariance) and the calculation of the exponent N are the
subject of the next subsection.
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2.2. Scaling for the Border Collision Normal Form

Given ε > 0 let y = εz, then in terms of the new coordinates (x, z) the
normal form becomes

(
xn+1

zn+1

)
=

(
Tk ε

−Dk/ε 0

) (
xn

zn

)
+

(
µ
0

)
(7)

with k = R if xn ≥ 0 and k = L if xn ≤ 0. Young’s conditions on the
derivatives, (5), therefore become

ε(|Tk| − ε)− |Dk| ≥ 0, k = R, L
|Tk| > 1 + ε, k = R, L

ε/(|Tk| − ε)2 < 1 k = R, L.
(8)

These inequalities can be satisfied for all pairs (Tk, Dk) with |Tk| > 1 + ε
and |Dk| < ε for some ε ∈ (0, 1) – a great improvement on the previous
case. Note that the third of equations (8) is satisfied if the second equation
is satisfied and ε < 1.

Suppose A is an invariant region for the border collision normal form in
the standard coordinates (1), and A′ is the corresponding region in the new
coordinates (x, z). The clearly A′ is an invariant region, and the intersection,
C, of A with the critical line x = 0 is mapped by the coordinate transfor-
mation to the intersection, C ′, of the transformed critical line (still x = 0)
with A′. Since the map (x, y) → (x, z) is a differentiable conjugacy for the
dynamics if ε 6= 0, the geometric condition of Young’s Theorem can either
be written in the old coordinates or the new coordinates, and we will choose
to continue to work in the new coordinates.

In the statement of Young’s Theorem the invariant region is a rectangle,
but the proof relies only on the expansion properties of near-horizontal seg-
ments, and so works for any invariant region which intersects the critical line
and its images nicely. In particular we may take any convex invariant region
instead of R. These comments lead to the following reformulation of Young’s
Theorem for the border collision normal form.

Theorem 2. Let F : R2 → R2 be a map of the form (1) and suppose F
has a convex invariant region A which intersects the critical line {x = 0}
in a closed, non-empty line segment C. If there exists ε > 0 and N ∈ Z+

such that inequalities (8) hold, and (|Tk| − ε)N > 2 with F p(C) ∩ C = ∅ for
1 ≤ p < N , then F has an attractor with a Bowen-Ruelle measure.

6



As before, note that if N = 1 then we interpret the final condition to
be automatically true (as a property of the empty set) and the condition
becomes simply that inequalities (8) hold and |Tk| − ε > 2. We shall use the
conditions from Theorem 2 to verify the existence of invariant measures for
the border collision normal form.

3. The Lozi Map revisited

Throughout the late 1970s and the 1980s, a major question of research
was to describe the existence and prevalence of strange attractors in Hénon
maps, which are two-dimensional maps of the plane

xn+1 = f(xn) + yn

yn+1 = bxn
(9)

where f is a smooth map of the real line, for example the logistic map.
A general framework within which these questions could be answered was
developed by Benedicks and Carleson [5] and then Mora and Viana [15], but
early successful attempts to describe strange attractors used piecewise linear
models for f , and in particular the Lozi maps [12], which has

f(x) = 1− a|x|, a ∈ (1, 2] (10)

i.e. the Lozi map is
xn+1 = −a|xn|+ yn + 1
yn+1 = bxn

(11)

with 1 < a ≤ 2 (cf. the border collision normal form (1,2)).
Misiurewicz [14] proved the existence of strange attractors as the closure

of the unstable manifold of a saddle fixed point. The Lozi map is equivalent
to the border collision normal form with

TR = −a, TL = a, DL = DR = −b (12)

and we will begin by stating Misiurewicz’s result (which does not include
the existence of an invariant probability measure, but pre-dates the work of
Young [19] and Collet and Levy [8]).
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Figure 1: Geometry of the invariant region for parameters in P. Note that F (Z) can also
lie to the right of the y−axis.

3.1. Misiurewicz’s parameters

Misiurewicz [14] considers the parameter region P defined by the three
inequalities

0 < b <
a2 − 1

2a + 1
, a

√
2 > b + 2, 2a + b < 4 (13)

Note that for these parameters F has a fixed point X in x > 0 which is a
saddle.

Theorem 3. [14] Consider the Lozi map (11) with parameters in P. Then
F has a hyperbolic, transitive attractor which is the closure of the unstable
manifold of the fixed point R∗.

Our first result in this section applies Theorem 2 to this region of param-
eters.

Theorem 4. (Numerical) The attractor of the Lozi map described in Theo-
rem 3 has a Bowen-Ruelle measure.
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Proof: Let Z be the intersection of the unstable manifold of the fixed
point R∗ with the x−axis. Then for parameters in P F (Z) is in x < 0 and
the triangle ZF (Z)F 2(Z) is an invariant region [14]. The point F 2(Z) may
be in x < 0 or x > 0; the geometry for cases with F (Z) in x < 0 is sketched
in Figure 1.

The intersection of this invariant triangle with the critical line (the y−axis)
is a vertical line segment SF−1(Z), where S is the intersection of F 2(Z)Z
with the y−axis if F 2(Z) is in x < 0, or the intersection of F (Z)F 2(Z) with
the y−axis if F 2(Z) is in x > 0 (In the case of intersection at x = 0 then
S = F 2(Z)).

By checking numerically we are convinced that F (S) lies on the x−axis
in x > 0 and F 2(S) lies in x < 0 for parameters in P.

To apply Young’s Theorem in the form of Theorem 2 let ε = b in (8).
Then the three inequalities are all satisfied provided

a > 1 + b (14)

since 0 < b < 1. It is easy to prove (analytically this time) that (14) holds
for all parameters in P and that in fact a− b > v where

v = 2− 6(
√

2− 1)

2 +
√

2
(15)

(this is derived by considering a − b at the intersection the lines b = 4 − 2a
and b =

√
2a− 2, which lies just outside P and gives a lower value for a− b

than any other point. Note (numerically) that v3 > 0.
Thus if F−1(Z)S = C, we can apply Theorem 2 if F (C) and F 2(C) are

both disjoint from C. Now, F (C) = ZF (S) which is clearly in x > 0, and
F 2(C) = F (Z)F 2(S) which lies in x < 0 provided F 2(S) lies in x < 0. This
can easily (but painfully) be calculated and yields a polynomial inequality,
but we have checked numerically that F 2(S) is in x < 0 for all parameters
in P and hence Theorem 2 can be applied to show the existence of a Bowen-
Ruelle measure.

¤
The numerical verifications referred to were neither sophisticated or ex-

haustive: a 100×100 grid was set up in parameter space containing P and the
properties were verified on this grid. Much more sophisticated approaches
could clearly be used, but the importance of the result does not seem to merit
that degree of effort!
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a

b

Figure 2: Parameter space for the Lozi map: the is a Bowen-Ruelle measure for the shaded
region which lies below the line, which is b = a − 2

1
3 . This line leaves the shaded region

just to the left of the local maximum in b. The right hand shaded region has an invariant
region with F (Z) to the right of the y−axis, the left hand region has an invariant region
with F (Z) on the left of the y−axis.

3.2. Beyond Misiurewicz

The triangle ZF (Z)F 2(Z) described above is an invariant region over
a much larger range of parameter values than the set P of the previous
subsection. Indeed, the results of Young [19] show the existence of a Bowen-
Ruelle measure for all parameters in the shaded region of Fig. 2 which lie
below the line (a−b)3 = 2. This, and the significance of the different shading
in Fig. 2, are explained below.

Theorem 5. Suppose that a Lozi map has a convex invariant region A which
intersects the critical line x = 0 on a line segment C. If there exists N > 0
such that

(a− b)N > 2 (16)

and F k(C) ∩C = ∅, 1 ≤ k < N , the F has an attractor in A with a Bowen-
Ruelle measure.

Proof: If (a−b)N > 2 then a−b > 1 and so the inequalities (8) are satisfied
with ε = b. This, together with (16) and the self-intersection condition for C
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imply that the conditions of Theorem 2 are satisfied and the result follows.
¤

Corollary 1. Define S and Z as in the proof of Theorem 4. If ZF (Z)F 2(Z)
is an invariant region, (a − b)3 > 2, F (S) lies in x > 0 and F 2(S) lies in
x < 0, then F has a Bowen-Ruelle measure.

Proof: Since C, the intersection of the critical line with the invariant
region, is the line segment F−1(Z)S, f(C) = ZF (S) and since Z is in x > 0,
f(C) is in x > 0 provided F (S) is in x > 0. Similarly, as F 2(C) = F (Z)F 2(S)
and F (Z) is in x < 0, the interval F 2(C) lies in x < 0 if F 2(S) is also in
x < 0.

¤
Note that (a−b)3 > 2 is the same as b < a−2

1
3 ; the straight line in Fig. 2

is the boundary of this region, in the left hand shaded region ZF (Z)F 2(Z)
is an invariant region with F 2(Z) in x > 0 with the conditions on F (S) and
F 2(S) satisfied, and the right hand shaded region is the same but with F 2(Z)
in x < 0.

3.3. Lozi-like Border Collisions

In the language of the border collision normal form, TL = |TR| > 0 and
−1 < DL = DR < 0. The more general problem with simpler geometry
relaxes these constraints whilst keeping −1 < DL, DR < 0 and retaining
the signs of the traces. This case is treated briefly in [4], and to maintain
comparability with existing results we will not go into this case here, but
simply note that the same geometric ideas can be applied.

4. Robust Chaos

Suppose

0 ≤ DR, DL < 1, TL > 1 + DL, and TR < −(1 + DR) (17)

Then if µ > 0 then the border collision normal form has two fixed points,
L∗ in x < 0 and R∗ in x > 0. Both are saddles. The linear part of the map
has two positive eigenvalues, s± with 0 < s− < 1 < s+ whilst the fixed point
in x > 0 has negative eigenvalues. This case is considered in some detail by
Banerjee, Yorke and Grebogi [4], who christen the chaotic attractors which
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Figure 3: Geometry of the invariant region for robust chaos.

exist over open sets of parameter values as ‘robust chaos’. They argue that
if (17) holds and in addition

TR >
DL(s− − 1) + DL(1− TL + DL) + DRs−(s+ − 1)

DL(s+ − 1)
(18)

then there is a convex invariant region. (Note that (18) is not exactly the
expression in [4]: their expression contains an algebraic error, however the
reasoning behind the argument is sound.)

It is interesting to consider how far Young’s Theorem can be used to
provide extra information about the attractor in this region. In contrast to
the case of the Lozi map we find that a smaller region of parameter space
can be shown to have a strange attractor with an invariant measure.

The geometry of this situation is shown in Fig. 3. The local unstable
manifold of L∗ has a fold on the x−axis at the point Q = (xQ, 0) where

xQ =
s+ − 1

TL − 1−DL

(19)

For the choice of parameters satisfying (17), xQ > 1 and so (as TR < −1),
F (Q) lies in x < 0 with y < 0. Let S be the intersection of the line QF (Q)
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with the (negative) y−axis, and let V be the intersection of the extension
of this line with the local stable manifold of L∗, so V lies to the left of the
switching surface in y < 0.

Lemma 1. If (17) and (18) hold then the closed triangle V L∗Q is an in-
variant region.

Proof: Condition (18) ensures that F (Q) lies to the right of V . Note that
L∗ is a saddle with positive eigenvalues if equalities (17) hold, and hence
that the quadrants bounded by the stable and unstable manifolds of L∗ are
invariant under the left hand map. In particular both F 2(Q) and F (S) must
lie in the infinite cone containing the angle ∠V L∗Q. Since the x−coordinate
of F (Q) is negative, the y−coordinate of F 2(Q) is positive and so F 2(Q) lies
in V L∗Q. F (S) is also in the invariant quadrant and has y = 0, hence it is
also in V L∗Q. By definition, F (V ) lies closer to L∗ on the line L∗V and so
it too is in V L∗Q. These statements are enough to prove that the images of
both V L∗F−1(Q)S under the left hand map, and F−1(Q)QS under the right
hand map, lie in V L∗Q, and hence this is invariant.

¤
Numerical experiments suggest that both F 2(Q) and F (S) lie in the re-

gion QF (Q)L∗ for our choice of parameters, and so this could equally well
have been used as a smaller invariant region. This does not change the in-
tersection of the set with the critical line, so no improvement to the results
stated here is obtained using this smaller alternative.

Theorem 6. Suppose (17) and (18) hold and let ε = max{DR, DL}. Then
the border collision normal form with µ > 1 has an invariant region QV L∗

as defined above. Furthermore, if there exists N ≥ 1 such that

(|Tk| − ε)N > 2, k = R,L (20)

and both F k+1(S) and F k(Q) lie on the same side of the critical line x = 0
for 1 ≤ k < N , then F has an attractor with a Bowen-Ruelle measure.

Proof: Suppose that DL ≥ DR. Let ε = DL and consider the change
of variable in section 2.2 which leads to (7). Equation (20) implies that
|Tk| − ε > 1 k = R, L and so the second of inequalities (8) is satisfied. The
third is satisfied as ε < 1 by (17), and the first of (8) is satisfied if k = L by
definition of ε and if k = R since DL > DR. Hence the inequalities (8) hold
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Figure 4: (TL, TR)−parameter space for robust: there is a convex invariant set for param-
eters in the shaded region, and the additional shading indicates those regions for which
an invariant measure can be proved to exist with N = 3, 4, 5, 6 moving down the figures.
In (a) DR = DL = 0.5, so the issue of choosing ε to be the larger of DL and DR creates
no restrictions; in (b) DL = 0.5 and DR = 0.2 so we need to take ε = DL.

and the remainder follows immediately from the statement of Theorem 2.
The argument for the inequalities is entirely analogous if DR > DL.

¤
Fig. 4 shows the numerically computed regions where the conditions of

this Theorem apply for N = 3, 4, 5, 6 (the regions exist for decreasing TR).
Where more than one value of N can be chosen we shade it in keeping with
the lower value of N . The dark boundary corresponds to equality in (18).
Note that for larger |TR| our application of Young’s Theorem does not even
cover the whole of this boundary in the case DR = DL = 0.5 illustrated
in Fig. 4(a). It would be interesting to know how far the results could be
extended.

5. Invariant measure with two-dimensional support

Glendinning and Wong [9] describe a countable set of examples of bor-
der collision normal forms with attractors which are two dimensional convex
polygons. The special feature of these examples which allows them to prove
the existence of these regions (on which the dynamics is topologically transi-
tive and periodic orbits are dense) is that there is a finite Markov partition.
Thus these examples lead naturally to a semi-conjugacy with symbol se-
quences under the shift map, and the symbol spaces have invariant measures
in the usual way [1, 7, 11, 18]. Lifting this measure back to the polygon
via cylinder sets (whose diameter tends to zero) and noting that the semi-
conjugacy is one-to-one except on a set of measure zero, this provides an
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invariant measure of the original map with support on the polygon. It is
natural to take the measure of maximal entropy [7, 18].

6. Conclusion

Invariant measures provide a natural way of characterizing statistical
properties of chaotic attractors. We have used a combination of rescaling
and numerical verification of conditions to determine regions of parameter
values for which the border collision normal form has a natural invariant
measure. This has been used to re-examine attractors of the Lozi map and
the example of robust chaos. In particular, we have shown that not all the
region for which an invariant region can be shown to exist can be treated us-
ing the variant of Young’s Theorem of section 2, but of course Young’s result
provides sufficient rather than necessary conditions for the existence of the
invariant measure. It will be interesting to see whether the entire regions do
indeed have natural invariant measures or whether other influences become
important.
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